JP2011228058A - Negative electrode active material, and secondary battery and capacitor using the same - Google Patents

Negative electrode active material, and secondary battery and capacitor using the same Download PDF

Info

Publication number
JP2011228058A
JP2011228058A JP2010095224A JP2010095224A JP2011228058A JP 2011228058 A JP2011228058 A JP 2011228058A JP 2010095224 A JP2010095224 A JP 2010095224A JP 2010095224 A JP2010095224 A JP 2010095224A JP 2011228058 A JP2011228058 A JP 2011228058A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
secondary battery
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010095224A
Other languages
Japanese (ja)
Other versions
JP5575531B2 (en
Inventor
Hidekazu Ido
秀和 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2010095224A priority Critical patent/JP5575531B2/en
Priority to PCT/JP2010/062469 priority patent/WO2011129020A1/en
Priority to CN2010800655516A priority patent/CN102812580A/en
Publication of JP2011228058A publication Critical patent/JP2011228058A/en
Application granted granted Critical
Publication of JP5575531B2 publication Critical patent/JP5575531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active material achieving the large capacity without reduction of the cycle life, and provide a secondary battery and a capacitor using the negative electrode active material.SOLUTION: A second battery comprises: a negative electrode that includes a porous aluminum alloy negative electrode active material 12 having at least one type of silicon or tin; a positive electrode that includes a positive electrode active material (LiCoO) 14 having lithium and capable of absorbing and releasing lithium; and a separator 15 provided between the negative electrode and the positive electrode and impregnated with ion conductivity electrolyte.

Description

本発明は、負極活物質、これを用いた二次電池およびキャパシタに関する。   The present invention relates to a negative electrode active material, a secondary battery using the same, and a capacitor.

リチウム(Li)イオン電池は、エネルギー密度(以下、「容量」ともいう)に優れるため、二次電池として用いられている。この二次電池用負極活物質としては、通常、グラファイト(C)にLiがドープされたものが用いられ、理論的にはC6LiまでLiをドープすることが可能とされているが、実用上はそれ以下の濃度(C10Li)程度までしかLiをドープできないのが現状である。   Lithium (Li) ion batteries are used as secondary batteries because they are excellent in energy density (hereinafter also referred to as “capacity”). As the negative electrode active material for a secondary battery, a material in which Li is doped into graphite (C) is usually used, and it is theoretically possible to dope Li up to C6Li. At present, Li can be doped only up to a lower concentration (C10Li).

また、二次電池用負極として、アルミニウム(Al)−Li系合金も検討され、一部実用化されている。これは、非水系二次電池用Al−Li合金電極であって、該電極はAlを主体とし4〜12質量%のLiを含むAl−Li合金からなり、該合金は網目状共晶組織中のLiAl化合物が10μm以下の大きさであることを特徴とする(特許文献1参照)。   Also, aluminum (Al) -Li alloys have been studied as a negative electrode for secondary batteries, and some of them have been put into practical use. This is an Al—Li alloy electrode for a non-aqueous secondary battery, and the electrode is made of an Al—Li alloy mainly containing Al and containing 4 to 12% by mass of Li, and the alloy is in a network eutectic structure. The LiAl compound has a size of 10 μm or less (see Patent Document 1).

また、キャパシタは二次電池と比べて出力密度が高いため、例えば電気自動車の主電源や補助電源、もしくは太陽光発電や風力発電など再生可能エネルギーの電力蓄積デバイスとして有望視されている。しかし、エネルギー密度が低い(すなわち、電気容量が小さい)ため、これらを改善する下記のような試みが提案されている。   Moreover, since the output density of the capacitor is higher than that of the secondary battery, it is promising as a power storage device for renewable energy such as a main power source and an auxiliary power source of an electric vehicle or solar power generation and wind power generation. However, since the energy density is low (that is, the electric capacity is small), the following attempts to improve these have been proposed.

このようなキャパシタとして、例えば、正極と負極とをセパレータを介して、電解液中に浸漬したLiイオンハイブリッドキャパシタであって、正極が活物質として非多孔性炭を含み、負極が活物質としてLiイオンを可逆的に吸蔵・脱離可能な炭素(C)材料を含み、電解液がLi塩を含む非プロトン性の有機溶媒である構成のものが知られている(特許文献2参照)。   As such a capacitor, for example, a Li ion hybrid capacitor in which a positive electrode and a negative electrode are immersed in an electrolytic solution through a separator, the positive electrode includes non-porous carbon as an active material, and the negative electrode includes Li as an active material. The thing of the structure which contains the carbon (C) material which can occlude / desorb ion reversibly and whose electrolyte solution is an aprotic organic solvent containing Li salt is known (refer patent document 2).

また、Liイオンハイブリッドキャパシタにおいて、特に負極活物質は、細孔構造を有する平均粒子径12〜300nmの多孔質のカーボンブラックが炭素材で結着された集合体である炭素質多孔性粉末であり、正極活物質としては上記特許文献2に開示された炭素(C)材料と同じであるものが知られている(特許文献3参照)。   In the Li-ion hybrid capacitor, the negative electrode active material is a carbonaceous porous powder that is an aggregate of porous carbon black having a pore structure and an average particle diameter of 12 to 300 nm bound with a carbon material. As the positive electrode active material, the same material as the carbon (C) material disclosed in Patent Document 2 is known (see Patent Document 3).

特開昭63−51052号公報JP 63-51052 A 特開2007−294539号公報JP 2007-294539 A 特開2008−150270号公報JP 2008-150270 A

しかしながら、上記特許文献1に開示された二次電池用負極としてのAl−Li系合金は板状をなしているため、充放電に伴う体積膨張収縮による応力が緩和されず、負極活物質として機能するAl−Li系合金の剥落が発生し、サイクル寿命が不十分であるという問題点が存在する。   However, since the Al—Li alloy as the negative electrode for secondary battery disclosed in Patent Document 1 has a plate shape, the stress due to volume expansion / contraction due to charge / discharge is not relieved and functions as a negative electrode active material. As a result, the Al-Li alloy is peeled off and the cycle life is insufficient.

また、上記特許文献2に開示された負極は、活物質として炭素材料を含むため、理論上もC6Li以上のLiのドープ量が得られず、そもそも大容量を期待できない。さらに、正極はアニオンの吸着のみにより蓄電する機構のため、そもそも容量が負極よりかなり小さくなり、負極の容量さえ十分に生かすことができない。   In addition, since the negative electrode disclosed in Patent Document 2 contains a carbon material as an active material, it is theoretically impossible to obtain a doping amount of Li equal to or higher than C6Li, and a large capacity cannot be expected in the first place. Furthermore, since the positive electrode stores electricity only by adsorption of anions, the capacity is considerably smaller than the negative electrode in the first place, and even the capacity of the negative electrode cannot be fully utilized.

また、上記特許文献3に開示された負極に関しても、上記特許文献3に開示された負極同様に、活物質として炭素材料を含むため、理論上もC6Li以上のLiのドープ量が得られず、そもそも大容量を期待できない。さらに、上記特許文献2に開示された正極同様に、正極はアニオンの吸着のみにより蓄電する機構のため、そもそも容量が負極よりかなり小さくなり、負極の容量さえ十分に生かすことができない。   In addition, regarding the negative electrode disclosed in Patent Document 3, similarly to the negative electrode disclosed in Patent Document 3, since a carbon material is included as an active material, a doping amount of Li equal to or higher than C6Li is theoretically not obtained. In the first place, we cannot expect large capacity. Further, like the positive electrode disclosed in Patent Document 2, since the positive electrode stores electricity only by adsorption of anions, the capacity is considerably smaller than the negative electrode in the first place, and even the capacity of the negative electrode cannot be fully utilized.

本発明の目的は、サイクル寿命を低下させることなく、大容量を確保可能な負極活物質、これを用いた二次電池およびキャパシタを提供することにある。   An object of the present invention is to provide a negative electrode active material capable of securing a large capacity without reducing the cycle life, and a secondary battery and a capacitor using the negative electrode active material.

この目的を達成するために、本発明の請求項1に記載の発明は、多孔質のアルミニウム合金であり、シリコンまたはスズの少なくとも1種を含む二次電池用負極活物質である。   In order to achieve this object, an invention according to claim 1 of the present invention is a negative electrode active material for a secondary battery which is a porous aluminum alloy and contains at least one of silicon and tin.

請求項2に記載の発明は、請求項1に記載の発明において、前記シリコンとスズは、それぞれ0.05〜24原子%である(ただし、シリコンとスズの両方を含む場合は、合計30原子%以下とする)ことを特徴とする。   The invention described in claim 2 is the invention described in claim 1, wherein the silicon and tin are each 0.05 to 24 atomic% (provided that both silicon and tin are included, 30 atoms in total) % Or less).

請求項3に記載の発明は、請求項2に記載の二次電池用負極活物質であって、マグネシウムを0.02〜5原子%含むことを特徴とする二次電池用負極活物質である。   Invention of Claim 3 is a negative electrode active material for secondary batteries of Claim 2, Comprising: Magnesium is contained 0.02-5 atomic%, It is a negative electrode active material for secondary batteries characterized by the above-mentioned. .

請求項4に記載の発明は、請求項1乃至3のいずれか1項に記載の二次電池用負極活物質を有した負極と、リチウムを含有しかつリチウムを吸蔵放出可能な正極活物質を有した正極と、前記負極と正極間に配置されたイオン伝導性電解液とを備えたことを特徴とする二次電池である。   The invention described in claim 4 includes: a negative electrode having the negative electrode active material for secondary battery according to any one of claims 1 to 3; and a positive electrode active material containing lithium and capable of occluding and releasing lithium. A secondary battery comprising: a positive electrode provided; and an ion conductive electrolyte disposed between the negative electrode and the positive electrode.

請求項5に記載の発明は、多孔質のアルミニウム合金であり、リチウムと、シリコンまたはスズの少なくとも1種と、を含むキャパシタ用負極活物質である。   The invention according to claim 5 is a negative electrode active material for a capacitor, which is a porous aluminum alloy and contains lithium and at least one of silicon and tin.

請求項6に記載の発明は、請求項5に記載の発明において、前記シリコンとスズは、それぞれ0.05〜24原子%である(ただし、シリコンとスズの両方を含む場合は、合計30原子%以下とする)ことを特徴とする。   The invention according to claim 6 is the invention according to claim 5, wherein the silicon and tin are each 0.05 to 24 atom% (provided that both silicon and tin are included, 30 atoms in total) % Or less).

請求項7に記載の発明は、請求項6に記載のキャパシタ用負極活物質であって、マグネシウムを0.02〜5原子%含むことを特徴とするキャパシタ用負極活物質である。   The invention according to claim 7 is the negative electrode active material for capacitors according to claim 6, wherein the negative electrode active material for capacitors contains 0.02 to 5 atomic% of magnesium.

請求項8に記載の発明は、請求項5乃至7のいずれか1項に記載のキャパシタ用負極活物質を有した負極と、正極と、前記負極と正極間に配置されたイオン伝導性電解液とを備えたことを特徴とするキャパシタである。   The invention according to claim 8 is a negative electrode having the negative electrode active material for capacitors according to any one of claims 5 to 7, a positive electrode, and an ion conductive electrolyte disposed between the negative electrode and the positive electrode. And a capacitor.

以上のように、本発明の二次電池用負極活物質は、多孔質のアルミニウム合金であり、シリコンまたはスズの少なくとも1種を含むため、サイクル寿命を低下させることなく、大容量を確保可能な負極活物質およびこれを用いた二次電池を提供することができる。   As described above, the negative electrode active material for a secondary battery of the present invention is a porous aluminum alloy, and includes at least one of silicon or tin, so that a large capacity can be ensured without reducing the cycle life. A negative electrode active material and a secondary battery using the same can be provided.

また、本発明のキャパシタ用負極活物質は、多孔質のアルミニウム合金であり、リチウムと、シリコンまたはスズの少なくとも1種と、を含むため、サイクル寿命を低下させることなく、大容量を確保可能な負極活物質およびこれを用いたキャパシタを提供することができる。   Further, the negative electrode active material for a capacitor of the present invention is a porous aluminum alloy, and includes lithium and at least one of silicon and tin, so that a large capacity can be secured without reducing the cycle life. A negative electrode active material and a capacitor using the same can be provided.

本発明に係る二次電池の一実施形態を説明するための模式構成図である。It is a schematic block diagram for demonstrating one Embodiment of the secondary battery which concerns on this invention. 本発明に係るキャパシタの一実施形態を説明するための模式構成図である。It is a schematic block diagram for demonstrating one Embodiment of the capacitor based on this invention.

以下、本発明の一実施形態について、添付図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

(二次電池用負極活物質およびキャパシタ用負極活物質の調製)
(アルミニウム箔の前処理)
1)まず、厚さ110μm、所定組成(Liを含まない、詳細は下記表1、表2参照)のアルミニウム箔を、5.5質量%塩酸、1.5質量%りん酸と0.5質量%硝酸、2.0質量%塩化アルミニウムを含む水溶液中、18℃の電解液中で10Hz、電流密度120mA/cmの三角波交流電流で10秒〜27分エッチングを行ない、イオン交換水で洗浄した。
2)次に、5.0質量%硫酸水溶液中に、60℃で2分間〜3分間浸せきした後、イオン交換水で洗浄した。これにより、下記表1の試験No.1〜5と7〜9に示すような、リチウム(Li)を含有させる必要のない二次電池用負極活物質としての負極活物質12(図1参照)は完成する。この負極活物質12には、下記に詳細を説明するような多数の細孔を有する。
(Preparation of negative electrode active material for secondary battery and negative electrode active material for capacitor)
(Pretreatment of aluminum foil)
1) First, an aluminum foil having a thickness of 110 μm and a predetermined composition (not including Li, for details, see Tables 1 and 2 below) was added to 5.5% hydrochloric acid, 1.5% phosphoric acid and 0.5% by mass. Etching in an aqueous solution containing 10% nitric acid and 2.0 mass% aluminum chloride in an electrolytic solution at 18 ° C. with a triangular wave alternating current of 10 Hz and a current density of 120 mA / cm 2 for 10 seconds to 27 minutes, and washed with ion-exchanged water .
2) Next, it was immersed in a 5.0 mass% sulfuric acid aqueous solution at 60 ° C. for 2 to 3 minutes, and then washed with ion-exchanged water. As a result, the test No. in Table 1 below. The negative electrode active material 12 (see FIG. 1) as a negative electrode active material for a secondary battery that does not need to contain lithium (Li) as shown in 1 to 5 and 7 to 9 is completed. The negative electrode active material 12 has a large number of pores as will be described in detail below.

(二次電池用負極活物質およびキャパシタ用負極活物質の合成)
上記予め前処理されたアルミニウム箔にリチウム(Li)を含有させる場合には、正極側、負極側にそれぞれ接続されたリチウム板、上記予め前処理されたアルミニウム箔を電解液{濃度1モル; 電解質(LiPF)、有機溶媒(エチレンカーボネート(EC):ジエチルカーボネート(DEC)=1:1の混合溶液)}内に浸漬し対峙させ、前記アルミニウム箔の電位を25mV(対Li/Li)に制御して50℃で電解することにより合金化し、下記表1の試験No.6に示す二次電池用負極活物質としての負極活物質12(図1参照)および下記表2の試験No.11〜21に示すキャパシタ用負極活物質としての負極活物質12(図2参照)をそれぞれ合成した。これらの合成により得られた負極活物質12には、多数の細孔を有する。また、ここで言う細孔とは、上記アルミニウム箔の前処理条件等により発生する多少の穴を含んだ場合も含めた総称である。また、細孔の分布状態は、ほぼ均一であり、上記合成により得られた負極活物質12の表面における細孔が占める面積の割合は、10%〜80%のものがよい。この細孔の分布状態は、上記予め前処理されたアルミニウム箔の細孔の分布状態が反映される。また、この細孔を有した多孔質の負極活物質12中のリチウム含有量は、上記合成実験時の電気量から算出した(下記表1、表2参照)。

Figure 2011228058


Figure 2011228058

(Synthesis of secondary battery negative electrode active material and capacitor negative electrode active material)
When lithium (Li) is contained in the pre-treated aluminum foil, a lithium plate connected to each of the positive electrode side and the negative electrode side, and the pre-treated aluminum foil are used as an electrolyte {concentration of 1 mol; (LiPF 6 ), an organic solvent (ethylene carbonate (EC): diethyl carbonate (DEC) = 1: 1 mixed solution)) so that the aluminum foil has a potential of 25 mV (vs. Li / Li + ). Controlled and electrolyzed at 50 ° C. to form an alloy. A negative electrode active material 12 (see FIG. 1) as a negative electrode active material for a secondary battery shown in FIG. The negative electrode active material 12 (refer FIG. 2) as a negative electrode active material for capacitors shown in 11-21 was synthesize | combined, respectively. The negative electrode active material 12 obtained by these syntheses has a large number of pores. The term “pore” as used herein is a generic term including a case where some holes generated due to the pretreatment conditions of the aluminum foil are included. Moreover, the distribution state of the pores is almost uniform, and the proportion of the area occupied by the pores on the surface of the negative electrode active material 12 obtained by the synthesis is preferably 10% to 80%. The distribution state of the pores reflects the distribution state of the pores of the aluminum foil previously pretreated. Further, the lithium content in the porous negative electrode active material 12 having pores was calculated from the amount of electricity at the time of the synthesis experiment (see Tables 1 and 2 below).
Figure 2011228058


Figure 2011228058

(負極の形成)
図1、図2に示すように、上記負極活物質12を負極として用いた。
(Formation of negative electrode)
As shown in FIGS. 1 and 2, the negative electrode active material 12 was used as a negative electrode.

(実施形態1)
図1は、本発明に係る二次電池の一実施形態を説明するための模式構成図である。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram for explaining an embodiment of a secondary battery according to the present invention.

図1において、10は容器、13はアルミニウム製の集電体、14はリチウムを含有しかつリチウムを吸蔵放出可能な正極活物質としてのLiCoO、15は上記二次電池用負極活物質の合成に使用したものと同じ電解液が含浸されたセパレータである。セパレータ15は、上記二次電池用の負極活物質12と集電体13上に塗布乾燥して設けたLiCoO14とに挟まれた構成である。このようにして構成された二次電池を上記表1に示す試験No.1〜9の二次電池用の負極活物質12に合わせて、下記表3に示すように試験No.1〜9とした。

Figure 2011228058
In FIG. 1, 10 is a container, 13 is an aluminum current collector, 14 is LiCoO 2 as a positive electrode active material containing lithium and capable of occluding and releasing lithium, and 15 is a synthesis of the negative electrode active material for the secondary battery. The separator is impregnated with the same electrolytic solution used in the above. The separator 15 is a configuration sandwiched between the LiCoO 2 14 provided by coating and drying on the negative electrode active material 12 and the current collector 13 for the secondary battery. The secondary battery constructed as described above was tested with the test numbers shown in Table 1 above. In accordance with the negative electrode active material 12 for secondary batteries 1 to 9, the test No. 1-9.
Figure 2011228058

図1に示すように構成した二次電池の電圧を計測した。次に、サイクル試験(放電深度20%)を行い、容量が初期の80%に低下したサイクル数をサイクル寿命とした。また、初期負極容量を求め、さらに負極活物質12の表面を観察し、デンドライト生成の有無を確認した。その結果を上記表3に示す。   The voltage of the secondary battery configured as shown in FIG. 1 was measured. Next, a cycle test (discharge depth 20%) was performed, and the cycle number in which the capacity was reduced to 80% of the initial value was defined as the cycle life. Further, the initial negative electrode capacity was obtained, and the surface of the negative electrode active material 12 was observed to confirm the presence or absence of dendrite formation. The results are shown in Table 3 above.

上記表3に示すように、試験No.1〜9の電圧は、3.5〜3.9Vと目標とする所定の電圧が発生している。また、試験No.1〜7、9は、970回〜1830回と目標とする所定のサイクル寿命(600回以上)を満足したものの、試験No.8は、320回と下回った。これは、試験No.1〜7、9においては、充電時に負極活物質12内のリチウム含有量が増加し、体積膨張するが、多孔質構造であるため、負極活物質12の内部にわたって影響が吸収され、緩和されたものと思われる。一方、試験No.8では、マグネシウム(Mg)の含有量が多いため、サイクル性が劣化したと思われる。また、試験No.4〜6は、Mgを含み、負極活物質12の機械的強度が向上するため、サイクル寿命の点から有利である。   As shown in Table 3 above, Test No. The target voltage of 3.5 to 3.9V is generated as the voltage of 1 to 9. In addition, Test No. Nos. 1 to 7 and 9 satisfy the target cycle life (600 times or more) of 970 to 1830 times. 8 fell below 320 times. This is the result of test no. In 1 to 7 and 9, the lithium content in the negative electrode active material 12 increases and the volume expands at the time of charging, but the influence is absorbed and relaxed throughout the negative electrode active material 12 because of the porous structure. It seems to be. On the other hand, test no. In No. 8, since the content of magnesium (Mg) is large, it seems that the cycle performance was deteriorated. In addition, Test No. 4 to 6 contain Mg and are advantageous in terms of cycle life because the mechanical strength of the negative electrode active material 12 is improved.

また、上記表3に示すように、試験No.1〜7の初期負極容量は、810〜1350mAh/gと目標とする所定容量(800mAh/g以上)を満足したものの、試験No.8、9は、それぞれ740、790と下回った。このように、試験No.1〜7の初期負極容量が大きくなったのは、リチウムを吸蔵する能力がグラファイトに対してアルミニウムは2.3倍、シリコン(Si)は4.4倍、スズ(Sn)は4.4倍であることに起因していると思われる。なお、シリコンとスズは、それぞれ0.05〜24原子(at)%である(ただし、シリコンとスズの両方を含む場合は、合計30原子%以下とする)のが好ましい。何故ならば、0.05原子%未満では、リチウムを吸蔵する効果が小さく、シリコンまたはスズがそれぞれ24原子%超の場合やシリコンとスズの合計が30原子%超の場合は、多孔質状負極活物質の作製が困難であるからである。   In addition, as shown in Table 3 above, the test No. Although the initial negative electrode capacities of 1 to 7 satisfied the target capacity (800 mAh / g or more) of 810 to 1350 mAh / g, 8 and 9 were lower than 740 and 790, respectively. Thus, test no. The initial negative electrode capacities of 1-7 increased because the ability to occlude lithium was 2.3 times that of graphite, 4.4 times that of silicon (Si), and 4.4 times that of tin (Sn). It seems to be caused by being. Silicon and tin are each preferably 0.05 to 24 atoms (at)% (however, when both silicon and tin are included, the total is 30 atom% or less). This is because if it is less than 0.05 atomic%, the effect of occluding lithium is small, and if silicon or tin exceeds 24 atomic% or if the total of silicon and tin exceeds 30 atomic%, a porous negative electrode This is because it is difficult to produce an active material.

また、試験No.1〜9では、デンドライトの生成も認められなかった。以上の結果を総合すると、サイクル寿命を低下させることなく、大容量を確保可能な負極活物質およびこれを用いた二次電池を実現する上で、試験No.1〜7が適合することが分かる。   In addition, Test No. In 1 to 9, no dendrite formation was observed. Summarizing the above results, in order to realize a negative electrode active material capable of securing a large capacity without reducing the cycle life and a secondary battery using the negative electrode active material, test no. It can be seen that 1 to 7 are suitable.

(実施形態2)
図2は、本発明に係るキャパシタの一実施形態を説明するための模式構成図である。
(Embodiment 2)
FIG. 2 is a schematic configuration diagram for explaining one embodiment of a capacitor according to the present invention.

図2において、20はアルミニウム製の集電体、21は正極活物質、22は電解液が含浸されたセパレータである。本実施形態において、実施形態1の構成と同一の要素に関しては同一番号を付し、詳細な説明は省略する。   In FIG. 2, 20 is an aluminum current collector, 21 is a positive electrode active material, and 22 is a separator impregnated with an electrolytic solution. In the present embodiment, the same elements as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

セパレータ22は、上記キャパシタ用の負極活物質12と集電体20上に塗布乾燥して設けた活性炭(BET比表面積:800〜1300m/g)を有した正極活物質21とに挟まれた構成である。セパレータ22に含浸されている電解液は、電解質(LiBF)と有機溶媒{エチレンカーボネート(EC):エチルメチルカーボネート(EMC)=1:1の混合溶液}からなる濃度1.5モルの電解液である。このようにして構成されたキャパシタを上記表2に示す試験No.11〜21のキャパシタ用の負極活物質12に合わせて、下記表4に示すように試験No.11〜21とした。

Figure 2011228058
The separator 22 was sandwiched between the negative electrode active material 12 for the capacitor and the positive electrode active material 21 having activated carbon (BET specific surface area: 800 to 1300 m 2 / g) provided on the current collector 20 by coating and drying. It is a configuration. The electrolytic solution impregnated in the separator 22 is an electrolytic solution having a concentration of 1.5 mol composed of an electrolyte (LiBF 4 ) and an organic solvent {a mixed solution of ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 1}. It is. The capacitor thus constructed was tested with the test numbers shown in Table 2 above. In accordance with the negative electrode active material 12 for capacitors 11 to 21, as shown in Table 4 below, It was set to 11-21.
Figure 2011228058

図2に示すように構成したキャパシタの電圧を計測した。また、図2に示すように構成したキャパシタを25℃の恒温槽内で、定電流で1.0Vまで放電させた。この時の静電容量Cは、放電時の電圧Vと電流Iの積を時間積分した放電エネルギーが、1/2CVに等しいとして算出し、負極活物質12の単位重量当たりの静電容量C(F/g)を求めた。その結果を上記表4に示す。 The voltage of the capacitor configured as shown in FIG. 2 was measured. Further, the capacitor configured as shown in FIG. 2 was discharged to 1.0 V with a constant current in a thermostatic chamber at 25 ° C. The capacitance C at this time is calculated assuming that the discharge energy obtained by time integration of the product of the voltage V and the current I during discharge is equal to 1/2 CV 2, and the capacitance C per unit weight of the negative electrode active material 12 is calculated. (F / g) was determined. The results are shown in Table 4 above.

上記表4に示すように、試験No.11〜21の電圧は、3.3〜3.8Vと目標とする所定の電圧が発生している。また、試験No.11〜19の静電容量Cは、1840〜2450F/gと目標とする所定静電容量(1800F/g以上)を満足したものの、試験No.20、21は、それぞれ1740、1790と下回った。このように、試験No.11〜19の静電容量Cが大きくなったのは、リチウムを吸蔵する能力がグラファイトに対してアルミニウムは2.3倍、シリコン(Si)は4.4倍、スズ(Sn)は4.4倍であることに起因していると思われる。なお、シリコンとスズは、それぞれ0.05〜24原子%である(ただし、シリコンとスズの両方を含む場合は、合計30原子%以下とする)のが好ましい。何故ならば、0.05原子%未満では、リチウムを吸蔵する効果が小さく、シリコンまたはスズがそれぞれ24原子%超の場合やシリコンとスズの合計が30原子%超の場合は、多孔質状負極活物質の作製が困難であるからである。   As shown in Table 4 above, Test No. The target voltage of 3.3 to 3.8 V is generated as the voltage of 11 to 21. In addition, Test No. The electrostatic capacity C of 11 to 19 satisfied the target predetermined electrostatic capacity (1800 F / g or more) of 1840 to 2450 F / g. 20 and 21 were lower than 1740 and 1790, respectively. Thus, test no. Capacitance C of 11 to 19 increased because the ability to occlude lithium was 2.3 times that of graphite, 4.4 times that of silicon (Si), and 4.4 times that of tin (Sn). It seems to be due to being doubled. Silicon and tin are each preferably 0.05 to 24 atomic% (however, when both silicon and tin are included, the total is 30 atomic% or less). This is because if it is less than 0.05 atomic%, the effect of occluding lithium is small, and if silicon or tin exceeds 24 atomic% or if the total of silicon and tin exceeds 30 atomic%, a porous negative electrode This is because it is difficult to produce an active material.

次に、25℃の恒温槽内で、定電流定電圧で所定電圧まで充電し、定電流で1.0Vまで放電させ、静電容量が初期の70%に低下したサイクル数をサイクル寿命とした。また、負極活物質12の表面を観察しデンドライト生成の有無を確認した。その結果を上記表4に示す。   Next, in a constant temperature bath at 25 ° C., the battery was charged to a predetermined voltage with a constant current and a constant voltage, discharged to 1.0 V with a constant current, and the cycle number in which the electrostatic capacity decreased to 70% of the initial value was defined as the cycle life. . Further, the surface of the negative electrode active material 12 was observed to confirm whether dendrite was generated. The results are shown in Table 4 above.

上記表4に示すように、試験No.11〜19、21は、14千回〜110千回と目標とする所定のサイクル寿命(10千回以上)を満足したものの、試験No.20は、3千回と下回った。これは、試験No.11〜19、21においては、充電時に負極活物質12内のリチウム含有量が増加し、体積膨張するが、多孔質構造であるため、負極活物質12の内部にわたって影響が吸収され、緩和されたものと思われる。一方、試験No.20では、Mg含有量が多いため、体積膨張の影響緩和が不十分であったものと思われる。また、試験No.14〜18は、Mgを含み、負極活物質12の機械的強度が向上するため、大容量化を図りながら、より高いサイクル寿命を満足させる上で有利である。   As shown in Table 4 above, Test No. Nos. 11 to 19 and 21 satisfy the target cycle life (110,000 times or more) of 14,000 times to 110,000 times, but the test No. 20 fell below 3,000 times. This is the result of test no. In 11 to 19 and 21, the lithium content in the negative electrode active material 12 increases and the volume expands at the time of charging. However, because of the porous structure, the influence is absorbed and relaxed throughout the negative electrode active material 12. It seems to be. On the other hand, test no. In No. 20, since the Mg content is large, it seems that the effect of volume expansion was insufficiently mitigated. In addition, Test No. Nos. 14 to 18 contain Mg and are advantageous in satisfying a higher cycle life while increasing the capacity because the mechanical strength of the negative electrode active material 12 is improved.

また、試験No.11〜21では、デンドライトの生成も認められなかった。以上の結果を総合すると、サイクル寿命を低下させることなく、大容量を確保可能な負極活物質およびこれを用いたキャパシタを実現する上で、試験No.11〜19が適合することが分かる。   In addition, Test No. From 11 to 21, no dendrite formation was observed. Summarizing the above results, in order to realize a negative electrode active material capable of securing a large capacity without reducing the cycle life and a capacitor using the same, test no. It can be seen that 11 to 19 are suitable.

なお、本実施の形態においては、アルミニウム箔として、厚さが110μmの場合を例に説明したが、必ずしもこれに限定されるものではなく、厚さが約5μm〜200μmのものを用いることができる。また、本実施の形態においては、二次電池用の負極活物質として、上記表1に示されるように、Alを中心にSi、Sn、Mgを適宜含有した例について説明したが、二次電池用の負極活物質には、不可避不純物として、Fe、Cu、Mn、Zn、Ti等を0.05at%以下含有しても良い。また、本実施の形態においては、キャパシタ用の負極活物質として、上記表2に示されるように、AlとLiを中心にSi、Sn、Mgを適宜含有した例について説明したが、キャパシタ用の負極活物質には、不可避不純物として、Fe、Cu、Mn、Zn、Ti等を0.05at%以下含有しても良い。また、キャパシタ用の負極活物質中のLiの含有量は、5at%〜70at%が好ましい。その理由は、5at%未満では、エネルギー密度が小さくなり、70at%を超えると電極の体積デンドライトが発生しやすくなるためである。なお、より好ましくは、Liの含有量を30at%〜65at%とするのがよい。   In the present embodiment, the aluminum foil has been described as an example where the thickness is 110 μm, but the present invention is not necessarily limited to this, and an aluminum foil having a thickness of about 5 μm to 200 μm can be used. . Further, in this embodiment, as an anode active material for a secondary battery, as shown in Table 1 above, an example in which Si, Sn, and Mg are appropriately contained centering on Al has been described. The negative electrode active material may contain 0.05 at% or less of Fe, Cu, Mn, Zn, Ti, etc. as inevitable impurities. Further, in the present embodiment, as an anode active material for a capacitor, as shown in Table 2 above, an example in which Si, Sn, and Mg are appropriately contained centering on Al and Li has been described. The negative electrode active material may contain 0.05 at% or less of Fe, Cu, Mn, Zn, Ti, etc. as inevitable impurities. Moreover, the content of Li in the negative electrode active material for capacitors is preferably 5 at% to 70 at%. The reason is that if it is less than 5 at%, the energy density becomes small, and if it exceeds 70 at%, volume dendrite of the electrode tends to occur. More preferably, the Li content is 30 at% to 65 at%.

なお、本実施形態1、2においては、負極活物質12に対して集電体を別途設けない構成について説明したが、必ずしもこれに限定されるものではない。例えば、負極活物質12を銅製の集電体に導電ペーストを介して軽く圧接し、負極とするなど、負極活物質12に対して集電体を別途設けることも可能である。   In the first and second embodiments, the configuration in which a current collector is not separately provided for the negative electrode active material 12 has been described. However, the present invention is not necessarily limited thereto. For example, a current collector may be separately provided for the negative electrode active material 12 such that the negative electrode active material 12 is lightly pressed against a copper current collector via a conductive paste to form a negative electrode.

10 容器
12 負極活物質
13、20 集電体
14 正極活物質(LiCoO
21 正極活物質
15、22 電解液が含浸されたセパレータ
DESCRIPTION OF SYMBOLS 10 Container 12 Negative electrode active material 13, 20 Current collector 14 Positive electrode active material (LiCoO 2 )
21 Positive electrode active material 15, 22 Separator impregnated with electrolyte

Claims (8)

多孔質のアルミニウム合金であり、シリコンまたはスズの少なくとも1種を含む二次電池用負極活物質。   A negative electrode active material for a secondary battery, which is a porous aluminum alloy and contains at least one of silicon and tin. 前記シリコンとスズは、それぞれ0.05〜24原子%である(ただし、シリコンとスズの両方を含む場合は、合計30原子%以下とする)ことを特徴とする請求項1に記載の二次電池用負極活物質。   2. The secondary according to claim 1, wherein the silicon and tin are each 0.05 to 24 atomic% (however, when both silicon and tin are included, the total is 30 atomic% or less). Negative electrode active material for batteries. 請求項2に記載の二次電池用負極活物質であって、マグネシウムを0.02〜5原子%含むことを特徴とする二次電池用負極活物質。   The negative electrode active material for a secondary battery according to claim 2, comprising 0.02 to 5 atomic% of magnesium. 請求項1乃至3のいずれか1項に記載の二次電池用負極活物質を有した負極と、リチウムを含有しかつリチウムを吸蔵放出可能な正極活物質を有した正極と、前記負極と正極間に配置されたイオン伝導性電解液とを備えたことを特徴とする二次電池。   A negative electrode having the negative electrode active material for a secondary battery according to any one of claims 1 to 3, a positive electrode having a positive electrode active material containing lithium and capable of occluding and releasing lithium, and the negative electrode and the positive electrode A secondary battery comprising: an ion conductive electrolyte solution disposed therebetween. 多孔質のアルミニウム合金であり、リチウムと、シリコンまたはスズの少なくとも1種と、を含むキャパシタ用負極活物質。   A negative electrode active material for a capacitor, which is a porous aluminum alloy and includes lithium and at least one of silicon and tin. 前記シリコンとスズは、それぞれ0.05〜24原子%である(ただし、シリコンとスズの両方を含む場合は、合計30原子%以下とする)ことを特徴とする請求項5に記載のキャパシタ用負極活物質。   The said silicon and tin are 0.05-24 atomic%, respectively (however, when both silicon and tin are included, it is set as 30 atomic% or less in total), Negative electrode active material. 請求項6に記載のキャパシタ用負極活物質であって、マグネシウムを0.02〜5原子%含むことを特徴とするキャパシタ用負極活物質。   The negative electrode active material for capacitors according to claim 6, wherein the negative electrode active material for capacitors contains 0.02 to 5 atomic% of magnesium. 請求項5乃至7のいずれか1項に記載のキャパシタ用負極活物質を有した負極と、正極と、前記負極と正極間に配置されたイオン伝導性電解液とを備えたことを特徴とするキャパシタ。
A negative electrode having the negative electrode active material for a capacitor according to any one of claims 5 to 7, a positive electrode, and an ion conductive electrolyte disposed between the negative electrode and the positive electrode. Capacitor.
JP2010095224A 2010-04-16 2010-04-16 Negative electrode active material, secondary battery and capacitor using the same Expired - Fee Related JP5575531B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010095224A JP5575531B2 (en) 2010-04-16 2010-04-16 Negative electrode active material, secondary battery and capacitor using the same
PCT/JP2010/062469 WO2011129020A1 (en) 2010-04-16 2010-07-23 Negative electrode active material, and secondary battery, capacitor and electricity storage device each using the negative electrode active material
CN2010800655516A CN102812580A (en) 2010-04-16 2010-07-23 Negative Electrode Active Material, And Secondary Battery, Capacitor And Electricity Storage Device Each Using The Negative Electrode Active Material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095224A JP5575531B2 (en) 2010-04-16 2010-04-16 Negative electrode active material, secondary battery and capacitor using the same

Publications (2)

Publication Number Publication Date
JP2011228058A true JP2011228058A (en) 2011-11-10
JP5575531B2 JP5575531B2 (en) 2014-08-20

Family

ID=45043210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095224A Expired - Fee Related JP5575531B2 (en) 2010-04-16 2010-04-16 Negative electrode active material, secondary battery and capacitor using the same

Country Status (1)

Country Link
JP (1) JP5575531B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023889A (en) * 2010-07-15 2012-02-02 Kobelco Kaken:Kk Electrical power system and vehicle using the same
JP2013115344A (en) * 2011-11-30 2013-06-10 Aisin Seiki Co Ltd Electrochemical device using negative electrode containing magnesium element
JP2013229111A (en) * 2012-04-24 2013-11-07 Showa Denko Kk Negative electrode active material for lithium secondary battery and manufacturing method therefor
WO2020105330A1 (en) 2018-11-22 2020-05-28 住友化学株式会社 Negative-electrode active material for non-aqueous electrolyte secondary cell, negative electrode, cell, and laminate
WO2021206120A1 (en) 2020-04-09 2021-10-14 住友化学株式会社 Lithium secondary battery and electrolytic solution for lithium secondary battery
WO2021206121A1 (en) 2020-04-09 2021-10-14 住友化学株式会社 Method for manufacturing lithium secondary battery and method for charging lithium secondary battery
WO2022209507A1 (en) 2021-03-31 2022-10-06 住友化学株式会社 Negative electrode for lithium secondary battery, and lithium secondary battery
KR20220166272A (en) 2020-04-09 2022-12-16 스미또모 가가꾸 가부시키가이샤 Laminate for lithium secondary battery
KR20220166271A (en) 2020-04-09 2022-12-16 스미또모 가가꾸 가부시키가이샤 lithium secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293861A (en) * 1985-10-17 1987-04-30 Bridgestone Corp Secondary batter
JPS62115663A (en) * 1985-11-14 1987-05-27 Sumitomo Chem Co Ltd Organic electrolyte secondary battery
JPS63314762A (en) * 1987-06-17 1988-12-22 Kanebo Ltd Organic electrolyte cell using aluminum-lithium alloy as negative electrode
JPH03133062A (en) * 1989-10-16 1991-06-06 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009231234A (en) * 2008-03-25 2009-10-08 Fuji Heavy Ind Ltd Carbon material for negative electrode, electric power storage device, and product having mounted thereon electric power storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293861A (en) * 1985-10-17 1987-04-30 Bridgestone Corp Secondary batter
JPS62115663A (en) * 1985-11-14 1987-05-27 Sumitomo Chem Co Ltd Organic electrolyte secondary battery
JPS63314762A (en) * 1987-06-17 1988-12-22 Kanebo Ltd Organic electrolyte cell using aluminum-lithium alloy as negative electrode
JPH03133062A (en) * 1989-10-16 1991-06-06 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009231234A (en) * 2008-03-25 2009-10-08 Fuji Heavy Ind Ltd Carbon material for negative electrode, electric power storage device, and product having mounted thereon electric power storage device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023889A (en) * 2010-07-15 2012-02-02 Kobelco Kaken:Kk Electrical power system and vehicle using the same
JP2013115344A (en) * 2011-11-30 2013-06-10 Aisin Seiki Co Ltd Electrochemical device using negative electrode containing magnesium element
JP2013229111A (en) * 2012-04-24 2013-11-07 Showa Denko Kk Negative electrode active material for lithium secondary battery and manufacturing method therefor
WO2020105330A1 (en) 2018-11-22 2020-05-28 住友化学株式会社 Negative-electrode active material for non-aqueous electrolyte secondary cell, negative electrode, cell, and laminate
KR20210092210A (en) 2018-11-22 2021-07-23 스미또모 가가꾸 가부시키가이샤 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode, battery and laminate
WO2021206120A1 (en) 2020-04-09 2021-10-14 住友化学株式会社 Lithium secondary battery and electrolytic solution for lithium secondary battery
WO2021206121A1 (en) 2020-04-09 2021-10-14 住友化学株式会社 Method for manufacturing lithium secondary battery and method for charging lithium secondary battery
KR20220166272A (en) 2020-04-09 2022-12-16 스미또모 가가꾸 가부시키가이샤 Laminate for lithium secondary battery
KR20220166270A (en) 2020-04-09 2022-12-16 스미또모 가가꾸 가부시키가이샤 Lithium secondary battery manufacturing method and lithium secondary battery charging method
KR20220166271A (en) 2020-04-09 2022-12-16 스미또모 가가꾸 가부시키가이샤 lithium secondary battery
KR20220166791A (en) 2020-04-09 2022-12-19 스미또모 가가꾸 가부시키가이샤 Lithium secondary battery and electrolyte solution for lithium secondary battery
WO2022209507A1 (en) 2021-03-31 2022-10-06 住友化学株式会社 Negative electrode for lithium secondary battery, and lithium secondary battery

Also Published As

Publication number Publication date
JP5575531B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5575531B2 (en) Negative electrode active material, secondary battery and capacitor using the same
JP5182477B2 (en) Non-aqueous secondary battery
JP5301090B2 (en) Electrode for lithium ion capacitor and lithium ion capacitor using the same
WO2014007188A1 (en) Lithium ion capacitor
WO2002041420A1 (en) Nonaqueous lithium secondary cell
WO2013054710A1 (en) Lithium ion capacitor, power storage device, power storage system
CN104409223A (en) Lithium ion capacitor cathode piece and lithium ion capacitor using cathode pieces
TW201248977A (en) Battery electrode and battery
JP2007335360A (en) Lithium secondary cell
WO2011129020A1 (en) Negative electrode active material, and secondary battery, capacitor and electricity storage device each using the negative electrode active material
TW201721941A (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing nonaqueous electrolyte secondary battery
JP2014035963A (en) Positive electrode material, lithium ion power storage device, and method of manufacturing the same
JP2010287641A (en) Energy storage device
WO2013146464A1 (en) Electrode material, and capacitor and secondary battery using said electrode material
JP2014220115A (en) Sodium secondary battery
JP2014187383A (en) Capacitor arranged by use of metal porous body
JP2015095634A (en) Power storage device and manufacturing method thereof
JP2011228402A (en) Electrical storage device
US10256049B2 (en) Positive electrode for a lithium ion capacitor and lithium ion capacitor
JP2008060028A (en) Power storage device
Loupe et al. Electrochemical energy storage: Current and emerging technologies
JP2010170901A (en) Negative-electrode active material, secondary battery and capacitor using the same
JP5565112B2 (en) Capacitor using porous metal
CN110571500A (en) lithium-sulfur semi-flow battery
JP2012114201A (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140702

R150 Certificate of patent or registration of utility model

Ref document number: 5575531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees