JP2011100904A - Stationary induction apparatus - Google Patents

Stationary induction apparatus Download PDF

Info

Publication number
JP2011100904A
JP2011100904A JP2009255619A JP2009255619A JP2011100904A JP 2011100904 A JP2011100904 A JP 2011100904A JP 2009255619 A JP2009255619 A JP 2009255619A JP 2009255619 A JP2009255619 A JP 2009255619A JP 2011100904 A JP2011100904 A JP 2011100904A
Authority
JP
Japan
Prior art keywords
cylindrical
voltage winding
conductive shield
winding
shield material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009255619A
Other languages
Japanese (ja)
Other versions
JP5317930B2 (en
Inventor
Hisahide Matsuo
尚英 松尾
Noriyuki Hayashi
則行 林
Masaki Takeuchi
正樹 竹内
Kohei Sato
孝平 佐藤
Masanao Kuwabara
正尚 桑原
Hiroyuki Endo
博之 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2009255619A priority Critical patent/JP5317930B2/en
Publication of JP2011100904A publication Critical patent/JP2011100904A/en
Application granted granted Critical
Publication of JP5317930B2 publication Critical patent/JP5317930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulation Of General Use Transformers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stationary induction apparatus capable of suppressing a transient overvoltage while suppressing an increase in outer diameter of stationary induction winding. <P>SOLUTION: The stationary induction apparatus is constituted by supporting with an insulation a conductive shield material 5 which is discontinuous in a peripheral direction of a magnetic iron core between cylindrical winding (3) wound around a periphery of the magnetic iron core 1 and members (2, 4) having a potential difference, and opposing the conductive shield material along the overall length of the cylindrical winding (3). With this configuration, the conductive shield material 5 electrostatically couples with the cylindrical winding (3) to increase the equivalent electrostatic capacity of the cylindrical winding (3) and thereby suppress potential vibration, and potential differences between the conductive shield material 5 and the members (2, 4) having the potential difference are made small to suppress an increase in insulation distance to the cylindrical winding (3). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は変圧器やリアクトル等の静止誘導電器に係り、特に、静止誘導巻線に対してサージ保護対策を施している静止誘導電器に関する。   The present invention relates to a static induction appliance such as a transformer or a reactor, and more particularly to a static induction appliance in which a surge protection measure is taken for a static induction winding.

変圧器等の静止誘導電器において、故障や破損に至る原因のうち最も多いものは、雷等によって発生した過電圧(サージ)が侵入した結果、静止誘導電器を構成する静止誘導巻線内部に絶縁耐力以上の過電圧が過渡的に生じ、絶縁破壊に至るというものである。

Figure 2011100904
In static induction appliances such as transformers, the most common cause of failure and damage is the dielectric strength within the static induction windings that make up a static induction device as a result of the invasion of overvoltage (surge) generated by lightning. The above overvoltage occurs transiently and leads to dielectric breakdown.
Figure 2011100904

静止誘導電器の静止誘導巻線内部の静電容量を増やす手段としては、導電性シールド材を使用して電位の離れた巻線導体同士を静電結合させ、等価的に静電容量を増加させる方法がよく用いられる。   As a means of increasing the electrostatic capacity inside the static induction winding of the static induction electric machine, the conductive conductors are used to electrostatically couple the winding conductors at different potentials, and equivalently increase the electrostatic capacity. The method is often used.

導電性シールド材による静止誘導巻線内部の静電容量増加方法としては、図5に示すように、磁性鉄心1と、この磁性鉄心1の外周に巻装された円筒型低圧巻線2と、この円筒型低圧巻線2の外周に隙間を介して複数層同心的に高圧巻線層3A〜3Dを形成した円筒型高圧巻線3と、これらを一括収納する収納タンク4とを有する変圧器において、例えば、線路端3Tと接続している高圧巻線層3Aの内周側に隙間を介して、線路端3Tと電気的に直接接続された導電性シールド材5を配置している。   As shown in FIG. 5, as a method of increasing the electrostatic capacity inside the static induction winding by the conductive shield material, a magnetic iron core 1, a cylindrical low-voltage winding 2 wound around the outer periphery of the magnetic iron core 1, A transformer having a cylindrical high-voltage winding 3 in which a plurality of layers of concentric high-voltage winding layers 3A to 3D are formed on the outer periphery of the cylindrical low-voltage winding 2 via a gap, and a storage tank 4 for collectively storing these. In, for example, the conductive shield material 5 that is electrically directly connected to the line end 3T is disposed on the inner peripheral side of the high-voltage winding layer 3A connected to the line end 3T via a gap.

尚、関連する技術として特許文献として特許文献1が存在する。   As a related technique, there is Patent Document 1 as a patent document.

特開昭63−209112号公報JP-A-63-209112

上記背景技術に開示の変圧器においては、導電性シールド材5による円筒型高圧巻線3内部の静電容量が増加するので、過渡過電圧を抑制することができる。しかしながら、導電性シールド材5を配置した円筒型高圧巻線3の内径側に円筒型低圧巻線2が存在するので、高圧巻線層3Aの線路端3Tと同電位となる導電性シールド材5と円筒型低圧巻線2との絶縁距離を確保しなければならず、その結果、円筒型高圧巻線3と円筒型低圧巻線2間の間隔が広くなり、その分、円筒型高圧巻線3の外径寸法が増大し、変圧器全体を大型化する問題点があった。   In the transformer disclosed in the background art, since the electrostatic capacity inside the cylindrical high voltage winding 3 by the conductive shield material 5 increases, transient overvoltage can be suppressed. However, since the cylindrical low voltage winding 2 exists on the inner diameter side of the cylindrical high voltage winding 3 on which the conductive shield material 5 is disposed, the conductive shield material 5 having the same potential as the line end 3T of the high voltage winding layer 3A. And the cylindrical low-voltage winding 2 must have an insulation distance. As a result, the gap between the cylindrical high-voltage winding 3 and the cylindrical low-voltage winding 2 is widened. As a result, the outer diameter of 3 increased and there was a problem of increasing the size of the entire transformer.

本発明の目的は、静止誘導巻線の外径寸法の増大を抑制しつつ、過渡過電圧を抑制することができる静止誘導電器を提供することにある。   An object of the present invention is to provide a static induction electric appliance capable of suppressing a transient overvoltage while suppressing an increase in the outer diameter of the static induction winding.

本発明は上記目的を達成するために、磁性鉄心の周囲に装着された円筒型巻線と電位差のある部材との間に前記磁性鉄心の周方向に不連続となる導電性シールド材を絶縁材によって支持して配置すると共に、この導電性シールド材を前記円筒型巻線の長手方向全長に亘って対向させて静止誘導電器を構成したのである。   In order to achieve the above object, the present invention provides an insulating material that is a conductive shield material that is discontinuous in the circumferential direction of the magnetic core between a cylindrical winding mounted around the magnetic core and a member having a potential difference. In addition, the static shield is configured by opposing the conductive shield material over the entire length of the cylindrical winding in the longitudinal direction.

上記構成とすることで、導電性シールド材は、静止誘導電器内のいずれの導電性部位とも電気的に直接接続されておらず、導電性シールド材を配置している円筒型巻線と静電結合しているため、導電性シールド材の電位は、導電性シールド材と対向する範囲に位置する円筒型巻線の巻線導体電位の平均値となる。   With the above-described configuration, the conductive shield material is not electrically connected directly to any conductive portion in the static induction appliance, and is electrostatically connected to the cylindrical winding in which the conductive shield material is disposed. Since they are coupled, the potential of the conductive shield material is an average value of the winding conductor potential of the cylindrical winding located in a range facing the conductive shield material.

その結果、導電性シールド材の電位は、円筒型巻線の線路電位よりも低くなり、導電性シールド材と対向する他巻線との絶縁距離を、導電性シールド材の電位が線路電位と同電位である場合に比べて小さくでき、円筒型巻線の外径寸法を縮小して静止誘導電器の小型化を図ることができる。   As a result, the potential of the conductive shield material is lower than the line potential of the cylindrical winding, and the insulation distance between the conductive shield material and the other winding facing the conductive shield material is the same as the line potential. Compared to the case of the electric potential, it can be made smaller, and the outer diameter of the cylindrical winding can be reduced to reduce the size of the stationary induction device.

以上説明したように本発明によれば、静止誘導巻線の外径寸法の増大を抑制しつつ、導電性シールド材によって過渡過電圧を抑制することができる静止誘導電器を得ることができる。   As described above, according to the present invention, it is possible to obtain a static induction device that can suppress a transient overvoltage with a conductive shield material while suppressing an increase in the outer diameter of the static induction winding.

本発明による静止誘導電器の第1の実施の形態を示す変圧器の概略縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic longitudinal cross-sectional view of the transformer which shows 1st Embodiment of the static induction appliance by this invention. 第1の実施の形態の変形例を示す円筒型巻線の上端部近傍の拡大図。The enlarged view of the upper end part vicinity of the cylindrical winding which shows the modification of 1st Embodiment. 本発明による静止誘導電器の第2の実施の形態を示す変圧器の概略縦断面図。The schematic longitudinal cross-sectional view of the transformer which shows 2nd Embodiment of the static induction appliance by this invention. 本発明による静止誘導電器の第1の実施の形態の作用を示す図3相当図。FIG. 3 is an equivalent view of FIG. 3 showing the operation of the first embodiment of the static induction electric machine according to the present invention. 従来の変圧器を示す図1相当図。The equivalent figure of FIG. 1 which shows the conventional transformer.

以下本発明による静止誘導電器の第1の実施の形態を図1に示す変圧器に基づいて説明する。   Hereinafter, a first embodiment of a static induction electric machine according to the present invention will be described based on a transformer shown in FIG.

変圧器は、磁性鉄心1と、この磁性鉄心1の外周に巻装された円筒型低圧巻線2と、この円筒型低圧巻線2の外周に間隔を介して配置され複数の円筒巻線層3A〜3Dを同心的に配置した円筒型高圧巻線3と、これらを一括収納する収納タンク4とを備えている。   The transformer includes a magnetic iron core 1, a cylindrical low-voltage winding 2 wound around the outer circumference of the magnetic iron core 1, and a plurality of cylindrical winding layers disposed on the outer circumference of the cylindrical low-voltage winding 2 with a gap therebetween. A cylindrical high-voltage winding 3 in which 3A to 3D are arranged concentrically and a storage tank 4 that collectively stores them are provided.

そして、前記円筒型低圧巻線2と円筒型高圧巻線3との間で、円筒型高圧巻線3の内径側に接近する位置に、筒状の導電性シールド材5を配置している。この導電性シールド材5は、前記磁性鉄心1の周方向に対して1ターンを形成しないような、云い代えれば、磁性鉄心1の周方向に不連続となる導電性シールド材5を図示しない絶縁材によって支持して配置している。即ち、導電性シールド材5に循環電流が流れないように、筒状の導電性シールド材5の周方向の少なくとも1箇所を切り欠いて分離させている。さらに、この導電性シールド材5は、円筒型高圧巻線3の長手方向(図1の場合、高さ方向)の全長に亘って対向するように配置している。   A cylindrical conductive shield material 5 is disposed between the cylindrical low-voltage winding 2 and the cylindrical high-voltage winding 3 at a position approaching the inner diameter side of the cylindrical high-voltage winding 3. The conductive shield material 5 does not form one turn with respect to the circumferential direction of the magnetic iron core 1, in other words, the conductive shield material 5 discontinuous in the circumferential direction of the magnetic iron core 1 is not illustrated. The material is supported and arranged. That is, at least one place in the circumferential direction of the cylindrical conductive shield material 5 is cut away and separated so that a circulating current does not flow through the conductive shield material 5. Further, the conductive shield material 5 is disposed so as to face the entire length of the cylindrical high-voltage winding 3 in the longitudinal direction (the height direction in the case of FIG. 1).

本実施の形態によれば、導電性シールド5が、円筒型高圧巻線3や変圧器のいずれの導電性部位とも電気的に直接接続されていないので、導電性シールド5の電位は、静電結合している円筒型高圧巻線3の最内径側に位置する円筒巻線層3A内の長手方向の巻線導体の平均電位と等しくなる。その結果、導電性シールド5の効果によって、円筒型高圧巻線3の過渡過電圧(電位振動)が抑制されるため、その電位分布は線路端3Tから接地端まで直線分布に近くなる。   According to the present embodiment, since the conductive shield 5 is not electrically connected directly to any conductive part of the cylindrical high-voltage winding 3 or the transformer, the potential of the conductive shield 5 is electrostatic. This is equal to the average potential of the winding conductor in the longitudinal direction in the cylindrical winding layer 3A located on the innermost diameter side of the coupled cylindrical high-voltage winding 3. As a result, the transient overvoltage (potential oscillation) of the cylindrical high-voltage winding 3 is suppressed by the effect of the conductive shield 5, so that the potential distribution is close to a straight line distribution from the line end 3T to the ground end.

導電性シールド5の電位が、静電結合している円筒型高圧巻線3の最内径側に位置する円筒巻線層3A内の長手方向の巻線導体の平均電位と等しくなるので、当然、電位は線路端3Tの電位よりも低くなり、導電性シールド材5と対向する円筒型低圧巻線2との電位差は、導電性シールド材5が線路端3Tと電気的に直接接続されて線路端3Tと同電位となる場合に比べて小さくなる。その結果、導電性シールド材5と円筒型低圧巻線2の間に必要な絶縁距離を短くすることができる。   Since the potential of the conductive shield 5 becomes equal to the average potential of the longitudinal winding conductor in the cylindrical winding layer 3A located on the innermost diameter side of the cylindrical high-voltage winding 3 that is electrostatically coupled, The potential is lower than the potential at the line end 3T, and the potential difference between the conductive shield material 5 and the cylindrical low-voltage winding 2 facing the conductive shield material 5 is electrically connected directly to the line end 3T. It becomes smaller than the case where it becomes the same potential as 3T. As a result, the necessary insulation distance between the conductive shield material 5 and the cylindrical low-voltage winding 2 can be shortened.

尚、導電性シールド材5と円筒巻線層3Aとの間には、大きな静電結合を生じさせる必要があるため、両者は近接配置させる必要がある。さらに、円筒巻線層3A,3B間にも静電結合が生じるが、それと同程度以上の静電結合を導電性シールド材5と円筒巻線層3Aの間に生じさせるため、導電性シールド材5と円筒巻線層3Aとの間の絶縁距離W1は、円筒巻線層3A,3Bの間の絶縁距離W2以下にするのが適当である。また、導電性シールド材5の電位は円筒巻線層3A内の長手方向(高さ方向)に隣接する巻線導体の電位の平均電位であり、導電性シールド材5と円筒巻線層3Aの間の差電圧は、円筒巻線層3A,3B間の差電圧の半分以下となるため、より好ましくは、絶縁距離W1は絶縁距離W2の半分程度が適切である。   In addition, since it is necessary to produce a big electrostatic coupling between the electroconductive shield material 5 and the cylindrical winding layer 3A, it is necessary to arrange both closely. Further, electrostatic coupling is also generated between the cylindrical winding layers 3A and 3B, but in order to generate an electrostatic coupling of the same level or higher between the conductive shielding material 5 and the cylindrical winding layer 3A, the conductive shielding material is used. It is appropriate that the insulation distance W1 between 5 and the cylindrical winding layer 3A is equal to or less than the insulation distance W2 between the cylindrical winding layers 3A and 3B. The potential of the conductive shield material 5 is the average potential of the winding conductors adjacent in the longitudinal direction (height direction) in the cylindrical winding layer 3A, and the conductive shield material 5 and the cylindrical winding layer 3A Since the difference voltage between them is less than or equal to half of the difference voltage between the cylindrical winding layers 3A and 3B, the insulation distance W1 is more preferably about half of the insulation distance W2.

ところで、導電性シールド材5の材料としては、シート状の薄板導体、箔状の導体、金属細線の編組線、絶縁物表面へ吹き付けまたは塗布された導電性塗料等が適当である。   By the way, as a material of the conductive shield material 5, a sheet-like thin plate conductor, a foil-like conductor, a braided wire of a fine metal wire, a conductive paint sprayed or applied to the surface of an insulator, and the like are suitable.

さらに、第1の実施の形態においては、導電性シールド材5を円筒型高圧巻線3の長手方向に一体構造としているが、長手方向に複数に分割した構成であっても同様の効果が得られる。加えて、円筒状の導電性シールド材5を周方向に複数分割してもよく、これを長手方向に分割と組合わせてもよい。   Furthermore, in the first embodiment, the conductive shield material 5 has an integrated structure in the longitudinal direction of the cylindrical high-voltage winding 3, but the same effect can be obtained even if the structure is divided into a plurality of parts in the longitudinal direction. It is done. In addition, the cylindrical conductive shield material 5 may be divided into a plurality of parts in the circumferential direction, and this may be combined with the division in the longitudinal direction.

以上説明したように、第1の実施の形態によれば、導電性シールド材5と円筒型低圧巻線2との間に必要な絶縁距離を短くすることができ、その結果、高圧側円筒巻線1に発生する過電圧を抑制できるとともに、高圧側円筒巻線1と円筒型低圧巻線2との間の絶縁距離増加が抑制され、静止誘導電器の小型化が可能となる。   As described above, according to the first embodiment, the necessary insulation distance between the conductive shield material 5 and the cylindrical low-voltage winding 2 can be shortened. The overvoltage generated in the wire 1 can be suppressed, and an increase in the insulation distance between the high-voltage side cylindrical winding 1 and the cylindrical low-voltage winding 2 is suppressed, and the static induction appliance can be downsized.

また、導電性シールド材5と、静止誘導電器内のいずれかの導電性部位とを電気的に直接接続する必要がないため、導電性シールド材5の配置作業が簡略化でき、生産性の向上を図ることができる。   In addition, since it is not necessary to directly connect the conductive shield material 5 and any conductive portion in the static induction appliance, it is possible to simplify the arrangement work of the conductive shield material 5 and improve productivity. Can be achieved.

次に、第1の実施の形態の変形例を図2に基づいて説明する。   Next, a modification of the first embodiment will be described with reference to FIG.

本変形例において、円筒型高圧巻線3の内径側に位置する円筒巻線層3Aと間隔を介して対向する導電性シールド材6の長手方向寸法(高さ方向寸法)の両端に、円筒巻線層3Aの長手方向寸法(高さ方向寸法)を超えて延在する電界緩和部6Eを設けたのである。   In this modification, cylindrical winding is provided at both ends of the longitudinal dimension (height dimension) of the conductive shield material 6 facing the cylindrical winding layer 3A located on the inner diameter side of the cylindrical high-voltage winding 3 with a gap. An electric field relaxation portion 6E extending beyond the longitudinal dimension (height dimension) of the line layer 3A is provided.

即ち、円筒巻線層3Aは絶縁層3bで被覆された巻線導体3aが巻回されて形成しており、巻線導体3aの断面を見ると、その断面角部は小曲率半径R1に形成されており、そこに電界が集中して絶縁層3bを劣化させ、強いては絶縁破壊させる虞があるために、周囲の構成部材(円筒型低圧巻線2や磁性鉄心1から延在する継鉄(図示せず))との間に所定の絶縁距離を確保していた。   That is, the cylindrical winding layer 3A is formed by winding a winding conductor 3a covered with an insulating layer 3b. When the section of the winding conductor 3a is viewed, the cross-section corner is formed at a small curvature radius R1. Since the electric field concentrates there and the insulating layer 3b is deteriorated, and there is a risk that the insulation layer 3b may be broken down. Therefore, the surrounding components (the yoke extending from the cylindrical low-voltage winding 2 and the magnetic iron core 1) (Not shown)).

このような問題を解消するために、導電性シールド材6の長手方向寸法(高さ方向寸法)の両端に、円筒巻線層3Aの長手方向寸法(高さ方向寸法)を超えて延在し、巻線導体3aの断面角部の小曲率半径R1よりも大きな曲率半径R2とする電界緩和部6Eを設け、この電界緩和部6Eで円筒巻線層3Aの長手方向端部を間隔を介して覆ったのである。   In order to solve such a problem, it extends beyond the longitudinal dimension (height dimension) of the cylindrical winding layer 3A at both ends of the longitudinal dimension (height dimension) of the conductive shield material 6. An electric field relaxation portion 6E having a radius of curvature R2 larger than the small curvature radius R1 of the cross-sectional corner portion of the winding conductor 3a is provided, and the longitudinal end portion of the cylindrical winding layer 3A is spaced by an interval between the electric field relaxation portions 6E. I covered it.

このように構成することで、巻線導体3aの断面角部に集中する電界を導電性シールド材6の電界緩和部6Eで緩和することができ、その結果、周囲の構成部材との絶縁距離を短縮することができ、変圧器の小型化を図ることができる。   With this configuration, the electric field concentrated on the cross-sectional corner of the winding conductor 3a can be relaxed by the electric field relaxation portion 6E of the conductive shield material 6. As a result, the insulation distance from the surrounding constituent members can be reduced. Therefore, the transformer can be reduced in size.

本変形例によれば、第1の実施の形態と同様な効果を奏することができると共に、変圧器の小型化を図ることができる。
その結果、円筒型低圧巻線2との間の絶縁距離、ならびに円筒巻線層3Aの上方に位置している鉄心ヨーク(図示していない)との間の絶縁距離を短くすることができる。
According to this modification, the same effects as those of the first embodiment can be achieved, and the transformer can be miniaturized.
As a result, the insulation distance from the cylindrical low-voltage winding 2 and the insulation distance from the iron core yoke (not shown) located above the cylindrical winding layer 3A can be shortened.

図3は、本発明による静止誘導電器の第2の実施の形態を示す変圧器であり、第1の実施の形態と異なる構成は、円筒型低圧巻線2が複数のシート導体2A〜2Cで構成されている点である。   FIG. 3 is a transformer showing a second embodiment of a static induction electric machine according to the present invention, and a configuration different from the first embodiment is that a cylindrical low-voltage winding 2 is composed of a plurality of sheet conductors 2A to 2C. It is a point that is configured.

円筒型低圧巻線2をシート導体2A〜2Cで構成した場合、変圧器稼動中に例えば最外周側のシート導体2Aに渦電流Iaが流れる。この渦電流Iaによって円筒型高圧巻線3側に向かう磁束反発力Faが生じ、この磁束反発力Faによって円筒型低圧巻線2と円筒型高圧巻線3との間を通過する漏洩磁束Φの一部を円筒型高圧巻線3側に押し出して円筒型高圧巻線3の長手方向端部に鎖交させることになる。しかしながら、円筒型高圧巻線3の長手方向端部における巻線導体に対する漏洩磁束Φの鎖交量が多くなると、円筒型高圧巻線3の漂遊損が増加し、変圧器性能を低下させることになる。   When the cylindrical low-voltage winding 2 is composed of sheet conductors 2A to 2C, for example, an eddy current Ia flows through the outermost sheet conductor 2A during operation of the transformer. The eddy current Ia generates a magnetic repulsion force Fa toward the cylindrical high-voltage winding 3, and the magnetic flux repulsion Fa causes the leakage magnetic flux Φ to pass between the cylindrical low-voltage winding 2 and the cylindrical high-voltage winding 3. A part is pushed out to the cylindrical high voltage winding 3 side and linked to the longitudinal end of the cylindrical high voltage winding 3. However, when the amount of interlinkage of the leakage magnetic flux Φ with respect to the winding conductor at the longitudinal end portion of the cylindrical high voltage winding 3 increases, stray loss of the cylindrical high voltage winding 3 increases, thereby reducing the transformer performance. Become.

しかしながら、本実施の形態においては、第1に実施の形態と同じように、円筒型高圧巻線3の内径側に導電性シールド材5が設置されているので、変圧器稼動中にシート導体2Aの渦電流Iaとは逆向きの渦電流Ibが導電性シールド材5に流れ、この渦電流Ibによって円筒型低圧巻線2側に向かう磁束反発力Fbを発生する。この導電性シールド材5による磁束反発力Fbがシート導体2Aによる磁束反発力Faを低減あるいは相殺することで、磁束反発力Faによる円筒型高圧巻線3の長手方向端部における漏洩磁束Φの鎖交量は低減され、円筒型高圧巻線3に発生する漂遊損を減少させて変圧器の性能を向上させることができる。ところで、導電性シールド材5が変圧器内のいずれの導電性部位とも電気的に直接接続されていないことで、導電性シールド材5端部に流れる渦電流Ibは導電性シールド材5内部に限定されるため、渦電流Ibによる漂遊損の増加は最小限に抑制される。   However, in the present embodiment, as in the first embodiment, since the conductive shield material 5 is installed on the inner diameter side of the cylindrical high voltage winding 3, the sheet conductor 2A is in operation during the operation of the transformer. The eddy current Ib in the direction opposite to the eddy current Ia flows through the conductive shield material 5, and the eddy current Ib generates a magnetic flux repulsive force Fb toward the cylindrical low-voltage winding 2 side. The magnetic flux repulsive force Fb generated by the conductive shield material 5 reduces or cancels the magnetic flux repulsive force Fa generated by the sheet conductor 2A, thereby causing a chain of leakage magnetic flux Φ at the longitudinal end portion of the cylindrical high-voltage winding 3 by the magnetic flux repulsive force Fa. The amount of crossing is reduced, and the stray loss generated in the cylindrical high-voltage winding 3 can be reduced to improve the performance of the transformer. By the way, since the conductive shield material 5 is not directly electrically connected to any conductive portion in the transformer, the eddy current Ib flowing at the end of the conductive shield material 5 is limited to the inside of the conductive shield material 5. Therefore, an increase in stray loss due to the eddy current Ib is minimized.

本実施の形態によれば、前述の実施の形態と同様な効果を奏するほか、円筒型高圧巻線3に発生する漂遊損を低減して変圧器の効率向上が可能となる。   According to this embodiment, in addition to the same effects as those of the above-described embodiment, stray loss generated in the cylindrical high-voltage winding 3 can be reduced, and the efficiency of the transformer can be improved.

図4は、図1に示す第1の実施の形態における円筒型高圧巻線3に対する漏洩磁束Φの鎖交量が低減する効果を説明するものである。   FIG. 4 explains the effect of reducing the amount of interlinkage of the leakage magnetic flux Φ with respect to the cylindrical high-voltage winding 3 in the first embodiment shown in FIG.

即ち、円筒型低圧巻線2が円筒型高圧巻線3と同様に各巻線導体が絶縁されてディスク状に巻回されて形成されている場合、円筒型低圧巻線2には、漏洩磁束Φを円筒型高圧巻線3側に押し出す磁束反発力は発生しない。しかしながら、円筒型高圧巻線3の端部に鎖交する漏洩磁束Φは存在する。そこで第1の実施の形態によれば、上述の導電性シールド材5による磁束反発力Fbによって鎖交する漏洩磁束Φを円筒型低圧巻線2側に押し戻すことで、漏洩磁束Φの円筒型高圧巻線3の端部への鎖交量を低減して漂遊損を減少させて変圧器の性能を向上させることができる。   That is, when the cylindrical low-voltage winding 2 is formed by winding each of the winding conductors in a disk shape like the cylindrical high-voltage winding 3, the cylindrical low-voltage winding 2 has a leakage flux Φ. The magnetic flux repulsion force that pushes out toward the cylindrical high-voltage winding 3 is not generated. However, there is a leakage magnetic flux Φ linked to the end of the cylindrical high-voltage winding 3. Therefore, according to the first embodiment, the leakage flux Φ interlinked by the magnetic flux repulsive force Fb by the conductive shield material 5 described above is pushed back to the cylindrical low-voltage winding 2 side, so that the cylindrical height of the leakage flux Φ is increased. The amount of linkage to the end of the winding 3 can be reduced to reduce stray loss and improve the performance of the transformer.

以上の説明は静止誘導電器として磁性鉄心の周囲に、円筒型低圧巻線を装着し、その外周に円筒型高圧巻線を装着した変圧器について説明したが、これらに限定されるものではなく、円筒型低圧巻線と円筒型高圧巻線との間に円筒型中圧巻線を有する変圧器に対しても適用可能である。   Although the above explanation has explained a transformer in which a cylindrical low voltage winding is mounted around a magnetic iron core as a static induction electric appliance and a cylindrical high voltage winding is mounted on the outer periphery thereof, it is not limited to these, The present invention can also be applied to a transformer having a cylindrical intermediate voltage winding between a cylindrical low voltage winding and a cylindrical high voltage winding.

さらに、以上の説明は、円筒型高圧巻線の内径側に導電性シールド材を配置したが、巻線の結線方式によっては、円筒型高圧巻線と収納タンクとの間に導電性シールド材を配置してもよく、また、円筒型高圧巻線の内径側と外径側の両方に導電性シールド材を配置してもよい。   Further, in the above description, the conductive shield material is disposed on the inner diameter side of the cylindrical high-voltage winding. However, depending on the connection method of the winding, the conductive shield material is provided between the cylindrical high-voltage winding and the storage tank. The conductive shield material may be disposed on both the inner diameter side and the outer diameter side of the cylindrical high-voltage winding.

以上に説明は静止誘導電器として変圧器を一例に説明したが、磁性鉄心に1つの静止誘導巻線を備えたリアクトルについても本発明を適用することができる。   In the above description, a transformer has been described as an example of a static induction electric appliance. However, the present invention can also be applied to a reactor including a single magnetic induction winding on a magnetic iron core.

1…磁性鉄心、2…円筒型低圧巻線、2A〜2C…シート導体、3…円筒型高圧巻線、3A〜3D…円筒巻線層、3a…巻線導体、3b…絶縁層、3T…線路端、4…収納タンク、5,6…導電性シールド材、6E…電界緩和部。   DESCRIPTION OF SYMBOLS 1 ... Magnetic iron core, 2 ... Cylindrical low voltage winding, 2A-2C ... Sheet conductor, 3 ... Cylindrical high voltage winding, 3A-3D ... Cylindrical winding layer, 3a ... Winding conductor, 3b ... Insulating layer, 3T ... Line ends, 4 ... storage tanks, 5, 6 ... conductive shield material, 6E ... electric field relaxation part.

Claims (10)

磁性鉄心と、この磁性鉄心の周囲に装着された円筒型巻線とを備えた静止誘導電器において、前記円筒巻線と電位差のある部材との間に前記磁性鉄心の周方向に不連続となる導電性シールド材を絶縁材によって支持して配置すると共に、この導電性シールド材を前記円筒型巻線の長手方向全長に亘って対向させたことを特徴とする静止誘導電器。   In a static induction electric machine including a magnetic iron core and a cylindrical winding mounted around the magnetic iron core, the magnetic iron core is discontinuous in the circumferential direction between the cylindrical winding and a member having a potential difference. A static induction electric device characterized in that a conductive shield material is disposed by being supported by an insulating material, and the conductive shield material is opposed over the entire length in the longitudinal direction of the cylindrical winding. 磁性鉄心と、この磁性鉄心の周囲に装着された円筒型低圧巻線と、この円筒型低圧巻線の外周に隙間を介し同心的に複数層形成した円筒型高圧巻線と、これらを収納する収納タンクとを備えた静止誘導電器において、前記円筒型高圧巻線と電位差のある部材との間に前記磁性鉄心の周方向に不連続となる導電性シールド材を絶縁材によって支持して配置すると共に、この導電性シールド材を前記円筒型高圧巻線の長手方向全長に亘って対向させたことを特徴とする静止誘導電器。   A magnetic iron core, a cylindrical low-voltage winding mounted around the magnetic iron core, a cylindrical high-voltage winding formed concentrically on the outer periphery of the cylindrical low-voltage winding via a gap, and these are housed In a static induction appliance comprising a storage tank, a conductive shield material that is discontinuous in the circumferential direction of the magnetic iron core is disposed between the cylindrical high-voltage winding and a member having a potential difference by an insulating material. In addition, a static induction appliance characterized in that the conductive shield material is opposed over the entire length of the cylindrical high-voltage winding in the longitudinal direction. 前記導電性シールド材は、前記円筒型低圧巻線と前記円筒型高圧巻線との間に設置されていることを特徴とする請求項2記載の静止誘導電器。   The static induction machine according to claim 2, wherein the conductive shield material is installed between the cylindrical low-voltage winding and the cylindrical high-voltage winding. 前記導電性シールド材は、前記円筒型高圧巻線と前記収納タンクとの間に設置されていることを特徴とする請求項2記載の静止誘導電器。   3. The static induction device according to claim 2, wherein the conductive shield material is disposed between the cylindrical high-voltage winding and the storage tank. 前記導電性シールド材と前記円筒型高圧巻線との間隔は、前記円筒型高圧巻線の各層間の間隔よりも狭く形成されていることを特徴とする請求項2、3又は4記載の静止誘導電器。   5. The stationary state according to claim 2, 3, or 4, wherein an interval between the conductive shield material and the cylindrical high-voltage winding is formed narrower than an interval between layers of the cylindrical high-voltage winding. Induction machine. 前記導電性シールド材は、前記円筒型高圧巻線の長さを超える範囲に延在されていることを特徴とする請求項請求項2、3、4又は5記載の静止誘導電器。   6. The static induction device according to claim 2, wherein the conductive shield material extends in a range exceeding a length of the cylindrical high-voltage winding. 前記導電性シールド材の前記円筒型高圧巻線の長さを超えた部分は、前記円筒型高圧巻線の巻線導体角部の曲率半径よりも大きな曲率半径で巻線導体側に折り曲げて電界緩和部を形成していることを特徴とする請求項6記載の静止誘導電器。   The portion of the conductive shield material that exceeds the length of the cylindrical high-voltage winding is bent toward the winding conductor with a radius of curvature larger than the radius of curvature of the winding conductor corner of the cylindrical high-voltage winding. The static induction device according to claim 6, wherein a relaxation portion is formed. 前記導電性シールド材は、薄板状あるいは箔状の導電体、金属細線の編組線、あるいは基板に塗装された導電性塗料であることを特徴とする請求項1〜7のいずれかに記載の静止誘導電器。   The stationary conductive material according to claim 1, wherein the conductive shield material is a thin plate-like or foil-like conductor, a braided wire of a fine metal wire, or a conductive paint coated on a substrate. Induction machine. 前記円筒型低圧巻線は、シート状導体であることを特徴とする請求項3〜8のいずれかに記載の静止誘導電器。   The static induction machine according to claim 3, wherein the cylindrical low-voltage winding is a sheet-like conductor. 磁性鉄心と、この磁性鉄心の周囲に装着された円筒型低圧巻線と、この円筒型低圧巻線の外周に隙間を介し同心的に複数層形成した円筒型高圧巻線と、これらを収納する収納タンクとを備えた静止誘導電器において、前記円筒型高圧巻線の内周と前記円筒型低圧巻線の外周との間に前記磁性鉄心の周方向に不連続となる導電性シールド材を絶縁材によって支持して配置すると共に、この導電性シールド材を前記円筒型高圧巻線の長手方向全長に亘って対向させ、かつ、前記導電性シールド材と前記円筒型高圧巻線との間隔は、前記円筒型高圧巻線の各層間の間隔よりも狭く形成したことを特徴とする静止誘導電器。   A magnetic iron core, a cylindrical low-voltage winding mounted around the magnetic iron core, a cylindrical high-voltage winding formed concentrically on the outer periphery of the cylindrical low-voltage winding via a gap, and these are housed In a static induction appliance comprising a storage tank, a conductive shield material that is discontinuous in the circumferential direction of the magnetic iron core is insulated between the inner periphery of the cylindrical high voltage winding and the outer periphery of the cylindrical low voltage winding. And supporting the conductive shield material over the entire length in the longitudinal direction of the cylindrical high voltage winding, and the interval between the conductive shield material and the cylindrical high voltage winding is: A static induction machine characterized in that it is formed narrower than the interval between the layers of the cylindrical high-voltage winding.
JP2009255619A 2009-11-09 2009-11-09 Static induction machine Expired - Fee Related JP5317930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009255619A JP5317930B2 (en) 2009-11-09 2009-11-09 Static induction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009255619A JP5317930B2 (en) 2009-11-09 2009-11-09 Static induction machine

Publications (2)

Publication Number Publication Date
JP2011100904A true JP2011100904A (en) 2011-05-19
JP5317930B2 JP5317930B2 (en) 2013-10-16

Family

ID=44191853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009255619A Expired - Fee Related JP5317930B2 (en) 2009-11-09 2009-11-09 Static induction machine

Country Status (1)

Country Link
JP (1) JP5317930B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190029762A (en) * 2016-08-09 2019-03-20 에이비비 슈바이쯔 아게 High voltage cables for windings and electromagnetic induction devices containing them

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324416U (en) * 1976-08-10 1978-03-01
JPS54137812U (en) * 1978-03-20 1979-09-25
JPS59177923U (en) * 1983-05-16 1984-11-28 昭和電線電纜株式会社 isolation transformer
JPH0256423U (en) * 1988-10-18 1990-04-24
JPH048415U (en) * 1990-05-11 1992-01-27
JPH0442721U (en) * 1990-08-10 1992-04-10
JP2001307931A (en) * 2000-04-21 2001-11-02 Hitachi Ltd Transformer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324416U (en) * 1976-08-10 1978-03-01
JPS54137812U (en) * 1978-03-20 1979-09-25
JPS59177923U (en) * 1983-05-16 1984-11-28 昭和電線電纜株式会社 isolation transformer
JPH0256423U (en) * 1988-10-18 1990-04-24
JPH048415U (en) * 1990-05-11 1992-01-27
JPH0442721U (en) * 1990-08-10 1992-04-10
JP2001307931A (en) * 2000-04-21 2001-11-02 Hitachi Ltd Transformer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190029762A (en) * 2016-08-09 2019-03-20 에이비비 슈바이쯔 아게 High voltage cables for windings and electromagnetic induction devices containing them
CN109643604A (en) * 2016-08-09 2019-04-16 Abb瑞士股份有限公司 High-tension cable for winding and the electromagnetic induction device including the cable
KR102025054B1 (en) * 2016-08-09 2019-09-24 에이비비 슈바이쯔 아게 High Voltage Cables for Winding and Electromagnetic Inductive Devices Including the Same
US10964471B2 (en) 2016-08-09 2021-03-30 Abb Power Grids Switzerland Ag High voltage cable for a winding and electromagnetic induction device comprising the same
CN109643604B (en) * 2016-08-09 2021-12-10 日立能源瑞士股份公司 High-voltage cable for winding and electromagnetic induction device comprising same

Also Published As

Publication number Publication date
JP5317930B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
KR101442949B1 (en) Transformer with shielding rings in windings
JP5673252B2 (en) Resin mold coil
JP2007142339A (en) Thunder resistance reinforcing type insulation transformer for low voltage
US9837202B2 (en) Stationary induction apparatus
KR20140117435A (en) Shielding device for an electrically conductive connecting element
JP5317930B2 (en) Static induction machine
JP6656187B2 (en) Stationary inductor
TWI523051B (en) Ground induction electrical appliances
KR20150095819A (en) A transformer high voltage coil assembly
KR102618677B1 (en) Transformer containing windings
JPWO2016152328A1 (en) Stationary induction equipment
JP5849617B2 (en) Mold current transformer
JP6554271B2 (en) Semi-empty reactor
JP2017108102A (en) Stationary induction apparatus
JP2010251543A (en) Resin molded coil
US10468178B2 (en) Stationary induction apparatus
JP5932515B2 (en) Oil-filled static induction machine
JP2014127432A (en) Cable
JP2014027140A (en) Stationary induction electric apparatus
JPH11111539A (en) Stationary induction electrical apparatus
KR20130076934A (en) Transformer
JP2012023292A (en) Gas insulation instrument transformer
TWI652705B (en) Static sensor
JPH0129781Y2 (en)
KR101563321B1 (en) Transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Ref document number: 5317930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees