JP2011097787A - 系統連系インバータ装置及び系統連系システム - Google Patents

系統連系インバータ装置及び系統連系システム Download PDF

Info

Publication number
JP2011097787A
JP2011097787A JP2009251197A JP2009251197A JP2011097787A JP 2011097787 A JP2011097787 A JP 2011097787A JP 2009251197 A JP2009251197 A JP 2009251197A JP 2009251197 A JP2009251197 A JP 2009251197A JP 2011097787 A JP2011097787 A JP 2011097787A
Authority
JP
Japan
Prior art keywords
circuit
negative
positive
reactor
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009251197A
Other languages
English (en)
Inventor
Fumio Yoneda
文生 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009251197A priority Critical patent/JP2011097787A/ja
Priority to CN2010105262680A priority patent/CN102055367A/zh
Priority to EP10251869A priority patent/EP2341606A1/en
Priority to US12/916,364 priority patent/US20110103117A1/en
Publication of JP2011097787A publication Critical patent/JP2011097787A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

【課題】電圧変換回路が少なくとも一部の正弦波波形の成形を行う回路構成であっても、対地静電容量を介して流れる漏洩電流を抑制できる系統連系インバータ装置を提供する。
【解決手段】系統連系インバータ装置100Aは、直流電源1からの入力電圧を昇降圧して中間電圧を出力する昇降圧コンバータ2Aと、中間電圧を正弦波状の交流電力に変換するフルブリッジインバータ3Aとを有し、昇降圧コンバータ2Aは、交流電力に対応する正弦波波形の少なくとも一部の成形を行う。昇降圧コンバータ2Aは、直流電源1の正極とフルブリッジインバータ3Aとの間の正側線路Lp上に設けられた正側回路210Aと、直流電源1の負極とフルブリッジインバータ3Aとの間の負側線路Ln上に設けられた負側回路220Aとを備える。正側回路210A及び負側回路220Aは、互いに対称な回路構成を有する。
【選択図】図1

Description

本発明は、直流電源からの直流電力を商用周波数の交流電力に変換し、当該交流電力を電力系統に連系可能な系統連系インバータ装置及び系統連系システムに関する。
従来、太陽電池等の直流電源からの直流電力を商用周波数の交流電力に変換し、当該交流電力を電力系統に連系可能な系統連系インバータ装置が広く用いられている。
近年では、系統連系インバータ装置の小型化・高効率化を実現するために、絶縁トランスを具備しない回路方式(いわゆる、トランスレス方式)の系統連系インバータ装置が注目されている。
トランスレス方式の系統連系インバータ装置は、高周波スイッチングにより系統電圧よりも高い電圧まで入力電圧を常時昇圧して中間電圧を生成する電圧変換回路と、中間電圧を高周波スイッチングにより交流電力に変換する波形変換回路とを有し、交流電力を電力系統に出力する。
また、少なくとも一部の正弦波波形の成形を電圧変換回路が行うことで、高周波スイッチングを一部省略可能とし、高周波スイッチングに伴うスイッチング損失を低減させた系統連系インバータ装置が提案されている(特許文献1及び2参照)。
特開2004−104963号公報 特開2000−152661号公報
しかしながら、特許文献1及び2参照に記載の系統連系インバータ装置では、電圧変換回路が少なくとも一部の正弦波波形の成形を行うことによって、直流電源と電圧変換回路との間の正側線路及び負側線路それぞれの対地電圧が変動する。
ここで、太陽電池等の直流電源と大地との間には、対地静電容量が存在する。トランスレス方式の系統連系インバータ装置は、入出力が電気的に絶縁分離されていないため、正側線路及び負側線路それぞれの対地電圧が変動すると、対地静電容量を介して漏洩電流が流れる問題がある。
従って、特許文献1及び2参照に記載の系統連系インバータ装置は、安全面・保安面からの信頼性が十分ではなく、且つ、EMIノイズ等のノイズへの対策が必要になるという問題があった。
そこで、本発明は、電圧変換回路が少なくとも一部の正弦波波形の成形を行う回路構成であっても、対地静電容量を介して流れる漏洩電流を抑制できる系統連系インバータ装置及び系統連系システムを提供することを目的とする。
上述した課題を解決するために、本発明は以下のような特徴を有している。まず、本発明に係る系統連系インバータ装置の特徴は、直流電源(直流電源1)からの入力電圧(入力電圧Vi)を昇圧或いは降圧して中間電圧(中間電圧Vd)を出力する電圧変換回路(昇降圧コンバータ2A又は昇圧コンバータ2B)と、前記中間電圧を正弦波状の交流電力に変換する波形変換回路(フルブリッジインバータ3A又は3B)とを有し、前記電圧変換回路は、前記交流電力に対応する正弦波波形の少なくとも一部の成形を行う系統連系インバータ装置(系統連系インバータ装置100A又は100B)であって、前記電圧変換回路は、前記直流電源の正極と前記波形変換回路との間の正側線路(正側線路Lp)上に設けられた正側回路(正側回路210A又は210B)と、前記直流電源の負極と前記波形変換回路との間の負側線路(負側線路Ln)上に設けられた負側回路(負側回路220A又は220B)とを備え、前記正側回路及び前記負側回路は、互いに対称な回路構成を有することを要旨とする。
このような特徴によれば、交流電力に対応する正弦波波形の少なくとも一部の成形を行う電圧変換回路は、互いに対称な回路構成の正側回路及び負側回路を有する。互いに対称な回路構成の正側回路及び負側回路により、対地電圧の変動を正負で打ち消し合い、直流電源と電圧変換回路との間の正側線路及び負側線路それぞれの対地電圧が一定に保たれる。これにより、対地静電容量を介して流れる漏洩電流を抑制できるため、安全面・保安面からの信頼性を向上でき、且つ、EMIノイズ等の対策を簡素化できる。
上記の特徴に係る系統連系インバータ装置において、前記正側回路は、前記正側線路上において、種類の異なる複数の正側回路素子を直列に接続して構成され、前記負側回路は、前記負側線路上において、種類の異なる複数の負側回路素子を直列に接続して構成され、前記直流電源側から数えてn番目に接続される前記正側回路素子と、前記直流電源側から数えてn番目に接続される前記負側回路素子とは、同一種類の回路素子である。また、同一種類の正側回路素子及び負側回路素子は、同一特性の回路素子を用いて構成される。
このような特徴によれば、同一種類であって同一特性の回路素子を用いて正側回路及び負側回路を構成することで、正側回路及び負側回路それぞれの回路特性のバランスを均等にすることができ、直流電源と電圧変換回路との間の正側線路及び負側線路それぞれの対地電圧をより一層安定させることができる。
上記の特徴に係る系統連系インバータ装置において、前記正側回路は、第1のスイッチング素子(スイッチング素子21a)と、前記第1のスイッチング素子の後段に接続された第1のリアクトル(リアクトル24a)と、前記第1のリアクトルの後段に接続された第1のダイオード(ダイオード27a)とを備え、前記負側回路は、第2のスイッチング素子(スイッチング素子21b)と、前記第2のスイッチング素子の後段に接続された第2のリアクトル(リアクトル24b)と、前記第2のリアクトルの後段に接続された第2のダイオード(ダイオード27b)とを備える。なお、「後段」とは、電力系統側を意味し、「前段」とは、直流電源側を意味する。
このような系統連系インバータ装置によれば、電圧変換回路が交流電力に対応する正弦波波形の全部の成形を行う回路構成において、正側回路及び負側回路を互いに対称な回路構成とすることができ、上記のように、対地静電容量を介して流れる漏洩電流を抑制できる。
上記の特徴に係る系統連系インバータ装置において、前記電圧変換回路の動作を制御する制御部(制御部120A)を備え、前記制御部は、前記第1のスイッチング素子と前記第2のスイッチング素子とを同期して動作させる。
このような系統連系インバータ装置によれば、正側回路及び負側回路を互いに対称な回路構成とした上で、正側回路及び負側回路それぞれのスイッチング素子を同期して動作させることで、正側回路及び負側回路それぞれの動作を等しくすることができ、直流電源と電圧変換回路との間の正側線路及び負側線路それぞれの対地電圧をより一層安定させることができる。
上記の特徴に係る系統連系インバータ装置において、前記正側回路は、第1のリアクトル(リアクトル24a)と、前記第1のリアクトルの後段に接続された第1のダイオード(ダイオード27a)とを備え、前記負側回路は、第2のリアクトル(リアクトル24b)と、前記第2のリアクトルの後段に接続された第2のダイオード(ダイオード27b)とを備える。
このような系統連系インバータ装置によれば、電圧変換回路が交流電力に対応する正弦波波形の一部の成形を行う回路構成において、正側回路及び負側回路を互いに対称な回路構成とすることができ、上記のように、対地静電容量を介して流れる漏洩電流を抑制できる。
本発明に係る系統連系システムの特徴は、直流電源(直流電源1)と、上記の特徴に係る系統連系インバータ装置とを備えることを要旨とする。
このような特徴によれば、上記のように、対地静電容量を介して流れる漏洩電流を抑制できる系統連系インバータ装置を用いて系統連系システムを構成でき、安全面・保安面からの信頼性を向上でき、且つ、EMIノイズ等の対策を簡素化できる系統連系システムを提供できる。
本発明によれば、電圧変換回路が少なくとも一部の正弦波波形の成形を行う回路構成であっても、対地静電容量を介して流れる漏洩電流を抑制できる系統連系インバータ装置及び系統連系システムを提供できる。
第1実施形態に係る系統連系インバータ装置を含む系統連系システムの構成を示す図である。 第1実施形態に係る系統連系インバータ装置の動作を説明するための波形図である。 第2実施形態に係る系統連系インバータ装置を含む系統連系システムの構成を示す図である。 第2実施形態に係る系統連系インバータ装置の動作を説明するための波形図である。 第1実施形態の比較例を説明するための図である。 第2実施形態の比較例を説明するための図である。
次に、図面を参照して、本発明の第1実施形態、第2実施形態、及び実施形態の比較例を説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
[第1実施形態]
まず、図1及び図2を参照して、本発明の第1実施形態について説明する。
図1は、第1実施形態に係る系統連系インバータ装置100Aを含む系統連系システムの構成を示す図である。図2は、系統連系インバータ装置100Aの動作を説明するための波形図である。
図1に示すように、系統連系システムは、直流電源1、系統連系インバータ装置100A、及び電力系統10を有する。直流電源1は、発電により直流電力を出力する分散型電源である。以下においては、直流電源1として太陽電池を例示する。直流電源1は、対地静電容量Cpvを有する。
系統連系インバータ装置100Aは、直流電源1からの直流電力を商用周波数(例えば50又は60Hz)の交流電力に変換する。系統連系インバータ装置100Aと電力系統10との間には、需要家に設置された負荷(不図示)が接続されている。系統連系インバータ装置100Aは、系統連系インバータ装置100A及び電力系統10の両方から負荷に交流電力を供給する連系運転を行う。
系統連系インバータ装置100Aは、主回路110Aと、主回路110Aを制御する制御部120Aとを有する。主回路110Aは、直流電源1からの入力電圧Viを昇降圧して中間電圧Vdを出力する昇降圧コンバータ2Aと、中間電圧Vdを正弦波状の交流電力に変換するフルブリッジインバータ3Aとを有する。第1実施形態において昇降圧コンバータ2Aは、電圧変換回路を構成する。第1実施形態においてフルブリッジインバータ3Aは、波形変換回路を構成する。
第1実施形態に係る昇降圧コンバータ2Aは、交流電力(系統電圧Vs)に対応する正弦波波形の全部の成形を行う。ここで、昇降圧コンバータ2Aが出力する中間電圧Vdは、正弦波正半波である(図2(f)参照)。フルブリッジインバータ3Aは、中間電圧Vdの極性切り替えを行い、正弦波状の交流電力を出力する。
昇降圧コンバータ2Aは、入力段コンデンサ101、正側回路210A、負側回路220A、ダイオード23、スイッチング素子25、ダイオード26、及び中間段コンデンサ102を有する。第1実施形態ではスイッチング素子25として絶縁ゲートバイポーラトランジスタ(IGBT)を例示しているが、パワーMOS FET等でもよい。
入力段コンデンサ101は、直流電源1の後段において、直流電源1の正極とフルブリッジインバータ3Aとの間の正側線路Lpに一端が接続され、直流電源1の負極とフルブリッジインバータ3Aとの間の負側線路Lnに他端が接続される。入力段コンデンサ101は、直流電源1からの直流電力を平滑する。なお、「後段」とは、電力系統側を意味し、「前段」とは、直流電源側を意味する。
正側線路Lpは、一端が直流電源1の正極側に接続され、他端がフルブリッジインバータ3Aの一方の入力側(正側の入力)に接続されている。負側線路Lnは、一端が直流電源1の負極側に接続され、他端がフルブリッジインバータ3Aの他方の入力側(負側の入力)に接続されている。
正側回路210Aは、正側線路Lp上に設けられる。負側回路220Aは、負側線路Ln上に設けられる。正側回路210A及び負側回路220Aは、互いに対称な回路構成を有する。具体的には、正側回路210Aは、正側線路Lp上において、種類の異なる複数の回路素子を直列に接続して構成される。負側回路220Aは、負側線路Ln上において、種類の異なる複数の回路素子を直列に接続して構成される。直流電源1側から数えてn番目に接続される正側の回路素子と、直流電源1側から数えてn番目に接続される負側の回路素子とは、同一種類の回路素子である(nは1よりも大きい整数)。なお、対称な回路構成とは、回路図上での対称性を意味し、正側回路210A及び負側回路220Aを実際に基板上に配置するときの位置は対称である必要はない。
正側回路210Aは、スイッチング素子21a(第1のスイッチング素子)と、スイッチング素子21aの後段に接続されたリアクトル24a(第1のリアクトル)と、リアクトル24aの後段に接続されたダイオード27a(第1のダイオード)とを備える。
スイッチング素子21aは、直流電源1及び入力段コンデンサ101に一端(コレクタ)が接続され、リアクトル24aに他端(エミッタ)が接続される。スイッチング素子21aには、ダイオード22aが逆並列接続されている。スイッチング素子21aは、制御部120Aからのゲート信号G1に応じて高周波スイッチングする。ダイオード27aは、リアクトル24aに一端(アノード)が接続され、フルブリッジインバータ3Aに他端(カソード)が接続される。
負側回路220Aは、スイッチング素子21b(第2のスイッチング素子)と、スイッチング素子21bの後段に接続されたリアクトル24b(第2のリアクトル)と、リアクトル24bの後段に接続されたダイオード27b(第2のダイオード)とを備える。
スイッチング素子21bは、直流電源1及び入力段コンデンサ101に一端(エミッタ)が接続され、リアクトル24bに他端(コレクタ)が接続される。スイッチング素子21bには、ダイオード22bが逆並列接続されている。スイッチング素子21bは、制御部120Aからのゲート信号G1に応じて高周波スイッチングする。すなわち、スイッチング素子21bは、スイッチング素子21aと共通のゲート信号G1によって制御される。ダイオード27bは、リアクトル24bに一端(カソード)が接続され、フルブリッジインバータ3Aに他端(アノード)が接続される。
本実施形態では、直流電源1側から数えてn番目に接続される正側の回路素子と、直流電源1側から数えてn番目に接続される負側の回路素子とは、同一種類の回路素子であって、且つ同一の回路特性の回路素子を用いて構成されている。
例えば、直流電源1側から数えて1番目に接続されるスイッチング素子21a及びスイッチング素子21bそれぞれの回路特性(ON電圧やスイッチング速度等)は等しい。直流電源1側から数えて2番目に接続されるリアクトル24a及びリアクトル24bそれぞれの回路特性(インダクタンス等)は等しい。直流電源1側から数えて3番目に接続されるダイオード27a及びダイオード27bそれぞれの回路特性(ON電圧やスイッチング速度等)は等しい。
リアクトル24a,24bは、小型化のため、コアを共通とし、リアクトル24a,24bそれぞれに対応する巻線を共通のコアに巻く方法で構成してもよい。
ダイオード23は、スイッチング素子21a,21bの後段に接続される。ダイオード23は、スイッチング素子21aとリアクトル24aとの間の正側線路Lpに一端(カソード)が接続され、スイッチング素子21bとリアクトル24bとの間の負側線路Lnに他端(カソード)が接続される。
スイッチング素子25は、リアクトル24a,24bの後段に接続される。スイッチング素子25は、リアクトル24aとダイオード27aとの間の正側線路Lpに一端(コレクタ)が接続され、リアクトル24bとダイオード27bとの間の負側線路Lnに他端(エミッタ)が接続される。スイッチング素子25には、ダイオード26が逆並列接続されている。スイッチング素子25は、制御部120Aからのゲート信号G2に応じて高周波スイッチングする。
スイッチング素子21a、ダイオード22a、ダイオード23、及びリアクトル24aは、入力電圧Viを降圧して中間電圧Vdを出力するために使用される。ダイオード23及びリアクトル24aは、スイッチング素子21aのスイッチングにより電圧・電流が断続的となる出力を平滑化する。
図2(a)は、制御部120Aからスイッチング素子21a,21bに入力されるゲート信号G1の波形を示している。なお、図2において、ハッチングで示す区間は高周波スイッチングの区間を意味している。
スイッチング素子21aは、高周波スイッチングにより入力電圧Viを降圧し、ゲート信号G1によりオン時間を変調することで、リアクトル24aに流れる電流波形の振幅を制御する。一方、スイッチング素子21bは、スイッチング素子21aと同期した高周波スイッチングにより、リアクトル24bに流れる電流波形の振幅を制御する。
リアクトル24a、スイッチング素子25、ダイオード26及びダイオード27aは、入力電圧Viを昇圧して中間電圧Vdを出力するために使用される。リアクトル24aは、昇圧エネルギーを蓄積する。
図2(b)は、制御部120Aからスイッチング素子25に入力されるゲート信号G2の波形を示している。スイッチング素子25は、高周波スイッチングにより入力電圧Viを昇圧し、ゲート信号G2によりオン時間を変調することで、リアクトル24a,24bに流れる電流波形の振幅を制御する。
スイッチング素子21a,21bと、スイッチング素子25とは、排他的に高周波スイッチングする。具体的には、スイッチング素子21a,21bが高周波スイッチングする際にはスイッチング素子25はオフの状態とし、スイッチング素子25が高周波スイッチングする際にはスイッチング素子21a,21bはオンの状態である。
入力電圧Viが系統電圧Vsの絶対値よりも大きい期間では、制御部120Aは、スイッチング素子21a,21bを高周波スイッチングさせることで降圧動作を行い、かつオン時間を変調することで、リアクトル24a,24bの電流波形の振幅を瞬時制御する。このときスイッチング素子25はオフしている。入力電圧Viが系統電圧Vsの絶対値よりも小さい期間では、制御部120Aは、スイッチング素子21a,21bをオンさせ、スイッチング素子25を高周波スイッチングさせることで、入力電圧Viを昇圧し、かつオン時間を変調することによって、リアクトル24a,24bの電流波形の振幅を瞬時制御する。
図2(f)は、中間電圧Vdの波形を示している。図2(f)に示すように、昇降圧コンバータ2Aから出力される中間電圧Vdには、スイッチング素子21a,21b及びスイッチング素子25の動作周波数に対応する高周波成分が重畳されている。
中間段コンデンサ102は、ダイオード27a,27bの後段に接続される。中間段コンデンサ102は、中間電圧Vdに含まれる高周波成分を除去するために使用される。中間段コンデンサ102は、ダイオード27aとフルブリッジインバータ3Aとの間の正側線路Lpに一端が接続され、ダイオード27aとフルブリッジインバータ3Aとの間の負側線路Lnに他端が接続される。例えば、中間段コンデンサ102の容量は数十μF程度である。
フルブリッジインバータ3Aは、中間電圧Vdの極性を切り換えるとともに、電力系統10に同期した正弦波交流に変換する。フルブリッジインバータ3Aは、フルブリッジ接続されたスイッチング素子31a〜31dを有する。第1実施形態ではスイッチング素子31a〜31dとしてIGBTを例示しているが、パワーMOS FET等でもよい。
スイッチング素子31a〜31dには、ダイオード32a〜32dがそれぞれ逆並列接続されている。スイッチング素子31a,31dは、制御部120Aからのゲート信号G3に応じてスイッチングする。スイッチング素子31b,31cは、制御部120Aからのゲート信号G4に応じてスイッチングする。スイッチング素子31aとスイッチング素子31bとの接続点、及び、スイッチング素子31cとスイッチング素子31dとの接続点には、図示を省略するリレー回路を介して、電力系統10が接続されている。
図2(c)は、制御部120Aからスイッチング素子31a,31dに入力されるゲート信号G3の波形を示している。図2(d)は、制御部120Aからスイッチング素子31b,31cに入力されるゲート信号G4の波形を示している。図2(e)は、入力電圧Vi及び系統電圧Vsそれぞれの波形を示している。図2(g)は、出力電流Ioの波形を示している。図2(h)は、入出力対地電圧の波形を示している。具体的には、直流電源1と昇降圧コンバータ2Aとの間の正側線路Lpの対地電圧Vpと、直流電源1と昇降圧コンバータ2Aとの間の負側線路Lnの対地電圧Vnと、出力側の一方の線路の対地電圧Vuと、出力側の他方の線路の対地電圧Vvとを示している。
スイッチング素子31a〜31dは、系統電圧Vsの正負に同期して、商用周波でスイッチングを行い、昇降圧コンバータ2Aから得られる商用周波数に応じた正弦波正半波状の中間電圧Vdを電力系統10に同期した正弦波交流電力に変換する。
以上説明したように、第1実施形態によれば、昇降圧コンバータ2Aは、互いに対称な回路構成の正側回路210A及び負側回路220Aを有する。互いに対称な回路構成の正側回路210A及び負側回路220Aにより、図2(h)に示すように、直流電源1と昇降圧コンバータ2Aとの間の正側線路Lp及び負側線路Lnそれぞれの対地電圧Vp,Vnの変動を正負で打ち消し合い、対地電圧Vp,Vnが一定に保たれる。これにより、対地静電容量Cpvを介して流れる漏洩電流を抑制できる。
また、第1実施形態では、同一特性の回路素子を用いて正側回路210A及び負側回路220Aを構成することで、正側回路210A及び負側回路220Aそれぞれの回路特性のバランスを均等にすることができ、対地電圧Vp,Vnをより一層安定させることができる。
さらに、第1実施形態では、正側回路210A及び負側回路220Aを互いに対称な回路構成とした上で、正側回路210A及び負側回路220Aそれぞれのスイッチング素子21a,21bを同期して動作させることで、正側回路210A及び負側回路220Aそれぞれの動作を等しくすることができ、対地電圧Vp,Vnをより一層安定させることができる。
[第2実施形態]
次に、図3及び図4を参照して、本発明の第2実施形態について説明する。第2実施形態においては第1実施形態と異なる点を主に説明する。
図3は、第2実施形態に係る系統連系インバータ装置100Bを含む系統連系システムの構成を示す図である。図4は、系統連系インバータ装置100Bの動作を説明するための波形図である。
系統連系インバータ装置100Bは、主回路110Bと、主回路110Bを制御する制御部120Bとを有する。主回路110Bは、直流電源1からの入力電圧Viを昇圧して中間電圧Vdを出力する昇圧コンバータ2Bと、中間電圧Vdを正弦波状の交流電力に変換するフルブリッジインバータ3Bとを有する。第2実施形態において昇圧コンバータ2Bは、電圧変換回路を構成する。第2実施形態においてフルブリッジインバータ3Bは、波形変換回路を構成する。
第2実施形態に係る昇圧コンバータ2Bは、交流電力(系統電圧Vs)に対応する正弦波波形の一部の成形を行う。ここで、昇圧コンバータ2Bが出力する中間電圧Vdは、部分的に凸状となった波形である(図4(e)参照)。フルブリッジインバータ3Bは、残りの部分の正弦波波形を成形し、正弦波状の交流電力を出力する。
昇圧コンバータ2Bは、入力段コンデンサ101、正側回路210B、負側回路220B、スイッチング素子25、ダイオード26、及び中間段コンデンサ102を有する。第2実施形態ではスイッチング素子25としてパワーMOS FETを例示しているが、IGBT等でもよい。スイッチング素子25は、制御部120Bからのゲート信号G1に応じて高周波スイッチングする。
正側回路210Bは、正側線路Lp上に設けられる。負側回路220Bは、負側線路Ln上に設けられる。正側線路Lpは、一端が直流電源1の正極側に接続され、他端がフルブリッジインバータ3Bの一方の入力側(正側の入力)に接続されている。負側線路Lnは、一端が直流電源1の負極側に接続され、他端がフルブリッジインバータ3Bの他方の入力側(負側の入力)に接続されている。
正側回路210B及び負側回路220Bは、互いに対称な回路構成を有する。具体的には、正側回路210Bは、正側線路Lp上において、種類の異なる複数の回路素子を直列に接続して構成される。負側回路220Bは、負側線路Ln上において、種類の異なる複数の回路素子を直列に接続して構成される。直流電源1側から数えてn番目に接続される正側の回路素子と、直流電源1側から数えてn番目に接続される負側の回路素子とは、同一種類の回路素子である(nは1よりも大きい整数)。なお、対称な回路構成とは、回路図上での対称性を意味し、正側回路210B及び負側回路220Bを実際に基板上に配置するときの位置は対称である必要はない。
正側回路210Bは、リアクトル24a(第1のリアクトル)と、リアクトル24aの後段に接続されたダイオード27a(第1のダイオード)とを備える。負側回路220Bは、リアクトル24b(第2のリアクトル)と、リアクトル24bの後段に接続されたダイオード27b(第2のダイオード)とを備える。
正側回路210B及び負側回路220Bは、同一特性の回路素子を用いて構成されている。直流電源1側から数えて1番目に接続されるリアクトル24a及びリアクトル24bそれぞれの回路特性(インダクタンス等)は等しい。直流電源1側から数えて2番目に接続されるダイオード27a及びダイオード27bそれぞれの回路特性(ON電圧やスイッチング速度等)は等しい。リアクトル24a,24bは、小型化のため、コアを共通とし、リアクトル24a,24bそれぞれに対応する巻線を共通のコアに巻く方法で構成してもよい。
図4(a)は、制御部120Bからスイッチング素子25に入力されるゲート信号G1の波形を示している。なお、図4において、ハッチングで示す区間は高周波スイッチングの区間を意味している。図4(d)は、入力電圧Vi及び系統電圧Vsそれぞれの波形を示している。
昇圧コンバータ2Bは、系統電圧Vsのピーク電圧の時点を中心として一定期間は昇圧を行い、それ以外の期間、具体的には、系統電圧Vsの絶対値が入力電圧Viよりも小さい期間では昇圧を行わない。
図4(e)は、中間電圧Vdの波形を示している。中間電圧Vdは、昇圧した区間が部分的に凸状となった波形になる。残りの部分の正弦波波形についてはフルブリッジインバータ3Bが成形することになる。
フルブリッジインバータ3Bは、スイッチング素子31a〜31dとしてIGBTを使用している点以外は、第1実施形態と同様の回路構成である。ただし、IGBTに限らず、パワーMOS FET等を使用してもよい。
図4(b)は、制御部120Bからスイッチング素子31a,31dに入力されるゲート信号G2の波形を示している。図4(c)は、制御部120Bからスイッチング素子31b,31cに入力されるゲート信号G3の波形を示している。
昇圧コンバータ2Bとフルブリッジインバータ3Bとが交互に高周波スイッチングを行い、昇圧コンバータ2Bとフルブリッジインバータ3Bとで正弦波波形の形成を行う。そして、正弦波波形の形成は高周波スイッチングを行っている回路によって行われることになる。また、昇圧コンバータ2Bが高周波スイッチングを行っている場合(正弦波波形の形成を行っている場合)は、フルブリッジインバータ3Bは必要に応じて極性の切り替えを行い、フルブリッジインバータ3Bが高周波スイッチングを行っている場合(正弦波波形の形成を行っている場合)は、昇圧コンバータ2Bは昇圧動作を停止する(スイッチング素子25をオフにする)。
図4(f)は、フルブリッジインバータ3Bが出力する出力電圧Voの波形を示している。出力電圧Voには、フルブリッジインバータ3Bによる高周波スイッチングに対応する高周波成分が重畳されている。
フルブリッジインバータ3Bの後段には、フィルタ回路4が接続されている。フィルタ回路4は、スイッチング素子41a、ダイオード42a、スイッチング素子41b、ダイオード42b、リアクトル43a、リアクトル43b、及びコンデンサ44を有する。フィルタ回路4は、フルブリッジインバータ3Bからの出力(出力電圧Vo)に含まれる高周波成分を除去して出力する。
図4(g)は、出力電流Ioの波形を示している。図4(h)は、入出力対地電圧の波形を示している。具体的には、直流電源1と昇圧コンバータ2Bとの間の正側線路Lpの対地電圧Vpと、直流電源1と昇圧コンバータ2Bとの間の負側線路Lnの対地電圧Vnと、出力側の一方の線路の対地電圧Vuと、出力側の他方の線路の対地電圧Vvとを示している。
以上説明したように、第2実施形態では、昇圧コンバータ2Bが交流電力に対応する正弦波波形の一部の成形を行う回路構成において、正側回路210B及び負側回路220Bを互いに対称な回路構成とすることで、第1実施形態と同様に、対地静電容量Cpvを介して流れる漏洩電流を抑制できる。
また、第2実施形態では、同一特性の回路素子を用いて正側回路210B及び負側回路220Bを構成することで、正負の回路特性のバランスを均等にすることができ、対地電圧Vp,Vnをより一層安定させることができる。
[比較例]
次に、第1実施形態及び第2実施形態により得られる効果を明らかにするために、図5及び図6を参照して、第1実施形態及び第2実施形態の比較例を説明する。
図5は、第1実施形態の比較例を説明するための図である。本比較例においては、昇降圧コンバータ2A’が、第1実施形態で説明した負側回路220Aを有していない。その他の構成は第1実施形態と同様である。図5に示すように、昇降圧コンバータ2A’が負側回路220Aを有していない回路構成では、直流電源1と昇降圧コンバータ2A’との間の正側線路Lp及び負側線路Lnそれぞれの対地電圧Vp,Vnが変動する。このため、対地静電容量Cpvを介して漏洩電流が流れてしまう。一方、上述した第1実施形態は、図1に示したように、対地電圧Vp,Vnが一定に保たれており、漏洩電流を抑制できる。
図6は、第2実施形態の比較例を説明するための図である。本比較例においては、昇圧コンバータ2B’が、第2実施形態で説明した負側回路220Bを有していない。その他の構成は第2実施形態と同様である。図6に示すように、昇圧コンバータ2B’が負側回路220Bを有していない回路構成では、直流電源1と昇圧コンバータ2B’との間の正側線路Lp及び負側線路Lnそれぞれの対地電圧Vp,Vnが変動する。このため、対地静電容量Cpvを介して漏洩電流が流れてしまう。一方、上述した第2実施形態は、図3に示したように、対地電圧Vp,Vnが一定に保たれており、漏洩電流を抑制できる。
[その他の実施形態]
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
例えば、上述した各実施形態においては、直流電源1として太陽電池を例示したが、対地静電容量Cpvを有する直流電源であればよく、太陽電池に限定されるものではない。
また、上述した各実施形態においては、昇降圧コンバータ2A又は昇圧コンバータ2Bを電圧変換回路として使用するケースを例示した。しかしながら、入力電圧Viが系統電圧Vsよりも高いようなケースでは、降圧コンバータを電圧変換回路として使用してもよい。降圧コンバータは、入力電圧Viを降圧して中間電圧Vdを出力する。
このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
Cpv…対地静電容量、Ln…負側線路、Lp…正側線路、1…直流電源、2A…昇降圧コンバータ、2B…昇圧コンバータ、3A,3B…フルブリッジインバータ、4…フィルタ回路
、10…電力系統、21a,21b…スイッチング素子、22a,22b…ダイオード、23…ダイオード、24a,24b…リアクトル、25…スイッチング素子、26…ダイオード、27a,27b…ダイオード、31a〜31d…スイッチング素子、32a〜32d…ダイオード、41a…スイッチング素子、41b…スイッチング素子、42a,42b…ダイオード、43a,43b…リアクトル、44…コンデンサ、100A,100B…系統連系インバータ装置、101…入力段コンデンサ、102…中間段コンデンサ、110A,110B…主回路、120A,120B…制御部、210A,210B…正側回路、220A,220B…負側回路

Claims (6)

  1. 直流電源からの入力電圧を昇圧或いは降圧して中間電圧を出力する電圧変換回路と、
    前記中間電圧を正弦波状の交流電力に変換する波形変換回路とを有し、
    前記電圧変換回路は、前記交流電力に対応する正弦波波形の少なくとも一部の成形を行う系統連系インバータ装置であって、
    前記電圧変換回路は、
    前記直流電源の正極と前記波形変換回路との間の正側線路上に設けられた正側回路と、
    前記直流電源の負極と前記波形変換回路との間の負側線路上に設けられた負側回路と
    を備え、
    前記正側回路及び前記負側回路は、互いに対称な回路構成を有することを特徴とする系統連系インバータ装置。
  2. 前記正側回路は、前記正側線路上において、種類の異なる複数の正側回路素子を直列に接続して構成され、
    前記負側回路は、前記負側線路上において、種類の異なる複数の負側回路素子を直列に接続して構成され、
    前記直流電源側から数えてn番目に接続される前記正側回路素子と、前記直流電源側から数えてn番目に接続される前記負側回路素子とは、同一種類の回路素子であることを特徴とする請求項1に記載の系統連系インバータ装置。
  3. 前記正側回路は、
    第1のスイッチング素子と、
    前記第1のスイッチング素子の後段に接続された第1のリアクトルと、
    前記第1のリアクトルの後段に接続された第1のダイオードと
    を備え、
    前記負側回路は、
    第2のスイッチング素子と、
    前記第2のスイッチング素子の後段に接続された第2のリアクトルと、
    前記第2のリアクトルの後段に接続された第2のダイオードと
    を備えることを特徴とする請求項1又は2に記載の系統連系インバータ装置。
  4. 前記電圧変換回路の動作を制御する制御部を備え、
    前記制御部は、前記第1のスイッチング素子と前記第2のスイッチング素子とを同期して動作させることを特徴とする請求項3に記載の系統連系インバータ装置。
  5. 前記正側回路は、
    第1のリアクトルと、
    前記第1のリアクトルの後段に接続された第1のダイオードと
    を備え、
    前記負側回路は、
    第2のリアクトルと、
    前記第2のリアクトルの後段に接続された第2のダイオードと
    を備えることを特徴とする請求項1又は2に記載の系統連系インバータ装置。
  6. 直流電源と、
    請求項1〜5の何れかに記載の系統連系インバータ装置と
    を備えることを特徴とする系統連系システム。
JP2009251197A 2009-10-30 2009-10-30 系統連系インバータ装置及び系統連系システム Withdrawn JP2011097787A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009251197A JP2011097787A (ja) 2009-10-30 2009-10-30 系統連系インバータ装置及び系統連系システム
CN2010105262680A CN102055367A (zh) 2009-10-30 2010-10-27 系统协同工作变换器装置及系统协同工作系统
EP10251869A EP2341606A1 (en) 2009-10-30 2010-10-29 Grid interconnection inverter and grid interconnection device
US12/916,364 US20110103117A1 (en) 2009-10-30 2010-10-29 Grid interconnection inverter and grid interconnection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009251197A JP2011097787A (ja) 2009-10-30 2009-10-30 系統連系インバータ装置及び系統連系システム

Publications (1)

Publication Number Publication Date
JP2011097787A true JP2011097787A (ja) 2011-05-12

Family

ID=43901309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009251197A Withdrawn JP2011097787A (ja) 2009-10-30 2009-10-30 系統連系インバータ装置及び系統連系システム

Country Status (4)

Country Link
US (1) US20110103117A1 (ja)
EP (1) EP2341606A1 (ja)
JP (1) JP2011097787A (ja)
CN (1) CN102055367A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128346A (ja) * 2013-12-27 2015-07-09 パナソニックIpマネジメント株式会社 電力変換装置
JPWO2014199795A1 (ja) * 2013-06-11 2017-02-23 住友電気工業株式会社 インバータ装置
JP2018050377A (ja) * 2016-09-20 2018-03-29 オムロン株式会社 分散型電源システム、dc/dcコンバータ及びパワーコンディショナ
JP2019527020A (ja) * 2016-09-06 2019-09-19 エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフトSMA Solar Technology AG トランスレス単相ネットワークインバータのハイブリッドクロック方法
JP2019180189A (ja) * 2018-03-30 2019-10-17 パナソニックIpマネジメント株式会社 開閉装置、電力変換装置、電力変換システム及び接続箱
JP2022191038A (ja) * 2021-06-15 2022-12-27 ダイヤゼブラ電機株式会社 蓄電池付き太陽光発電システム
JP7483070B2 (ja) 2023-02-03 2024-05-14 ダイヤゼブラ電機株式会社 蓄電池付き太陽光発電システム

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530818A4 (en) * 2010-01-25 2017-05-10 Panasonic Intellectual Property Management Co., Ltd. Power conversion apparatus, grid connection apparatus, and grid connection system
EP2367275B2 (en) 2010-03-18 2020-12-23 MARICI Holdings The Netherlands B.V. Non-isolated DC - DC converter for solar power plant
US9350265B2 (en) * 2011-03-29 2016-05-24 Sony Corporation AC tied inverter, system and method
CN102983765A (zh) * 2011-09-07 2013-03-20 艾伏新能源科技(上海)股份有限公司 一种高效无变压器单相光伏并网逆变器
CN102510088B (zh) * 2011-11-23 2015-06-17 东莞市神牛电子科技有限公司 一种直流电逆变自动跟踪并网装置
EP2634909B1 (en) * 2012-03-02 2017-02-15 ABB Research Ltd. Method for controlling a grid-connected boost-buck full-bridge current-source inverter cascade for photovoltaic applications and device
CN102751895B (zh) * 2012-06-12 2014-12-03 阳光电源股份有限公司 一种多电平电路、并网逆变器及其调制方法
EP2717459A1 (fr) * 2012-10-03 2014-04-09 Belenos Clean Power Holding AG Convertisseur CC/CA avec tension intermédiaire sinusoïdale redressée décalée et fonctionnement onduleur MLI
CN103840660A (zh) * 2012-11-27 2014-06-04 江苏绿扬电子仪器集团有限公司 用于并网电源的宽电压输入范围三管升降压装置
CN103515979A (zh) * 2013-03-21 2014-01-15 王林兵 低成本的单相一体化能量回馈系统
CN104124866A (zh) * 2013-04-26 2014-10-29 丰郅(上海)新能源科技有限公司 升降压双向直流变换器拓扑
DE102014210502A1 (de) * 2014-06-03 2015-12-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Leistungselektronische Schaltung, leistungselektronischer Energieübertrager und leistungselektronisches Energieübertragungssystem
US9294000B1 (en) * 2014-09-12 2016-03-22 Texas Instruments Incorporated Direct conversion output driver
CN105426649B (zh) * 2014-09-18 2018-03-27 国家电网公司 一种泄露电流的分离计算方法
WO2017106842A1 (en) * 2015-12-18 2017-06-22 Southwire Company, Llc Cable integrated solar inverter
CN105553319B (zh) * 2015-12-31 2018-04-06 燕山大学 一种单级非隔离Buck‑Boost三相光伏逆变器的控制方法
CN106059356A (zh) * 2016-06-02 2016-10-26 燕山大学 一种可抑制漏电流无电解电容型光伏逆变器及其控制方法
US20170373600A1 (en) * 2016-06-23 2017-12-28 Cirrus Logic International Semiconductor Ltd. Multi-mode switching power converter
WO2018052985A1 (en) * 2016-09-13 2018-03-22 Electranix Corporation System and method for transformerless power conversion
WO2018148683A1 (en) * 2017-02-10 2018-08-16 Sologrid, Inc. Portable renewable energy power converter/inverter and storage supply systems and methods
DE102017212462A1 (de) * 2017-07-20 2019-01-24 Siemens Aktiengesellschaft Galvanisch gekoppelter elektrischer Wandler
US11251621B1 (en) 2017-08-03 2022-02-15 Southwire Company, Llc Solar power generation system
US11438988B1 (en) 2017-08-11 2022-09-06 Southwire Company, Llc DC power management system
EP3726719A1 (en) * 2019-04-15 2020-10-21 Infineon Technologies Austria AG Power converter and power conversion method
TWI788991B (zh) * 2021-09-02 2023-01-01 義守大學 換流裝置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2713030B1 (fr) * 1993-11-24 1996-01-12 Merlin Gerin Alimentation sans coupure à neutre traversant, comportant un hacheur-élévateur double.
US5932995A (en) * 1998-03-03 1999-08-03 Magnetek, Inc. Dual buck converter with coupled inductors
JP4200244B2 (ja) 1998-11-10 2008-12-24 パナソニック株式会社 系統連系インバータ装置
US6404655B1 (en) * 1999-12-07 2002-06-11 Semikron, Inc. Transformerless 3 phase power inverter
JP4172235B2 (ja) 2002-09-12 2008-10-29 松下電器産業株式会社 系統連系インバータ装置
US7099169B2 (en) * 2003-02-21 2006-08-29 Distributed Power, Inc. DC to AC inverter with single-switch bipolar boost circuit
DE102004037446B4 (de) * 2004-08-02 2006-11-02 Conergy Ag Trafoloser Wechselrichter für solare Netzeinspeisung
DE102005047373A1 (de) * 2005-09-28 2007-04-05 Schekulin, Dirk, Dr. Ing. Tiefsetzstellerschaltung und Wechselrichter-Schaltungsanordnung
DE102006014780A1 (de) * 2006-03-29 2007-10-18 Schekulin, Ulrich Gleichstromsteller und Wechselrichter-Schaltungsanordnung
JP5148344B2 (ja) 2008-04-04 2013-02-20 シャープ株式会社 現像装置及び画像形成装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014199795A1 (ja) * 2013-06-11 2017-02-23 住友電気工業株式会社 インバータ装置
JP2015128346A (ja) * 2013-12-27 2015-07-09 パナソニックIpマネジメント株式会社 電力変換装置
JP2019527020A (ja) * 2016-09-06 2019-09-19 エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフトSMA Solar Technology AG トランスレス単相ネットワークインバータのハイブリッドクロック方法
JP7086054B2 (ja) 2016-09-06 2022-06-17 エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフト トランスレス単相ネットワークインバータのハイブリッドクロック方法
JP2018050377A (ja) * 2016-09-20 2018-03-29 オムロン株式会社 分散型電源システム、dc/dcコンバータ及びパワーコンディショナ
JP2019180189A (ja) * 2018-03-30 2019-10-17 パナソニックIpマネジメント株式会社 開閉装置、電力変換装置、電力変換システム及び接続箱
JP2022191038A (ja) * 2021-06-15 2022-12-27 ダイヤゼブラ電機株式会社 蓄電池付き太陽光発電システム
JP7223066B2 (ja) 2021-06-15 2023-02-15 ダイヤゼブラ電機株式会社 蓄電池付き太陽光発電システム
JP7483070B2 (ja) 2023-02-03 2024-05-14 ダイヤゼブラ電機株式会社 蓄電池付き太陽光発電システム

Also Published As

Publication number Publication date
CN102055367A (zh) 2011-05-11
EP2341606A1 (en) 2011-07-06
US20110103117A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
JP2011097787A (ja) 系統連系インバータ装置及び系統連系システム
US9584044B2 (en) Technologies for converter topologies
US8270191B2 (en) Power generation system, power converter system, and methods of converting power
Hu et al. A single-stage microinverter without using eletrolytic capacitors
US9048756B2 (en) DC-side leakage current reduction for single phase full-bridge power converter/inverter
JP5421904B2 (ja) ステップ波電力変換装置のための予測方式および誘導インバータトポロジ
US8773082B2 (en) DC/DC power conversion apparatus
US8259468B2 (en) Three-phase inverter for converting DC power from a generator into three-phase AC power
JP5851024B2 (ja) ステップアップコンバータ
US9136710B1 (en) Multi-path converters for PV substrings
US20130063991A1 (en) Voltage converter configurations for solar energy system applications
US20130201725A1 (en) Resonant circuit and resonant dc/dc converter
KR20040014328A (ko) 전력변환장치 및 발전장치
JP2008199808A (ja) 系統連系インバータ装置
JP2014513915A (ja) 共振変換器の出力電力を制御するための方法及び装置
US9350257B2 (en) Power supply apparatus and driving method thereof
WO2019091485A1 (en) System and device for exporting power, and method of configuring thereof
US8711590B2 (en) Circuit and method for generating an AC voltage from a plurality of voltage sources having a temporally variable DC output voltage
Suresh et al. Fault analysis and clearance in FL-APC DC–AC converter
KR101034263B1 (ko) 태양광 발전용 dc-dc 컨버터
JP2011160603A (ja) 燃料電池発電装置
JP5701595B2 (ja) 系統連係装置
KR20180112361A (ko) 쿡 컨버터 기반의 계통 연계형 단일단 인버터
JP2011097786A (ja) 系統連系インバータ装置及び系統連系システム
KR20110048002A (ko) 계통 연계 인버터 장치 및 계통 연계 시스템

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108