JP2011017626A - Mechanical quantity detection member and mechanical quantity detection apparatus - Google Patents

Mechanical quantity detection member and mechanical quantity detection apparatus Download PDF

Info

Publication number
JP2011017626A
JP2011017626A JP2009162599A JP2009162599A JP2011017626A JP 2011017626 A JP2011017626 A JP 2011017626A JP 2009162599 A JP2009162599 A JP 2009162599A JP 2009162599 A JP2009162599 A JP 2009162599A JP 2011017626 A JP2011017626 A JP 2011017626A
Authority
JP
Japan
Prior art keywords
quantity detection
mechanical quantity
electrode
detection member
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009162599A
Other languages
Japanese (ja)
Inventor
Koji Sumino
宏治 角野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009162599A priority Critical patent/JP2011017626A/en
Priority to TW099117462A priority patent/TW201108062A/en
Priority to US12/825,940 priority patent/US8680876B2/en
Priority to KR1020100063332A priority patent/KR20110005211A/en
Priority to CN201010223201XA priority patent/CN101950224A/en
Publication of JP2011017626A publication Critical patent/JP2011017626A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Abstract

PROBLEM TO BE SOLVED: To provide a mechanical quantity detection apparatus which performs various information input beyond alternative operation, achieve a natural, comfortable touch and a comfortable sense of operation, is small and simple, resists restrictions caused by its use environment on its operation, and is suitable for an input device of an electronic instrument and a mechanical quantity detection member allowing it.SOLUTION: The mechanical quantity detection member includes a base 1 part including a contact part or the entire of which is deformed in response to pressing by a contact body, a plurality of electrodes which are fixed to the surface or inside of the base 1 and at least one of which is a displacement electrode 2 placed on a deformation part (an area which is deformed and displaced) of the base 1, and wiring to the electrodes. On the deformation of the base 1, the displacement electrode 2 follows the deformation and displacement of the deformation part without being separated from the base 1 and without impairing electric conductivity. The displacement of the displacement electrode 2 is detected as a change in the capacitance between the same and the electrode 3.

Description

本発明は、変位、力、および加速度などの力学量を静電容量方式で検知する力学量検知部材、及び電子機器等の入力装置として好適な力学量検知装置に関するものである。   The present invention relates to a mechanical quantity detection member that detects a mechanical quantity such as displacement, force, and acceleration by an electrostatic capacity method, and a mechanical quantity detection device suitable as an input device for an electronic device or the like.

従来、電子機器等の一般的な入力装置、すなわち入力ユーザーインターフェース(UI)としては、キーボードをはじめとして、押しボタンスイッチに代表されるスイッチ類が多く用いられてきた。リモートコントローラやマウスも含めて、スイッチ類の動作は、通常、物理的な接触によってオンかオフかを選択する二者択一の動作である。このようなUIは、入力情報が増え選択肢が増えるに従い、ボタンやキー等が増えてしまい、操作性が著しく悪化するのみならず、電子機器のデザインにまで制約を与えることになる。   Conventionally, as a general input device such as an electronic device, that is, an input user interface (UI), switches such as a keyboard and a representative of a push button switch have been used in many cases. The operation of the switches, including the remote controller and the mouse, is usually an alternative operation for selecting on or off by physical contact. In such a UI, as input information increases and choices increase, the number of buttons, keys, and the like increase, which not only significantly deteriorates operability but also restricts the design of electronic devices.

近年、マウス、タッチパッド、およびタッチスクリーン等のポインティングデバイスと、出力UIとの間に連動性をもたせることにより、直感的な操作を可能とするグラフィカルUI(GUI)が多く用いられている。   2. Description of the Related Art In recent years, a graphical UI (GUI) that enables intuitive operation by providing a linkage between a pointing device such as a mouse, a touch pad, and a touch screen and an output UI is often used.

マウスには、押しボタンスイッチによるクリック感によって快適な操作感が得られる特徴がある。しかし、マウスを走行させる操作面が必要であるので、操作面を配置できる環境下でないと用いることができない不都合がある。   The mouse has a feature that a comfortable operation feeling can be obtained by a click feeling by a push button switch. However, since an operation surface for running the mouse is necessary, there is a disadvantage that it cannot be used unless the operation surface can be arranged.

タッチパッドやペンタブレット等のタッチセンシングデバイスには、抵抗膜式、静電容量式、および表面弾性波式等の多くの方式が実用化されており、現金自動預け払い機(ATM)、各種携帯情報端末、およびカーナビゲーションシステム等に多く搭載されている。しかし、通常のタッチセンシングデバイスでは、1つの操作ポイントにおいて、オンかオフかを選択する二者択一の操作が可能であるのみで、それ以上の複雑な情報処理を行うことは困難である。従って、取り扱う情報が多くなると、タッチ面を2次元的に拡大せざるを得なくなり、スイッチ類と同様、操作性が悪化するとともに、電子機器のデザインに制約を与えることになる。また、タッチセンシングデバイスには、押しボタンスイッチと異なり、クリック感がないので、直感的な取り扱いができず、操作がぎこちなくなりやすい。加えて、視覚障害者による操作や、暗所での手探りでの操作は、非常に困難である。   Many types of touch sensing devices such as touchpads and pen tablets have been put to practical use, such as resistive film type, capacitance type, and surface acoustic wave type. Automatic teller machines (ATMs), various mobile phones, etc. Many are installed in information terminals and car navigation systems. However, with a normal touch sensing device, it is difficult to perform more complicated information processing by only performing an alternative operation of selecting on or off at one operation point. Therefore, if the information to be handled increases, the touch surface must be expanded two-dimensionally, and the operability is deteriorated and the design of the electronic device is restricted as in the case of the switches. Also, unlike a push button switch, a touch sensing device does not have a click feeling, so it cannot be handled intuitively and the operation is likely to be awkward. In addition, operations by visually impaired persons or groping in the dark are very difficult.

二者択一的操作を越えた、より多様な情報入力を可能にするために、入力時の圧力や変位を入力情報として検知することが考えられる。圧力をセンシングする装置としては、抵抗線式やピエゾ式など、多種多様な圧力センサが実用化されており、スイッチングデバイスに圧力センサを備えることによって、入力時の筆圧を反映した入力情報制御を可能とするペン入力装置も登場している。しかし、一般に用いられる圧力センサでは、金属の薄板やプラスチックの薄膜からなるダイアフラムを介して圧力源の圧力を受け、ダイアフラムに加わる圧力またはダイアフラムの変位や変形を変換素子などで検知することによって、圧力を電気信号に変換する。この際、圧力源に影響を与えて圧力が変化してしまわないように、また、圧力と電気信号との間に比例関係などの簡単な関係が成り立つように、ダイアフラムの変形量は小さく抑えられるように設計されている。従って、圧力センサでは、広範囲の圧力を検知することはできるが、変位としては最大で1mm程度の変位を読み取ることが限界である。また、筆圧をセンシングするには、筆圧が変化しないように、ペンの筆圧を受けとめる筆記面が十分な固さを有することが必要になる。このため、筆圧をセンシングする入力装置では、固い筆記面を固いペンでなぞることになり、操作者が自然で心地よい感触や快適な操作感を得ることは難しい。   In order to make it possible to input more diverse information beyond the alternative operation, it is conceivable to detect pressure and displacement at the time of input as input information. A wide variety of pressure sensors, such as resistance wire type and piezo type, have been put to practical use as pressure sensing devices. By providing a pressure sensor in the switching device, input information control that reflects the writing pressure at the time of input can be performed. Pen input devices that make it possible have also appeared. However, a pressure sensor that is generally used receives pressure from a pressure source through a diaphragm made of a thin metal plate or plastic thin film, and detects the pressure applied to the diaphragm or the displacement or deformation of the diaphragm by a conversion element or the like. Is converted into an electrical signal. At this time, the amount of deformation of the diaphragm can be kept small so that the pressure does not change by affecting the pressure source, and so that a simple relationship such as a proportional relationship is established between the pressure and the electric signal. Designed to be Therefore, the pressure sensor can detect a wide range of pressures, but the maximum displacement is limited to reading a displacement of about 1 mm. Further, in order to sense the writing pressure, it is necessary that the writing surface for receiving the writing pressure of the pen has sufficient hardness so that the writing pressure does not change. For this reason, in an input device that senses writing pressure, a hard writing surface is traced with a hard pen, and it is difficult for the operator to obtain a natural and comfortable feel and a comfortable operation feeling.

一方、変位をセンシングする装置としては、静電容量方式の変位センサがあり、多くの公開特許公報が開示されている。このセンサは、コンデンサの原理を応用した非接触式微小変位センサの1種であり、電極間の距離に反比例して静電容量が変化することを利用して、小さな変位を高精度で測定することができる。静電容量の微小な変化を高精度に検出するためには、周波数変調、振幅変調、位相変調などの方法が採られ、静電容量型変位センサは0.2〜10mmの変位を1〜10μmの精度で検出することができる。   On the other hand, as a device for sensing displacement, there is a capacitance type displacement sensor, and many published patent publications are disclosed. This sensor is a kind of non-contact type micro displacement sensor that applies the principle of capacitor, and measures small displacement with high accuracy by utilizing the fact that capacitance changes in inverse proportion to the distance between electrodes. be able to. In order to detect a minute change in capacitance with high accuracy, methods such as frequency modulation, amplitude modulation, and phase modulation are adopted, and a capacitance type displacement sensor is capable of detecting a displacement of 0.2 to 10 mm to 1 to 10 μm. It is possible to detect with accuracy.

変位センサを応用した入力装置としては、例えば、後述の特許文献1に、パネルに対して作用する力を検出する力検出手段を備えたパネルセンサであって、力の強さの違いに対応して、力検出手段が弱い力を検出する検出部と強い力を検出する検出部とを備えていることを特徴とする、パネルセンサが提案されている。   As an input device to which a displacement sensor is applied, for example, Patent Document 1 described later is a panel sensor provided with a force detection means for detecting a force acting on a panel, and corresponds to a difference in the strength of the force. Thus, a panel sensor has been proposed in which the force detection means includes a detection unit that detects a weak force and a detection unit that detects a strong force.

図7は、このパネルセンサの一例を示す部分断面図である。パネルセンサ100は、主として、四角形状のパネル110と、その四隅に配置されたパネル支持部120および力検出手段(力センサ)130とで構成されている。パネル110に加えられた力はパネル支持部120を介して力センサ130に伝えられる。図7は、パネルセンサ100の1つの隅(角)の近傍を示している。   FIG. 7 is a partial cross-sectional view showing an example of this panel sensor. The panel sensor 100 mainly includes a rectangular panel 110, panel support portions 120 and force detection means (force sensors) 130 disposed at the four corners thereof. The force applied to the panel 110 is transmitted to the force sensor 130 via the panel support part 120. FIG. 7 shows the vicinity of one corner (corner) of the panel sensor 100.

力センサ130は、ダイアフラム部131、電極132、基板133、内部枠134、梁部135、固定枠136、電極137、および支持体138を備えている。ダイアフラム部131は、伸縮性を有する薄膜131aと、張力を保った状態で薄膜131aを支持する支持部131bとで構成され、電極132とともに基板133上に固定されている。薄膜131aには(図示省略した)変位電極が設けられており、変位電極と電極132とは第1のコンデンサを形成している。基板133は、内部枠134、梁部135、および固定枠136を介して支持体138上に配置されている。梁部135は、所定の弾性を有する材料からなり、電極132と、支持体138上の電極137とは、第2のコンデンサを形成している。   The force sensor 130 includes a diaphragm portion 131, an electrode 132, a substrate 133, an inner frame 134, a beam portion 135, a fixed frame 136, an electrode 137, and a support body 138. The diaphragm 131 is composed of a stretchable thin film 131 a and a support 131 b that supports the thin film 131 a while maintaining tension, and is fixed on the substrate 133 together with the electrode 132. The thin film 131a is provided with a displacement electrode (not shown), and the displacement electrode and the electrode 132 form a first capacitor. The substrate 133 is disposed on the support body 138 via the internal frame 134, the beam portion 135, and the fixed frame 136. The beam portion 135 is made of a material having a predetermined elasticity, and the electrode 132 and the electrode 137 on the support 138 form a second capacitor.

パネル110を押し下げる方向に小さな力が作用する場合には、図7(b)に示すように、薄膜131aが伸張変形し、薄膜131a上の変位電極が変位する。この変位を、第1のコンデンサの静電容量の変化として検出する。パネル101に作用する力が強くなると、薄膜131aと電極132との間隔は狭まるので、第1のコンデンサの静電容量は大きくなる。   When a small force is applied in a direction to push down the panel 110, the thin film 131a is stretched and deformed as shown in FIG. 7B, and the displacement electrode on the thin film 131a is displaced. This displacement is detected as a change in the capacitance of the first capacitor. When the force acting on the panel 101 is increased, the distance between the thin film 131a and the electrode 132 is reduced, so that the capacitance of the first capacitor is increased.

パネル110に作用する力がさらに強くなると、図7(c)に示すように、薄膜131aと電極132とは密着してしまい、第1のコンデンサの静電容量はほとんど変化しない。この場合、梁部135がたわむことによって、電極132が固定されている基板133が図の下向きに変位する。この変位を、第2のコンデンサの静電容量の変化として検出する。   When the force acting on the panel 110 is further increased, as shown in FIG. 7C, the thin film 131a and the electrode 132 are brought into close contact with each other, and the capacitance of the first capacitor hardly changes. In this case, when the beam portion 135 is bent, the substrate 133 to which the electrode 132 is fixed is displaced downward in the drawing. This displacement is detected as a change in the capacitance of the second capacitor.

上述したように、入力時の筆圧を圧力センサでセンシングする入力装置では、固いペンで固い筆記面をなぞることになり、操作者が自然で心地よい感触や快適な操作感を得ることは難しい。   As described above, in an input device that senses the writing pressure at the time of input with a pressure sensor, a hard writing surface is traced with a hard pen, and it is difficult for an operator to obtain a natural and comfortable feeling and a comfortable operational feeling.

入力時の変位を変位センサでセンシングする入力装置では、通常、入力はダイアフラムによって受けとめられ、ダイアフラムの変位が静電容量方式などで検知される。従来の変位センサでは、入力の大きさとダイアフラムの変形量との間に線形性などの単純な関係が成り立つことを重視して、ダイアフラムの材料として比較的硬い材料が用いられ、ダイアフラムの変形量が小さく抑えられるように設計されている。このような変位センサを用いた入力装置では、筆圧をセンシングする入力装置と同様、操作者が自然で心地よい感触や快適な操作感を得ることは難しい。   In an input device that senses displacement at the time of input with a displacement sensor, the input is normally received by a diaphragm, and the displacement of the diaphragm is detected by a capacitance method or the like. In conventional displacement sensors, a relatively hard material is used as the material of the diaphragm, focusing on the fact that a simple relationship such as linearity is established between the magnitude of the input and the amount of deformation of the diaphragm, and the amount of deformation of the diaphragm is small. It is designed to be kept small. In an input device using such a displacement sensor, it is difficult for an operator to obtain a natural and comfortable feeling and a comfortable operation feeling, as in an input device that senses writing pressure.

また、ダイアフラムの変形量が小さく抑えられているので、広い範囲の入力を受けとめるには、特許文献1の例にも見られるように、ダイアフラムを支持する弾性体(特許文献1の例では梁部135)が変形する構成とする必要が生じる。このため、入力装置の構造が複雑になり、大型化して、操作性が低下する。   In addition, since the deformation amount of the diaphragm is suppressed to be small, in order to receive a wide range of input, as seen in the example of Patent Document 1, an elastic body that supports the diaphragm (the beam portion in the example of Patent Document 1). 135) needs to be deformed. This complicates the structure of the input device, increases the size, and reduces operability.

本発明の目的は、上記のような実情に鑑み、二者択一的操作を越えた、より多様な情報入力が可能であり、かつ、自然で心地よい感触や快適な操作感が得られ、しかも、小型、簡素で、その操作が使用環境による制約を受けにくく、電子機器の入力装置として好適な力学量検知装置、及びそれを可能にする力学量検知部材を提供することにある。   In view of the above circumstances, the object of the present invention is to allow more diverse information input beyond the alternative operation, and to obtain a natural and comfortable feeling and a comfortable operation feeling. An object of the present invention is to provide a mechanical quantity detection device that is small, simple, and that is less susceptible to restrictions due to the use environment, and that is suitable as an input device for an electronic device, and a mechanical quantity detection member that enables this.

即ち、本発明は、
接触物体による押圧に応じて接触部を含む一部又は全部が変形し、接触物体による押 圧がなくなると元の形状を回復する基体と、
前記基体の表面又は内部に複数個が固定され、そのうちの少なくとも1個は前記基体 の変形部(前記変形に際し変形及び変位する領域)に配置されている変位電極である電 極と、
前記電極に接続された配線と
を有し、
前記変形に際し、前記変位電極は、前記基体から分離することなく、かつ導電性を損 なうことなく、前記変形部の変形及び変位に追従して変形及び変位し、
前記変形部の変形及び変位が、前記電極間の静電容量の変化として検知される
、力学量検知部材に係わる。
That is, the present invention
A base body that recovers the original shape when part or all of the contact portion is deformed in response to the pressing by the contact object and the pressing force by the contact object disappears;
A plurality of electrodes are fixed to the surface or inside of the base, and at least one of them is an electrode that is a displacement electrode disposed in a deformed portion of the base (a region that is deformed and displaced during the deformation);
A wiring connected to the electrode,
In the deformation, the displacement electrode is deformed and displaced following the deformation and displacement of the deformed portion without being separated from the base body and without impairing conductivity.
The present invention relates to a mechanical quantity detection member in which deformation and displacement of the deformation portion are detected as a change in capacitance between the electrodes.

また、
前記力学量検知部材と、
前記配線を介して前記電極に電気的に接続され、前記接触物体による押圧で生じる前 記電極間の静電容量の変化を、電気信号として検出する検出回路部と
を有する、力学量検知装置に係わる。
Also,
The mechanical quantity detection member;
A mechanical quantity detection device having a detection circuit unit that is electrically connected to the electrodes via the wiring and detects a change in capacitance between the electrodes caused by pressing by the contact object as an electric signal. Involved.

本発明の力学量検知部材によれば、前記接触物体による押圧に応じて前記基体の前記変形部の形状が変化すると、前記変形部に固定されている前記変位電極が、前記基体から分離することなく、前記変形部の変形及び変位に追従して変形及び変位する。この変形に際し、前記変位電極の導電性が損なわれることはないので、この変位の大きさに応じて前記変位電極と他の電極との間の静電容量が変化する。この静電容量の変化は、例えば、前記配線を介して接続された静電容量検出回路によって電気信号に変換される。この結果、前記基体の前記変形部の変形及び変位の大きさ、又は、その原因となった前記押圧の大きさが、電気信号などに変換されて検知される。そして、前記接触物体による押圧がなくなると、前記基体は元の形状を回復し、前記変位電極は元の位置に復帰するので、前記電極間の静電容量も元の大きさに戻る。   According to the mechanical quantity detection member of the present invention, when the shape of the deformed portion of the base changes in response to the pressing by the contact object, the displacement electrode fixed to the deformable portion is separated from the base. Instead, it deforms and displaces following the deformation and displacement of the deforming part. In this deformation, the conductivity of the displacement electrode is not impaired, and the capacitance between the displacement electrode and another electrode changes according to the magnitude of the displacement. This change in capacitance is converted into an electric signal by, for example, a capacitance detection circuit connected via the wiring. As a result, the magnitude of the deformation and displacement of the deformed portion of the base body or the magnitude of the pressure that caused the deformation is converted into an electric signal and detected. Then, when the pressure by the contact object disappears, the base body recovers its original shape, and the displacement electrode returns to its original position, so that the capacitance between the electrodes also returns to the original size.

この際、前記接触物体の押し込み量の違い(アナログ量)を情報として区別することができる。また、前記接触物体である手指などは、押し込み量に応じて徐々に増加する前記基体の反発力を感じながら押し込んでいくので、自然で心地よい感触や快適な操作感が得られる。しかも、前記力学量検知部材は、小型で、簡素であり、大きな形状の自由度が得られる。また、別途操作面などを必要としないので、その操作が使用環境による制約を受けにくい。   At this time, the difference (analog amount) in the pressing amount of the contact object can be distinguished as information. Further, since the finger or the like as the contact object is pushed in while feeling the repulsive force of the base that gradually increases according to the push-in amount, a natural and comfortable feeling and a comfortable operation feeling can be obtained. Moreover, the mechanical quantity detection member is small and simple, and a large degree of freedom can be obtained. In addition, since a separate operation surface is not required, the operation is not easily restricted by the use environment.

本発明の力学量検知装置は、本発明の力学量検知部材を用いて構成されているので、上述した効果を得ることができる。この結果、前記接触物体の押し込み量の違い(アナログ量)に応じて、二者択一的操作を越えた、より多様な情報の入力が可能であり、自然で心地よい感触や快適な操作感が得られ、かつ、小型で、簡素であり、その操作が使用環境による制約を受けにくい、電子機器の入力装置などを実現できる。   Since the mechanical quantity detection device of the present invention is configured using the mechanical quantity detection member of the present invention, the above-described effects can be obtained. As a result, it is possible to input more diverse information beyond the alternative operation according to the difference in the amount of pressing of the contact object (analog amount), and a natural and comfortable feeling and a comfortable operation feeling are possible. It is possible to realize an input device for an electronic device that is obtained and is small and simple and whose operation is not easily restricted by the use environment.

本発明の実施の形態1に基づく、平板形入力部材として構成された力学量検知部材の構造を示す断面図である。It is sectional drawing which shows the structure of the mechanical quantity detection member comprised as a flat form input member based on Embodiment 1 of this invention. 同、静電容量検出回路の例を示す説明図(ブロック図)である。It is explanatory drawing (block diagram) which shows the example of an electrostatic capacitance detection circuit equally. 本発明の実施の形態2に基づく、平板形入力部材として構成された力学量検知部材の構造を示す断面図である。It is sectional drawing which shows the structure of the mechanical quantity detection member comprised as a flat plate-type input member based on Embodiment 2 of this invention. 本発明の実施の形態3に基づく、円筒形入力部材として構成された力学量検知部材の構造を示す斜視図である。It is a perspective view which shows the structure of the mechanical quantity detection member comprised as a cylindrical input member based on Embodiment 3 of this invention. 本発明の実施の形態4に基づく、球形入力部材として構成された力学量検知部材の構造を示す説明図である。It is explanatory drawing which shows the structure of the dynamic quantity detection member comprised as a spherical input member based on Embodiment 4 of this invention. 本発明の実施例1で得られた平板形入力部材における、電極間距離と静電容量との関係を示すグラフ(a)、および、繰り返し変位を与えた後の変位電極の断面の、透過電子顕微鏡(TEM)による観察像(b)である。The graph (a) which shows the relationship between the distance between electrodes and an electrostatic capacitance in the flat plate-shaped input member obtained in Example 1 of the present invention, and the transmission electrons in the cross section of the displacement electrode after repeated displacement It is an observation image (b) by a microscope (TEM). 特許文献1に示されているパネルセンサの一例を示す部分断面図である。It is a fragmentary sectional view showing an example of a panel sensor shown in patent documents 1.

本発明の力学量検知部材において、前記基体の位置を区画するように分画された複数の前記電極が、電極ごとに独立した前記配線とともに設けられており、前記接触物体が前記基体を押圧する位置の違いが、前記区画を単位として識別可能であるのがよい。   In the mechanical quantity detection member of the present invention, the plurality of electrodes divided so as to partition the position of the base are provided together with the wiring independent for each electrode, and the contact object presses the base. The difference in position should be identifiable in units of the section.

また、前記電極のうちの少なくとも1つが、前記変位電極に対向する位置に配置されているのがよい。   Moreover, it is preferable that at least one of the electrodes is disposed at a position facing the displacement electrode.

また、前記変位電極と、前記の変位電極に対向配置されている電極との組が、2〜10組み直列に接続して設けられているのがよい。   Further, it is preferable that 2 to 10 pairs of the displacement electrode and the electrode disposed to face the displacement electrode are connected in series.

また、前記変位電極の材料が、カーボンナノチューブ又は導電性高分子であるのがよい。   The material of the displacement electrode is preferably a carbon nanotube or a conductive polymer.

また、前記接触物体による押圧で生じる前記変位電極の伸縮率が、200%以上であるのがよい。   Moreover, the expansion / contraction rate of the displacement electrode generated by pressing by the contact object may be 200% or more.

また、前記接触物体による押圧で生じる前記電極間の距離の変化量が、1mm以上であるのがよい。   Moreover, it is preferable that the amount of change in the distance between the electrodes caused by pressing by the contact object is 1 mm or more.

また、前記基体の材料がエラストマー(弾力性のある高分子物質)であるのがよく、とくに、多孔性のエラストマーであるのがよい。この際、前記基体の材料が、ばね定数が0.1N/mm以下の材料であるのがよい。また、前記基体に、カーボンナノチューブが0.05以下の質量比で添加されているのがよい。   Further, the material of the substrate is preferably an elastomer (elastic polymer substance), and in particular, a porous elastomer is preferable. At this time, the base material is preferably a material having a spring constant of 0.1 N / mm or less. Further, it is preferable that carbon nanotubes are added to the substrate at a mass ratio of 0.05 or less.

また、片手に握って操作できる形状を有するのがよい。   Moreover, it is good to have a shape which can be operated by holding it with one hand.

また、前記基体が、フレキシブル材料からなる密閉容器に、気体、液体、又はゲル状固体が充填されてなる構造体であるのがよい。   Moreover, it is preferable that the base body is a structure in which a sealed container made of a flexible material is filled with a gas, a liquid, or a gel-like solid.

また、前記電極間を占める前記基体の比誘電率が1.1以上であるのがよい。   The relative permittivity of the base occupying between the electrodes may be 1.1 or more.

本発明の力学量検知装置は、他の電子機器とともに用いられ、前記接触物体による押圧の大きさに応じた電気信号を前記他の電子機器に出力する入力装置として構成されているのがよい。   The mechanical quantity detection device of the present invention is preferably used as an input device that is used together with another electronic device and outputs an electric signal corresponding to the magnitude of the pressure applied by the contact object to the other electronic device.

次に、本発明の好ましい実施の形態を図面参照下に具体的に説明する。   Next, a preferred embodiment of the present invention will be specifically described with reference to the drawings.

[実施の形態1]
実施の形態1では、主として、請求項1、3〜11、14に記載した力学量検知部材、および請求項15、16に記載した力学量検知装置の例について説明する。
[Embodiment 1]
In the first embodiment, examples of the mechanical quantity detection member described in claims 1, 3 to 11, and 14 and the mechanical quantity detection device described in claims 15 and 16 will be mainly described.

図1は、実施の形態1に基づく、平板形入力部材として構成された力学量検知部材10の構造を示す断面図である。力学量検知部材10は、基体1、変位電極2、変位電極2に対向配置された電極3、並びに、変位電極2および電極3を形成し、保護するための電極支持体4および5で構成されている。   FIG. 1 is a cross-sectional view showing the structure of a mechanical quantity detection member 10 configured as a flat plate-type input member based on the first embodiment. The mechanical quantity detection member 10 includes a base body 1, a displacement electrode 2, an electrode 3 disposed opposite to the displacement electrode 2, and electrode supports 4 and 5 for forming and protecting the displacement electrode 2 and the electrode 3. ing.

基体1は、エラストマー(弾力性のある高分子物質)からなり、接触物体による押圧の大きさに応じて接触部を含む一部又は全部が変形するが、接触物体による押圧がなくなると元の形状を回復する。変位電極2は、例えばカーボンナノチューブ層からなり、基体1の変形部(基体1の変形に際し変形および変位する領域)に固定されている。カーボンナノチューブには強さとしなやかさがあり、基体1の変形に際し、基体1から分離することなく、かつ、導電性を損なうことなく、変形部の変形および変位に追従して変形および変位する。電極3を配置する位置はとくに限定されるわけではないが、変位電極2に対向する位置であれば、変位電極2と電極3との間に効率よく静電容量が形成されるので好ましい。図1では、変位電極2に対向配置される電極3を1つ示したが、複数個の電極を対向配置してもよい。   The substrate 1 is made of an elastomer (elastic polymer substance), and part or all of the contact portion including the contact portion is deformed depending on the size of the pressure by the contact object. To recover. The displacement electrode 2 is made of, for example, a carbon nanotube layer, and is fixed to a deformed portion of the substrate 1 (a region that is deformed and displaced when the substrate 1 is deformed). Carbon nanotubes have strength and flexibility. When the substrate 1 is deformed, the carbon nanotubes are deformed and displaced following the deformation and displacement of the deformed portion without being separated from the substrate 1 and without impairing conductivity. The position where the electrode 3 is disposed is not particularly limited, but a position facing the displacement electrode 2 is preferable because an electrostatic capacity is efficiently formed between the displacement electrode 2 and the electrode 3. In FIG. 1, one electrode 3 disposed to face the displacement electrode 2 is shown, but a plurality of electrodes may be disposed to face each other.

電極支持体4および5は、変位電極2および電極3を形成したり、保護したりするために設けられているが、機能的には前記基体の一部と見なすべきものである。従って、電極支持体4および5は基体1と同じエラストマーからなるのがよい。そして、接触物体による押圧の大きさに応じて接触部を含む一部又は全部が変形するが、接触物体による押圧がなくなると元の形状を回復する。   The electrode supports 4 and 5 are provided for forming and protecting the displacement electrode 2 and the electrode 3, but should be regarded as a part of the base in terms of function. Therefore, the electrode supports 4 and 5 are preferably made of the same elastomer as the substrate 1. Then, part or all of the contact portion including the contact portion is deformed according to the magnitude of the pressure by the contact object, but the original shape is restored when the pressure by the contact object is lost.

図1(a)および(b)に示すように、接触物体による押圧に応じて基体1の形状が変化すると、変形部に固定されている変位電極2が変位するので、この変位の大きさに応じて変位電極2と電極3との間の静電容量がQaからQbへ変化する。この静電容量の変化は、(図示省略した)配線を介して接続された静電容量検出回路によって、電気信号に変換される。この結果、基体1の変形部の変形および変位の大きさ、又は、その原因となった押圧の大きさが、電気信号に変換されて検知される。接触物体による押圧がなくなると、基体1は元の形状を回復し、変位電極2は元の位置に復帰するので、電極間の静電容量も元の大きさに戻る。   As shown in FIGS. 1 (a) and 1 (b), when the shape of the substrate 1 changes in response to the pressing by the contact object, the displacement electrode 2 fixed to the deformed portion is displaced, so that the magnitude of this displacement is increased. Accordingly, the capacitance between the displacement electrode 2 and the electrode 3 changes from Qa to Qb. This change in capacitance is converted into an electrical signal by a capacitance detection circuit connected via wiring (not shown). As a result, the magnitude of the deformation and displacement of the deformed portion of the base body 1 or the magnitude of the pressure that caused the deformation is converted into an electrical signal and detected. When the pressure by the contact object disappears, the base body 1 recovers its original shape, and the displacement electrode 2 returns to its original position, so that the capacitance between the electrodes also returns to its original size.

この際、接触物体の押し込み量(アナログ量)の違いを情報として区別することができるので、力学量検知部材10を入力手段として用いる力学量検知装置は、二者択一的操作を越えた、より多様な情報の入力が可能な入力装置を実現することができる。また、手指は押し込み量に応じて徐々に増加する基体1の反発力を感じながら押し込んでいくので、自然な押し込み感覚や心地よい感触が感じられる入力が可能となり、直感的で快適な操作が可能な入力装置を実現できる。   At this time, since the difference in the pushing amount (analog amount) of the contact object can be distinguished as information, the mechanical quantity detection device using the mechanical quantity detection member 10 as an input means has exceeded an alternative operation. An input device capable of inputting more various information can be realized. In addition, since the finger is pushed in while feeling the repulsive force of the base body 1 that gradually increases according to the amount of push-in, it is possible to input a natural push-in feeling and a pleasant feel, and an intuitive and comfortable operation is possible. An input device can be realized.

力学量検知部材10を電子機器への入力装置に応用する場合、接触物体の押し込み量が連続的なアナログ量であるとしても、これをそのまま入力情報として用いることは少ない。例えば、接触物体として手指を用いる場合、前記基体に相当する基体1および電極支持体4から受ける反発力の大きさなどから、押し込み量の違いを容易に2〜5段階程度に区別して感知することができる。この場合、2つ〜5つ程度に明瞭に区分された押し込み量の範囲のそれぞれが1つの入力情報として扱われる。また、押し込み量が連続的なアナログ量として扱われる場合でも、それは、スクロール速度の設定など、厳密な正確性を必要としない用途である。   When the mechanical quantity detection member 10 is applied to an input device to an electronic device, even if the pressing amount of the contact object is a continuous analog quantity, it is rarely used as input information. For example, when a finger is used as the contact object, the difference in the amount of pressing is easily distinguished and sensed in about 2 to 5 stages based on the magnitude of the repulsive force received from the base 1 corresponding to the base and the electrode support 4. Can do. In this case, each of the ranges of the push amount clearly divided into about 2 to 5 is treated as one input information. Even when the push-in amount is treated as a continuous analog amount, it is an application that does not require strict accuracy, such as setting the scroll speed.

本発明の特徴は、上述した観点に立って、前記基体(力学量検知部材10では基体1および電極支持体4)の大きな変形を好ましく利用する点にある。先述したように、一般的な物理計測に用いられる変位センサにおいては、入力の大きさとダイアフラムの変形量との間に線形性などの単純な関係が成り立つこと、あるいは厳密な再現性が得られることなどを重視して、ダイアフラムの材料として比較的硬い材料が用いられ、ダイアフラムの変形量は小さく抑えられるように設計されている。このような変位センサを入力装置に応用すると、自然で心地よい感触や快適な操作感が得られない原因になる。上述したように、入力装置に応用される変位センサにおいては、入力と出力との間に厳密な線形性や再現性がアナログ的に成り立つことは必要ではない。従って、前記基体が厳密な線形性や再現性が成り立つ範囲をこえて変形することが、許容される。しかも、前記基体の大きな変形を好ましく利用することによって、従来犠牲にされてきた、自然で心地よい感触や快適な操作感が得られることになる。   The feature of the present invention is that, from the viewpoint described above, a large deformation of the base (the base 1 and the electrode support 4 in the mechanical quantity detection member 10) is preferably used. As described above, in a displacement sensor used for general physical measurement, a simple relationship such as linearity is established between the input size and the amount of deformation of the diaphragm, or strict reproducibility is obtained. In consideration of the above, a relatively hard material is used as a material of the diaphragm, and the deformation amount of the diaphragm is designed to be kept small. When such a displacement sensor is applied to an input device, a natural and comfortable touch and a comfortable operation feeling cannot be obtained. As described above, in a displacement sensor applied to an input device, it is not necessary that strict linearity and reproducibility be established in an analog manner between input and output. Therefore, it is allowed that the substrate is deformed beyond the range where strict linearity and reproducibility are established. In addition, by preferably utilizing the large deformation of the base body, a natural and comfortable feeling and a comfortable operation feeling that have been sacrificed in the past can be obtained.

しかも、力学量検知部材10は、小型で、簡素であり、大きな形状の自由度が得られる。また、別途操作面などを必要としないので、マウスと異なり、その操作が使用環境による制約を受けにくい。   Moreover, the mechanical quantity detection member 10 is small and simple, and a large degree of freedom can be obtained. In addition, since a separate operation surface or the like is not required, unlike a mouse, its operation is not easily restricted by the usage environment.

以上のように、力学量検知部材10を用いることによって、従来にはなかった、多様な情報の入力が可能で、自然で心地よい感触や快適な操作感が得られ、かつ、小型で、簡素であり、その操作が使用環境による制約を受けにくい、電子機器の入力装置などを実現できる。   As described above, by using the mechanical quantity detection member 10, it is possible to input a variety of information, which has not been possible in the past, and a natural and comfortable feel and a comfortable operation feeling can be obtained, and it is small and simple. In addition, it is possible to realize an input device of an electronic device in which the operation is not easily restricted by the use environment.

なお、力学量検知部材10では、直接検知される力学量は変位電極2の変位の大きさであるが、その原因となった接触物体による押圧の大きさが間接的に検知されている。また、一定質量のおもりを接触物体として配置しておけば、このおもりに作用する加速度を押圧に変換することができるので、加速度を力学量として検知することもできる。   In the mechanical quantity detection member 10, the mechanical quantity directly detected is the magnitude of the displacement of the displacement electrode 2, but the magnitude of the pressure by the contact object that causes it is indirectly detected. Further, if a weight having a constant mass is arranged as a contact object, the acceleration acting on the weight can be converted into a pressure, and therefore the acceleration can be detected as a mechanical quantity.

また、例えば、基体1が積層体であるような場合には、基体1の内部に埋め込むように、変位電極2とそれに対向配置される電極3との組を2〜10組み直列に配置するのもよい。このようにすると、形成される各コンデンサにおける電極間の距離が小さくなり、静電容量が増加するので、静電容量の変化の検知が容易になる。   Further, for example, when the substrate 1 is a laminated body, 2 to 10 pairs of the displacement electrode 2 and the electrode 3 arranged to face the displacement electrode 2 are arranged in series so as to be embedded in the substrate 1. Also good. If it does in this way, since the distance between the electrodes in each capacitor to be formed becomes small and the capacitance increases, it becomes easy to detect the change in the capacitance.

変位電極2の材料は、カーボンナノチューブまたは導電性高分子であるのがよい。これらの材料は伸縮性に優れ、かつ伸縮時にその導電特性を保持する。従来の変位センサの電極材料として用いられている金属などの硬い材料は、力学量検知部材10の変位電極2として必要な性質を満たすことができない。力学量検知部材10が実現できる理由の1つとして、120%以上の伸縮を加えても、引き伸ばされた状態で導通を保持する、カーボンナノチューブなどの新しい電極材料が利用できるようになったことを挙げることができる。   The material of the displacement electrode 2 is preferably a carbon nanotube or a conductive polymer. These materials are excellent in stretchability and retain their conductive properties when stretched. A hard material such as a metal used as an electrode material of a conventional displacement sensor cannot satisfy properties required for the displacement electrode 2 of the mechanical quantity detection member 10. One of the reasons why the mechanical quantity detection member 10 can be realized is that a new electrode material such as a carbon nanotube that can maintain conduction in an expanded state can be used even when 120% or more of expansion / contraction is applied. Can be mentioned.

接触物体による押圧で生じる変位電極2の伸縮率が、200%以上であるのがよい。例えば、変形部の幅と同程度以上の押し込み量(変位電極2の変位量)を、変形の形状によらず確実に実現するには、200%程度以上の伸縮率が必要である。   The expansion / contraction rate of the displacement electrode 2 generated by pressing by the contact object is preferably 200% or more. For example, in order to reliably realize a pressing amount (displacement amount of the displacement electrode 2) equal to or greater than the width of the deformed portion regardless of the shape of the deformation, an expansion / contraction rate of approximately 200% or more is required.

接触物体による押圧で生じる電極間の距離の変化量が、1mm以上であるのがよい。とくに、変位電極2の材料としてカーボンナノチューブ層を利用することによって、ダイアフラム方式やスペーサー方式では実現できない、1cm以上の変位を可能にすることができるので、変位電極2の材料としてカーボンナノチューブ層を用いるのが好ましい。   The amount of change in the distance between the electrodes caused by pressing by the contact object is preferably 1 mm or more. In particular, by using a carbon nanotube layer as the material of the displacement electrode 2, a displacement of 1 cm or more which cannot be realized by the diaphragm method or the spacer method can be made possible. Therefore, the carbon nanotube layer is used as the material of the displacement electrode 2. Is preferred.

基体1、並びに電極支持体4および5の材料は、エラストマー(弾力性のある高分子物質)であるのがよい。例えば、アクリルゴム、アクリロニトリルブタジエンゴム、イソプレンゴム、ウレタンゴム、エチレンプロピレンゴム、エピクロルヒドリンゴム、スチレンブタジエンゴム、シリコーンゴム、ポリウレタンゴムなどである。とくに、上記材料が、多孔性のエラストマー、例えば、生物海綿質、多孔質ポリマー、発泡成型ゴム、ポリウレタンスポンジ等であるのがよい。エラストマーは、弾性体として例えば、200%を超える、非常に大きな引っ張り伸び率を示し、かつ、優れた引っ張り強度および収縮率を有するので好ましい。また、多孔性のエラストマーは、多数の空隙をもった状態で形状が安定しており、かつ、外圧が加わると空隙の体積を減少させることによって体積を著しく減少させることのできる材料であり、力学量検知部材10の基体1、並びに電極支持体4および5の材料として最適である。   The material of the substrate 1 and the electrode supports 4 and 5 is preferably an elastomer (elastic polymer substance). For example, acrylic rubber, acrylonitrile butadiene rubber, isoprene rubber, urethane rubber, ethylene propylene rubber, epichlorohydrin rubber, styrene butadiene rubber, silicone rubber, polyurethane rubber and the like. In particular, the material may be a porous elastomer, such as a biosponge, a porous polymer, a foamed rubber, a polyurethane sponge, or the like. An elastomer is preferable as an elastic body, for example, because it exhibits a very high tensile elongation exceeding 200% and has an excellent tensile strength and shrinkage. Porous elastomer is a material that has a stable shape with a large number of voids, and can reduce the volume significantly by reducing the void volume when external pressure is applied. It is optimal as a material for the substrate 1 and the electrode supports 4 and 5 of the quantity detection member 10.

この際、基体1、並びに電極支持体4および5の材料は、ばね定数が0.1N/mm以下の材料であるのがよい。これらの材料のばね定数が小さいほど、力学量検知部材10を操作する際に加える力は小さくて済む。例えば、人間の指先などで操作する場合を考えると、指先の力が最大で1N程度であるとすると、押し込み部のばね定数が0.1N/mm以下であれば、指先のわずかな力で1mm以上の大きな変位が得られるので、望ましいと考えられる。   At this time, the material of the substrate 1 and the electrode supports 4 and 5 is preferably a material having a spring constant of 0.1 N / mm or less. The smaller the spring constant of these materials, the smaller the force applied when operating the mechanical quantity detection member 10. For example, considering the case of operating with a human fingertip or the like, if the fingertip force is about 1 N at the maximum, if the spring constant of the push-in portion is 0.1 N / mm or less, 1 mm with a slight fingertip force Since the above large displacement is obtained, it is considered desirable.

また、基体1、並びに電極支持体4および5に、カーボンナノチューブが0.05以下の質量比で添加されているのがよい。概算すると、カーボンナノチューブの添加量が質量比で0.05以下であれば、カーボンナノチューブ同士の接触によって伝導パスが生じることはない。この範囲でカーボンナノチューブを添加することによって、カーボンナノチューブの局所的な分極効果の積算によって、基体1、並びに電極支持体4および5における誘電率を実効的に高めることができる。   In addition, carbon nanotubes are preferably added to the substrate 1 and the electrode supports 4 and 5 at a mass ratio of 0.05 or less. As a rough estimate, if the added amount of carbon nanotubes is 0.05 or less in mass ratio, a conduction path will not occur due to contact between the carbon nanotubes. By adding carbon nanotubes within this range, the dielectric constant of the substrate 1 and the electrode supports 4 and 5 can be effectively increased by integrating the local polarization effects of the carbon nanotubes.

基体1の比誘電率は、とくに限定されるものではない。後に示す実施の形態4のように、変位電極42とこれに対向する電極43との間を占める基体41が気体である場合には、基体41の比誘電率はほぼ1である。ただし、力学量検知部材10の検出感度を高くするには、変位電極2と電極3との間の静電容量が大きいことが望ましく、このためには基体1の比誘電率は高いほどよい。基体1の比誘電率が1.1以上であると、容易に検出可能な静電容量を確保できるので好ましい。例えば、変位電極2と電極3が直径12mmの円形で、電極間距離が10mm、基体1の比誘電率が1.1であるとすると、静電容量は0.11pFとなる。これは、静電容量検出回路で容易に読み取ることのできる静電容量のしきい値にほぼ等しい。   The relative dielectric constant of the substrate 1 is not particularly limited. When the substrate 41 occupying the space between the displacement electrode 42 and the electrode 43 facing the displacement electrode 42 is a gas as in the fourth embodiment described later, the relative dielectric constant of the substrate 41 is approximately 1. However, in order to increase the detection sensitivity of the mechanical quantity detection member 10, it is desirable that the capacitance between the displacement electrode 2 and the electrode 3 is large. For this purpose, the higher the relative dielectric constant of the substrate 1 is better. It is preferable that the relative dielectric constant of the substrate 1 is 1.1 or more because a readily detectable capacitance can be secured. For example, if the displacement electrode 2 and the electrode 3 are circular having a diameter of 12 mm, the distance between the electrodes is 10 mm, and the relative permittivity of the substrate 1 is 1.1, the capacitance is 0.11 pF. This is almost equal to the threshold value of the capacitance that can be easily read by the capacitance detection circuit.

本実施の形態に基づく力学量検知装置は、力学量検知部材10と、(図示省略した)配線を介して電極2および3に電気的に接続され、接触物体による押圧で生じる電極間の静電容量の変化を、電気信号として検出する検出回路部とを有する。この力学量検知装置は、他の電子機器とともに用いられ、接触物体による押圧の大きさに応じた電気信号を他の電子機器に出力する入力装置として構成されているのがよい。   The mechanical quantity detection device based on the present embodiment is electrically connected to the mechanical quantity detection member 10 and the electrodes 2 and 3 via a wiring (not shown), and electrostatic between the electrodes generated by pressing by a contact object. A detection circuit unit that detects a change in capacitance as an electrical signal. This mechanical quantity detection device is preferably used as an input device that is used together with another electronic device and outputs an electrical signal corresponding to the magnitude of pressing by the contact object to the other electronic device.

静電容量の変化を検出する検出回路部としては、市販の一般的な静電容量測定装置を用いることができる。図2は、静電容量検出装置の一例を示す説明図(ブロック図)である。この装置では、基準容量CMODに基づいて未知容量CXの大きさが決定される。すなわち、VDDが一定電圧に保たれた状態で、Oscillator回路と16bit-PRS(Pseudo Random Sequence)回路とによって、SW1とSW2とが交互に切り換えて開閉される。SW1がオンの間に未知容量CXが電圧VDDに充電され、SW2がオンになると未知容量CXに充電された電荷の一部が基準容量CMODにゆずり渡され、未知容量CXと基準容量CMODとが同電圧になる。SW1およびSW2の開閉の度ごとにこの動作が繰り返され、基準容量CMODの電圧が徐々に上昇する。基準容量CMODの電圧が基準電圧VREFを上回ると、それがComparatorによって検出され、このときまでに繰り返された開閉動作の回数がData Processing回路へ送られる。Data Processing回路では、この開閉動作の回数に基づいて未知容量CXの大きさが決定される。また、Comparatorの出力によって短期間SW3がオンになり、CMODに蓄積された電荷が放電され、CMODはリフレッシュされる。以上の動作を繰り返し、未知容量CXの大きさが断続的に測定される。 A commercially available general capacitance measuring device can be used as a detection circuit unit for detecting a change in capacitance. FIG. 2 is an explanatory diagram (block diagram) illustrating an example of a capacitance detection device. In this apparatus, the size of the unknown capacitance C X is determined based on the reference capacitance C MOD . That is, while V DD is maintained at a constant voltage, SW1 and SW2 are alternately switched and opened and closed by an Oscillator circuit and a 16 bit-PRS (Pseudo Random Sequence) circuit. SW1 is unknown capacitance C X is charged to a voltage V DD during the on, SW2 part of electric charge charged in the unknown capacitance C X when turned on is passed inheritance to reference capacitor C MOD, and the unknown capacitance C X The reference capacitor C MOD becomes the same voltage. This operation is repeated each time SW1 and SW2 are opened and closed, and the voltage of the reference capacitor CMOD gradually increases. When the voltage of the reference capacitor C MOD exceeds the reference voltage V REF , this is detected by the comparator, and the number of opening / closing operations repeated so far is sent to the data processing circuit. In the data processing circuit, the size of the unknown capacitor C X is determined based on the number of times of the opening / closing operation. Moreover, short-term SW3 by the output of the Comparator is turned on, charges accumulated in the C MOD is discharged, C MOD is refreshed. The above operation is repeated, and the magnitude of the unknown capacitance C X is intermittently measured.

[実施の形態2]
実施の形態2では、主として、請求項2に記載した力学量検知部材の例について説明する。
[Embodiment 2]
In the second embodiment, an example of a mechanical quantity detection member described in claim 2 will be mainly described.

図3は、実施の形態2に基づく、平板形入力部材として構成された力学量検知部材20の構造を示す断面図である。力学量検知部材20は、基体1、変位電極22A〜22C、変位電極22A〜22Cにそれぞれ対向配置された電極23A〜23C、並びに、変位電極22および電極23を形成するための電極支持体4および5で構成されている。   FIG. 3 is a cross-sectional view showing the structure of the mechanical quantity detection member 20 configured as a flat plate-type input member based on the second embodiment. The mechanical quantity detection member 20 includes a base 1, displacement electrodes 22 </ b> A to 22 </ b> C, electrodes 23 </ b> A to 23 </ b> C arranged to face the displacement electrodes 22 </ b> A to 22 </ b> C, an electrode support 4 for forming the displacement electrode 22 and the electrode 23, and 5 is comprised.

力学量検知部材20が、実施の形態1の力学量検知部材10と異なる点は、基体1上の、接触物体によって押圧する位置の違いに対応して、基体1の位置を区画するように分画された複数の変位電極22A〜22Cが、対向配置された電極23A〜23C、および(図示省略した)電極ごとに独立した配線とともに設けられており、押圧位置の違いが区画を単位として識別可能であることである。   The mechanical quantity detection member 20 is different from the mechanical quantity detection member 10 of the first embodiment in that the position of the base body 1 is divided in accordance with the difference in the position pressed by the contact object on the base body 1. A plurality of defined displacement electrodes 22A to 22C are provided together with electrodes 23A to 23C opposed to each other and independent wiring for each electrode (not shown), and the difference in pressing position can be identified in units of sections. It is to be.

変位電極22A〜22Cおよび電極23A〜23Cは、例えば、電極切り換え回路によって時分割的に繰り返し選択される。すなわち、変位電極22Aと電極23A、変位電極22Bと電極23B、および変位電極22Cと電極23Cの各組みは、1サイクルの間にある期間だけ、順次交代して、静電容量検出回路に接続され、このサイクルが短い周期で高速に繰り返される。   The displacement electrodes 22A to 22C and the electrodes 23A to 23C are repeatedly selected in a time division manner by, for example, an electrode switching circuit. That is, the displacement electrode 22A and the electrode 23A, the displacement electrode 22B and the electrode 23B, and the displacement electrode 22C and the electrode 23C are alternately connected to the capacitance detection circuit for a certain period during one cycle. This cycle is repeated at high speed with a short period.

例えば、図3(b)に示すように、接触物体が、基体1の面の、変位電極22Bが配置されている位置を押圧すると、変位電極22Bが変形および変位して、変位電極22Bと対向配置された電極23Bとの間の静電容量が変化する。この静電容量の変化は、配線24および25を介して静電容量変化検出回路26に伝えられ、電気信号に変換して感知される。   For example, as shown in FIG. 3B, when the contact object presses the position on the surface of the substrate 1 where the displacement electrode 22B is disposed, the displacement electrode 22B is deformed and displaced to face the displacement electrode 22B. The capacitance between the arranged electrode 23B changes. This change in capacitance is transmitted to the capacitance change detection circuit 26 via the wirings 24 and 25, and is converted into an electric signal and sensed.

力学量検知部材20の変位電極22A〜22Cを構成するカーボンナノチューブ層は、後に実施例2で説明するように、成膜後にエッチングで不要部を除去するか、成膜前に電極支持体4の面の一部にマスキングを施すことで、パターニングすることができる。あるいは、印刷法を用いてもよい。エッチングは、例えば、機械的な切削除去またはレーザーエッチングで施すことができる。   The carbon nanotube layers constituting the displacement electrodes 22A to 22C of the mechanical quantity detection member 20 may be removed by etching after film formation as described later in Example 2, or may be removed from the electrode support 4 before film formation. Patterning can be performed by masking a part of the surface. Alternatively, a printing method may be used. The etching can be performed by, for example, mechanical cutting or laser etching.

力学量検知部材20を備えた力学量検知装置は、押圧する位置の違いによって、異なる指示を電子機器に出力するように構成される。例えば、変位電極22Aの押し込みにより意思決定、感情を表現し、変位電極22Bを前後左右に押し込むことによりドラッグを指示し、変位電極22Cの押し込みにより複数の項目から選択する等である。   The mechanical quantity detection device including the mechanical quantity detection member 20 is configured to output different instructions to the electronic device depending on the difference in the pressing position. For example, decision making and emotion are expressed by pressing the displacement electrode 22A, dragging is indicated by pressing the displacement electrode 22B forward, backward, left, and right, and selection from a plurality of items is performed by pressing the displacement electrode 22C.

[実施の形態3]
実施の形態3では、主として、請求項12に記載した力学量検知部材の例について説明する。
[Embodiment 3]
In the third embodiment, an example of a mechanical quantity detection member described in claim 12 will be mainly described.

図4は、実施の形態3に基づく、円筒形入力部材として構成された力学量検知部材30の構造を示す斜視図である。この力学量検知部材30は、片手に握って操作するハンドヘルド型入力部材として用いることができる。   FIG. 4 is a perspective view showing the structure of the mechanical quantity detection member 30 configured as a cylindrical input member based on the third embodiment. The mechanical quantity detection member 30 can be used as a hand-held input member that is operated with a single hand.

力学量検知部材30では、円筒形基体31の円筒の外周表面部に(図示省略した)単数または複数の変位電極が配置されており、これらに対向して円筒形基体31の内部に電極33が配置されている。   In the mechanical quantity detection member 30, one or a plurality of displacement electrodes (not shown) are disposed on the outer peripheral surface portion of the cylinder of the cylindrical base 31, and the electrode 33 is disposed inside the cylindrical base 31 so as to face them. Has been placed.

力学量検知部材30を備えた力学量検知装置は、握る位置の違いによって、異なる指示を電子機器に出力するように構成される。例えば、親指の押し込みにより意思決定、感情を表現し、人差し指を前後左右に押し込むことにより、ドラッグを指示し、中指の押し込みにより複数の項目から選択する等である。また、握りの強弱で、例えばスクロールの速度を変化させることができる。   The mechanical quantity detection device including the mechanical quantity detection member 30 is configured to output different instructions to the electronic device depending on the difference in the grip position. For example, decision making and emotion are expressed by pressing the thumb, dragging is indicated by pressing the index finger forward, backward, left and right, and selection from a plurality of items is performed by pressing the middle finger. Further, for example, the scrolling speed can be changed by the grip strength.

力学量検知部材30は、円筒形基体31の触感によって自然で心地よい感触が得られ、握りの強弱で、二者択一的操作を越えた、より多くの情報入力が可能であり、マウスと同等以上の機能と快適な操作感を得ることができる。しかも、片手に握って操作することができるので、マウスを走行させる操作面が必要なマウスと異なり、その操作が使用環境による制約を受けにくい。   The mechanical quantity detection member 30 has a natural and comfortable feeling due to the tactile sensation of the cylindrical base 31, and can input more information beyond the alternative operation with a grip strength, equivalent to a mouse. The above functions and a comfortable operation feeling can be obtained. In addition, since it can be operated by holding it with one hand, unlike a mouse that requires an operation surface for running the mouse, the operation is not easily restricted by the use environment.

[実施の形態4]
実施の形態4では、主として、請求項13に記載した力学量検知部材の例について説明する。
[Embodiment 4]
In the fourth embodiment, an example of a mechanical quantity detection member described in claim 13 will be mainly described.

図5は、実施の形態4に基づく、球形入力部材として構成された力学量検知部材40の構造を示す説明図である。力学量検知部材40では、基体41が、フレキシブル材料からなる密閉容器に気体、液体、又はゲル状固体が充填されてなる構造体である。そして、基体41の表面に変位電極42が配置され、基体41の内部に表面に変位電極42に対向して電極43が配置されている。   FIG. 5 is an explanatory diagram showing the structure of a mechanical quantity detection member 40 configured as a spherical input member based on the fourth embodiment. In the mechanical quantity detection member 40, the base body 41 is a structure in which a sealed container made of a flexible material is filled with a gas, a liquid, or a gel-like solid. A displacement electrode 42 is disposed on the surface of the base body 41, and an electrode 43 is disposed on the surface of the base body 41 so as to face the displacement electrode 42.

接触物体による押圧によって基体41の形状が変化し、これによって変位電極42が変位するので、このときの変位電極42と電極43との間の静電容量の変化を検出する。   Since the shape of the base body 41 is changed by the pressing by the contact object, and the displacement electrode 42 is displaced thereby, a change in the capacitance between the displacement electrode 42 and the electrode 43 at this time is detected.

本発明の実施例では、実施の形態1および2でそれぞれ説明した、力学量検知部材10および20を作製した例について説明する。   In the examples of the present invention, examples in which the mechanical quantity detection members 10 and 20 described in the first and second embodiments are manufactured will be described.

実施例1では、実施の形態1で説明した、平板形入力部材として構成された力学量検知部材10を作製した例について説明する。   In Example 1, an example in which the mechanical quantity detection member 10 configured as a flat plate input member described in the first embodiment is manufactured will be described.

<1.電極支持体4および5の作製>
まず、エラストマー(商品名 sylgard184;DOW CORNING社製)のベース剤と硬化剤とを質量比15:1の比率で混合し、混合物を直径3インチ、深さ1.2mmの金型に入れ、85℃に100分間保持した。
<1. Production of electrode supports 4 and 5>
First, a base agent of an elastomer (trade name sylgard184; manufactured by DOW CORNING) and a curing agent are mixed at a mass ratio of 15: 1, and the mixture is put into a mold having a diameter of 3 inches and a depth of 1.2 mm. Hold at 100 ° C. for 100 minutes.

<2.変位電極2および電極3の作製>
次に、ドデシルベンゼンスルホン酸ナトリウム(SDBS;C122564SO3Na)の1質量%水溶液中に、カーボンナノチューブを0.4g/lの濃度で添加し、超音波式ホモジナイザーを用いて出力50Wで5分間ホモジナイズ処理を行い、分散液を作製した。電極支持体4および5上にこの分散液をそれぞれ0.5mlずつ配し、これをギャップ長500μmのアプリケーター用バーを用いて電極支持体4および5の全面に広げ、薄い塗膜を形成した。この時、電極支持体4および5全体を30〜70℃の温度範囲に保持してもよい。以上の成膜工程を10回繰り返すことにより、表面抵抗値が500Ω/□のカーボンナノチューブ層を変位電極2および電極3として得た。変位電極2および電極3がそれぞれ形成された電極支持体4および5を流水にて10分間洗浄した。
<2. Production of displacement electrode 2 and electrode 3>
Next, carbon nanotubes were added at a concentration of 0.4 g / l to a 1% by mass aqueous solution of sodium dodecylbenzenesulfonate (SDBS; C 12 H 25 C 6 H 4 SO 3 Na), and an ultrasonic homogenizer was added. And a homogenization treatment was performed at an output of 50 W for 5 minutes to prepare a dispersion. 0.5 ml of this dispersion was placed on each of the electrode supports 4 and 5 and spread over the entire surface of the electrode supports 4 and 5 using an applicator bar having a gap length of 500 μm to form a thin coating film. At this time, you may hold | maintain the electrode support bodies 4 and 5 whole in the temperature range of 30-70 degreeC. By repeating the above film forming process 10 times, carbon nanotube layers having a surface resistance value of 500Ω / □ were obtained as the displacement electrode 2 and the electrode 3. The electrode supports 4 and 5 on which the displacement electrode 2 and the electrode 3 were formed were washed with running water for 10 minutes.

<3.基体1の作製>
次に、エラストマー(商品名 sylgard184;DOW CORNING社製)のベース剤と硬化剤とを質量比15:1の比率で混合し、混合物を直径3インチ、深さ25mmの金型に入れ、85℃に100分間保持し、基体1を作製した。
<3. Production of substrate 1>
Next, a base agent of an elastomer (trade name sylgard184; manufactured by DOW CORNING) and a curing agent are mixed at a mass ratio of 15: 1, and the mixture is put into a mold having a diameter of 3 inches and a depth of 25 mm, and 85 ° C. The substrate 1 was produced by holding for 100 minutes.

<4.力学量検知部材10の作製>
次に、基体1を挟んで変位電極2および電極3が対向するように電極支持体4および5を配置し、基体1と変位電極2および電極3とを80℃で熱圧着させ、サンドイッチ構造を形成した。続いて、銀を主材料とする導電ペーストを用いて、変位電極2および電極3に配線を形成し、力学量検知部材10を作製した。
<4. Production of Mechanical Quantity Detection Member 10>
Next, the electrode supports 4 and 5 are arranged so that the displacement electrode 2 and the electrode 3 face each other with the substrate 1 interposed therebetween, and the substrate 1, the displacement electrode 2 and the electrode 3 are thermocompression bonded at 80 ° C. Formed. Subsequently, wiring was formed on the displacement electrode 2 and the electrode 3 using a conductive paste mainly composed of silver, and the mechanical quantity detection member 10 was produced.

<5.押し込みセンシング>
力学量検知部材10の配線を静電容量検出回路に接続した。静電容量検出回路としては市販の各種回路を用いることができる。力学量検知部材10の電極支持体4に指等を押し当て、その押圧を増しながら指等を基体1側へ押し込むことにより、変位電極2と電極3との間の静電容量の変化を測定した。
<5. Push-in sensing>
The wiring of the mechanical quantity detection member 10 was connected to the capacitance detection circuit. Various commercially available circuits can be used as the capacitance detection circuit. Measuring a change in capacitance between the displacement electrode 2 and the electrode 3 by pressing the finger or the like against the electrode support 4 of the mechanical quantity detection member 10 and pushing the finger or the like toward the base 1 while increasing the pressure. did.

図6(a)は、実施例1で得られた力学量検知部材10における、電極間距離dと静電容量Cとの関係を示すグラフである。一般的なコンデンサと同様、静電容量Cは電極間距離dにほぼ反比例して変化するので、電極変位に対して連続的な入力が可能である。   FIG. 6A is a graph showing the relationship between the inter-electrode distance d and the capacitance C in the mechanical quantity detection member 10 obtained in Example 1. FIG. Similar to a general capacitor, the capacitance C changes in inverse proportion to the inter-electrode distance d, so that continuous input can be made with respect to electrode displacement.

図6(b)は、繰り返し変位を与えた後の変位電極2の断面の、透過電子顕微鏡(TEM)による観察像である。カーボンナノチューブが撓んだ状態ながらも、カーボンナノチューブ同士が膜としてのつながりを保持している。このように、カーボンナノチューブ層からなる変位電極2では、元の形状に戻れなくなるほどの変形を受けても、導電性が損なわれていないことがわかる。   FIG. 6B is an observation image by a transmission electron microscope (TEM) of the cross section of the displacement electrode 2 after repeated displacement. While the carbon nanotubes are bent, the carbon nanotubes maintain the connection as a film. Thus, it can be seen that the displacement electrode 2 composed of the carbon nanotube layer does not impair the conductivity even if it is deformed so that it cannot return to its original shape.

実施例2では、実施の形態2で図3を用いて説明した、平板形ハンドヘルド入力部材として構成された力学量検知部材20を作製した例について説明する。   In Example 2, an example in which the mechanical quantity detection member 20 configured as a flat plate-type handheld input member described in Embodiment 2 with reference to FIG. 3 is manufactured will be described.

<1.変位電極12および電極13の作製>
ジメチルホルムアミドにカーボンナノチューブを0.5g/lの濃度で添加し、超音波式ホモジナイザーにて出力50Wで5分間ホモジナイズ処理を行って分散液を作製した。得られた分散液をポリエチレンテレフタラート製の網(孔径50μm)を通して吸引ろ過を行い、500Ω/□の表面抵抗値を持ったカーボンナノチューブ薄膜を形成した。基体1である、長さ5cm、幅3cm、厚さ3cmのポリウレタン製スポンジの上面および下面にカーボンナノチューブ薄膜を転写成型して、変位電極22およびこれに対向する電極23を形成した。
<1. Production of Displacement Electrode 12 and Electrode 13>
Carbon nanotubes were added to dimethylformamide at a concentration of 0.5 g / l and homogenized with an ultrasonic homogenizer at an output of 50 W for 5 minutes to prepare a dispersion. The obtained dispersion was subjected to suction filtration through a polyethylene terephthalate network (pore diameter: 50 μm) to form a carbon nanotube thin film having a surface resistance value of 500Ω / □. A carbon nanotube thin film was transferred and formed on the upper surface and the lower surface of a polyurethane sponge having a length of 5 cm, a width of 3 cm, and a thickness of 3 cm, which was the substrate 1, to form a displacement electrode 22 and an electrode 23 opposite thereto.

<2.電極のパターニング>
YVO4半導体レーザー光(波長 1064nm)を照射し、カーボンナノチューブ層を選択的にエッチング除去して、変位電極22A〜22Eおよび電極23A〜23Eのパターンを作製し、5つのドメインをもつ電極構造を形成した(図3では、変位電極22D、22Eおよび電極23D、23Eは図示省略されている。)。YVO4半導体レーザー光源装置として、キーエンス社製レーザーマーカーMD−V9900(平均光出力 13W)を用いた。この装置では、レーザー光を直径約10μmのスポットサイズに集光できる。
<2. Electrode patterning>
YVO 4 semiconductor laser light (wavelength 1064 nm) is irradiated, the carbon nanotube layer is selectively removed by etching, and patterns of the displacement electrodes 22A to 22E and electrodes 23A to 23E are produced to form an electrode structure having five domains. (In FIG. 3, the displacement electrodes 22D and 22E and the electrodes 23D and 23E are not shown). As a YVO4 semiconductor laser light source device, a laser marker MD-V9900 (average light output 13 W) manufactured by Keyence Corporation was used. In this apparatus, the laser beam can be condensed to a spot size having a diameter of about 10 μm.

<3.押し込みセンシング>
力学量検知部材20の配線を各電極構造に対応した静電容量検出回路に接続した。上記の5つのドメインを各手指に対応させ、手を握ることで基体1であるスポンジに変位を加えた。力学量検知部材20の変位電極22A〜22Eに指等を押し当て、その押圧を増しながら指等を基体1側へ押し込むことにより、変位電極22および電極23との間の静電容量の変化を測定した。
<3. Push-in sensing>
The wiring of the mechanical quantity detection member 20 was connected to a capacitance detection circuit corresponding to each electrode structure. The above five domains were made to correspond to the fingers, and displacement was applied to the sponge as the base 1 by grasping the hand. By pressing a finger or the like against the displacement electrodes 22 </ b> A to 22 </ b> E of the mechanical quantity detection member 20 and pushing the finger or the like toward the base 1 while increasing the pressure, the change in the capacitance between the displacement electrode 22 and the electrode 23 is changed. It was measured.

以上、本発明を実施の形態および実施例に基づいて説明したが、本発明はこれらの例に何ら限定されるものではなく、発明の主旨を逸脱しない範囲で適宜変更可能であることは言うまでもない。   Although the present invention has been described based on the embodiments and examples, it is needless to say that the present invention is not limited to these examples and can be appropriately changed without departing from the gist of the invention. .

本発明によって、タッチパネルなどの静電容量式タッチ検出装置の形状自由度および生産性は飛躍的に向上し、利用できる製品領域も格段に広がると予想される。   According to the present invention, it is expected that the degree of freedom in shape and productivity of a capacitive touch detection device such as a touch panel will be greatly improved, and the usable product area will be greatly expanded.

1…基体、2…変位電極、3…対向配置された電極、4、5…電極支持体、
10…力学量検知部材、20…力学量検知部材、22A〜22C…変位電極、
23A〜23C…対向配置された電極、24、25…配線、26…静電容量検出回路、
30…力学量検知部材、31…基体、32…変位電極、33…対向配置された電極、
30…力学量検知部材、31…基体、33…対向配置された電極、
40…力学量検知部材、41…基体、42…変位電極、43…対向配置された電極、
100…パネルセンサ、110…パネル、120…パネル支持部、
130…力検出手段(力センサ)、131…ダイアフラム部、131a…薄膜、
131b…支持部、132…電極、133…基板、134…内部枠、135…梁部、
136…固定枠、137…電極、138…支持体
DESCRIPTION OF SYMBOLS 1 ... Base | substrate, 2 ... Displacement electrode, 3 ... Electrode arranged oppositely, 4, 5 ... Electrode support body,
DESCRIPTION OF SYMBOLS 10 ... Mechanical quantity detection member, 20 ... Mechanical quantity detection member, 22A-22C ... Displacement electrode,
23A to 23C ... Electrodes arranged opposite to each other, 24, 25 ... Wiring, 26 ... Capacitance detection circuit,
30 ... Mechanical quantity detection member, 31 ... Substrate, 32 ... Displacement electrode, 33 ... Electrode arranged oppositely,
30 ... Mechanical quantity detection member, 31 ... Substrate, 33 ... Electrodes arranged opposite to each other,
40 ... Mechanical quantity detection member, 41 ... Substrate, 42 ... Displacement electrode, 43 ... Electrodes arranged opposite to each other,
100 ... Panel sensor, 110 ... Panel, 120 ... Panel support,
130: Force detection means (force sensor), 131: Diaphragm part, 131a: Thin film,
131b ... support part, 132 ... electrode, 133 ... substrate, 134 ... inner frame, 135 ... beam part,
136 ... fixed frame, 137 ... electrode, 138 ... support

特開2005−3494号公報(請求項2、第7−12頁、図1−6)Japanese Patent Laying-Open No. 2005-3494 (Claim 2, pages 7-12, FIG. 1-6)

Claims (16)

接触物体による押圧に応じて接触部を含む一部又は全部が変形し、接触物体による押 圧がなくなると元の形状を回復する基体と、
前記基体の表面又は内部に複数個が固定され、そのうちの少なくとも1個は前記基体 の変形部(前記変形に際し変形及び変位する領域)に配置されている変位電極である電 極と、
前記電極に接続された配線と
を有し、
前記変形に際し、前記変位電極は、前記基体から分離することなく、かつ導電性を損 なうことなく、前記変形部の変形及び変位に追従して変形及び変位し、
前記変形部の変形及び変位が、前記電極間の静電容量の変化として検知される
、力学量検知部材。
A base body that recovers the original shape when part or all of the contact portion is deformed in response to the pressing by the contact object and the pressing force by the contact object disappears;
A plurality of electrodes are fixed to the surface or inside of the base, and at least one of them is an electrode that is a displacement electrode disposed in a deformed portion of the base (a region that is deformed and displaced during the deformation);
A wiring connected to the electrode,
In the deformation, the displacement electrode is deformed and displaced following the deformation and displacement of the deformed portion without being separated from the base body and without impairing conductivity.
A mechanical quantity detection member in which deformation and displacement of the deformation part are detected as a change in capacitance between the electrodes.
前記基体の位置を区画するように分画された複数の前記電極が、電極ごとに独立した前記配線とともに設けられており、前記接触物体が前記基体を押圧する位置の違いが、前記区画を単位として識別可能である、請求項1に記載した力学量検知部材。   A plurality of the electrodes divided so as to partition the position of the base are provided together with the wiring independent for each electrode, and the difference in the position where the contact object presses the base is a unit of the section The mechanical quantity detection member according to claim 1, which can be identified as: 前記電極のうちの少なくとも1つが、前記変位電極に対向する位置に配置されている、請求項1に記載した力学量検知部材。   The mechanical quantity detection member according to claim 1, wherein at least one of the electrodes is disposed at a position facing the displacement electrode. 前記変位電極と、前記の変位電極に対向配置されている電極との組が、2〜10組み直列に接続して設けられている、請求項3に記載した力学量検知部材。   4. The mechanical quantity detection member according to claim 3, wherein 2 to 10 pairs of the displacement electrode and an electrode disposed to face the displacement electrode are connected in series. 前記変位電極の材料が、カーボンナノチューブ又は導電性高分子である、請求項1に記載した力学量検知部材。   The mechanical quantity detection member according to claim 1, wherein a material of the displacement electrode is a carbon nanotube or a conductive polymer. 前記接触物体による押圧で生じる前記変位電極の伸縮率が、200%以上である、請求項5に記載した力学量検知部材。   The mechanical quantity detection member according to claim 5, wherein an expansion / contraction ratio of the displacement electrode caused by pressing by the contact object is 200% or more. 前記接触物体による押圧で生じる前記電極間の距離の変化量が、1mm以上である、請求項1に記載した力学量検知部材。   The mechanical quantity detection member according to claim 1, wherein an amount of change in the distance between the electrodes caused by pressing by the contact object is 1 mm or more. 前記基体の材料がエラストマーである、請求項1に記載した力学量検知部材。   The mechanical quantity detection member according to claim 1, wherein the base material is an elastomer. 前記基体の材料が多孔性のエラストマーである、請求項8に記載した力学量検知部材。   The mechanical quantity detection member according to claim 8, wherein the material of the substrate is a porous elastomer. 前記基体の材料が、ばね定数が0.1N/mm以下の材料である、請求項8又は9に記載した力学量検知部材。   The mechanical quantity detection member according to claim 8 or 9, wherein the base material is a material having a spring constant of 0.1 N / mm or less. 前記基体に、カーボンナノチューブが0.05以下の質量比で添加されている、請求項8又は9に記載した力学量検知部材。   The mechanical quantity detection member according to claim 8 or 9, wherein carbon nanotubes are added to the substrate at a mass ratio of 0.05 or less. 片手に握って操作できる形状を有する、請求項1に記載した力学量検知部材。   The mechanical quantity detection member according to claim 1, wherein the mechanical quantity detection member has a shape that can be operated by grasping with one hand. 前記基体が、フレキシブル材料からなる密閉容器に、気体、液体、又はゲル状固体が充填されてなる構造体である、請求項1に記載した力学量検知部材。   The mechanical quantity detection member according to claim 1, wherein the base body is a structure formed by filling a sealed container made of a flexible material with a gas, a liquid, or a gel-like solid. 前記電極間を占める前記基体の比誘電率が1.1以上である、請求項1に記載した力学量検知部材。   The mechanical quantity detection member according to claim 1, wherein a relative permittivity of the base occupying between the electrodes is 1.1 or more. 請求項1〜14のいずれか1項に記載した力学量検知部材と、
前記配線を介して前記電極に電気的に接続され、前記接触物体による押圧で生じる前 記電極間の静電容量の変化を、電気信号として検出する検出回路部と
を有する、力学量検知装置。
The mechanical quantity detection member according to any one of claims 1 to 14,
A mechanical quantity detection device comprising: a detection circuit unit that is electrically connected to the electrodes via the wiring and detects a change in capacitance between the electrodes caused by pressing by the contact object as an electric signal.
他の電子機器とともに用いられ、前記接触物体による押圧の大きさに応じた電気信号を前記他の電子機器に出力する入力装置として構成されている、請求項15項に記載した力学量検知装置。   The mechanical quantity detection device according to claim 15, wherein the mechanical quantity detection device is configured as an input device that is used together with another electronic device and outputs an electric signal corresponding to the magnitude of pressing by the contact object to the other electronic device.
JP2009162599A 2009-07-09 2009-07-09 Mechanical quantity detection member and mechanical quantity detection apparatus Pending JP2011017626A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009162599A JP2011017626A (en) 2009-07-09 2009-07-09 Mechanical quantity detection member and mechanical quantity detection apparatus
TW099117462A TW201108062A (en) 2009-07-09 2010-05-31 Dynamic quantity detecting member and dynamic quantity detecting apparatus
US12/825,940 US8680876B2 (en) 2009-07-09 2010-06-29 Dynamic quantity detecting member and dynamic quantity detecting apparatus
KR1020100063332A KR20110005211A (en) 2009-07-09 2010-07-01 Dynamic quantity detecting member and dynamic quantity detecting apparatus
CN201010223201XA CN101950224A (en) 2009-07-09 2010-07-02 Mechanical quantity detection means and mechanical quantity pick-up unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009162599A JP2011017626A (en) 2009-07-09 2009-07-09 Mechanical quantity detection member and mechanical quantity detection apparatus

Publications (1)

Publication Number Publication Date
JP2011017626A true JP2011017626A (en) 2011-01-27

Family

ID=43426985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162599A Pending JP2011017626A (en) 2009-07-09 2009-07-09 Mechanical quantity detection member and mechanical quantity detection apparatus

Country Status (5)

Country Link
US (1) US8680876B2 (en)
JP (1) JP2011017626A (en)
KR (1) KR20110005211A (en)
CN (1) CN101950224A (en)
TW (1) TW201108062A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050245A1 (en) * 2012-09-28 2014-04-03 バンドー化学株式会社 Capacitance-type sensor sheet, method for manufacturing capacitance-type sensor sheet, and sensor
TWI450164B (en) * 2011-04-11 2014-08-21 Elan Microelectronics Corp Capacitive touchpad
WO2014157627A1 (en) * 2013-03-29 2014-10-02 バンドー化学株式会社 Capacitive sensor sheet and capacitive sensors
WO2015029955A1 (en) * 2013-08-29 2015-03-05 バンドー化学株式会社 Capacitive sensor sheet and capacitive sensor
WO2015133417A1 (en) * 2014-03-03 2015-09-11 バンドー化学株式会社 Sensor device and elastic structural body
JP2015200592A (en) * 2014-04-09 2015-11-12 バンドー化学株式会社 Capacitive type sensor sheet and capacitive type sensor
JP2016081582A (en) * 2014-10-10 2016-05-16 信越ポリマー株式会社 Touch sensor and manufacturing method thereof
JP2018049036A (en) * 2017-12-29 2018-03-29 バンドー化学株式会社 Capacitance type sensor sheet and capacitance type sensor
CN109192071A (en) * 2018-10-16 2019-01-11 京东方科技集团股份有限公司 Display panel and its deformation inducing method, display device
JP2020500251A (en) * 2016-10-27 2020-01-09 エルジー・ケム・リミテッド Polymer foam adhesive tape and pressure-sensitive touch panel including the same
US10908748B2 (en) 2016-10-27 2021-02-02 Lg Chem, Ltd. Polymer foam adhesive tape and pressure-sensitive type touch panel comprising the same
US11194426B2 (en) 2016-10-27 2021-12-07 Lg Chem, Ltd. Polymer foam adhesive tape and pressure-sensitive type touch panel comprising the same

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8310134B2 (en) * 2009-01-22 2012-11-13 William Marsh Rice University Composition for energy generator, storage, and strain sensor and methods of use thereof
CN102129336B (en) * 2011-02-28 2014-02-05 中国科学院苏州纳米技术与纳米仿生研究所 Capacitor touch pad based on carbon nanotube film
KR101909490B1 (en) * 2012-01-19 2018-10-19 삼성전자주식회사 Flexible tactile sensor apparatus
WO2013165601A1 (en) 2012-05-03 2013-11-07 Yknots Industries Llc Moment compensated bending beam sensor for load measurement on platform supported by bending beams
CN105009048B (en) * 2012-05-22 2018-08-03 辛纳普蒂克斯公司 Power enhances input unit
CN103631459B (en) * 2012-08-26 2016-12-21 宝宸(厦门)光学科技有限公司 Touch-control sensing layer and manufacture method thereof
CN102980691B (en) * 2012-11-29 2014-09-17 西安电子科技大学 Three-dimensional interface stress sensor
DE112013005988B4 (en) 2012-12-14 2023-09-21 Apple Inc. Force detection through changes in capacity
US10817096B2 (en) 2014-02-06 2020-10-27 Apple Inc. Force sensor incorporated into display
WO2014098946A1 (en) 2012-12-17 2014-06-26 Changello Enterprise Llc Force detection in touch devices using piezoelectric sensors
WO2014124173A1 (en) 2013-02-08 2014-08-14 Changello Enterprise Llc Force determination based on capacitive sensing
US9952703B2 (en) 2013-03-15 2018-04-24 Apple Inc. Force sensing of inputs through strain analysis
US9851828B2 (en) 2013-03-15 2017-12-26 Apple Inc. Touch force deflection sensor
US9507968B2 (en) * 2013-03-15 2016-11-29 Cirque Corporation Flying sense electrodes for creating a secure cage for integrated circuits and pathways
CN103150031B (en) * 2013-04-03 2015-09-16 陈念 Transparent membrane keyboard
US9671889B1 (en) 2013-07-25 2017-06-06 Apple Inc. Input member with capacitive sensor
WO2015019533A1 (en) * 2013-08-05 2015-02-12 ソニー株式会社 Sensor, input device, and electronic apparatus
US10120478B2 (en) 2013-10-28 2018-11-06 Apple Inc. Piezo based force sensing
US9228907B2 (en) 2013-11-14 2016-01-05 Nokia Technologies Oy Flexible device deformation measurement
CN109990926A (en) 2013-11-28 2019-07-09 阪东化学株式会社 Sense piece and static capacity type sensor
AU2015100011B4 (en) 2014-01-13 2015-07-16 Apple Inc. Temperature compensating transparent force sensor
AU2015217268B2 (en) 2014-02-12 2018-03-01 Apple Inc. Force determination employing sheet sensor and capacitive array
JP6211955B2 (en) * 2014-03-07 2017-10-11 東芝メモリ株式会社 Semiconductor manufacturing apparatus and semiconductor manufacturing method
US20170020413A1 (en) * 2014-04-09 2017-01-26 Bando Chemical Industries, Ltd. Sensor device
WO2015160948A1 (en) * 2014-04-16 2015-10-22 Microchip Technology Incorporated Determining touch locations and forces thereto on a touch and force sensing surface
US10198123B2 (en) 2014-04-21 2019-02-05 Apple Inc. Mitigating noise in capacitive sensor
US9851845B2 (en) 2014-08-12 2017-12-26 Apple Inc. Temperature compensation for transparent force sensors
EP3211364B1 (en) * 2014-10-22 2020-02-19 Bando Chemical Industries, Ltd. Capacitance sensor
CN104535227B (en) * 2014-12-22 2017-02-22 浙江大学 Press-in type dielectric elastomer pressure sensor
US9684422B2 (en) 2015-01-07 2017-06-20 Pixart Imaging Inc. Smart device having ability for rejecting mistaken touching
US10526874B2 (en) * 2015-02-17 2020-01-07 Baker Hughes, A Ge Company, Llc Deposited material sand control media
US10006937B2 (en) 2015-03-06 2018-06-26 Apple Inc. Capacitive sensors for electronic devices and methods of forming the same
SG11201707294XA (en) * 2015-03-24 2017-10-30 Nat Univ Singapore A resistive microfluidic pressure sensor
US9612170B2 (en) 2015-07-21 2017-04-04 Apple Inc. Transparent strain sensors in an electronic device
US10055048B2 (en) 2015-07-31 2018-08-21 Apple Inc. Noise adaptive force touch
US9715301B2 (en) 2015-08-04 2017-07-25 Apple Inc. Proximity edge sensing
US9874965B2 (en) 2015-09-11 2018-01-23 Apple Inc. Transparent strain sensors in an electronic device
US9886118B2 (en) 2015-09-30 2018-02-06 Apple Inc. Transparent force sensitive structures in an electronic device
US9959004B2 (en) 2015-11-12 2018-05-01 Microsoft Technology Licensing, Llc Deformation sensor
US11156509B2 (en) 2016-02-29 2021-10-26 Liquid Wire Inc. Sensors with deformable conductors and selective deformation
US10672530B2 (en) 2016-02-29 2020-06-02 Liquid Wire Inc. Deformable conductors and related sensors, antennas and multiplexed systems
US10006820B2 (en) 2016-03-08 2018-06-26 Apple Inc. Magnetic interference avoidance in resistive sensors
US10007343B2 (en) 2016-03-31 2018-06-26 Apple Inc. Force sensor in an input device
US10209830B2 (en) 2016-03-31 2019-02-19 Apple Inc. Electronic device having direction-dependent strain elements
CN105865536A (en) * 2016-06-28 2016-08-17 钱宝祥 Elastic sensor stretchable for measuring deformation and stress
US20180059819A1 (en) * 2016-08-25 2018-03-01 Tactual Labs Co. Touch-sensitive objects
US10133418B2 (en) 2016-09-07 2018-11-20 Apple Inc. Force sensing in an electronic device using a single layer of strain-sensitive structures
CN109690273B (en) * 2016-09-13 2021-06-04 索尼公司 Sensor, belt, electronic device and watch type electronic device
JP6781648B2 (en) * 2017-03-09 2020-11-04 正毅 千葉 Dielectric Elastomer Sensor System and Dielectric Elastomer Sensor Elements
US10444091B2 (en) 2017-04-11 2019-10-15 Apple Inc. Row column architecture for strain sensing
KR102347989B1 (en) * 2017-04-14 2022-01-10 삼성디스플레이 주식회사 Electronic device
CN108871177B (en) * 2017-05-08 2020-04-24 中国科学院苏州纳米技术与纳米仿生研究所 Ion type strain sensor of carbon nano tube array electrode and preparation method and application thereof
CN107193420B (en) * 2017-05-25 2020-06-02 京东方科技集团股份有限公司 Touch device and method for manufacturing same
US10309846B2 (en) 2017-07-24 2019-06-04 Apple Inc. Magnetic field cancellation for strain sensors
WO2019138448A1 (en) * 2018-01-09 2019-07-18 株式会社 トライフォース・マネジメント Force sensor
GB2570295B (en) * 2018-01-16 2020-09-16 Touchnetix Ltd Capacitive sensing
CN108613757B (en) * 2018-05-07 2021-05-25 吉林大学 Flexible capacitive touch sensor based on biological material chitosan film and preparation method thereof
CN112956283A (en) 2018-08-22 2021-06-11 液态电线公司 Structure with deformable conductor
US10866683B2 (en) 2018-08-27 2020-12-15 Apple Inc. Force or touch sensing on a mobile device using capacitive or pressure sensing
US10782818B2 (en) 2018-08-29 2020-09-22 Apple Inc. Load cell array for detection of force input to an electronic device enclosure
WO2020097945A1 (en) * 2018-11-18 2020-05-22 李庆远 Flexible pointing device
US11499845B2 (en) * 2019-02-07 2022-11-15 Texas Instruments Incorporated Compensation of mechanical tolerance in a capacitive sensing control element
CN110134272A (en) * 2019-04-23 2019-08-16 精电(河源)显示技术有限公司 A kind of inductive layer and its touch device with force snesor
CN110134273A (en) * 2019-04-23 2019-08-16 精电(河源)显示技术有限公司 A kind of inductive layer and its touch device with force snesor
CN110109566B (en) * 2019-04-23 2021-07-06 精电(河源)显示技术有限公司 Touch device with force sensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226030A (en) * 1986-03-28 1987-10-05 Agency Of Ind Science & Technol Electrostatic capacity type pressure distribution measuring instrument
JPS6451564U (en) * 1987-09-26 1989-03-30
JPH02261154A (en) * 1989-03-31 1990-10-23 Sekisui Chem Co Ltd Soundproof floor material
JPH06201502A (en) * 1992-12-28 1994-07-19 Olympus Optical Co Ltd Pressure sensor
JP2005500648A (en) * 2001-06-08 2005-01-06 エイコス・インコーポレーテッド Nanocomposite dielectric
JP2005114122A (en) * 2003-10-10 2005-04-28 Sr Engineering Co Ltd Connecting device of fluid passages
JP2008070373A (en) * 1995-12-20 2008-03-27 Hysitron Inc Multi-dimensional capacitive transducer
JP2008198425A (en) * 2007-02-09 2008-08-28 Tokai Rubber Ind Ltd Flexible electrode and electronic equipment using it
JP2009020006A (en) * 2007-07-12 2009-01-29 Tokai Rubber Ind Ltd Capacitance-type sensor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451564A (en) 1987-08-21 1989-02-27 Fuji Xerox Co Ltd Document producing device
US5434742A (en) * 1991-12-25 1995-07-18 Hitachi, Ltd. Capacitor for semiconductor integrated circuit and method of manufacturing the same
US5942733A (en) * 1992-06-08 1999-08-24 Synaptics, Inc. Stylus input capacitive touchpad sensor
JP3102395B2 (en) * 1997-11-27 2000-10-23 日本電気株式会社 Fingerprint detection device
JP3817965B2 (en) * 1999-04-21 2006-09-06 富士ゼロックス株式会社 Detection device
JP4136655B2 (en) * 2000-11-30 2008-08-20 ニッタ株式会社 Capacitive sensor
ATE336744T1 (en) * 2001-03-14 2006-09-15 Nitta Corp ELECTRICAL CAPACITY SENSOR
US6809529B2 (en) * 2001-08-10 2004-10-26 Wacoh Corporation Force detector
EP1717195B1 (en) * 2001-11-09 2011-09-14 WiSpry, Inc. Trilayered beam MEMS switch and related method
CN1249799C (en) * 2002-09-06 2006-04-05 中芯国际集成电路制造(上海)有限公司 Embeded reliability analysis system applied to production of semiconductor products
JP2004317403A (en) * 2003-04-18 2004-11-11 Alps Electric Co Ltd Surface pressure distribution sensor
JP4137710B2 (en) 2003-06-11 2008-08-20 シャープ株式会社 Panel sensor and information device equipped with the same
JP4443322B2 (en) * 2004-06-23 2010-03-31 アルプス電気株式会社 Press sensor
JP2006184104A (en) * 2004-12-27 2006-07-13 Alps Electric Co Ltd Capacitance sensor
JP4143653B2 (en) * 2006-05-24 2008-09-03 オムロン株式会社 Array type capacitive sensor
WO2008127780A2 (en) * 2007-02-21 2008-10-23 Nantero, Inc. Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs
US7773923B2 (en) * 2007-05-14 2010-08-10 Canon Kabushiki Kaisha Developing apparatus and image forming apparatus
CN101655720B (en) * 2008-08-22 2012-07-18 清华大学 Personal digital assistant
US8456438B2 (en) * 2008-01-04 2013-06-04 Tactus Technology, Inc. User interface system
JP5396335B2 (en) * 2009-05-28 2014-01-22 株式会社半導体エネルギー研究所 Touch panel
US9383881B2 (en) * 2009-06-03 2016-07-05 Synaptics Incorporated Input device and method with pressure-sensitive layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226030A (en) * 1986-03-28 1987-10-05 Agency Of Ind Science & Technol Electrostatic capacity type pressure distribution measuring instrument
JPS6451564U (en) * 1987-09-26 1989-03-30
JPH02261154A (en) * 1989-03-31 1990-10-23 Sekisui Chem Co Ltd Soundproof floor material
JPH06201502A (en) * 1992-12-28 1994-07-19 Olympus Optical Co Ltd Pressure sensor
JP2008070373A (en) * 1995-12-20 2008-03-27 Hysitron Inc Multi-dimensional capacitive transducer
JP2005500648A (en) * 2001-06-08 2005-01-06 エイコス・インコーポレーテッド Nanocomposite dielectric
JP2005114122A (en) * 2003-10-10 2005-04-28 Sr Engineering Co Ltd Connecting device of fluid passages
JP2008198425A (en) * 2007-02-09 2008-08-28 Tokai Rubber Ind Ltd Flexible electrode and electronic equipment using it
JP2009020006A (en) * 2007-07-12 2009-01-29 Tokai Rubber Ind Ltd Capacitance-type sensor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450164B (en) * 2011-04-11 2014-08-21 Elan Microelectronics Corp Capacitive touchpad
US9658120B2 (en) 2012-09-28 2017-05-23 Bando Chemical Industries, Ltd. Capacitance-type sensor sheet, method for manufacturing capacitance-type sensor sheet, and sensor
JP2014081355A (en) * 2012-09-28 2014-05-08 Bando Chem Ind Ltd Electrostatic capacitance type sensor sheet and electrostatic capacitance type sensor sheet manufacturing method
WO2014050245A1 (en) * 2012-09-28 2014-04-03 バンドー化学株式会社 Capacitance-type sensor sheet, method for manufacturing capacitance-type sensor sheet, and sensor
WO2014157627A1 (en) * 2013-03-29 2014-10-02 バンドー化学株式会社 Capacitive sensor sheet and capacitive sensors
US10365171B2 (en) 2013-03-29 2019-07-30 Bando Chemical Industries, Ltd. Capacitive sensor sheet and capacitive sensor for measuring elastic deformation
JP2015045623A (en) * 2013-08-29 2015-03-12 バンドー化学株式会社 Electrostatic capacitance type sensor sheet and electrostatic capacitance type sensor
WO2015029955A1 (en) * 2013-08-29 2015-03-05 バンドー化学株式会社 Capacitive sensor sheet and capacitive sensor
US10209055B2 (en) 2014-03-03 2019-02-19 Bando Chemical Industries, Ltd. Sensor device and stretchable structure
JPWO2015133417A1 (en) * 2014-03-03 2017-04-06 バンドー化学株式会社 Sensor device and telescopic structure
WO2015133417A1 (en) * 2014-03-03 2015-09-11 バンドー化学株式会社 Sensor device and elastic structural body
JP2015200592A (en) * 2014-04-09 2015-11-12 バンドー化学株式会社 Capacitive type sensor sheet and capacitive type sensor
JP2016081582A (en) * 2014-10-10 2016-05-16 信越ポリマー株式会社 Touch sensor and manufacturing method thereof
JP2020500251A (en) * 2016-10-27 2020-01-09 エルジー・ケム・リミテッド Polymer foam adhesive tape and pressure-sensitive touch panel including the same
US10831328B2 (en) 2016-10-27 2020-11-10 Lg Chem, Ltd. Polymer foam adhesive tape and pressure-sensitive type touch panel comprising the same
US10908748B2 (en) 2016-10-27 2021-02-02 Lg Chem, Ltd. Polymer foam adhesive tape and pressure-sensitive type touch panel comprising the same
US11194426B2 (en) 2016-10-27 2021-12-07 Lg Chem, Ltd. Polymer foam adhesive tape and pressure-sensitive type touch panel comprising the same
JP2018049036A (en) * 2017-12-29 2018-03-29 バンドー化学株式会社 Capacitance type sensor sheet and capacitance type sensor
CN109192071A (en) * 2018-10-16 2019-01-11 京东方科技集团股份有限公司 Display panel and its deformation inducing method, display device
CN109192071B (en) * 2018-10-16 2021-03-23 京东方科技集团股份有限公司 Display panel, deformation induction method thereof and display device

Also Published As

Publication number Publication date
CN101950224A (en) 2011-01-19
TW201108062A (en) 2011-03-01
KR20110005211A (en) 2011-01-17
US20110006787A1 (en) 2011-01-13
US8680876B2 (en) 2014-03-25

Similar Documents

Publication Publication Date Title
JP2011017626A (en) Mechanical quantity detection member and mechanical quantity detection apparatus
CN106662899B (en) The integrated form piezoelectric cantilever actuator and transistor applied for touch input and touch feedback
TW201526057A (en) Controller-less quick tactile feedback keyboard
US20130100030A1 (en) Keypad apparatus having proximity and pressure sensing
US20180081438A1 (en) Haptic structure for providing localized haptic output
US10572021B2 (en) Elastomer suspension with actuation functionality or sensing functionality
US20080018611A1 (en) Input Device
US8976150B2 (en) Method, system and terminal for supporting touch function
US20060232559A1 (en) Capacitive touchpad with physical key function
US20090002199A1 (en) Piezoelectric sensing as user input means
US20110216013A1 (en) Touch-sensitive input device, touch screen device, mobile device and method for operating a touch-sensitive input device
EP2555095A2 (en) Touch panel and method for manufacturing the same
US20060255971A1 (en) Keypad for enhancing input resolution and method for enhancing input resolution using the same
WO2013129092A1 (en) Hybrid sensor
JP2011014280A (en) Touch sensor
CN104866149A (en) Intelligent device with function of preventing false touch
EP2584432A1 (en) Keypad apparatus having proximity and pressure sensing
JP2006323457A (en) Capacitance sensing input device
KR20080054187A (en) Capacitive type tactile sensor and method for manufacturing the same
WO2011135492A1 (en) An apparatus, method, computer program and user interface
JP2017162749A (en) Capacitance input device
JPH09159402A (en) Deformation detector
CN112099653A (en) Writing pad
CN103080875A (en) Force-feedback device
Evreinov et al. One-directional position-sensitive force transducer based on EMFi

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140722