JP2011007053A - Quality determining method for exhaust characteristic of vacuum device - Google Patents

Quality determining method for exhaust characteristic of vacuum device Download PDF

Info

Publication number
JP2011007053A
JP2011007053A JP2009148343A JP2009148343A JP2011007053A JP 2011007053 A JP2011007053 A JP 2011007053A JP 2009148343 A JP2009148343 A JP 2009148343A JP 2009148343 A JP2009148343 A JP 2009148343A JP 2011007053 A JP2011007053 A JP 2011007053A
Authority
JP
Japan
Prior art keywords
vacuum
vacuum pump
pressure
vacuum chamber
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009148343A
Other languages
Japanese (ja)
Inventor
Toshikazu Isshiki
俊和 一色
Katsumi Yamane
克己 山根
jiro Saruwatari
治郎 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2009148343A priority Critical patent/JP2011007053A/en
Publication of JP2011007053A publication Critical patent/JP2011007053A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for properly determining whether the condition of a vacuum pump and a vacuum tank is good or not.SOLUTION: In the quality determining method, a main vacuum pump 12 and a sub-vacuum pump 11 are connected to a vacuum tank 10, and the vacuum tank 10 is evacuated by operating the main vacuum pump 12 and the sub-vacuum pump 11, before vacuum treatment. A value of pressure within the range of the exhaust pressure of the main vacuum pump 12 and the sub-vacuum pump 11 is stored in a storage device 18 as a reference pressure. The reference exhaust velocity at the set reference pressure is obtained in advance, and a value smaller than the reference exhaust velocity is set as a threshold. When the vacuum treatment is performed, the main vacuum pump 12 and the sub-vacuum pump 11 are activated to evacuate the vacuum tank 10, the exhaust velocity at the reference pressure set in advance is obtained, and the obtained exhaust velocity is compared with the threshold. If the obtained exhaust velocity is equal to or higher than the threshold, the condition of the vacuum tank 10 including the main vacuum pump 12 and the sub-vacuum pump 11 is determined to be good, and if the obtained exhaust velocity is lower than the threshold, the condition of the vacuum tank 10 including the main vacuum pump 12 and the sub-vacuum pump 11 is determined to be not good.

Description

本発明は、真空装置の圧力値を時系列に収集し、各圧力値における圧力値の時間微分値(排気速度に相当)を計算し、この装置の排気特性を診断する技術に関する。   The present invention relates to a technique for collecting pressure values of a vacuum apparatus in time series, calculating a time differential value (corresponding to an exhaust speed) of each pressure value, and diagnosing the exhaust characteristics of the apparatus.

装置の排気に対する診断は、所定時間内に所定の圧力に到達するかどうかで行われていた。また、メンテナンスに関しては、使用時間、もしくは製品処理数に基づいてメンテナンスを実施していた。
下記技術は、真空ポンプの排気時間に対する排気速度から真空処理装置全体の良否を判断している。
Diagnosis of the exhaust of the apparatus has been made based on whether or not a predetermined pressure is reached within a predetermined time. As for maintenance, maintenance has been performed based on the usage time or the number of processed products.
In the following technology, the quality of the entire vacuum processing apparatus is judged from the exhaust speed relative to the exhaust time of the vacuum pump.

特開平5−251295号公報Japanese Patent Laid-Open No. 5-251295

装置としての排気特性は排気する方のポンプ自体の排気能力と真空容器内壁からの放出ガスおよび真空容器の漏れからなる排気される側の容器内気体の増加によって決まる。
ポンプの排気速度は、圧力依存性を持っており、また放出ガス、漏れなども微小な場合は、真空容器の圧力が低くなってから影響が顕著になってくる。
それに対し、従来の診断方法は、排気時間のみに着目していた。もしくは時系列の圧力値のグラフから傾向を見るだけであり、この場合、排気開始圧力値や排気シーケンスによって排気時間が大きく異なり、従来のような排気時間と関連して排気速度の大きさを見る方法では、排気特性の劣化状態の正確な判断ができない。
The exhaust characteristics of the apparatus are determined by the exhaust capacity of the pump itself to be exhausted and the increase of the gas in the container on the exhaust side consisting of the gas discharged from the inner wall of the vacuum container and the leakage of the vacuum container.
The pumping speed of the pump has a pressure dependency, and when the discharge gas, leakage, etc. are very small, the influence becomes significant after the pressure of the vacuum vessel is lowered.
In contrast, conventional diagnostic methods focus only on the exhaust time. Alternatively, it is only possible to see the trend from the time-series pressure value graph. In this case, the exhaust time varies greatly depending on the exhaust start pressure value and the exhaust sequence, and the magnitude of the exhaust speed is related to the conventional exhaust time. This method cannot accurately determine the deterioration state of the exhaust characteristics.

上記課題を解決するために、本発明は、真空装置の状態を判別する排気特性の良否判別方法であって、測定対象の真空ポンプを測定用真空槽に接続し、前記真空ポンプを動作させて前記測定用真空槽を真空排気し、前記測定用真空槽内が予め設定された基準圧力に真空排気されたときの前記排気速度に対応する基準値を求めておく基準値取得工程と、前記真空ポンプが接続された検査用真空槽内を前記真空ポンプによって、前記基準圧力よりも高い圧力から前記基準圧力よりも低い圧力に真空排気する際に、前記検査用真空槽内の圧力を測定し、測定値と測定時の時間間隔とから前記排気速度に対応する算出値を算出し、前記基準圧力での前記算出値と、前記基準値よりも小さい値であるしきい値とを比較し、比較結果から前記真空ポンプ及び前記検査用真空槽の状態の良否を判断する検査工程とを有する排気特性の良否判別方法である。測定対象の真空ポンプは、測定圧力範囲対応の真空ポンプである。
本発明は、前記検査工程を行う際には前記検査用真空槽内に処理対象物を搬入しておき、前記処理対象物の真空処理を行う真空処理工程を有する良否判別方法であって、前記真空処理工程は、前記検査工程の後に行う排気特性の良否判別方法である。
本発明は、前記測定用真空槽と前記検査用真空槽は同一の真空槽である排気特性の良否判別方法である。
In order to solve the above-mentioned problems, the present invention is a method for determining the quality of exhaust characteristics for determining the state of a vacuum device, wherein a vacuum pump to be measured is connected to a measurement vacuum chamber, and the vacuum pump is operated. A reference value acquisition step of evacuating the measurement vacuum chamber and obtaining a reference value corresponding to the exhaust speed when the inside of the measurement vacuum chamber is evacuated to a preset reference pressure; and the vacuum When evacuating the inspection vacuum chamber to which the pump is connected from the pressure higher than the reference pressure to the pressure lower than the reference pressure by the vacuum pump, the pressure in the inspection vacuum chamber is measured, A calculated value corresponding to the exhaust speed is calculated from the measured value and the time interval at the time of measurement, and the calculated value at the reference pressure is compared with a threshold value that is smaller than the reference value. From the results, the vacuum pump and A quality decision method of the exhaust characteristics and a test step of determining acceptability of the state of the inspection vacuum chamber. The vacuum pump to be measured is a vacuum pump corresponding to the measurement pressure range.
The present invention is a pass / fail judgment method including a vacuum processing step of carrying in a vacuum processing of the processing object by carrying the processing target into the inspection vacuum chamber when performing the inspection step, The vacuum processing step is a method for determining whether or not the exhaust characteristics are good after the inspection step.
The present invention is a method for determining whether exhaust characteristics are good or bad, wherein the vacuum chamber for measurement and the vacuum chamber for inspection are the same vacuum chamber.

真空槽内が所定圧力値のときの排気速度によって排気特性の劣化状態を判断するようにしたので、排気開始圧力や、排気シーケンスによる影響が少なくなり排気特性の劣化状態を正確に判断することができる。   The exhaust characteristic deterioration state is judged based on the exhaust speed when the inside of the vacuum chamber is at a predetermined pressure value, so the influence of the exhaust start pressure and the exhaust sequence is reduced, and the exhaust characteristic deterioration state can be judged accurately. it can.

本発明を説明するために用いた一例の成膜装置の断面図Sectional drawing of the film-forming apparatus of an example used in order to demonstrate this invention 真空槽内の圧力と圧力を測定した時刻との関係を示す図Diagram showing the relationship between the pressure in the vacuum chamber and the time when the pressure was measured 排気速度に対応した比較値と真空槽内の圧力との関係を示す図Diagram showing the relationship between the comparison value corresponding to the pumping speed and the pressure in the vacuum chamber

<装置構成>
図1の符号1は成膜装置であり、成膜装置1は、真空槽10と、副真空ポンプ(粗引きポンプ)11と、主真空ポンプ(主ポンプ)12とを有している。
副真空ポンプ11と、主真空ポンプ12とは、真空槽10に接続されている。
副真空ポンプ11は、真空槽10内を大気圧から真空排気を開始でき、主真空ポンプ12は大気圧より低い圧力から真空排気を開始でき、副真空ポンプ11の到達圧力よりも低い圧力まで真空排気することができる。
従って、真空槽10内を先ず、副真空ポンプ11で真空排気し、真空槽10内が主真空ポンプ12の動作開始圧力よりも低圧になった後、主真空ポンプ12の動作を開始し、副真空ポンプ11を真空槽10から切り離すと、真空槽10内を大気圧から主真空ポンプ12の到達圧力まで真空排気することができる。
真空槽10には、副真空ポンプ11の動作範囲内で圧力を検出可能な第一の真空計13と、主真空ポンプ12の動作範囲内で圧力を検出可能な第二の真空計14とが接続されている。
<Device configuration>
Reference numeral 1 in FIG. 1 denotes a film forming apparatus. The film forming apparatus 1 includes a vacuum chamber 10, a sub vacuum pump (rough pump) 11, and a main vacuum pump (main pump) 12.
The sub vacuum pump 11 and the main vacuum pump 12 are connected to the vacuum chamber 10.
The sub-vacuum pump 11 can start evacuation from the atmospheric pressure in the vacuum chamber 10, and the main vacuum pump 12 can start evacuation from a pressure lower than the atmospheric pressure, and vacuum to a pressure lower than the ultimate pressure of the sub-vacuum pump 11. Can be exhausted.
Accordingly, the vacuum chamber 10 is first evacuated by the sub-vacuum pump 11, and after the inside of the vacuum chamber 10 becomes lower than the operation start pressure of the main vacuum pump 12, the operation of the main vacuum pump 12 is started, When the vacuum pump 11 is disconnected from the vacuum chamber 10, the inside of the vacuum chamber 10 can be evacuated from the atmospheric pressure to the ultimate pressure of the main vacuum pump 12.
The vacuum chamber 10 includes a first vacuum gauge 13 capable of detecting pressure within the operating range of the sub vacuum pump 11 and a second vacuum gauge 14 capable of detecting pressure within the operating range of the main vacuum pump 12. It is connected.

真空槽10の外部には制御装置16が配置されている。
第一、第二の真空計13、14は、制御装置16に接続されている。
副真空ポンプ11と主真空ポンプ12のいずれか一方又は両方によって真空槽10内を真空排気する際に、第一、第二の真空計13、14のいずれか一方又は両方が真空槽10内の圧力を検出する。
第一、第二の真空計13、14が検出した真空槽10内の圧力を示す圧力信号は、制御装置16に出力される。
A control device 16 is disposed outside the vacuum chamber 10.
The first and second vacuum gauges 13 and 14 are connected to the control device 16.
When the inside of the vacuum chamber 10 is evacuated by one or both of the sub vacuum pump 11 and the main vacuum pump 12, either one or both of the first and second vacuum gauges 13 and 14 are in the vacuum chamber 10. Detect pressure.
A pressure signal indicating the pressure in the vacuum chamber 10 detected by the first and second vacuum gauges 13 and 14 is output to the control device 16.

制御装置16は測定装置の機能を有しており、入力された圧力信号はPa単位やTorr単位の圧力値に変換されて表示装置19に表示される。
また、制御装置16は記憶装置18を有しており、入力された圧力信号から成る測定値や、圧力信号がPa単位やTorr単位の値に変換された圧力値から成る測定値が、記憶装置18に記憶されるようになっている。
ここでは圧力信号がPa単位の圧力に換算されて取り扱われるものとする。
制御装置16は時計を内蔵し、又は外部の時計15が接続されており、制御装置16に記憶される測定値は、測定時刻と関連づけて記憶し、測定と測定の間の時間が分かるようになっている。測定を一定の時間間隔で行う場合等、測定と測定の間の時間間隔が分かっている場合は測定時刻を記憶しなくてもよい。
The control device 16 has the function of a measuring device, and the input pressure signal is converted into a pressure value in Pa units or Torr units and displayed on the display device 19.
Further, the control device 16 has a storage device 18, and a measurement value composed of an input pressure signal and a measurement value composed of a pressure value obtained by converting the pressure signal into a value in Pa unit or Torr unit are stored in the storage device. 18 is stored.
Here, it is assumed that the pressure signal is converted into a pressure in Pa units and handled.
The control device 16 has a built-in clock or an external clock 15 connected thereto, and the measurement value stored in the control device 16 is stored in association with the measurement time so that the time between measurements can be known. It has become. When the time interval between measurements is known, such as when measurements are taken at regular time intervals, the measurement time need not be stored.

<基準値取得工程>
先ず、排気特性の初期能力を測定するために、成膜装置1の現状態の能力を記録する。
真空槽10内が大気圧力にある場合は、真空槽10の扉を閉じ、副真空ポンプ11を動作させて真空槽10内を真空排気した後、主真空ポンプ12の動作を開始させ、真空槽10内が主真空ポンプ12の動作可能圧力である場合には、副真空ポンプ11は動作させずに主真空ポンプ12の動作を開始する。
主真空ポンプ12の動作開始後、第二の真空計14によって真空槽10内の圧力を検出し、制御装置16は、測定時刻と共に測定値を記憶する。
圧力測定を行った主真空ポンプ12が真空処理で到達する圧力よりも低い圧力になるまで圧力測定を行った後、記憶した測定値と時間のデータから、時間と圧力の関係をグラフ作成する。
<Reference value acquisition process>
First, in order to measure the initial capacity of the exhaust characteristic, the current capacity of the film forming apparatus 1 is recorded.
When the inside of the vacuum chamber 10 is at atmospheric pressure, the door of the vacuum chamber 10 is closed, the sub-vacuum pump 11 is operated to evacuate the inside of the vacuum chamber 10, and then the operation of the main vacuum pump 12 is started. In the case where the pressure inside 10 is the operable pressure of the main vacuum pump 12, the operation of the main vacuum pump 12 is started without operating the sub vacuum pump 11.
After starting the operation of the main vacuum pump 12, the pressure in the vacuum chamber 10 is detected by the second vacuum gauge 14, and the control device 16 stores the measurement value together with the measurement time.
After the pressure measurement is performed until the main vacuum pump 12 that has performed the pressure measurement has a pressure lower than the pressure reached by the vacuum processing, a graph of the relationship between time and pressure is created from the stored measurement value and time data.

図2はそのグラフを示しており、横軸が測定時間を示し、縦軸が真空槽10内の圧力を示し、符号L1、L2、L3は、時間と真空槽10内の圧力との関係を示す曲線であり、符号L1は、副真空ポンプ11を動作させながら第一の真空計13に検出させたとき、符号L2は主真空ポンプ12を動作させながら、副真空ポンプ11の動作時に使用した第一の真空計13で検出したとき、符号L3は、主真空ポンプ12を動作させながら第二の真空計14で検出させた時の曲線である。
記憶装置18に記憶された測定値とその測定時刻のデータから、算出値を、
(算出値)=(測定値の差)/(測定時刻の差)……(1)
として求めた。測定値の差は、圧力差である。
FIG. 2 shows the graph, in which the horizontal axis indicates the measurement time, the vertical axis indicates the pressure in the vacuum chamber 10, and the symbols L 1 , L 2 , and L 3 indicate the time and the pressure in the vacuum chamber 10. The reference symbol L 1 is detected by the first vacuum gauge 13 while operating the sub vacuum pump 11, and the reference symbol L 2 is the sub vacuum pump 11 while operating the main vacuum pump 12. When detected by the first vacuum gauge 13 used during the operation, the symbol L 3 is a curve when detected by the second vacuum gauge 14 while operating the main vacuum pump 12.
From the measurement value stored in the storage device 18 and the data of the measurement time, the calculated value is
(Calculated value) = (Difference in measurement value) / (Difference in measurement time) …… (1)
As sought. The difference between the measured values is the pressure difference.

例えば、便宜上、記憶装置18に記憶された測定値のうち、現時時刻で測定された測定値と現時時刻の一回前に測定した測定値の差を「測定値の差」とし、その測定値の差を求めるために使用した二個の測定値の測定時刻の差を「測定時刻の差」とすると、現在時刻の測定値、又は現在時刻の一回前に測定した測定値に対して算出値を対応させることができる。
真空槽10の容積は測定されて分かっており、測定した主真空ポンプ12の排気速度を下記式のように求めることもできる。
(排気速度)=(真空槽の容積)×(測定値の差)/(測定時刻の差)……(2)
For example, for the sake of convenience, among the measurement values stored in the storage device 18, the difference between the measurement value measured at the current time and the measurement value measured immediately before the current time is defined as a “measurement value difference”. If the difference in measurement time between the two measurements used to determine the difference between the measurement times is the difference in measurement time, the calculation is based on the measurement value at the current time or the measurement value measured one time before the current time. Values can be matched.
The volume of the vacuum chamber 10 is measured and known, and the measured exhaust speed of the main vacuum pump 12 can also be obtained by the following equation.
(Pumping speed) = (Vacuum chamber volume) x (Difference in measured value) / (Difference in measurement time) (2)

図3は、横軸が圧力単位がPaの圧力(Pa)を示し、縦軸が(1)式の算出値(Pa/秒)を示すグラフである。ここでは二個の測定値の平均値を圧力(Pa)に換算した値に排気速度を対応づけてプロットし、プロットを結んで曲線Mを描いている。    FIG. 3 is a graph in which the horizontal axis indicates the pressure (Pa) in which the pressure unit is Pa, and the vertical axis indicates the calculated value (Pa / second) of the equation (1). Here, the average value of the two measured values is plotted in correspondence with the exhaust velocity and the value converted into the pressure (Pa), and the curve M is drawn by connecting the plots.

測定した主真空ポンプ12に関し、図3のグラフを観察すると、副真空ポンプ11の到達圧力より低く、後述する真空処理工程を開始する圧力より高い圧力であって、算出値の急激な変化のないところの圧力を基準圧力として選択し、基準圧力に対応付けられた算出値や、その算出値から求める排気速度を基準値として記憶装置18に記憶させると制御装置16によって基準値よりも小さい値であるしきい値が算出され、記憶装置18に記憶される。
一回基準値を求めたら、他の同程度の排気能力の真空ポンプを用いた基準値取得工程では、基準値を求めるために作成するグラフを作成しなくてもよい。
しきい値を算出するためには、例えば記憶装置18に低減係数α(0<α<1)を記憶させておき、基準値に低減係数αを乗算することで求めることができる。
図3のグラフでは、例えばしきい値を圧力が0.05Pa時の排気速度に設定することができる。
When the graph of FIG. 3 is observed with respect to the measured main vacuum pump 12, the pressure is lower than the ultimate pressure of the sub-vacuum pump 11 and higher than the pressure at which a vacuum processing step described later is started, and there is no sudden change in the calculated value. However, when the pressure is selected as the reference pressure and the calculated value associated with the reference pressure or the exhaust velocity obtained from the calculated value is stored in the storage device 18 as the reference value, the control device 16 sets a value smaller than the reference value. A threshold value is calculated and stored in the storage device 18.
Once the reference value is obtained, it is not necessary to create a graph to be created in order to obtain the reference value in the reference value acquisition step using another vacuum pump having the same exhaust capacity.
In order to calculate the threshold value, for example, the reduction coefficient α (0 <α <1) is stored in the storage device 18 and can be obtained by multiplying the reference value by the reduction coefficient α.
In the graph of FIG. 3, for example, the threshold value can be set to the exhaust speed when the pressure is 0.05 Pa.

上記のような主真空ポンプ12に対する基準値は、当該主真空ポンプ12の使用開始直後に、主真空ポンプ12を動作させて圧力を測定して求めるのが好ましい。
また、主真空ポンプ12をメンテナンスした場合はメンテナンス直後に求めることが好ましい。
なお、上記算出値は、二個の測定値を用いているが、三個以上の測定値を用いることも可能である。
The reference value for the main vacuum pump 12 as described above is preferably obtained by operating the main vacuum pump 12 and measuring the pressure immediately after the use of the main vacuum pump 12 is started.
Moreover, when maintaining the main vacuum pump 12, it is preferable to obtain | require immediately after a maintenance.
In addition, although the said calculated value uses two measured values, it is also possible to use three or more measured values.

<検査工程、真空処理工程>
次に、測定に用いた主真空ポンプ12を使用して処理対象物の真空処理を行う。
ここでは、主真空ポンプ12は、基準値を求めた真空槽10に接続されたままである。
この真空槽10には、基準値を求めた測定の際でも、真空槽10の底部には基板ホルダー20が配置され、天井部分にはスパッタターゲット21が配置されており、スパッタリング装置が構成されている。
真空槽10の扉を開けて、真空槽10内に処理対象物30を搬入し、基板ホルダー20の上に載せる。
真空槽10の扉を閉じ、先ず、副真空ポンプ11を動作させ、次いで、主真空ポンプ12を動作させ、真空槽10内の圧力を低下させる。
第一又は第二の真空計13、14によって真空槽10内の圧力を検出し、圧力を示す圧力信号から求めた真空槽10内の圧力を測定値とし、測定値と測定時刻から、制御装置16が上記(1)式によって算出値を求め算出値を比較対象値として、記憶されたしきい値とを比較する。
<Inspection process, vacuum processing process>
Next, the processing object is vacuum processed using the main vacuum pump 12 used for the measurement.
Here, the main vacuum pump 12 remains connected to the vacuum chamber 10 for which the reference value has been obtained.
In the vacuum chamber 10, the substrate holder 20 is disposed at the bottom of the vacuum chamber 10 and the sputter target 21 is disposed at the ceiling even when the reference value is obtained. Yes.
The door of the vacuum chamber 10 is opened, the processing object 30 is carried into the vacuum chamber 10 and placed on the substrate holder 20.
The door of the vacuum chamber 10 is closed, first, the sub vacuum pump 11 is operated, and then the main vacuum pump 12 is operated to reduce the pressure in the vacuum chamber 10.
The pressure in the vacuum chamber 10 is detected by the first or second vacuum gauges 13 and 14, the pressure in the vacuum chamber 10 obtained from the pressure signal indicating the pressure is taken as a measured value, and the control device is determined from the measured value and the measurement time. 16 calculates a calculated value by the above equation (1) and compares the calculated value with a stored threshold value as a comparison target value.

真空槽10内の圧力が基準圧力以下になったところで、真空槽10内が基準圧力になったときの比較対象値としきい値との比較結果が、比較対象値がしきい値以上であることを示している場合は、制御装置16は、排気特性が良好な状態にあると判断し、検査工程を終え、真空槽10内の真空排気を維持しながら真空処理工程(ここではスパッタターゲット21のスパッタリング)を開始し、処理対象物30上への薄膜形成を開始する。   When the pressure in the vacuum chamber 10 is equal to or lower than the reference pressure, the comparison result between the comparison target value and the threshold value when the pressure in the vacuum chamber 10 reaches the reference pressure is that the comparison target value is equal to or higher than the threshold value. , The control device 16 determines that the exhaust characteristics are in a good state, finishes the inspection process, and maintains the vacuum exhaust in the vacuum chamber 10 (here, the sputter target 21). Sputtering) is started, and thin film formation on the processing object 30 is started.

他方、主真空ポンプ12を含む成膜装置1は基準値を求められた後に多数回数使用されて、基準値を求めたときに比べて劣化していた場合や、主真空ポンプ12に故障等が生じた場合には算出値は基準値よりも小さくなるから、比較結果が、比較対象値がしきい値よりも小さくなったことを示している場合は、主真空ポンプ12を含む成膜装置1は良好な状態ではないと判断する。
低減係数αが大きく、しきい値が基準値に近い場合は、比較対象値が基準値から大きく離間していないと考えられ、警報を発するが真空処理を続行し、後日、主真空ポンプ12の交換もしくは真空槽10のクリーニングを求めるようにしてもよいし、その場合よりもしきい値が基準値から遠い場合は、主真空ポンプ12の使用を継続できないとして、主真空ポンプ12の動作を停止して主真空ポンプ12を交換することができるようにしてもよい。
警報を発する場合、主真空ポンプ12に対する基準値を求めたときからの使用回数や使用時間を記録しておくと、警報時から交換が必要な劣化状態になるまでの使用回数や使用時間が分かるようになるから、交換時期を予め予想することができる。
On the other hand, the film forming apparatus 1 including the main vacuum pump 12 is used many times after the reference value is obtained, and when the reference value is obtained, the film forming apparatus 1 is deteriorated or the main vacuum pump 12 has a failure or the like. If it occurs, the calculated value is smaller than the reference value. Therefore, when the comparison result indicates that the comparison target value is smaller than the threshold value, the film forming apparatus 1 including the main vacuum pump 12 is used. Is not in good condition.
When the reduction coefficient α is large and the threshold value is close to the reference value, it is considered that the comparison target value is not greatly separated from the reference value, and an alarm is issued, but the vacuum processing is continued. Replacement or cleaning of the vacuum chamber 10 may be requested. If the threshold value is farther from the reference value than that, the main vacuum pump 12 is stopped because the main vacuum pump 12 cannot be used. Thus, the main vacuum pump 12 may be exchanged.
If an alarm is issued, the number of times of use and the time of use until the deterioration state that requires replacement from the time of the alarm can be obtained by recording the number of times of use and the time of use since the reference value for the main vacuum pump 12 was obtained. As a result, the replacement time can be predicted in advance.

また、上記実施例では、処理対象物30の真空処理開始前に、主真空ポンプ12の検査工程を行ったが、真空処理工程を開始する前に処理対象物30を加熱する必要がある場合などについては、真空槽10内に処理対象物30を搬入せず、真空処理を行わないときに、主真空ポンプ12の検査工程を行うようにしてもよい。   Moreover, in the said Example, although the test | inspection process of the main vacuum pump 12 was performed before the vacuum processing of the process target object 30 was started, when the process target object 30 needs to be heated before starting a vacuum process process etc. As for, the inspection process of the main vacuum pump 12 may be performed when the processing object 30 is not carried into the vacuum chamber 10 and the vacuum processing is not performed.

上記実施例では、主真空ポンプ12に対する基準値を求めたときと、検査をするときで同じ真空槽10を用いたが、装置構成が同じであれば基準値を求めるときの測定用真空槽と、検査を行うときの検査用真空槽とが異なる真空槽であってもよい。
なお、上記例では、基準値をSとすると、基準値Sの低減率α倍をしきい値(S×α)としたが、基準値Sから小さい数値βを差し引いた値をしきい値(S−β)としてもよい。
In the above embodiment, the same vacuum chamber 10 is used when the reference value for the main vacuum pump 12 is obtained and when the inspection is performed, but if the apparatus configuration is the same, the measurement vacuum vessel for obtaining the reference value and The vacuum chamber may be different from the vacuum chamber for inspection when performing the inspection.
In the above example, when the reference value is S, the reduction rate α times the reference value S is set as a threshold value (S × α). However, a value obtained by subtracting a small numerical value β from the reference value S is a threshold value (S × α). S-β) may also be used.

上記実施例では、予め、主真空ポンプ12に対する基準値Sを求め、主真空ポンプ12の検査工程を行い、副真空ポンプ11の検査工程を行わなかったが、上記主真空ポンプ12と同様に予め、副真空ポンプ11に対する基準値を求めておき、副真空ポンプ11の検査工程を行ってもよい。   In the above embodiment, the reference value S for the main vacuum pump 12 is obtained in advance, the inspection process for the main vacuum pump 12 is performed, and the inspection process for the sub vacuum pump 11 is not performed. In addition, a reference value for the sub vacuum pump 11 may be obtained and an inspection process for the sub vacuum pump 11 may be performed.

真空処理を行う際には、副真空ポンプ11で真空槽10を大気圧から真空排気したときに、真空槽10内の圧力と測定時刻から算出値を求めて副真空ポンプ11の検査工程を行い、副真空ポンプ11及び真空槽10の状態の良否判断を行い、状態が良なら副真空ポンプ11から主真空ポンプ12に交代して主真空ポンプ12の動作を開始させ、引き続き主真空ポンプ12の検査工程を行うとよい。ただし、本発明には、真空処理を行う際に、副真空ポンプ11の検査工程を行い、主真空ポンプ12の検査工程を行わない場合も含まれる。   When vacuum processing is performed, when the vacuum chamber 10 is evacuated from the atmospheric pressure by the sub-vacuum pump 11, a calculated value is obtained from the pressure in the vacuum chamber 10 and the measurement time, and the inspection process of the sub-vacuum pump 11 is performed. The condition of the sub vacuum pump 11 and the vacuum chamber 10 is judged as good or bad. If the condition is good, the sub vacuum pump 11 is switched to the main vacuum pump 12 to start the operation of the main vacuum pump 12, and the main vacuum pump 12 is continuously operated. An inspection process may be performed. However, the present invention includes a case where the inspection process of the sub vacuum pump 11 is performed and the inspection process of the main vacuum pump 12 is not performed when the vacuum processing is performed.

なお、本発明により、排気中の任意の圧力時の排気速度を求めることにより、詳細な分析、ポンプ性能、過去のデータとの比較が可能になり、排気状態の悪化を知るもしくは予測することが可能になる。   According to the present invention, by obtaining the exhaust speed at any pressure in the exhaust, detailed analysis, pump performance, and comparison with past data become possible, and it is possible to know or predict the deterioration of the exhaust state. It becomes possible.

また、残留ガスデータを測定し、測定した残留ガスデータと排気速度の劣化データを組み合わせれば、原因の特定を手助けし、タイムリーに適切なメンテナンスを行うことにより、装置の稼働時間を長くし、装置のメンテナンス時間を短くし装置稼働率を向上させることが可能になる。
排気速度データと基準値を測定したときと同時期に採取した、残留ガスデータを圧力値に対応させて表示すれば、このデータから、ポンプの性能低下か、真空容器の汚れか、真空容器の漏れかの判断に役立てることができる。
Also, by measuring the residual gas data and combining the measured residual gas data with the deterioration data of the exhaust speed, the cause of the cause can be identified, and proper maintenance is performed in a timely manner, thereby extending the operating time of the equipment. It is possible to shorten the apparatus maintenance time and improve the apparatus operating rate.
If the residual gas data collected at the same time as the measurement of the pumping speed data and the reference value is displayed in correspondence with the pressure value, this data indicates that the pump performance has deteriorated, the vacuum container has become dirty, the vacuum container has It can be used to determine if there is a leak.

真空装置に搭載、もしくは真空装置データ収集システムに搭載し、装置の真空排気状況をモニターし、本発明の処理を行うことにより、装置の排気能力の健全状態を数値で細かく把握することが可能になり、装置のさまざまな状態のデータと数値比較することにより、適切なメンテナンスを可能とし、装置の稼働率を向上させる。   By mounting on a vacuum device or on a vacuum device data collection system, monitoring the evacuation status of the device, and performing the processing of the present invention, it is possible to grasp the sound state of the exhaust capacity of the device in detail numerically Therefore, appropriate maintenance is possible by comparing numerical values with data of various states of the apparatus, and the operating rate of the apparatus is improved.

1……成膜装置
10……真空槽
11……副真空ポンプ(粗引きポンプ)
12……主真空ポンプ(主ポンプ)
13……第一の真空計
14……第二の真空計
15……時計
16……制御装置
18……記憶装置
19……表示装置
20……基板ホルダー
21……スパッタターゲット
30……処理対象物
DESCRIPTION OF SYMBOLS 1 ... Film-forming apparatus 10 ... Vacuum chamber 11 ... Sub vacuum pump (roughing pump)
12 ... Main vacuum pump (main pump)
13 …… First vacuum gauge 14 …… Second vacuum gauge 15 …… Clock 16 …… Control device 18 …… Storage device 19 …… Display device 20 …… Substrate holder 21 …… Sputter target 30 …… Process target object

Claims (3)

真空装置の状態を判別する排気特性の良否判別方法であって、
測定対象の真空ポンプを測定用真空槽に接続し、前記真空ポンプを動作させて前記測定用真空槽を真空排気し、前記測定用真空槽内が予め設定された基準圧力に真空排気されたときの排気速度に対応する基準値を求めておく基準値取得工程と、
前記真空ポンプが接続された検査用真空槽内を前記真空ポンプによって、前記基準圧力よりも高い圧力から前記基準圧力よりも低い圧力に真空排気する際に、前記検査用真空槽内の圧力を測定し、測定値と測定時の時間間隔とから
前記排気速度に対応する算出値を算出し、
前記基準圧力での前記算出値と、前記基準値よりも小さい値であるしきい値とを比較し、比較結果から前記真空ポンプ及び前記検査用真空槽の状態の良否を判断する検査工程とを有する排気特性の良否判別方法。
A method for determining the quality of exhaust characteristics for determining the state of a vacuum device,
When a vacuum pump to be measured is connected to a measurement vacuum chamber, the vacuum pump is operated to evacuate the measurement vacuum chamber, and the measurement vacuum chamber is evacuated to a preset reference pressure A reference value acquisition step for obtaining a reference value corresponding to the exhaust speed of
The pressure in the inspection vacuum chamber is measured when the inside of the inspection vacuum chamber to which the vacuum pump is connected is evacuated from the pressure higher than the reference pressure to the pressure lower than the reference pressure by the vacuum pump. Then, a calculated value corresponding to the exhaust speed is calculated from the measured value and the time interval at the time of measurement,
An inspection step of comparing the calculated value at the reference pressure with a threshold value that is smaller than the reference value, and judging whether the state of the vacuum pump and the inspection vacuum chamber is good or bad from the comparison result; A method for determining the quality of exhaust characteristics.
前記検査工程を行う際には前記検査用真空槽内に処理対象物を搬入しておき、
前記処理対象物の真空処理を行う真空処理工程を有する請求項1記載の良否判別方法であって、
前記真空処理工程は、前記検査工程の後に行う排気特性の良否判別方法。
When carrying out the inspection step, carry the processing object into the inspection vacuum chamber,
The pass / fail determination method according to claim 1, further comprising a vacuum processing step for performing vacuum processing on the processing object.
The vacuum processing step is a method for determining whether the exhaust characteristics are good or bad after the inspection step.
前記測定用真空槽と前記検査用真空槽は同一の真空槽である請求項2記載の排気特性の良否判別方法。   3. The exhaust quality judgment method according to claim 2, wherein the measurement vacuum chamber and the inspection vacuum chamber are the same vacuum chamber.
JP2009148343A 2009-06-23 2009-06-23 Quality determining method for exhaust characteristic of vacuum device Pending JP2011007053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009148343A JP2011007053A (en) 2009-06-23 2009-06-23 Quality determining method for exhaust characteristic of vacuum device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009148343A JP2011007053A (en) 2009-06-23 2009-06-23 Quality determining method for exhaust characteristic of vacuum device

Publications (1)

Publication Number Publication Date
JP2011007053A true JP2011007053A (en) 2011-01-13

Family

ID=43563991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009148343A Pending JP2011007053A (en) 2009-06-23 2009-06-23 Quality determining method for exhaust characteristic of vacuum device

Country Status (1)

Country Link
JP (1) JP2011007053A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285974A (en) * 2001-03-23 2002-10-03 Toshiba Corp Semiconductor manufacturing device, method for estimating life time of vacuum pump, and method for judging repair timing
JP2003077907A (en) * 2001-08-31 2003-03-14 Toshiba Corp Method and system for avoiding abnormal stop of manufacturing apparatus
JP2004152999A (en) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd Method and system for plasma processing
WO2007052493A1 (en) * 2005-10-31 2007-05-10 Daikin Industries, Ltd. Refrigerator compressor operating method and refrigerator
JP2008524493A (en) * 2004-12-17 2008-07-10 コリア リサーチ インスティチュート オブ スタンダーズ アンド サイエンス Precision diagnosis method for failure protection and predictive maintenance of vacuum pump and precision diagnosis system therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285974A (en) * 2001-03-23 2002-10-03 Toshiba Corp Semiconductor manufacturing device, method for estimating life time of vacuum pump, and method for judging repair timing
JP2003077907A (en) * 2001-08-31 2003-03-14 Toshiba Corp Method and system for avoiding abnormal stop of manufacturing apparatus
JP2004152999A (en) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd Method and system for plasma processing
JP2008524493A (en) * 2004-12-17 2008-07-10 コリア リサーチ インスティチュート オブ スタンダーズ アンド サイエンス Precision diagnosis method for failure protection and predictive maintenance of vacuum pump and precision diagnosis system therefor
WO2007052493A1 (en) * 2005-10-31 2007-05-10 Daikin Industries, Ltd. Refrigerator compressor operating method and refrigerator

Similar Documents

Publication Publication Date Title
JP5970618B2 (en) Leak test apparatus and method
US7194821B2 (en) Vacuum processing apparatus and vacuum processing method
KR100304208B1 (en) Method and apparatus for automatically detecting gas leak, and recording medium for leak detection
JP2003532863A (en) Method and apparatus for closed container leak inspection
WO2010010688A1 (en) Action monitoring system for treating device
JP2008021732A (en) Method and system for identifying cause of abnormality in pressure, vacuum processing device, and recording medium
US20120219157A1 (en) Monitoring apparatus and method
JP5375435B2 (en) Seismic intensity measuring device
US10697850B2 (en) Method for testing a container for tightness
JP2011007053A (en) Quality determining method for exhaust characteristic of vacuum device
JP2013170978A (en) Method for diagnosing abnormality of differential pressure-pressure composite sensor
KR100905235B1 (en) A precision diagnostic method for the failure protection and predictive maintenance of a vacuum pump and a precision diagnostic system therefor
JP6328128B2 (en) Device and method for estimating gas flow in an enclosure maintained at a low pressure relative to gas
JP3983479B2 (en) Battery leakage inspection device
JP4547396B2 (en) Sample processing equipment
JP2008014813A (en) Vacuum measuring device, vapor deposition device, and vacuum measuring method
JP4057896B2 (en) Abnormal helium leak detector
US20090007690A1 (en) Method for Metrologically Determining the End of a Test Interval, and Device for Carrying Out Said Method
TWI708049B (en) Method for detecting a leak in a specimen
JP4859423B2 (en) Vacuum processing apparatus and impurity monitoring method thereof
JPH0854923A (en) Diagnostic method and device for process data
JPH0743494A (en) Detecting equipment for leakage of coolant in reactor
JP2010159974A (en) Helium leak detector
JP3349130B2 (en) Leak inspection device
JP2014098559A (en) Replacement timing determining method for differential pressure/pressure composite sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611