JP2010276533A - Flow rate measuring instrument and fluid pressure measuring instrument - Google Patents

Flow rate measuring instrument and fluid pressure measuring instrument Download PDF

Info

Publication number
JP2010276533A
JP2010276533A JP2009131032A JP2009131032A JP2010276533A JP 2010276533 A JP2010276533 A JP 2010276533A JP 2009131032 A JP2009131032 A JP 2009131032A JP 2009131032 A JP2009131032 A JP 2009131032A JP 2010276533 A JP2010276533 A JP 2010276533A
Authority
JP
Japan
Prior art keywords
pressure
fluid
flow rate
pressure sensor
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009131032A
Other languages
Japanese (ja)
Inventor
Takazo Sato
尊三 佐藤
Ryoji Ando
了至 安藤
Kiichiro Tomioka
紀一郎 富岡
Yoshifumi Kawamura
義文 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Horiba Advanced Techno Co Ltd
Original Assignee
Tokyo Electron Ltd
Horiba Advanced Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Horiba Advanced Techno Co Ltd filed Critical Tokyo Electron Ltd
Priority to JP2009131032A priority Critical patent/JP2010276533A/en
Priority to KR1020117024305A priority patent/KR101305775B1/en
Priority to PCT/JP2010/054869 priority patent/WO2010137392A1/en
Publication of JP2010276533A publication Critical patent/JP2010276533A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • G01L19/0023Fluidic connecting means for flowthrough systems having a flexible pressure transmitting element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/38Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • G01F1/88Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure with differential-pressure measurement to determine the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor

Abstract

<P>PROBLEM TO BE SOLVED: To radically solve problems owing to the existence of a conduit section by removing the conduit section itself. <P>SOLUTION: This flow rate measuring instrument is provided with a restriction mechanism 3 in the middle of a pipe 1 to measure the flow rate of a fluid based on pressures measured by pressure sensors 2 provided on the upstream side and on the downstream side, respectively. The measuring instrument is provided with a thin-walled portion 11a with its exterior side recessed at a required part of the outer wall 11 of the pipe 1. Projected/depressed parts 6 are formed on the upstream and down stream sides of the restriction mechanism 3, with the projected/depressed parts 6 projected/depressed owing to elastic deformation of the thin-walled portion 11a caused by pressure fluctuation of the fluid, while pressure-sensitive surfaces of the pressure sensors 2 are put into contact with outer surfaces of the projected/depressed parts 6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、配管部材の間に設けた絞り機構の上流側及び下流側における流体圧力を圧力センサで測定することによって、該流体の流量を測定する流量測定装置等に関するものであり、特に半導体製造装置、FPD製造装置、太陽電池製造装置などへの各種薬液や洗浄液あるいは各種ガス流体等を送出するラインに設置されて好適に用いられるものに関する。   The present invention relates to a flow rate measuring device for measuring a flow rate of fluid by measuring a fluid pressure on a upstream side and a downstream side of a throttle mechanism provided between piping members by using a pressure sensor, and more particularly to manufacturing a semiconductor. The present invention relates to an apparatus that is preferably used by being installed in a line for sending various chemicals, cleaning liquids, various gas fluids, etc. to an apparatus, an FPD manufacturing apparatus, a solar cell manufacturing apparatus, and the like.

従来のこの種の圧力センサを利用した流量測定装置(以下、差圧式流量計とも言う)には、特許文献1に示すように、測定対象となる流体が流れるメインの配管から圧力センサに圧力を導くための導管部が設けられている。この導管部は、特許文献1に示すように、メイン配管から分岐させたものであり、例えば小孔や細管で形成されている。また特許文献2には、圧力センサとして水晶円板を利用したものが開示されている。この文献では水晶円板は、圧力が面板部に垂直に作用するように構成されており、メイン配管から水晶円板に至るまでに短距離ではあるが導管部が形成されている。   In a conventional flow measurement device using this type of pressure sensor (hereinafter also referred to as a differential pressure type flow meter), as shown in Patent Document 1, pressure is applied to the pressure sensor from a main pipe through which a fluid to be measured flows. A conduit for guiding is provided. As shown in Patent Document 1, this conduit portion is branched from the main piping, and is formed of, for example, a small hole or a thin tube. Japanese Patent Application Laid-Open No. H10-228667 discloses a pressure sensor using a quartz disk. In this document, the quartz disk is configured so that the pressure acts perpendicularly to the face plate part, and a conduit part is formed from the main pipe to the quartz disk, although it is a short distance.

特開2004−226144JP 2004-226144 A 特開2002−54959JP2002-54959

しかしながら、例えば粘性の高い液体の場合は導管部が詰まる恐れがある。また、粘性が低い流体にしても、前記導管部に付着物が発生したり、その付着物がはがれて下流に流れ、コンタミの原因になったりする。このコンタミは、半導体プロセス等では大きな悪影響を及ぼす。さらに、一般的に差圧式流量計の場合は、ベルヌーイの定理からも明らかなように、低流量での測定精度が劣化する。   However, for example, in the case of a highly viscous liquid, the conduit portion may be clogged. Further, even if the fluid has a low viscosity, deposits are generated in the conduit portion, or the deposits are peeled off and flow downstream to cause contamination. This contamination has a great adverse effect in semiconductor processes and the like. Furthermore, in general, in the case of a differential pressure type flow meter, as is clear from Bernoulli's theorem, the measurement accuracy at a low flow rate deteriorates.

もちろん、差圧式流量計以外にも、例えば超音波式流量計や電磁式流量計などがある。しかし、超音波式流量計では、構造上、細管・屈曲・オリフィス等を設けることによる泡影響を受けるであるとか、接続配管径とセンサ部分の配管径が異なることから滞留コンタミが発生するであるとか、粘性流体ではその流速分布が測定誤差の原因になるといった不具合があるし、また電磁式流量計では、流体に導電性が必要であるとか細管でのセンサ構造が難しいといった不具合がある。   Of course, in addition to the differential pressure type flow meter, there are, for example, an ultrasonic type flow meter and an electromagnetic flow meter. However, in the ultrasonic flowmeter, due to the structure, it is affected by bubbles due to the provision of narrow tubes, bends, orifices, etc., or because the connecting pipe diameter and the pipe diameter of the sensor part are different, stagnant contamination occurs. For viscous fluids, there is a problem that the flow velocity distribution causes measurement errors, and for an electromagnetic flow meter, there is a problem that the fluid needs to be electrically conductive or the sensor structure in a thin tube is difficult.

そこで本発明は、流体の圧力を前記配管部材の壁体を通じて測定できる構成とすることによって、導管部そのものを排除し、該導管部が存在することに起因する不具合を抜本的に解決することをその主たる所期課題としたものである。
また、本発明は、水晶板の配置に独特の工夫を凝らすことによって、配管部材が細管の場合でも無理なく圧力測定でき、低流量での測定精度を向上できるようにすることなどを副次的な課題としたものである。
In view of this, the present invention eliminates the conduit portion itself by using a configuration in which the pressure of the fluid can be measured through the wall of the piping member, and drastically solves the problems caused by the presence of the conduit portion. This is the main intended issue.
In addition, the present invention has a secondary feature in that the pressure can be measured without difficulty even when the piping member is a thin tube by improving the arrangement of the quartz plate, and the measurement accuracy at a low flow rate can be improved. It was made a difficult problem.

すなわち、本発明に係る流量測定装置は、内部を流量測定の対象となる流体が流れる配管部材と、前記配管部材の間に設けられた絞り機構と、前記絞り機構の上流側及び下流側に設けられて前記流体の圧力を測定する一対の圧力センサとを備え、各圧力センサによる測定圧力に基づいて前記流体の流量を測定するものであって、前記配管部材における外壁の所要箇所に外面側が凹んだ薄肉部分を設け、前記流体の圧力変動による前記薄肉部分の弾性変形によって突没する突没部を、前記絞り機構の上流側及び下流側に形成するとともに、前記突没部の外表面に圧力センサの感圧面を接触させていることを特徴とする。   That is, the flow measurement device according to the present invention includes a piping member through which a fluid to be measured for flow flows, a throttle mechanism provided between the piping members, and an upstream side and a downstream side of the throttle mechanism. And a pair of pressure sensors for measuring the pressure of the fluid, and the flow rate of the fluid is measured based on the pressure measured by each pressure sensor, and the outer surface side is recessed at a required portion of the outer wall of the piping member. A thin portion is provided, and projecting and projecting portions that project and retract by elastic deformation of the thin portion due to pressure fluctuation of the fluid are formed on the upstream side and the downstream side of the throttle mechanism, and pressure is applied to the outer surface of the projecting portion. The pressure-sensitive surface of the sensor is in contact.

このようなものであれば、圧力センサに圧力を導くための導管部が完全に不要になり、また、圧力を伝達する突没部が、配管部材外壁の外側を凹ませた薄肉部分によって形成されることから、配管部材の内面の凹凸を完全になくすことができるので、流体の滞留を防止することができる。さらに、その流体の滞留に起因する泡・圧力損失・コンタミの発生等も防止できる。加えて、圧力センサを配管部材の外側に配置できることから、着脱を容易にでき、メンテナンスの簡便性等も向上させることができるし、小型化も可能になる。   In such a case, the conduit part for guiding the pressure to the pressure sensor is completely unnecessary, and the projecting / recessing part for transmitting the pressure is formed by a thin part in which the outside of the outer wall of the piping member is recessed. Therefore, the unevenness on the inner surface of the piping member can be completely eliminated, so that the retention of fluid can be prevented. Furthermore, generation of bubbles, pressure loss, contamination, and the like due to the stagnation of the fluid can be prevented. In addition, since the pressure sensor can be disposed outside the piping member, it can be easily attached and detached, the convenience of maintenance can be improved, and the size can be reduced.

水晶板(圧電素子)を利用した圧力センサの場合、前記特許文献2にも示されているように、一般的には、水晶板の面板部が圧力方向に垂直となるように配置するところ、これを縦にする、すなわち、水晶板の端縁を感圧面とするとともに、水晶板を前記突没部の表面にほぼ垂直な姿勢で配置し、前記突没部からの押圧力が水晶板の端縁に作用するように構成しておけば、配管部材が細管の場合でも無理なく圧力測定でき、低流量域での分解能を向上させることが可能となる。   In the case of a pressure sensor using a crystal plate (piezoelectric element), as shown in Patent Document 2, generally, the face plate portion of the crystal plate is arranged so as to be perpendicular to the pressure direction. This is made vertical, i.e., the edge of the quartz plate is used as a pressure-sensitive surface, and the quartz plate is arranged in a posture substantially perpendicular to the surface of the protruding and recessed portion, and the pressing force from the protruding and recessed portion is If it is configured to act on the edge, even if the piping member is a thin tube, pressure can be measured without difficulty, and the resolution in a low flow rate region can be improved.

より具体的には、前記水晶板の面板部が流体の流れ方向と平行になるように、前記圧力センサを配管部材に取り付けているものが好ましい。受圧面積が大きくなって、圧力伝達効率を向上させることができるからである。   More specifically, it is preferable that the pressure sensor is attached to the piping member so that the face plate portion of the crystal plate is parallel to the fluid flow direction. This is because the pressure receiving area is increased and the pressure transmission efficiency can be improved.

前記突没部を簡単な加工で形成できる具体的態様としては、前記配管部材の外壁に周回する有底溝を設け、その有底溝の底部が前記突没部として機能するようにしたものを挙げることができる。   As a specific aspect in which the protruding and recessed portion can be formed by simple processing, a bottomed groove is provided around the outer wall of the piping member, and the bottom of the bottomed groove functions as the protruding and recessed portion. Can be mentioned.

また、かかる構成において水晶板を簡単な構成で好適に保持するためには、前記有底溝及びその前後の配管部材の周囲に密着固定された外殻体を設けておき、該外殻体の表面から前記有底溝に至る貫通孔を形成するとともに、該貫通孔に前記水晶板を収容保持させているものが好ましい。   Further, in order to suitably hold the crystal plate with a simple configuration in such a configuration, an outer shell body that is tightly fixed around the bottomed groove and the piping members before and after the bottomed groove is provided. It is preferable that a through-hole extending from the surface to the bottomed groove is formed and the quartz plate is accommodated and held in the through-hole.

突没部の他の具体的態様としては、前記配管部材の外壁に、外向きに開口する環状の有底溝を設け、その有底溝の底部に前記薄肉部分を形成することによって、前記有底溝で囲まれた外壁部分を、前記突没部として機能させているものを挙げることができる。このようなものであれば、突没部における感圧面が接触する部位は、他の外壁同様の厚肉部分となるため、感圧面による突没部のたわみや、接触部位における突没部の破損を回避することができる。   As another specific aspect of the protruding and recessed portion, an annular bottomed groove that opens outward is provided on the outer wall of the piping member, and the thin-walled portion is formed at the bottom of the bottomed groove. The thing which makes the outer wall part enclosed by the bottom groove function as the said protrusion part can be mentioned. If this is the case, the part where the pressure-sensitive surface is in contact with the protruding part will be a thick part similar to other outer walls, so the deflection of the protruding part due to the pressure-sensitive surface and the damage of the protruding part at the contact part will be Can be avoided.

簡単に製造できるとともに、構造の一体化が図れる好ましい態様としては、前記配管部材が樹脂製または金属製であり、前記絞り機構が配管部材と同一素材で一体連続的に設けられたものを挙げることができる。配管部材の一部を押圧したり熱を与えるなどして変形させ、絞り機構を簡単に形成することができるからである。   As a preferable aspect that can be easily manufactured and the structure can be integrated, the piping member is made of resin or metal, and the throttle mechanism is the same material as the piping member and is continuously provided integrally. Can do. This is because a throttle mechanism can be easily formed by deforming part of the piping member by pressing or applying heat.

また、本発明は、絞り機構を省略することで流体圧力測定装置としても応用できる。このようなものであれば、圧力をコンタミフリーな状態を保って測定することが可能となる。   The present invention can also be applied as a fluid pressure measuring device by omitting the throttle mechanism. With such a configuration, it is possible to measure the pressure while maintaining a contamination-free state.

このように構成した本発明によれば、圧力センサに圧力を導くための導管部が不要になり、また、圧力を伝達する突没部が、配管部材外壁の外側を凹ませた薄肉部分によって形成されることから、配管部材の内面の凹凸をなくすことができるので、流体の滞留を防止することができる。さらに、その流体の滞留に起因するコンタミの発生等も防止できる。加えて、圧力センサを配管部材の外側に配置できることから、着脱が容易にでき、メンテナンス性等も向上させることができる。   According to the present invention configured as described above, the conduit portion for guiding the pressure to the pressure sensor is not necessary, and the projecting and recessed portion for transmitting the pressure is formed by a thin portion in which the outside of the outer wall of the piping member is recessed. Therefore, the unevenness of the inner surface of the piping member can be eliminated, so that the retention of fluid can be prevented. Furthermore, it is possible to prevent the occurrence of contamination due to the retention of the fluid. In addition, since the pressure sensor can be arranged outside the piping member, it can be easily attached and detached, and maintainability and the like can be improved.

本発明の第1実施形態に係る流量測定装置の内部構造を示す縦断面図。The longitudinal cross-sectional view which shows the internal structure of the flow volume measuring apparatus which concerns on 1st Embodiment of this invention. 同実施形態における流量測定装置の全体斜視図。The whole perspective view of the flow measuring device in the embodiment. 同実施形態における流量測定装置の圧力センサの内部を示す正面図。The front view which shows the inside of the pressure sensor of the flow volume measuring apparatus in the embodiment. 同実施形態における配管部材及び絞り機構を示す平面図。The top view which shows the piping member and throttle mechanism in the embodiment. 同実施形態における突没部を示す部分拡大図。The elements on larger scale which show the protrusion part in the same embodiment. 図5におけるA−A線断面図。AA sectional view taken on the line in FIG. 同実施形態における圧力センサの流量特性を示すグラフ。The graph which shows the flow volume characteristic of the pressure sensor in the embodiment. 本発明の第2同実施形態における流量測定装置の内部構造を示す縦断面図。The longitudinal cross-sectional view which shows the internal structure of the flow volume measuring apparatus in 2nd Embodiment of this invention. 図8におけるA−A線端面図。FIG. 9 is an end view taken along line AA in FIG. 8.

以下に、本発明の一実施形態を、図面を参照して説明する。   An embodiment of the present invention will be described below with reference to the drawings.

<第1実施形態>
本実施形態に係る流量測定装置100は、図1、図2にその全体を概略的に示すように、内部を流量測定の対象となる流体が流れる配管部材1と、前記配管部材1の間に設けられた絞り機構3と、前記絞り機構3の上流側及び下流側に設けられて前記流体の圧力を測定する一対の圧力センサ2と、各圧力センサ2による測定圧力を受信するとともにその測定圧力に基づいて前記流体の流量を算出する情報処理手段5とを具備した、いわゆる差圧式のものである。
<First Embodiment>
As shown schematically in FIG. 1 and FIG. 2, the flow rate measuring device 100 according to the present embodiment is disposed between a piping member 1 through which a fluid to be measured for flow flows and the piping member 1. The throttle mechanism 3 provided, a pair of pressure sensors 2 provided on the upstream side and the downstream side of the throttle mechanism 3 for measuring the pressure of the fluid, and the pressures measured by the pressure sensors 2 and the measured pressures Is a so-called differential pressure type apparatus including an information processing means 5 for calculating the flow rate of the fluid based on the above.

各部を詳述すると、前記配管部材1は、図1等に示すように、例えば断面が円形の樹脂(例えばPFA)製チューブであり、その内径は等しく、かつ、その外壁11の厚みも、後述する薄肉部分11aを除けば等しく構成されている。   Specifically, as shown in FIG. 1 and the like, the piping member 1 is a resin (for example, PFA) tube having a circular cross section, the inner diameter thereof is equal, and the thickness of the outer wall 11 is also described later. Except for the thin-walled portion 11a.

絞り機構3は、図1、図4に示すように、配管部材1と同一の素材を用いたチューブ状のものであり、具体的には、その中央部を最小内径にしてあって、この中央部から徐々にその内径を増大させて両端部に滑らかに至るような形状をなす。両端部の内径は前記配管部材1の内径と合致させてあり、この両端部を、その上流側及び下流側の配管部材1の端部と一体連続的に接続している。   As shown in FIGS. 1 and 4, the throttle mechanism 3 is a tube-shaped member using the same material as the piping member 1. Specifically, the center portion has a minimum inner diameter, and this center The inner diameter is gradually increased from the part to form a shape that reaches both ends smoothly. The inner diameters of both end portions are matched with the inner diameter of the piping member 1, and both end portions are integrally and continuously connected to the end portions of the upstream and downstream piping members 1.

圧力センサ2は、図7、図8に示すように、水晶板21と、その筐体22に支持させた水晶板21とを具備するものであり、水晶板21に作用する外圧によってその発振周波数が変化することから、水晶板21の発振信号を、圧力信号として出力するタイプのものである。   As shown in FIGS. 7 and 8, the pressure sensor 2 includes a crystal plate 21 and a crystal plate 21 supported by the casing 22, and an oscillation frequency is generated by an external pressure acting on the crystal plate 21. Therefore, the oscillation signal of the quartz plate 21 is output as a pressure signal.

各部を説明すると、筐体22は、平面視、概略長円状をなすもので、本実施形態では、この筐体22を2つの圧力センサ2で共用するようにしている。もちろん、筐体22を分離しても構わない。しかしてこの筐体22には、底壁22a及びこの底壁22aから起立する側周壁22bによって囲繞して一面を開口させた収容室22cが設けてあり、後述する水晶板21はこの収容室22c内に配置されている。   Explaining each part, the housing 22 has a substantially oval shape in plan view. In the present embodiment, the housing 22 is shared by the two pressure sensors 2. Of course, the housing 22 may be separated. The casing 22 is provided with a storage chamber 22c that is surrounded by a bottom wall 22a and a side peripheral wall 22b that stands up from the bottom wall 22a and is open on one side. Is placed inside.

水晶板21は、特に図3に示すように、例えば、オリエンテーションフラット部(以下オリフラ部21aとも言う)を有する等厚円板状をなすもので、その表裏面にはそれぞれ電極板23が添接してある。そして、前記オリフラ部21aを、前記収容室22cの底壁22aに取り付けた保持台25に固着して、底壁22aからこの水晶板21が起立するとともに、水晶板21の先端感圧面21b(オリフラ部21aの対向部位)が、収容室22cの開口部P(図1に示す)に臨むように構成してある。   As shown in FIG. 3 in particular, the quartz plate 21 has, for example, an equal-thick disc shape having an orientation flat portion (hereinafter also referred to as an orientation flat portion 21a), and electrode plates 23 are attached to the front and back surfaces, respectively. It is. Then, the orientation flat portion 21a is fixed to a holding base 25 attached to the bottom wall 22a of the housing chamber 22c, and the quartz plate 21 rises from the bottom wall 22a, and the tip pressure-sensitive surface 21b (orientation flat) of the quartz plate 21 is fixed. The part 21a is opposed to the opening P (shown in FIG. 1) of the storage chamber 22c.

また、この水晶板21は、その各側縁部を、底壁22aから起立させた一対のスリット付き弾性支持体24によっても支持させている。この弾性支持体24は金属等の導電性材料からなるもので、縦に延びるスリット(図示しない)で、水晶板21と電極板23を一緒に挟圧し、リード線としての機能をも営むようにしてある。このような構成によって、この水晶板21は、感圧面である前記先端を押圧された場合に、縦方向(輪郭方向)にはその押圧力がそのまま伝わり圧縮変形して撓むが、前後方向や横方向には移動しないように設定してある。   The quartz plate 21 is also supported at its side edges by a pair of elastic supports 24 with slits that are erected from the bottom wall 22a. The elastic support 24 is made of a conductive material such as a metal, and is configured to hold a crystal plate 21 and an electrode plate 23 together by a vertically extending slit (not shown) and to also function as a lead wire. . With such a configuration, when the tip which is a pressure-sensitive surface is pressed, the quartz plate 21 is transmitted in the vertical direction (contour direction) as it is, and is compressed and deformed to bend. It is set not to move in the horizontal direction.

しかしてこの実施形態では、図1、図4〜図6に示すように、絞り機構3の上流側及び下流側における配管部材1の外壁11に、外向きに開口する環状をなす有底溝4をそれぞれ設けている。この有底溝4は、配管部材1の長手方向に延びる長円状をなすもので、当然のことながら、有底溝4の底部における外壁11の厚みは、他の外壁11の厚みに比べ、薄肉となる。しかしてこの薄肉部分11aは、他の外壁11に比べて弾性変形しやすいため、有底溝4で囲まれた領域は、薄肉部分11aの弾性変形によって、流体の圧力増大時には突出するとともに圧力減少時には没入する突没部6として機能することとなる。そして、この突没部6の表面に、前記圧力センサ2の感圧面、すなわち、水晶板21の先端感圧面が接触するように構成している。   However, in this embodiment, as shown in FIGS. 1 and 4 to 6, a bottomed groove 4 having an annular shape that opens outwardly on the outer wall 11 of the piping member 1 on the upstream side and the downstream side of the throttle mechanism 3. Are provided. The bottomed groove 4 has an oval shape extending in the longitudinal direction of the piping member 1. Naturally, the thickness of the outer wall 11 at the bottom of the bottomed groove 4 is larger than the thickness of the other outer walls 11. Become thin. However, since the thin portion 11a is more easily elastically deformed than the other outer walls 11, the region surrounded by the bottomed groove 4 protrudes and decreases in pressure due to the elastic deformation of the thin portion 11a. It will function as the sunk portion 6 that sometimes immerses. And it is comprised so that the pressure sensitive surface of the said pressure sensor 2, ie, the front-end | tip pressure sensitive surface of the quartz plate 21, may contact the surface of this protrusion part 6. FIG.

より具体的には、図1に示すように、筐体22内に前記配管部材1及び絞り機構3を貫通させて固定することで、水晶板21の先端感圧面が突没部6の外表面に接触するようにし、流体の圧力を、突没部6を介して圧力センサ2が検知できる構成にしている。このとき、水晶板21の面板部は、流体の流れ方向、すなわち配管部材1の長手方向と平行となり、また、収容室22cにおける側周壁22bの先端は、突没部6の周囲における配管部材1の外壁11に密着して、収容室22cが気密空間となる。気密空間となった収容室22cには、乾燥させた窒素ガス等の不活性ガスを充填しておけば、寿命や測定精度等の観点から好ましいものとなる。
なお、図1中における符号8は、保持台25を進退移動させ、水晶板21の突没部6に対する押圧力の初期値(オフセット)を調整するためのねじ送り機構である。
More specifically, as shown in FIG. 1, the pressure-sensitive surface of the crystal plate 21 is fixed to the outer surface of the protrusion 6 by passing the piping member 1 and the throttle mechanism 3 through the housing 22 and fixing them. The pressure sensor 2 can detect the pressure of the fluid via the protrusions 6. At this time, the face plate portion of the crystal plate 21 is parallel to the fluid flow direction, that is, the longitudinal direction of the piping member 1, and the tip of the side peripheral wall 22 b in the accommodation chamber 22 c is the piping member 1 around the protruding portion 6. In close contact with the outer wall 11, the accommodation chamber 22 c becomes an airtight space. It is preferable from the viewpoints of life, measurement accuracy, etc., to fill the accommodating chamber 22c, which has become an airtight space, with an inert gas such as dried nitrogen gas.
Reference numeral 8 in FIG. 1 denotes a screw feed mechanism for adjusting the initial value (offset) of the pressing force with respect to the projecting portion 6 of the crystal plate 21 by moving the holding base 25 forward and backward.

情報処理手段5は、CPUやメモリ、カウンタなどを具備した電気回路であり、圧力センサ2からの発振信号を受信してその周波数をカウンタなどで測定し、その周波数から圧力を算出するものである。本実施形態の圧力センサ2は、圧力と周波数との相関が、表1及び図7に示すように、一次関数となり、しかもその再現性が極めて良いため、周波数から精度良く圧力を算出することができる。ここでは一次関数を表す近似式はy=6.650x+8.589であった。つまり、測定周波数を、圧力として取り扱うことができる。
The information processing means 5 is an electric circuit including a CPU, a memory, a counter, and the like. The information processing means 5 receives an oscillation signal from the pressure sensor 2, measures its frequency with a counter, and calculates a pressure from the frequency. . In the pressure sensor 2 of the present embodiment, the correlation between the pressure and the frequency is a linear function as shown in Table 1 and FIG. 7, and the reproducibility is very good. Therefore, the pressure can be accurately calculated from the frequency. it can. Here, the approximate expression representing the linear function is y = 6.650x + 8.589. That is, the measurement frequency can be handled as pressure.

しかして、この情報処理手段5が流量を算出する手順を説明すると、各圧力センサ2の発振信号の周波数をそれぞれ、f(上流側)、f(下流側)とした場合、上流側の測定圧力P及び下流側の測定圧力Pは、それぞれ
=a・f+b
=a・f+b
と表すことができる。ここで、a、bはそれぞれ実験等で予め定めた定数である。
したがって、差圧ΔPは
ΔP=P−P=a・(fu−fd)=a・Δf
Thus, the procedure by which the information processing means 5 calculates the flow rate will be described. When the frequencies of the oscillation signals of the pressure sensors 2 are f u (upstream side) and f d (downstream side), respectively, The measurement pressure P u and the measurement pressure P d on the downstream side are respectively P u = a · f u + b
P d = a · f d + b
It can be expressed as. Here, a and b are constants determined in advance by experiments or the like.
Therefore, the differential pressure ΔP is expressed as follows: ΔP = P u −P d = a · (fu−fd) = a · Δf

ところで、流量Qの二乗値は、ΔPに比例するから、
Q=c・√(ΔP)=k√(Δf)
となる。ここで、cは実験等で予め定めた定数であり、kはa及びcの乗算値である。
By the way, since the square value of the flow rate Q is proportional to ΔP,
Q = c · √ (ΔP) = k√ (Δf)
It becomes. Here, c is a constant determined in advance by experiment or the like, and k is a multiplication value of a and c.

このことから、この情報処理手段5は、周波数差Δfの平方根に、実験で定めた係数kを乗算することで、流量Qを算出する。   Therefore, the information processing means 5 calculates the flow rate Q by multiplying the square root of the frequency difference Δf by a coefficient k determined by experiments.

なお、各圧力センサ2の器差については、この情報処理手段5におけるカウンタで補正するようにしている。   The instrumental difference of each pressure sensor 2 is corrected by a counter in the information processing means 5.

<第2実施形態>
この実施形態に係る流量測定装置100Aは、図8にその全体を概略的に示すように、内部を流量測定の対象となる流体が流れる上流側及び下流側の配管部材1Aと、前記配管部材1Aの間に設けられた絞り機構3Aと、前記各配管部材1Aに設けられて前記流体の圧力を測定する一対の圧力センサ2Aと、各圧力センサ2Aによる測定圧力を受信するとともにその測定圧力に基づいて前記流体の流量を算出する情報処理手段5Aとを具備した、いわゆる差圧式のものである。
<Second Embodiment>
As schematically shown in FIG. 8 as a whole, the flow measuring device 100A according to this embodiment includes an upstream side and a downstream side piping member 1A through which a fluid to be subjected to flow rate measurement flows, and the piping member 1A. 3A, a pair of pressure sensors 2A provided on each piping member 1A for measuring the pressure of the fluid, and receiving pressures measured by the pressure sensors 2A and based on the measured pressures. It is a so-called differential pressure type equipped with information processing means 5A for calculating the flow rate of the fluid.

各部を詳述する。前記配管部材1Aは、図8に示すように、例えば断面が円形の樹脂(例えばPFA)製チューブであり、その内径は等しく、かつ、その外壁11Aの厚みも、後述する薄肉部分11aAを除けば等しく構成されている。   Each part will be described in detail. As shown in FIG. 8, the piping member 1A is, for example, a resin (for example, PFA) tube having a circular cross section, the inner diameter thereof is equal, and the outer wall 11A has a thickness except for a thin portion 11aA described later. It is structured equally.

絞り機構3Aは、図8に示すように、ブロック体形状、より具体的には直方体形状をなすものであり、内部に絞り機能を担う流路31Aが貫通させてある。そして、この絞り機構3Aの両端部に前記各配管部材1Aの端部が差し込まれて、配管部材1Aと前記流路31Aとが直列に接続されるように構成してある。前記流路3Aは、その中央部を最小内径とし、この中央部から徐々にその内径を増大させて両端部に滑らかに至るような形状をなすものであり、その両端部の内径を前記配管部材1の内径と合致させて、該流路31Aその上流側及び下流側の配管部材1Aとが滑らかに連続するように構成してある。   As shown in FIG. 8, the restricting mechanism 3A has a block shape, more specifically, a rectangular parallelepiped shape, and a flow path 31A having a restricting function is passed through the inside. And the edge part of each said piping member 1A is inserted in the both ends of this aperture mechanism 3A, and it is comprised so that the piping member 1A and the said flow path 31A may be connected in series. The flow path 3A has a shape in which the central portion has a minimum inner diameter, the inner diameter gradually increases from the central portion, and reaches both ends smoothly. The flow path 31A is configured to be smoothly continuous with the upstream and downstream piping members 1A.

圧力センサ2Aは、図8、図9に示すように、水晶板21Aと、その水晶板21Aを支持する支持体22Aとを具備するものであり、水晶板21Aに作用する外圧によってその発振周波数が変化することから、水晶板21Aの発振信号を、圧力信号として出力するタイプのものである。   As shown in FIGS. 8 and 9, the pressure sensor 2A includes a quartz plate 21A and a support 22A that supports the quartz plate 21A, and the oscillation frequency is increased by an external pressure acting on the quartz plate 21A. Since it changes, it is the type which outputs the oscillation signal of the crystal plate 21A as a pressure signal.

支持体22Aは、水晶板21Aの左右側縁部を支持する側縁支持部22aAと、水晶板21Aの基端部を支持する基端支持部22bAとからなるもので、この基端支持部22bAに、水晶板21Aからの電気信号を取り出す電気回路基板PAが取り付けてある。   The support body 22A includes a side edge support portion 22aA that supports the left and right side edge portions of the crystal plate 21A, and a base end support portion 22bA that supports the base end portion of the crystal plate 21A, and this base end support portion 22bA. Further, an electric circuit board PA for taking out an electric signal from the crystal plate 21A is attached.

水晶板21Aは、第1実施形態と同様なものであるため、ここでの説明は省略する。   Since the crystal plate 21A is the same as that of the first embodiment, description thereof is omitted here.

しかしてこの実施形態では、図8、図9に示すように、絞り機構3Aの上流側及び下流側における配管部材外壁11Aに、周方向に周回する有底溝4Aをそれぞれ設けている。この有底溝4Aは、配管部材1Aを1周する一定幅のもので、当然のことながら、有底溝4Aの底部における外壁11Aの厚みは、他の外壁11Aの厚みに比べ、薄肉となる。しかしてこの薄肉部分11aAは、他の外壁11Aに比べて弾性変形しやすいことから、この実施形態では、該薄肉部分11aAの一部領域が、流体の圧力増大時には突出するとともに圧力減少時には没入する突没部6Aとして機能するように構成している。そして、この突没部6Aの表面に、後述するスペーサ8Aを介して前記圧力センサ2Aの感圧面、すなわち、水晶板21Aの先端感圧面を接触させている。   In this embodiment, as shown in FIGS. 8 and 9, bottomed grooves 4 </ b> A that circulate in the circumferential direction are provided in the piping member outer wall 11 </ b> A on the upstream side and the downstream side of the throttle mechanism 3 </ b> A, respectively. The bottomed groove 4A has a constant width that goes around the piping member 1A. As a matter of course, the thickness of the outer wall 11A at the bottom of the bottomed groove 4A is thinner than the thickness of the other outer wall 11A. . However, since the thin portion 11aA is more easily elastically deformed than the other outer wall 11A, in this embodiment, a partial region of the thin portion 11aA protrudes when the pressure of the fluid increases and immerses when the pressure decreases. It is comprised so that it may function as the protrusion part 6A. Then, the pressure sensitive surface of the pressure sensor 2A, that is, the tip pressure sensitive surface of the crystal plate 21A is brought into contact with the surface of the protruding portion 6A via a spacer 8A described later.

より具体的には、図8、図9に示すように、前記有底溝4A及びその前後の配管部材1Aの周囲にブロック体状をなす外殻体7Aを密着固定し、その外殻体7Aの表面から前記有底溝4Aの一部に至る矩形状の貫通孔7aAを形成するとともに、その貫通孔7aAに前記水晶板21Aを含む圧力センサ2A及び前記スペーサ8Aを収容保持させている。   More specifically, as shown in FIGS. 8 and 9, an outer shell body 7A having a block shape is tightly fixed around the bottomed groove 4A and the piping member 1A before and after the bottomed groove 4A, and the outer shell body 7A is fixed. A rectangular through hole 7aA extending from the surface of the groove to a part of the bottomed groove 4A is formed, and the pressure sensor 2A including the crystal plate 21A and the spacer 8A are accommodated and held in the through hole 7aA.

詳述すれば、外殻体7Aは、その横断面輪郭形状が、前記絞り機構3Aの横断面輪郭形状と等しいものであり、この外殻体7Aと絞り機構3Aとが連続して長尺棒状をなすように構成してある。またこの外殻体7Aは、長手方向に沿って縦に2分割可能なもので、分割した各半割体71A、72Aを組み合わせることによって配管部材1Aの周囲を覆うことができるようにしてある。   More specifically, the outer shell body 7A has a cross-sectional contour shape equal to that of the throttle mechanism 3A, and the outer shell body 7A and the throttle mechanism 3A are continuously elongated. It is comprised so that it may make. The outer shell body 7A can be divided vertically into two along the longitudinal direction, and the periphery of the piping member 1A can be covered by combining the divided halves 71A and 72A.

スペーサ8Aは、その底面が有底溝4Aの曲率に合わせて湾曲するように構成されたブロック体状をなすもので、前記貫通孔7aAによって露出された有底溝4Aの一部分である突没部6Aの外表面に接するように該貫通孔7aAに嵌め込まれている。また、このスペーサ8Aは、貫通孔7aA内において突没部6Aの突没動作に合わせて上下動のみ可能に配設されている。   The spacer 8A has a block body shape whose bottom surface is curved in accordance with the curvature of the bottomed groove 4A, and is a protruding portion that is a part of the bottomed groove 4A exposed by the through hole 7aA. The through hole 7aA is fitted so as to be in contact with the outer surface of 6A. Further, the spacer 8A is disposed in the through hole 7aA so as to be movable only in the vertical direction in accordance with the projecting and retracting operation of the projecting and recessed portion 6A.

そして前記水晶板21Aの先端感圧面を、このスペーサ8Aの外表面に接触するように配置することによって、流体の圧力を、突没部6A、スペーサ8Aを介して圧力センサ2Aが検知できる構成にしている。なお、水晶板21Aは、前記第1実施形態同様、その面板部が、流体の流れ方向、すなわち配管部材1Aの長手方向と平行となるように配置している。   The pressure sensor 2A can detect the pressure of the fluid via the projecting part 6A and the spacer 8A by arranging the pressure-sensitive surface of the quartz plate 21A so as to contact the outer surface of the spacer 8A. ing. As in the first embodiment, the crystal plate 21A is arranged so that its face plate portion is parallel to the fluid flow direction, that is, the longitudinal direction of the piping member 1A.

情報処理手段5Aの構造や情報処理手段5Aによる流量算出方法については、前記第1実施形態と同様であるため、ここでの記載は省略する。   Since the structure of the information processing means 5A and the flow rate calculation method by the information processing means 5A are the same as those in the first embodiment, description thereof is omitted here.

なお、本発明は前記実施形態に限られるものではない。
例えば、圧力センサは、絞り機構の上流及び下流に必ずしも必要なものではなく、例えば上流側または下流側の圧力が、真空や定圧力源に接続されているなどして既知の場合は、既知の圧力側の圧力センサやそれを保持するための貫通孔あるいは突没部等は不要となる。
The present invention is not limited to the above embodiment.
For example, the pressure sensor is not necessarily required upstream and downstream of the throttle mechanism. For example, when the upstream or downstream pressure is known, for example, connected to a vacuum or a constant pressure source, There is no need for a pressure sensor on the pressure side, or a through-hole or a projecting portion for holding the pressure sensor.

また、絞り機構を設けず、配管部材と単一の圧力センサを用いて、内部を流れる流体の圧力を測定する流体圧力測定装置を構成してもよい。このように本発明は、コンタミフリーな状態を保って圧力測定することが可能な流体圧力測定装置としても応用できる。   Moreover, you may comprise the fluid pressure measuring device which measures the pressure of the fluid which flows through the inside using a piping member and a single pressure sensor, without providing a throttle mechanism. Thus, the present invention can also be applied as a fluid pressure measuring device capable of measuring pressure while maintaining a contamination-free state.

さらに、第1実施形態における圧力センサ2であるが、例えば収容室22cの開口を薄膜部材で予め密閉し、収容室22cを予め気密空間にしておいてもよい。すなわち、収容室22cを形成する壁体の一部を変形可能な金属等の薄膜部材で構成し、該薄膜部材の表面を感圧面として設定するとともに、水晶板21を、前記気密空間内において前記感圧面とほぼ垂直な姿勢で前記薄膜部材の内面に接するように配置しても構わない。このようにすれば、圧力センサ2単体で予め組み立ててしまうことが可能になる。なお、この場合は、薄膜部材の表面と突没部6の表面とを貼り付ければよい。   Furthermore, although it is the pressure sensor 2 in 1st Embodiment, the opening of the storage chamber 22c may be sealed beforehand with a thin film member, for example, and the storage chamber 22c may be made into airtight space beforehand. That is, a part of the wall forming the storage chamber 22c is made of a thin film member such as a deformable metal, the surface of the thin film member is set as a pressure-sensitive surface, and the crystal plate 21 is placed in the airtight space in the airtight space. You may arrange | position so that it may contact | connect the inner surface of the said thin film member with the attitude | position substantially perpendicular | vertical to a pressure-sensitive surface. In this way, the pressure sensor 2 alone can be assembled in advance. In this case, the surface of the thin film member and the surface of the protrusion 6 may be attached.

また、突没部は、例えば配管部材の外壁の一定領域を薄肉部分11aにして、その薄肉部分そのものが突没部として機能するようにしてもよい。   Further, for example, the protruding portion may be configured such that a certain region of the outer wall of the piping member is a thin portion 11a, and the thin portion itself functions as a protruding portion.

また、圧力センサとして、水晶板に限らず、圧電素子を用いたものや、その他の方式のものを用いて構わない。   Further, the pressure sensor is not limited to a quartz plate, and a pressure sensor using a piezoelectric element or another type may be used.

その他、本発明は、前述した実施形態や変形実施形態の一部又は全部を適宜組み合わせてもよく、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it is needless to say that the present invention may be combined with some or all of the above-described embodiments and modified embodiments as appropriate, and various modifications are possible without departing from the spirit of the present invention.

100、100A・・・流量測定装置
1、1A・・・配管部材
11、11A・・・外壁
11a、11aA・・・薄肉部分
2、2A・・・圧力センサ
21、21A・・・水晶板
3、3A・・・絞り機構
4、4A・・・有底溝
6、6A・・・突没部
7A・・・外殻体
DESCRIPTION OF SYMBOLS 100, 100A ... Flow volume measuring apparatus 1, 1A ... Piping member 11, 11A ... Outer wall 11a, 11aA ... Thin part 2, 2A ... Pressure sensor 21, 21A ... Quartz plate 3, 3A: Drawing mechanism 4, 4A ... Bottomed groove 6, 6A ... Projection 7A ... Outer shell

Claims (7)

内部を流量測定の対象となる流体が流れる配管部材と、前記配管部材の間に設けられた絞り機構と、前記絞り機構の上流側及び下流側に設けられて前記流体の圧力を測定する一対の圧力センサとを備え、各圧力センサによる測定圧力に基づいて前記流体の流量を測定する流量測定装置であって、
前記配管部材における圧力センサの配置部位に外面側が凹んだ薄肉部分を設けて、前記流体の圧力変動による前記薄肉部分の弾性変形によって径方向に突没する突没部を形成するとともに、該突没部の外表面に前記圧力センサの感圧面を接触させていることを特徴とする流量測定装置。
A pipe member through which a fluid whose flow rate is to be measured flows, a throttle mechanism provided between the pipe members, and a pair of pressure sensors provided on the upstream side and the downstream side of the throttle mechanism to measure the pressure of the fluid. A flow rate measuring device for measuring a flow rate of the fluid based on a pressure measured by each pressure sensor,
The pipe member is provided with a thin portion having a concave outer surface at a position where the pressure sensor is disposed, and a projecting portion that projects in a radial direction due to elastic deformation of the thin portion due to pressure fluctuation of the fluid is formed. A flow rate measuring device, wherein the pressure sensitive surface of the pressure sensor is brought into contact with the outer surface of the part.
前記圧力センサが、水晶板の端縁を感圧面とするとともに、前記水晶板の発振周波数の変化で前記感圧面に作用している圧力を検知するものであって、
前記水晶板を前記突没部の表面にほぼ垂直な姿勢で配置し、前記突没部からの押圧力が水晶板の端縁に作用するように構成している請求項1記載の流量測定装置。
The pressure sensor detects the pressure acting on the pressure-sensitive surface by changing the oscillation frequency of the crystal plate while using the edge of the crystal plate as a pressure-sensitive surface,
The flow rate measuring device according to claim 1, wherein the quartz plate is arranged in a posture substantially perpendicular to the surface of the projecting portion, and a pressing force from the projecting portion acts on an edge of the crystal plate. .
前記水晶板の面板部が流体の流れ方向と平行になるように、前記圧力センサを配管部材に取り付けている請求項1又は2記載の流量測定装置。   The flow rate measuring device according to claim 1 or 2, wherein the pressure sensor is attached to a piping member so that a face plate portion of the crystal plate is parallel to a fluid flow direction. 前記配管部材の外壁に、周回する有底溝を設け、その有底溝の底部が前記突没部として機能するように構成している請求項1、2又は3記載の流量測定装置。   The flow rate measuring device according to claim 1, 2 or 3, wherein a bottomed groove that circulates is provided on an outer wall of the piping member, and a bottom portion of the bottomed groove functions as the protruding and recessed portion. 前記有底溝及びその前後の配管部材の周囲に密着固定された外殻体を具備し、該外殻体の表面から前記有底溝に至る貫通孔を形成するとともに、該貫通孔に前記水晶板を収容保持させている請求項4記載の流量測定装置。   An outer shell body that is tightly fixed around the bottomed groove and the pipe members before and after the bottomed groove is formed, and a through hole that extends from the surface of the outer shell body to the bottomed groove is formed, and the quartz crystal is formed in the through hole. The flow rate measuring device according to claim 4, wherein the plate is accommodated and held. 前記絞り機構が配管部材と同一素材で一体連続的に設けられたものである請求項1、2、3、4又は5記載の流量測定装置。   The flow rate measuring device according to claim 1, 2, 3, 4, or 5, wherein the throttle mechanism is integrally and continuously provided with the same material as the piping member. 内部を流量測定の対象となる流体が流れる配管部材と、前記流体の圧力を測定する圧力センサとを備えた流体圧力測定装置であって、
前記配管部材における外壁の所要箇所に外面側が凹んだ薄肉部分を設けて、前記流体の圧力変動による前記薄肉部分の弾性変形によって突没する突没部を形成するとともに、該突没部の外表面に前記圧力センサの感圧面を接触させていることを特徴とする流体圧力測定装置。
A fluid pressure measuring device comprising a piping member through which a fluid whose flow is to be measured flows, and a pressure sensor for measuring the pressure of the fluid,
The pipe member is provided with a thin-walled portion whose outer surface side is recessed at a required portion of the outer wall to form a projecting and projecting portion that projects by elastic deformation of the thin-walled portion due to pressure fluctuations of the fluid, A fluid pressure measuring device, wherein a pressure sensitive surface of the pressure sensor is in contact with the fluid pressure sensor.
JP2009131032A 2009-05-29 2009-05-29 Flow rate measuring instrument and fluid pressure measuring instrument Pending JP2010276533A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009131032A JP2010276533A (en) 2009-05-29 2009-05-29 Flow rate measuring instrument and fluid pressure measuring instrument
KR1020117024305A KR101305775B1 (en) 2009-05-29 2010-03-19 Flow rate measuring device and fluid pressure measuring device
PCT/JP2010/054869 WO2010137392A1 (en) 2009-05-29 2010-03-19 Flow rate measuring device and fluid pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009131032A JP2010276533A (en) 2009-05-29 2009-05-29 Flow rate measuring instrument and fluid pressure measuring instrument

Publications (1)

Publication Number Publication Date
JP2010276533A true JP2010276533A (en) 2010-12-09

Family

ID=43222515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009131032A Pending JP2010276533A (en) 2009-05-29 2009-05-29 Flow rate measuring instrument and fluid pressure measuring instrument

Country Status (3)

Country Link
JP (1) JP2010276533A (en)
KR (1) KR101305775B1 (en)
WO (1) WO2010137392A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179715A (en) * 2017-04-11 2018-11-15 北陸電気工業株式会社 Pulse pressure detection device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458358B1 (en) * 2010-11-29 2017-09-27 Corning Incorporated In-line contactless pressure sensors and methods of measuring pressure
EP3063506B1 (en) 2013-10-30 2024-03-06 Repligen Corporation Fluid monitoring device with disposable inner liner with sensor integration
US10215597B2 (en) 2014-01-17 2019-02-26 Alphinity, Llc Fluid monitoring assembly with sensor functionality
DE102017012067A1 (en) * 2017-12-29 2019-07-04 Endress+Hauser Flowtec Ag Pipe for a transducer, transducer with such a tube and thus formed measuring system
KR102252038B1 (en) 2019-06-21 2021-05-14 세메스 주식회사 Apparatus for calculating injection quantity of fluid and stocker system including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274828A (en) * 1963-08-27 1966-09-27 Charles F Pulvari Force sensor
US4175243A (en) * 1977-11-17 1979-11-20 Corbett James P Temperature compensated oscillating crystal force transducer systems
JP2000510575A (en) * 1996-02-15 2000-08-15 エヌティー インターナショナル インコーポレーテッド Flow meter in corrosive fluid with non-polluting body
JP2002340716A (en) * 2001-04-25 2002-11-27 Oertli-Instrumente Ag Pressure measuring system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274828A (en) * 1963-08-27 1966-09-27 Charles F Pulvari Force sensor
US4175243A (en) * 1977-11-17 1979-11-20 Corbett James P Temperature compensated oscillating crystal force transducer systems
JP2000510575A (en) * 1996-02-15 2000-08-15 エヌティー インターナショナル インコーポレーテッド Flow meter in corrosive fluid with non-polluting body
JP2002340716A (en) * 2001-04-25 2002-11-27 Oertli-Instrumente Ag Pressure measuring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179715A (en) * 2017-04-11 2018-11-15 北陸電気工業株式会社 Pulse pressure detection device

Also Published As

Publication number Publication date
KR101305775B1 (en) 2013-09-06
KR20120011011A (en) 2012-02-06
WO2010137392A1 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
WO2010137392A1 (en) Flow rate measuring device and fluid pressure measuring device
JP5594541B2 (en) Pressure detector
US8919208B2 (en) Ultrasonic flowmeter apparatus having a first and a second housing part with grooves for clamping a resilient conduit
US7549332B2 (en) Flow sensor and throttle structure
TWI778034B (en) Pressure sensor
KR20130095608A (en) Fluid measurement sensor attachment structure
US20090199633A1 (en) Flow sensor and mass flow controller using the same
JP4158980B2 (en) Multi vortex flowmeter
JP2012233872A (en) Semiconductor pressure sensor and manufacturing method thereof
US10627271B2 (en) Hydraulic system for ultrasonic flow measurement using reflective acoustic path approach
JP2010066177A (en) Flowmeter and flow control device
JP6663314B2 (en) Pressure sensor
JP7203302B2 (en) ultrasonic flow meter
JP5634636B1 (en) Ultrasonic flow meter
JP2009150671A (en) Mass flowmeter
US20210231473A1 (en) Differential pressure type flowmeter
JP2012181062A (en) Force detector housing case and force measuring instrument
WO2017122496A1 (en) Pressure sensor
TW201518692A (en) Method of manufacturing a coriolis mass flow rate sensor from a polymeric material
JP2013142539A (en) Mass flowmeter
KR101885854B1 (en) Thermal flow rate sensor with the membrane breakage prevention structure and the method of manufacturing of thereof
US20220236128A1 (en) Pressure sensor components having microfluidic channels
JP2019082346A (en) Thermal flowmeter
JP2910764B1 (en) Capacitive sensor and fluidic flow meter using the same
WO2010137391A1 (en) Fluid pressure sensor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219