JP2010126679A - Gelatinous material - Google Patents

Gelatinous material Download PDF

Info

Publication number
JP2010126679A
JP2010126679A JP2008304632A JP2008304632A JP2010126679A JP 2010126679 A JP2010126679 A JP 2010126679A JP 2008304632 A JP2008304632 A JP 2008304632A JP 2008304632 A JP2008304632 A JP 2008304632A JP 2010126679 A JP2010126679 A JP 2010126679A
Authority
JP
Japan
Prior art keywords
gel
fiber
polyolefin
substance
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008304632A
Other languages
Japanese (ja)
Inventor
Kunio Tajima
国雄 田島
Toru Kojima
徹 小島
Yuji Nakazawa
裕二 中沢
Shigeru Machida
繁 町田
Kenichi Usui
健一 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tajima Roofing Inc
Original Assignee
Tajima Roofing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tajima Roofing Inc filed Critical Tajima Roofing Inc
Priority to JP2008304632A priority Critical patent/JP2010126679A/en
Publication of JP2010126679A publication Critical patent/JP2010126679A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a completely new gelatinous material useful for construction materials, cosmetics and the like. <P>SOLUTION: The gelatinous material comprises (A) a fibrous material, (B) a polyolefin having ≥120°C melting point peak in DSC and being solid at normal temperature and (C) a liquid material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、新規なゲル状物質に関する。   The present invention relates to a novel gel-like substance.

ゲル状物質に関する技術としては、下記のようなものがある。すなわち、特許文献1ではポリプロピレンがグラフト結合したアルキレンビニルエーテル−マレイン酸イミド共重合体から得られたゲルを提案しており、特許文献2では、少なくとも両親媒性を有するゲル化剤と液体状高イオン伝導性物質を含有するゲル電解質を提案しており、また特許文献3では、無水物単位とアルケニル単位をもつ重合体、架橋剤、マレイン化ポリアルキレン、伸展剤および有機脂肪酸からなる重合体ゲル組成物が提案されているが、本発明はこれら公知のゲル状物質とは全く異なった新しいゲル状物質を提案するものである。   The following are techniques related to gel-like substances. That is, Patent Document 1 proposes a gel obtained from an alkylene vinyl ether-maleic acid imide copolymer grafted with polypropylene, and Patent Document 2 discloses at least an amphiphilic gelling agent and a liquid high ion. A gel electrolyte containing a conductive substance has been proposed, and Patent Document 3 discloses a polymer gel composition comprising a polymer having an anhydride unit and an alkenyl unit, a crosslinking agent, a maleated polyalkylene, a extender, and an organic fatty acid. Although the present invention has been proposed, the present invention proposes a new gel-like substance that is completely different from these known gel-like substances.

特開2000−143723号公報JP 2000-143723 A 特開2001−155541号公報JP 2001-155541 A 特表2003−535946号公報Special table 2003-535946 gazette

本発明の目的は液状物質を極めて少量のポリオレフィン類を用いることよりゲル化させることにあり、建築材料、化粧品等に有用なゲル成分の提供にある。   An object of the present invention is to gel a liquid substance by using an extremely small amount of polyolefin, and to provide a gel component useful for building materials, cosmetics and the like.

本発明の目的は、全く新規なゲル状物質を提供する点にある。最終用途からすれば不純物ともなるゲル化剤が極めて少なくてすむため、シーリング材、接着剤、ペンキ等の建築材料、口紅、ファウンデーション、整髪ゲル等の化粧品のほかゲル技術が必要な文房具、医療分野等に有効なゲル状物質の提供にある。   An object of the present invention is to provide a completely new gel-like substance. The gelling agent, which is also an impurity in the end use, requires very little, so there are sealing materials, adhesives, building materials such as paint, cosmetics such as lipsticks, foundations, hair-styling gels, as well as stationery and medical fields that require gel technology. It is in the provision of a gel-like substance effective for such as.

ゲル骨格となる繊維状成分(A)を液状物質中(C)に分散させ、この分散させた繊維状物質に選択的に吸着が可能なゲル化剤(B)を極少量添加することにより、液状物質全体をゲル化するものである。
即ち、本発明の第1は、(A)繊維状物質、(B)DSCにおける融点ピークが120℃以上である常温固体のポリオレフィンおよび(C)液状物質とを含有することを特徴とするゲル状物質に関する。
本発明の第2は、前記(B)のDSCにおける融点ピークが120℃以上である常温固体のポリオレフィンがポリプロピレンである請求項1記載のゲル状物質に関する。
本発明の第3は、前記(B)のDSCにおける融点ピークが120℃以上である常温固体のポリプロピレンがポリプロピレンの不飽和酸変性物である請求項2記載のゲル状物質に関する。
本発明の第4は、前記(A)の繊維状物質のアスペクト比が20以上のものである請求項1〜3いづれか記載のゲル状物質に関する。
本発明の第5は、前記(A)の繊維状物質が、セラミックスファイバー、ガラス繊維、合成繊維、合成繊維に無機粉体等を練り込み紡糸した繊維、天然繊維などで、繊維表面に不飽和酸変性ポリオレフィンが結合できる官能基がある繊維から選ばれることを特徴とする請求項1〜4いづれか記載のゲル状物質に関する。
By dispersing the fibrous component (A) to be a gel skeleton in the liquid substance (C) and adding a very small amount of the gelling agent (B) that can be selectively adsorbed to the dispersed fibrous substance, The whole liquid substance is gelled.
That is, the first of the present invention comprises (A) a fibrous material, (B) a room temperature solid polyolefin having a melting point peak of 120 ° C. or higher in DSC, and (C) a liquid material. Concerning substances.
The second of the present invention relates to the gel-like substance according to claim 1, wherein the solid-state polyolefin having a melting point peak in DSC (B) of 120 ° C. or higher is polypropylene.
A third aspect of the present invention relates to the gel-like substance according to claim 2, wherein the room temperature solid polypropylene having a melting point peak of 120 ° C. or higher in the DSC of (B) is an unsaturated acid-modified product of polypropylene.
A fourth aspect of the present invention relates to the gel-like material according to any one of claims 1 to 3, wherein the fibrous material (A) has an aspect ratio of 20 or more.
In the fifth aspect of the present invention, the fibrous material (A) is a ceramic fiber, glass fiber, synthetic fiber, a fiber obtained by kneading an inorganic powder or the like into a synthetic fiber, and a natural fiber, and the fiber surface is unsaturated. The gel-like substance according to any one of claims 1 to 4, which is selected from fibers having a functional group to which the acid-modified polyolefin can be bonded.

(A)の繊維状物質としては、セラミックスファイバー、ガラス繊維、合成繊維(アクリル系繊維、ビニロン繊維など)、および各種合成繊維に無機粉末体等を練り込み紡糸した繊維、天然繊維などで、繊維表面に不飽和酸変性ポリオレフィンが結合できる官能基がある繊維であればよい。官能基としては例えば、ヒドロキシ基、アルデヒド基、ケテン基、カルボン酸基、カルボン酸無水物基、カルボン酸エステル基、カルボン酸ハライド基、カルボン酸アミド基、カルボン酸イミド基、カルボン酸塩基、スルホン酸基、スルホン酸エステル基、スルホン酸塩化物基、スルホン酸アミド基、スルホン酸塩基、チオール基、スルフィド基、ジスルフィド基、アミノ基、イミド基、ジイミド基、シアノ基、ニトロ基、ウレア基、イソニトリル基、イソシアネート基、チオイソシアネート基、ホスフィノ基、エポキシ基、オキサゾリン基などがあげられる。これらのうち、好ましくはヒドロキシ基、カルボニル基である。
特にセラミックファイバー、ガラス繊維の他にコットン、ビニロンなど水酸基を有する繊維は、(B)成分のDSCにおける融点ピークが120℃以上の常温固体のポリオレフィンが表面に付着しやすいので好適である。繊維状物質は、長さ10μm以上、好ましくは100μm以上、太さ(直径)0.1μm〜0.2mm、好ましくは0.5μm〜10μmのものが好適であり、この長さ/直径すなわちアスペクト比は20以上であることが好ましい。この繊維状物質(A)は、(B)成分のポリオレフィンと(C)成分の液状物質の総和〔(A)+(B)+(C)〕に対して、0.001〜10重量%、好ましくは0.01〜5重量%の割合で配合することができる。
繊維表面に不飽和酸変性ポリオレフィンが結合できる官能基を付ける方法としては、繊維中に無機粉体、金属粉体、顔料などを混入したり、無機粉体、金属粉体、顔料などをバインダーと混合して、塗料状にして繊維の表面に塗布したりする方法がある。
なお、(A)の繊維状物質は、(B)のポリオレフィンの溶融物と混合することになるので、(B)のポリオレフィン溶融物には溶解しないような融点をもつものであることが必要である。
Examples of the fibrous material (A) include ceramic fibers, glass fibers, synthetic fibers (acrylic fibers, vinylon fibers, etc.), fibers obtained by kneading and spinning inorganic powders in various synthetic fibers, natural fibers, etc. Any fiber having a functional group capable of bonding with an unsaturated acid-modified polyolefin on the surface may be used. Examples of functional groups include hydroxy groups, aldehyde groups, ketene groups, carboxylic acid groups, carboxylic anhydride groups, carboxylic acid ester groups, carboxylic acid halide groups, carboxylic acid amide groups, carboxylic acid imide groups, carboxylic acid groups, and sulfones. Acid group, sulfonic acid ester group, sulfonic acid chloride group, sulfonic acid amide group, sulfonic acid group, thiol group, sulfide group, disulfide group, amino group, imide group, diimide group, cyano group, nitro group, urea group, Examples thereof include an isonitrile group, an isocyanate group, a thioisocyanate group, a phosphino group, an epoxy group, and an oxazoline group. Of these, preferred are a hydroxy group and a carbonyl group.
In particular, fibers having a hydroxyl group such as cotton and vinylon in addition to ceramic fibers and glass fibers are preferable because a room temperature solid polyolefin having a melting point peak in DSC of component (B) of 120 ° C. or more easily adheres to the surface. The fibrous material has a length of 10 μm or more, preferably 100 μm or more, and a thickness (diameter) of 0.1 μm to 0.2 mm, preferably 0.5 μm to 10 μm. Is preferably 20 or more. The fibrous substance (A) is 0.001 to 10% by weight based on the total amount of the polyolefin (B) component and the liquid substance (C) [(A) + (B) + (C)], Preferably it can mix | blend in the ratio of 0.01 to 5 weight%.
As a method of attaching a functional group capable of binding unsaturated acid-modified polyolefin to the fiber surface, inorganic powder, metal powder, pigment, etc. are mixed in the fiber, or inorganic powder, metal powder, pigment, etc. are used as a binder. There is a method of mixing and coating the surface of the fiber in the form of a paint.
Since the fibrous material (A) is mixed with the polyolefin melt (B), it must have a melting point that does not dissolve in the polyolefin melt (B). is there.

(B)成分のDSCにおける融点ピークが120℃以上、好ましくは130℃以上、特に好ましくは140℃以上である常温固体のポリオレフィンとしては、ポリプロピレンおよび変性ポリプロピレン、ポリ1−ブテン、ポリ3−メチル−ブテン、ポリ3,3−ジメチル−1−ブテンなどを挙げることができる。
また(B)成分の常温固体のポリオレフィンの分子量は7,000以上、好ましくは9,000以上、特に好ましくは12,000以上であることが好ましい。特に本発明のポリオレフィンは、例えば特許第3137352号公報〔0012〕に記載されているように、無水マレイン酸、無水イタコン酸、無水シトラコン酸などの無水不飽和酸により変性されたものであることが好ましい。その例としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン/プロピレン共重合体、無水イタコン酸変性ポリプロピレン、無水シトラコン酸変性ポリプロピレンなどを挙げることができる。
ポリオレフィンの無水不飽和酸による変性方法は、ポリオレフィンと所定の酸を150〜200℃で所定時間混合することにより達成できる。
例えば、ポリオレフィンと所定の酸および有機過酸化物を混合し、これを所定の温度に調整したペレタイザーに入れてペレット化する。この間の時間は3〜5分であるが、この間に充分変性反応が進行する。
Component (B) is a room temperature solid polyolefin having a melting point peak in DSC of 120 ° C. or higher, preferably 130 ° C. or higher, particularly preferably 140 ° C. or higher. Polypropylene, modified polypropylene, poly-1-butene, poly-3-methyl- Examples include butene and poly-3,3-dimethyl-1-butene.
The molecular weight of the room temperature solid polyolefin as the component (B) is 7,000 or more, preferably 9,000 or more, particularly preferably 12,000 or more. In particular, the polyolefin of the present invention is modified with an unsaturated acid anhydride such as maleic anhydride, itaconic anhydride, citraconic anhydride, as described in, for example, Japanese Patent No. 3137352 [0012]. preferable. Examples thereof include maleic anhydride modified polyethylene, maleic anhydride modified polypropylene, maleic anhydride modified ethylene / propylene copolymer, itaconic anhydride modified polypropylene, citraconic anhydride modified polypropylene, and the like.
The method of modifying polyolefin with an unsaturated acid anhydride can be achieved by mixing polyolefin and a predetermined acid at 150 to 200 ° C. for a predetermined time.
For example, polyolefin, a predetermined acid and an organic peroxide are mixed, and this is put into a pelletizer adjusted to a predetermined temperature and pelletized. Although the time during this period is 3 to 5 minutes, the denaturation reaction proceeds sufficiently during this time.

本発明に用いることのできるポリオレフィンの1種であるポリプロピレンとその変性物とその物性を以下の表1〜6に列記する。表中の「種類、製造元」の項は「商品名」の項の商品を説明するものである。
Polypropylene, which is one type of polyolefin that can be used in the present invention, modified products thereof, and physical properties thereof are listed in Tables 1 to 6 below. The item “type and manufacturer” in the table explains the product in the item “product name”.

本発明の(C)成分である液状物質としては、ナフテンオイル、パラフィンオイル、アロマオイルなどの石油類のほか、油脂、炭化水素および溶剤等、アスファルト類等である。   The liquid substance which is the component (C) of the present invention includes oils such as naphthenic oil, paraffin oil and aroma oil, as well as fats, hydrocarbons and solvents, asphalts and the like.

(B)成分を(C)成分中でゲル状に保つためには、(C)成分に対して一定濃度以上であることが必要であるが、その濃度は(B)成分の材質および(C)成分の材質により多少の差があるが、(C)成分中に(B)成分が2〜3重量%以上含有されておれば、ゲルを形成する。
しかし、セラミックファイバーを1重量%添加すると、ある組み合わせ条件下ではそのゲル化機構が変わり、極めて少量の(B)成分で(C)成分をゲル化させることが出来る。
具体例を列挙すれば、下記のようになる。
(1)(A)がセラミックファイバー(1重量%)
(B)がアイソタクチックポリプロピレン
(C)がナフテンオイル
の場合、(B)の濃度は1.0重量%以上あればゲルを保つが、(B)の濃度が0.9重量%になるとゾル状になる。
(2)(A)がセラミックファイバー(1重量%)
(B)がマレイン酸変性アイソタクチックポリプロピレン(実施例使用のもの)
(C)がナフテンオイル
の場合、(B)の濃度は0.01重量%以上であればゲルを保つが、(B)の濃度が0.002重量%の場合は完全にゾル状になる。
(3)(A)が市販のセラミックファイバー平均直径2〜3μm、平均長さ2〜3mm
(B)がマレイン酸変性アタクチックポリプロピレン(実施例使用のもの)
(1重量%)
(C)がナフテンオイル
の場合、(A)は0.2重量%存在すればゲル状態であるが、0.1重量%になるとゾルとなる。
(4)(A)のファイバーをホモジナイザーにかけて短繊維化:平均直径2〜3μm、平均長さ(10〜100μm)にすると、(A)が0.8重量%存在すればゲル化するが、0.7重量%ではゾル状となる。
以下の表は、各種繊維を1wt%、マレイン酸変性ポリプロピレンを0.5wt%、ナフテンオイル98.5wt%混合物において用いた場合のゲル化の有無を示すものである。
なお、上記条件のおいてマレイン酸変性ポリプロピレンをポリプロピレンに変えた場合、いずれの評価もゾルとなった。
In order to keep the component (B) in a gel state in the component (C), it is necessary that the concentration is equal to or higher than a certain concentration with respect to the component (C). ) There is a slight difference depending on the material of the component, but if the component (B) is contained in an amount of 2 to 3% by weight or more in the component (C), a gel is formed.
However, when 1% by weight of ceramic fiber is added, the gelation mechanism changes under certain combination conditions, and the (C) component can be gelled with a very small amount of the (B) component.
Specific examples are listed as follows.
(1) (A) is ceramic fiber (1% by weight)
When (B) is isotactic polypropylene (C) is naphthenic oil, the gel is retained if the concentration of (B) is 1.0% by weight or more, but if the concentration of (B) is 0.9% by weight, the sol It becomes a shape.
(2) (A) is ceramic fiber (1% by weight)
(B) is maleic acid-modified isotactic polypropylene (used in Examples)
When (C) is naphthenic oil, the gel is maintained when the concentration of (B) is 0.01% by weight or more, but when the concentration of (B) is 0.002% by weight, it becomes completely sol.
(3) (A) is a commercially available ceramic fiber having an average diameter of 2 to 3 μm and an average length of 2 to 3 mm.
(B) is maleic acid-modified atactic polypropylene (used in Examples)
(1% by weight)
When (C) is naphthenic oil, (A) is in a gel state if present at 0.2% by weight, but becomes sol when it is at 0.1% by weight.
(4) When the fiber of (A) is shortened by applying a homogenizer to an average diameter of 2 to 3 μm and an average length (10 to 100 μm), gelling occurs when 0% by weight of (A) is present. At 7% by weight, it becomes a sol.
The following table shows the presence or absence of gelation when various fibers are used in a mixture of 1 wt%, maleic acid-modified polypropylene at 0.5 wt%, and naphthenic oil at 98.5 wt%.
When the maleic acid-modified polypropylene was changed to polypropylene under the above conditions, all evaluations were sols.

本発明では従来のポリオレフィンによる液状物質のゲル化に比べて、1/100以下という極めて少ない量のポリオレフィンでゲル化が可能となり、このことよりゲル化物質自体が添加したポリオレフィンの影響で脆化することなく、経時的にゲル化物質からポリオレフィンの浸出もなく、コスト的にも安価に提供できる。   In the present invention, gelation is possible with an extremely small amount of polyolefin of 1/100 or less compared to conventional gelation of a liquid material with polyolefin, and this makes the gelation material itself brittle due to the influence of the added polyolefin. Therefore, the polyolefin does not leach out from the gelled material over time, and can be provided at a low cost.

以下に実施例、比較例を挙げて本発明を詳細に説明するが、本発明はこれにより何ら限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(A)成分の繊維状物質としては、平均直径2〜3μm、平均長さ2〜3mmのニチアス(株)製ファインフレックス(登録商標)、バルクファイバー TONMBO(登録商標)No.5100を用いた。
(B)成分としては、it−PP(アイソタクチックポリプロピレン)またはM−it−PP(マレイン酸変性アイソタクチックポリプロピレン)を用いた。
it−PP :三井化学(株)製、J106、MW=3.17×10
M−it−PP:前記it−PPに無水マレイン酸をグラフト重合したもの。
グラフト率0.62%、MW=1.55×10
(C)成分のナフテンオイルは、三共油化(株)製SNH220を用いた。
その他の使用成分
TiO :関東化学(株)製、酸化チタン(IV)ルチル型、
粒径0.1〜0.3μm
o−キシレン:関東化学(株)製、特級グレード
(D)混合物の粘度測定
粘度はブルッフィールド粘度計(DVII+pro)を用い、28番ローター、20rpmの条件で測定した。ホモジナイザーはsilverson L4RTを用いた。
(E)ゲル作成とゲル化点の測定
ゲル試験体の作成は、鋼製容器中で行い、オイルバスに入れた170℃に加温されたナフテンオイル中に所定量のM−it−PPとTiO粉末もしくはセラミックスファイバーを加え、パドル型かくはん翼により60(rpm)で30分撹拌、混合した。ゲル化点及びゲル化の有無の試験は、Anton Paar社製、Rheoplus MCR101による動的粘弾性試験を試料厚み1.0mm、測定周波数は1Hz、5℃/min.の昇温速度の条件で行った。なお、貯蔵弾性率(G’)は、その際に測定された応力と歪みからもとめたPa(パスカル)の値である。ゲル化判定は、−20℃から125℃までのG’の値が100Pa以上の試料とした。100Pa以下の試料はゾルとした。
(F)ゲルの顕微鏡観察試料の調整
100mlのo−キシレン中にセラミックス繊維0.10重量%、M−it−PPもしくはit−PPを0.05重量%加え、140℃に加温して穏やかに10分間撹拌する。完全にポリマーが溶解したことを確認した後、静置状態で徐冷した。キシレン溶液中からセラミックスファイバーを取り出し、スライドグラスに乗せ、25℃で24時間乾燥させ、顕微鏡観測用の試料を得た〔図2(a)(b)参照〕。観察はOLYMPUS BX51偏光顕微鏡にて行った。
As the fibrous material of the component (A), Nichias Co., Ltd. Fineflex (registered trademark), bulk fiber TONMBO (registered trademark) No. 2 having an average diameter of 2 to 3 μm and an average length of 2 to 3 mm are used. 5100 was used.
As the component (B), it-PP (isotactic polypropylene) or M-it-PP (maleic acid-modified isotactic polypropylene) was used.
it-PP: manufactured by Mitsui Chemicals, J106, MW = 3.17 × 10 5
M-it-PP: a product obtained by graft polymerization of maleic anhydride on the it-PP.
Graft rate 0.62%, MW = 1.55 × 10 5
As the naphthenic oil of component (C), Sankyo Oil Chemical Co., Ltd. SNH220 was used.
Other components used TiO 2 : manufactured by Kanto Chemical Co., Inc., titanium (IV) rutile type,
Particle size 0.1-0.3μm
o-Xylene: Viscosity measurement of a special grade (D) mixture manufactured by Kanto Chemical Co., Ltd. Viscosity was measured using a Brufield viscometer (DVII + pro) under the conditions of No. 28 rotor and 20 rpm. Silverson L4RT was used as a homogenizer.
(E) Preparation of gel and measurement of gelation point Preparation of a gel specimen was performed in a steel container, and a predetermined amount of M-it-PP was added to naphthenic oil heated to 170 ° C. in an oil bath. TiO 2 powder or ceramic fiber was added and mixed with a paddle type stirring blade at 60 (rpm) for 30 minutes. The test for the gelation point and the presence or absence of gelation was carried out by a dynamic viscoelasticity test using Rheoplus MCR101 manufactured by Anton Paar, a sample thickness of 1.0 mm, and a measurement frequency of 1 Hz, 5 ° C./min. The temperature was increased under the following conditions. The storage elastic modulus (G ′) is a value of Pa (Pascal) obtained from the stress and strain measured at that time. The gelation determination was performed using a sample having a G ′ value from −20 ° C. to 125 ° C. of 100 Pa or more. The sample of 100 Pa or less was a sol.
(F) Preparation of gel microscopic observation sample In 100 ml of o-xylene, 0.10% by weight of ceramic fiber and 0.05% by weight of M-it-PP or it-PP were added and heated to 140 ° C. to gently For 10 minutes. After confirming that the polymer was completely dissolved, it was gradually cooled in a stationary state. A ceramic fiber was taken out from the xylene solution, placed on a slide glass, and dried at 25 ° C. for 24 hours to obtain a sample for microscopic observation (see FIGS. 2A and 2B). Observation was performed with an OLYMPUS BX51 polarizing microscope.

前記〔0015〕の(1)〜(4)の具体例に基づき、(C)成分のナフテンオイルに、(B)成分のポリマー、it−PPまたはM−it−PPを所定量溶かし、この溶液に(A)成分のセラミック繊維を添加した場合の(A)(B)成分の添加量と系のゾル・ゲル状況を貯蔵弾性率(G’)と溶液温度との関係で求めた。その結果を図1(a)〜図1(d)に示す。   Based on the specific examples of (1) to (4) of [0015], a predetermined amount of the polymer (B) component, it-PP or M-it-PP is dissolved in the naphthenic oil (C), and this solution The amount of component (A) and component (B) and the sol / gel state of the system when the ceramic fiber of component (A) was added to were determined from the relationship between storage elastic modulus (G ′) and solution temperature. The results are shown in FIGS. 1 (a) to 1 (d).

具体例(1)の(A)(B)成分の添加量による貯蔵弾性率(G’)と溶液温度との関係を求めたもの。〇はゲル、△はゾルをそれぞれ示している。The relationship between the storage elastic modulus (G ') depending on the amount of the components (A) and (B) added in the specific example (1) and the solution temperature. ◯ indicates gel, and Δ indicates sol. 具体例(2)の(A)(B)成分の添加量による貯蔵弾性率(G’)と溶液温度との関係を求めたもの。〇はゲル、△はゾルをそれぞれ示している。The relationship between the storage elastic modulus (G ') depending on the amount of the components (A) and (B) added in the specific example (2) and the solution temperature. ◯ indicates gel, and Δ indicates sol. 具体例(3)の(A)(B)成分の添加量による貯蔵弾性率(G’)と溶液温度との関係を求めたもの。〇はゲル、△はゾルをそれぞれ示している。The relationship between the storage elastic modulus (G ′) and the solution temperature depending on the added amount of the components (A) and (B) in the specific example (3). ◯ indicates gel, and Δ indicates sol. 具体例(4)の(A)(B)成分の添加量による貯蔵弾性率(G’)と溶液温度との関係を求めたもの。〇はゲル、△はゾルをそれぞれ示している。The relationship between the storage elastic modulus (G ′) and the solution temperature depending on the added amount of the components (A) and (B) in the specific example (4). ◯ indicates gel, and Δ indicates sol. キシレン中でセラミックス繊維表面に付着したマレイン酸変性it−PPの球晶の顕微鏡写真である。It is the microscope picture of the spherulite of maleic acid modification it-PP adhering to the ceramic fiber surface in xylene. 図2(a)と同様な条件でマレイン酸変性it−PPの代わりにit−PPを用いた顕微鏡写真である。It is the microscope picture which used it-PP instead of maleic acid modification it-PP on the conditions similar to Fig.2 (a).

Claims (5)

(A)繊維状物質、(B)DSCにおける融点ピークが120℃以上である常温固体のポリオレフィンおよび(C)液状物質とを含有することを特徴とするゲル状物質。   A gel-like substance comprising: (A) a fibrous substance, (B) a room-temperature solid polyolefin having a melting point peak of 120 ° C. or higher in DSC, and (C) a liquid substance. 前記(B)のDSCにおける融点ピークが120℃以上である常温固体のポリオレフィンがポリプロピレンである請求項1記載のゲル状物質。   The gel-like substance according to claim 1, wherein the solid-state polyolefin having a melting point peak in DSC of (B) of 120 ° C or higher is polypropylene. 前記(B)のDSCにおける融点ピークが120℃以上である常温固体のポリプロピレンがポリプロピレンの不飽和酸変性物である請求項2記載のゲル状物質。   The gel-like substance according to claim 2, wherein the solid-state polypropylene having a melting point peak in DSC of (B) of 120 ° C or higher is an unsaturated acid-modified product of polypropylene. 前記(A)の繊維状物質のアスペクト比が20以上のものである請求項1〜3いづれか記載のゲル状物質。   The gel-like substance according to any one of claims 1 to 3, wherein the fibrous substance (A) has an aspect ratio of 20 or more. 前記(A)の繊維状物質が、セラミックスファイバー、ガラス繊維、合成繊維、合成繊維に無機粉体等を練り込み紡糸した繊維、天然繊維などで、繊維表面に不飽和酸変性ポリオレフィンが結合できる官能基がある繊維から選ばれることを特徴とする請求項1〜4いづれか記載のゲル状物質。   The fibrous material (A) is ceramic fiber, glass fiber, synthetic fiber, fiber obtained by kneading inorganic powder or the like into synthetic fiber, natural fiber, etc., and functionally capable of binding unsaturated acid-modified polyolefin to the fiber surface. The gel-like substance according to any one of claims 1 to 4, wherein the group is selected from fibers having a base.
JP2008304632A 2008-11-28 2008-11-28 Gelatinous material Pending JP2010126679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304632A JP2010126679A (en) 2008-11-28 2008-11-28 Gelatinous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008304632A JP2010126679A (en) 2008-11-28 2008-11-28 Gelatinous material

Publications (1)

Publication Number Publication Date
JP2010126679A true JP2010126679A (en) 2010-06-10

Family

ID=42327284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304632A Pending JP2010126679A (en) 2008-11-28 2008-11-28 Gelatinous material

Country Status (1)

Country Link
JP (1) JP2010126679A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260945A (en) * 1988-08-29 1990-03-01 Matsushita Electric Ind Co Ltd Conductive resin composition
JP2002086617A (en) * 2000-09-19 2002-03-26 Eidai Co Ltd Panel material and method for manufacturing the same
JP2004143276A (en) * 2002-10-24 2004-05-20 Masaru Matsuo Electroconductive and antistatic polymer film and fiber containing carbon nanotube and method for producing the same
JP2004221071A (en) * 2002-12-26 2004-08-05 Showa Denko Kk Carbonaceous material for conductive composition and its usage
JP2004262250A (en) * 2004-05-25 2004-09-24 Nsk Ltd Manufacturing method of oil-containing polymer molded product and product obtained by this method
JP2005054054A (en) * 2003-08-04 2005-03-03 Kansai Electric Power Co Inc:The Olefin-based putty
JP2005320506A (en) * 2004-03-16 2005-11-17 Toray Ind Inc Formulated solution, emulsion or gel product, and manufacturing method therefor
WO2006074809A2 (en) * 2005-01-13 2006-07-20 Cinvention Ag Composite materials containing carbon nanoparticles
JP2006241623A (en) * 2005-03-02 2006-09-14 Umg Abs Ltd Aqueous dispersion and inorganic fiber treated with the same and inorganic-fiber reinforced thermoplastic resin composition comprising the same inorganic fiber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260945A (en) * 1988-08-29 1990-03-01 Matsushita Electric Ind Co Ltd Conductive resin composition
JP2002086617A (en) * 2000-09-19 2002-03-26 Eidai Co Ltd Panel material and method for manufacturing the same
JP2004143276A (en) * 2002-10-24 2004-05-20 Masaru Matsuo Electroconductive and antistatic polymer film and fiber containing carbon nanotube and method for producing the same
JP2004221071A (en) * 2002-12-26 2004-08-05 Showa Denko Kk Carbonaceous material for conductive composition and its usage
JP2005054054A (en) * 2003-08-04 2005-03-03 Kansai Electric Power Co Inc:The Olefin-based putty
JP2005320506A (en) * 2004-03-16 2005-11-17 Toray Ind Inc Formulated solution, emulsion or gel product, and manufacturing method therefor
JP2004262250A (en) * 2004-05-25 2004-09-24 Nsk Ltd Manufacturing method of oil-containing polymer molded product and product obtained by this method
WO2006074809A2 (en) * 2005-01-13 2006-07-20 Cinvention Ag Composite materials containing carbon nanoparticles
JP2006241623A (en) * 2005-03-02 2006-09-14 Umg Abs Ltd Aqueous dispersion and inorganic fiber treated with the same and inorganic-fiber reinforced thermoplastic resin composition comprising the same inorganic fiber

Similar Documents

Publication Publication Date Title
Kedzior et al. Cellulose nanocrystals and methyl cellulose as costabilizers for nanocomposite latexes with double morphology
Wu et al. Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers
Bigg Rheological behavior of highly filled polymer melts
Esrafilzadeh et al. High‐performance multifunctional graphene‐PLGA fibers: Toward biomimetic and conducting 3D scaffolds
O'Connor et al. Dextran hydrogels by crosslinking with amino acid diamines and their viscoelastic properties
Zolali et al. Partial and complete wetting in ultralow interfacial tension multiphase blends with polylactide
JP2011115755A (en) Core-shell particle, and method for manufacturing the same
DeLeo et al. Effect of compatibilizer concentration and weight fraction on model immiscible blends with interfacial crosslinking
Wei et al. In-situ grafting of carboxylic acid terminated poly (methyl methacrylate) onto ethylene-glycidyl methacrylate copolymers: one-pot strategy to compatibilize immiscible poly (vinylidene fluoride)/low density polyethylene blends
CN102971390B (en) Segmented copolymer in adhesive dispersion
US4552909A (en) Thixotropic compositions comprising leather fibers and method for rendering polymeric compositions thixotropic
JP2010126679A (en) Gelatinous material
Ahmadi‐Dehnoei et al. Tuning adhesion performance of an acrylic pressure‐sensitive adhesive using polysilsesquioxane‐acrylic core‐shell nanoparticles
JP2022526956A (en) Epoxide microcapsules with pickering emulsifier
EP3063195B1 (en) Additives made from fatty diamides for nucleophile-sensitive cross-linkable compositions
US11033573B1 (en) Non-ionic coacervates for dry, humid and wet adhesion
JP6525622B2 (en) Core-shell microcapsules
Karkhaneh-Yousefi et al. Interfacial activity of reactive compatibilizers in polymer blends
RU2571762C2 (en) Polymer mixture, possessing flowability limit and its application for obtaining metal-polymer composite materials
La Mantia et al. Compatibilization of blends of polyethylene with a semirigid liquid crystalline polymer by PE‐g‐LCP copolymers
Woods et al. Compatible blends of zein and polyvinylpyrrolidone
Costa et al. Some novel aspects of DNA physical and chemical gels
JP2012082312A (en) Thermoplastic resin water-based dispersion and waterproof film using this
JP2007177105A (en) Adhesive for capturing small creature
Dewasthale et al. Interpenetrating polymers networks derived from silylated soybean oil and water soluble polysiloxanes

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20100521

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20110627

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120828

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108