JP2010116632A - Apparatus and method for producing fine carbon fiber twisted yarn - Google Patents

Apparatus and method for producing fine carbon fiber twisted yarn Download PDF

Info

Publication number
JP2010116632A
JP2010116632A JP2008288595A JP2008288595A JP2010116632A JP 2010116632 A JP2010116632 A JP 2010116632A JP 2008288595 A JP2008288595 A JP 2008288595A JP 2008288595 A JP2008288595 A JP 2008288595A JP 2010116632 A JP2010116632 A JP 2010116632A
Authority
JP
Japan
Prior art keywords
fine carbon
carbon fiber
substrate
twisted yarn
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008288595A
Other languages
Japanese (ja)
Other versions
JP5229732B2 (en
Inventor
Koji Kita
幸司 喜多
Masaki Nishimura
正樹 西村
Tomoyuki Akai
智幸 赤井
Yukihiro Abe
幸浩 阿部
Makoto Horiguchi
眞 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Osaka Prefecture
Toyobo Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Osaka Prefecture
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Osaka Prefecture, Toyobo Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2008288595A priority Critical patent/JP5229732B2/en
Publication of JP2010116632A publication Critical patent/JP2010116632A/en
Application granted granted Critical
Publication of JP5229732B2 publication Critical patent/JP5229732B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for stably and continuously producing a fine carbon fiber twisted yarn having strength suitable for handling. <P>SOLUTION: The apparatus 1 for producing a fine carbon fiber twisted yarn is an apparatus for continuously producing a fine carbon fiber twisted yarn from a fine carbon fiber assembly of a chemical vapor growth on a substrate Z and includes a pulling out means 3 for pulling out a fine carbon fiber from the substrate and forming a fine carbon fiber sheet body, a spray means 5 for spraying an atomized liquid to a fine carbon fiber sheet body pulled out by the pulling out means 3 to form a fine carbon fiber aggregate and a twisting means 4 for twisting a fine carbon fiber aggregate formed by spraying the atomized liquid to form a twisted yarn. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、化学気相成長法によって得られる単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブ等の微細炭素繊維を紡績して微細炭素繊維撚糸を連続的に製造する装置および方法に関する。   The present invention relates to an apparatus and a method for continuously producing fine carbon fiber twisted yarn by spinning fine carbon fibers such as single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes obtained by chemical vapor deposition.

微細炭素繊維は、電気特性、力学特性等に優れており、電界放出型ディスプレイ、導電性フィラー等をはじめ、様々な産業への利用および応用が期待されている。   Fine carbon fibers are excellent in electrical characteristics, mechanical characteristics, and the like, and are expected to be used and applied in various industries such as field emission displays and conductive fillers.

近年、カーボンナノチューブからなる微細炭素繊維およびそれを使ったカーボンナノチューブシートが提案されている(非特許文献1および2)。   In recent years, fine carbon fibers made of carbon nanotubes and carbon nanotube sheets using the same have been proposed (Non-Patent Documents 1 and 2).

非特許文献1においては、化学気相成長法で基板上に高密度・高配向に成長させた微細炭素繊維の集合体から微細炭素繊維撚糸を形成する方法が開示されている。   Non-Patent Document 1 discloses a method of forming fine carbon fiber twisted yarns from an aggregate of fine carbon fibers grown in a high density and high orientation on a substrate by chemical vapor deposition.

非特許文献2においては、化学気相成長法で基板上に高密度・高配向に成長させた微細炭素繊維の集合体から微細炭素繊維シートを形成する方法が提案されている。   Non-Patent Document 2 proposes a method of forming a fine carbon fiber sheet from an aggregate of fine carbon fibers grown at a high density and high orientation on a substrate by chemical vapor deposition.

前記の微細炭素繊維撚糸およびシートは、その既存にない形態から、新たな用途への使用が予想され、種々の産業への応用が期待されている。   The above-mentioned fine carbon fiber twisted yarn and sheet are expected to be used for new applications because of their non-existing forms, and are expected to be applied to various industries.

産業への応用に際しては、上記のような微細炭素繊維撚糸やシートを連続的に、かつ均質に作製して巻き取れることが必須である。非特許文献1では、モーターの回転軸の先に爪楊枝製のスピンドル(錘)を装着し、該スピンドルの先端に複数本の微細炭素繊維を接続した状態で、該スピンドルを回転さながら該スピンドルの先端が微細炭素繊維の集合体基板から離れることで、微細炭素繊維撚糸を製造している。
Zhangら,Science,306,1358-1361,2004 Zhangら,Science,309,1215-1219,2005
In industrial applications, it is essential that the fine carbon fiber twisted yarns and sheets as described above are continuously and uniformly produced and wound. In Non-Patent Document 1, a spindle (weight) made by a toothpick is attached to the tip of a rotating shaft of a motor, and a tip of the spindle is rotated while the spindle is rotated in a state where a plurality of fine carbon fibers are connected to the tip of the spindle. Makes a fine carbon fiber twisted yarn by separating from the aggregate substrate of fine carbon fibers.
Zhang et al., Science, 306, 1358-1361, 2004 Zhang et al., Science, 309, 1215-1219, 2005

しかしながら、上述の非特許文献1あるいは非特許文献2が教える方式を用いて微細炭素繊維撚糸を製造する場合、微細炭素繊維の基板から引き出された微細炭素繊維の繊維が切れたり、製造された微細炭素繊維撚糸の強度が十分ではないという問題があった。また、糸径の制御を行っておらず、糸は不均一であり、巻き取り工程を考慮していないため、均質な微細炭素繊維撚糸を連続的に作製することは不可能であった。   However, when the fine carbon fiber twisted yarn is manufactured using the method taught by the above-mentioned Non-Patent Document 1 or Non-Patent Document 2, the fine carbon fiber fiber drawn from the fine carbon fiber substrate is cut or the fine There was a problem that the strength of the carbon fiber twisted yarn was not sufficient. Moreover, since the yarn diameter was not controlled, the yarn was non-uniform, and the winding process was not taken into consideration, it was impossible to continuously produce a homogeneous fine carbon fiber twisted yarn.

本発明は、上記事情に鑑みなされたものであり、ハンドリングに適した強度を有する微細炭素繊維撚糸を安定的に連続して製造可能な製造装置及び製造方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the manufacturing apparatus and manufacturing method which can manufacture continuously the fine carbon fiber twisted yarn which has the intensity | strength suitable for handling stably.

本発明の上記目的は、基板上に化学気相成長させた微細炭素繊維の集合体から微細炭素繊維の撚糸を連続的に製造する装置であって、前記基板から微細炭素繊維を引き出して微細炭素繊維シート体を形成可能な引出手段と、前記引出手段により引き出された微細炭素繊維シート体に霧状液体を散布して微細炭素繊維凝集体を形成可能な散布手段と、霧状液体を散布して形成された微細炭素繊維凝集体に撚り掛けを施して撚糸を形成する撚掛手段とを備える微細炭素繊維撚糸製造装置により達成される。   The above object of the present invention is an apparatus for continuously producing a fine carbon fiber twisted yarn from an aggregate of fine carbon fibers chemically vapor-deposited on a substrate, wherein the fine carbon fibers are drawn from the substrate to obtain fine carbon fibers. A drawing means capable of forming a fiber sheet body; a spraying means capable of forming a fine carbon fiber aggregate by spraying a mist-like liquid on the fine carbon fiber sheet body drawn by the drawing means; and a mist-like liquid. This is achieved by a fine carbon fiber twisted yarn manufacturing apparatus comprising twisting means for twisting the fine carbon fiber aggregate formed in this way to form a twisted yarn.

また、この微細炭素繊維撚糸製造装置において、前記霧状液体は、易揮発性液体であることが好ましい。   Moreover, in this fine carbon fiber twisted-yarn manufacturing apparatus, it is preferable that the said mist liquid is an easily volatile liquid.

また、前記微細炭素繊維は、カーボンナノチューブであることが好ましい。   The fine carbon fiber is preferably a carbon nanotube.

また、前記基板から引き出された微細炭素繊維シート体を挟持する挟持手段を更に備えており、前記挟持手段は、前記基板と前記撚掛手段との間に配置されており、前記散布手段は、前記基板と前記挟持手段との間に配置されていることが好ましい。   Further, it further comprises a clamping means for clamping the fine carbon fiber sheet drawn out from the substrate, the clamping means is disposed between the substrate and the twisting means, and the spreading means, It is preferable that it is disposed between the substrate and the clamping means.

また、前記撚掛手段は、前記基板から引き出された微細炭素繊維シート体の引出方向に沿う回転軸を有し、前記回転軸周りに前記基板から引き出された微細炭素繊維シート体を回転させることにより撚糸を形成する回転体を備えており、前記引出手段は、前記回転体に一体的に取り付けられていることが好ましい。   The twisting means has a rotation axis along the drawing direction of the fine carbon fiber sheet drawn from the substrate, and rotates the fine carbon fiber sheet drawn from the substrate around the rotation axis. It is preferable that a rotating body for forming a twisted yarn is provided, and the drawing means is integrally attached to the rotating body.

また、本発明の上記目的は、基板上に化学気相成長させた微細炭素繊維の集合体から微細炭素繊維の撚糸を連続的に製造する方法であって、前記基板から微細炭素繊維を引き出して微細炭素繊維シート体を形成可能な引出ステップと、前記引出ステップにより引き出された微細炭素繊維シート体に霧状液体を散布して微細炭素繊維凝集体を形成する散布ステップと、霧状液体を散布して形成された微細炭素繊維凝集体に撚り掛けを施して撚糸を形成する撚掛ステップとを備える微細炭素繊維撚糸製造方法により達成される。   Another object of the present invention is a method of continuously producing a fine carbon fiber twisted yarn from an assembly of fine carbon fibers chemically vapor-grown on a substrate, wherein the fine carbon fibers are drawn from the substrate. A drawing step capable of forming a fine carbon fiber sheet body, a spraying step of spraying a mist liquid on the fine carbon fiber sheet body drawn by the drawing step to form a fine carbon fiber aggregate, and spraying the mist liquid This is achieved by a method for producing fine carbon fiber twisted yarn comprising a twisting step of twisting the fine carbon fiber aggregate formed in this manner to form a twisted yarn.

また、本発明の上記目的は、第1基板上及び第2基板上にそれぞれ化学気相成長させた微細炭素繊維の集合体から微細炭素繊維の撚糸を製造する方法であって、前記第1基板から微細炭素繊維を引き出して第1微細炭素繊維シート体を形成可能な第1引出ステップと、前記第2基板から微細炭素繊維を引き出して第2微細炭素繊維シート体を形成可能な第2引出ステップと、前記第1微細炭素繊維シート体及び前記第2微細炭素繊維シート体を重ね合わせて積層シート体を形成する積層ステップと、前記積層シート体に霧状液体を散布して微細炭素繊維凝集積層体を形成する散布ステップと、霧状液体を散布して形成された微細炭素繊維凝集積層体に撚り掛けを施して撚糸を形成する撚掛ステップとを備える微細炭素繊維撚糸製造方法により達成される。   The above-mentioned object of the present invention is a method for producing twisted yarns of fine carbon fibers from an aggregate of fine carbon fibers grown on the first substrate and the second substrate, respectively, by the first substrate. A first drawing step capable of drawing a fine carbon fiber from the first substrate to form a first fine carbon fiber sheet body, and a second drawing step capable of drawing a fine carbon fiber from the second substrate to form a second fine carbon fiber sheet body. A laminating step in which a laminated sheet body is formed by superimposing the first fine carbon fiber sheet body and the second fine carbon fiber sheet body; and a fine carbon fiber agglomerating lamination by spraying a mist liquid on the laminated sheet body Achieved by a fine carbon fiber twisted yarn manufacturing method comprising: a spreading step for forming a body; and a twisting step for twisting a fine carbon fiber agglomerated laminate formed by spraying a mist liquid to form a twisted yarn. Made.

また、この微細炭素繊維撚糸製造方法において、前記積層ステップは、第1微細炭素繊維シート体及び第2微細炭素繊維シート体のいずれか一方を切断する切断ステップを備えていることが好ましい。   Moreover, in this fine carbon fiber twisted-yarn manufacturing method, it is preferable that the said lamination | stacking step is equipped with the cutting step which cut | disconnects any one of a 1st fine carbon fiber sheet body and a 2nd fine carbon fiber sheet body.

本発明によれば、ハンドリングに適した強度を有する微細炭素繊維撚糸を安定的に連続して製造可能な製造装置及び製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing apparatus and manufacturing method which can manufacture the fine carbon fiber twisted yarn which has the intensity | strength suitable for handling stably continuously can be provided.

以下、本発明に係る微細炭素繊維撚糸製造装置について添付図面を参照して説明する。図1は、本発明に係る微細炭素繊維撚糸製造装置の基本構成を示す概略構成図である。本発明に係る微細炭素繊維撚糸製造装置1は、基板上に化学気相成長させた微細炭素繊維の集合体から微細炭素繊維の撚糸を連続的に製造する装置であって、図1に示すように、基板固定手段2、引出手段3、撚掛手段4、散布手段5および挟持手段6を備えている。   Hereinafter, a fine carbon fiber twisted yarn manufacturing apparatus according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram showing a basic configuration of a fine carbon fiber twisted yarn manufacturing apparatus according to the present invention. A fine carbon fiber twisted yarn production apparatus 1 according to the present invention is an apparatus for continuously producing fine carbon fiber twisted yarn from an aggregate of fine carbon fibers grown on a substrate by chemical vapor deposition, as shown in FIG. The substrate fixing means 2, the drawing means 3, the twisting means 4, the spreading means 5 and the clamping means 6 are provided.

基板固定手段2は、化学気相成長させた微細炭素繊維の集合体が形成された基板Zを固定する固定台であり、例えば、基板Zの一部を挟持することにより当該基板Zを固定している。この基板固定手段2に固定される基板Zに形成される微細炭素繊維は、微細炭素繊維撚糸の原料となる繊維であり、化学気相成長によって得られる、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブ、カーボンファイバー等の気相成長炭素繊維である。また、これら微細炭素繊維の形態は特に限定されるものではないが、容易に微細炭素繊維撚糸を形成しやすいことなどの理由から、好ましくは、基板上に高密度かつ高配向で形成されている単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブが望ましい。なお、高密度かつ高配向とは、カーボンナノチューブ同士が隣接しながら基板平面に対して垂直に林立(垂直配向)していることをいい、具体的には、基板上のカーボンナノチューブの嵩密度が5mg/cm3程度以上(好ましくは10〜500mg/cm3程度)であることを示す。このように化学気相成長によって高密度で垂直配向させた微細炭素繊維の集合体は、カーボンナノチューブフォレスト(carbon nanotube forest)、或いは、カーボンナノチューブの垂直配向構造体等と呼ばれる。化学気相成長によって形成される微細炭素繊維の長さは、平均で10μm以上であればよく、好ましくは、20μm以上である。微細炭素繊維の平均直径は限定的ではなく、通常0.4〜500nm、好ましくは0.7〜200nm、より好ましくは0.7〜150nm程度である。また、微細炭素繊維の内、カーボンナノチューブの層数は、1層以上であればよく、好ましくは1〜40層である。   The substrate fixing means 2 is a fixing base for fixing the substrate Z on which an aggregate of fine carbon fibers grown by chemical vapor deposition is formed. For example, the substrate Z is fixed by sandwiching a part of the substrate Z. ing. The fine carbon fiber formed on the substrate Z fixed to the substrate fixing means 2 is a fiber that is a raw material of the fine carbon fiber twisted yarn, and is obtained by chemical vapor deposition, single-walled carbon nanotube, double-walled carbon nanotube, Vapor growth carbon fibers such as multi-walled carbon nanotubes and carbon fibers. Further, the form of these fine carbon fibers is not particularly limited, but is preferably formed with high density and high orientation on the substrate for reasons such as easy formation of fine carbon fiber twisted yarn. Single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes are desirable. Note that high density and high orientation means that the carbon nanotubes are adjacent to each other but are perpendicular to the substrate plane (vertical orientation). Specifically, the bulk density of the carbon nanotubes on the substrate is It is about 5 mg / cm3 or more (preferably about 10 to 500 mg / cm3). Such an assembly of fine carbon fibers that are vertically aligned at a high density by chemical vapor deposition is called a carbon nanotube forest or a vertically aligned structure of carbon nanotubes. The length of the fine carbon fiber formed by chemical vapor deposition may be 10 μm or more on average, and preferably 20 μm or more. The average diameter of the fine carbon fibers is not limited, and is usually about 0.4 to 500 nm, preferably about 0.7 to 200 nm, and more preferably about 0.7 to 150 nm. In addition, the number of carbon nanotubes in the fine carbon fiber may be one or more, and preferably 1 to 40.

本発明に用いる微細炭素繊維は、例えば、アセチレン等の炭化水素ガスを用いて化学気相成長法を行うことにより基板上に高密度かつ高配向の状態で製造できる。   The fine carbon fiber used in the present invention can be produced in a highly dense and highly oriented state on a substrate by performing chemical vapor deposition using a hydrocarbon gas such as acetylene.

基板Zは限定的でなく、プラスチック基板、ガラス基板、Si基板、鉄、銅等の金属及びこれらの合金等の金属基板を用いることができるが、本発明では、Si基板に鉄を蒸着又はスパッタリング等することにより、鉄を被膜させた鉄皮膜Si基板を用いることが好ましい。これにより、高密度かつ高配向で形成されたカーボンナノチューブ集合体を製造できる。   The substrate Z is not limited, and a metal substrate such as a plastic substrate, a glass substrate, an Si substrate, iron, copper, or an alloy thereof can be used. In the present invention, iron is deposited or sputtered on the Si substrate. It is preferable to use an iron-coated Si substrate coated with iron. Thereby, a carbon nanotube aggregate formed with high density and high orientation can be produced.

気相成長時の温度はいずれの温度で行ってもよいが、特に高温で行うことが好ましく、例えば600〜1000℃程度で行うことが好ましい。また、気相成長時の圧力は限定的でないが、通常、大気圧で行えばよい。   The temperature at the time of vapor phase growth may be any temperature, but it is particularly preferably high temperature, for example, about 600 to 1000 ° C. Further, the pressure during the vapor phase growth is not limited, but usually it may be performed at atmospheric pressure.

ガスは、炭素を含んでいればよいが、通常はアセチレン等の炭化水素を使用すればよい。なお、ヘリウム等の希ガスをキャリアガスとして用いてもよい。   The gas only needs to contain carbon, but usually a hydrocarbon such as acetylene may be used. A rare gas such as helium may be used as the carrier gas.

反応時間は、製造条件により応じて適宜設定できるが、例えば、3分〜2時間程度とすればよい。   Although reaction time can be suitably set according to manufacturing conditions, it should just be about 3 minutes-2 hours, for example.

上記のようにして基板上に形成された微細炭素繊維であるカーボンナノチューブの集合体の写真を図2に示す。図2は、倍率300倍のSEM写真であり、微細炭素繊維が基板Z上に高密度で垂直配向している様子が示されている。基板上に高密度・高配向で成長したカーボンナノチューブの一部を把持してカーボンナノチューブの集合体から引き離すことにより、カーボンナノチューブは基板上から連続的に引き出される。   A photograph of an aggregate of carbon nanotubes, which are fine carbon fibers formed on the substrate as described above, is shown in FIG. FIG. 2 is an SEM photograph at a magnification of 300 times, and shows a state in which fine carbon fibers are vertically aligned at high density on the substrate Z. The carbon nanotubes are continuously pulled out from the substrate by holding a part of the carbon nanotubes grown with high density and high orientation on the substrate and pulling them away from the aggregate of carbon nanotubes.

引出手段3は、基板Zから微細炭素繊維を微細炭素繊維シート体の状態で引き出すための装置であり、本実施形態においては、撚掛手段4により形成される微細炭素繊維撚糸を巻き取る巻き取り装置31により引出手段3を構成している。ここで、微細炭素繊維シート体とは、基板Zに形成された微細炭素繊維の集合体から引き出された微細炭素繊維が一方向に配列して連続的につながり、例えば、幅1μm〜1m、厚さ10nm〜1cmのシート状態を形成しているものをいう。   The drawing means 3 is an apparatus for drawing the fine carbon fibers from the substrate Z in the state of a fine carbon fiber sheet, and in the present embodiment, the winding means for winding the fine carbon fiber twisted yarn formed by the twisting means 4 The device 31 constitutes the extraction means 3. Here, the fine carbon fiber sheet means that the fine carbon fibers drawn from the aggregate of the fine carbon fibers formed on the substrate Z are continuously connected in one direction, for example, a width of 1 μm to 1 m, a thickness This means that a sheet state of 10 nm to 1 cm is formed.

巻き取り装置31は、撚糸が巻回されるボビン311と、ボビン311を回転駆動する駆動モーター(図示せず)とを備えている。ボビン311の回転軸は、基板Zから引き出される微細炭素繊維の引出方向(図中において矢印Aで示す方向)と直交する軸線と平行となるように設定されている。なお、長尺の微細炭素繊維の撚糸を巻き取る為にボビン311をトラバース駆動させることが好ましい。また、巻き取り時の滑りを防止するために、ボビン311の表面に滑り防止加工が施されてもよい。滑り防止加工の方法は限定されるものではなく、例えば、ゴムライニングや樹脂コーティング、なし地、エンボスを施す方法等が挙げられる。   The winding device 31 includes a bobbin 311 around which a twisted yarn is wound, and a drive motor (not shown) that rotationally drives the bobbin 311. The rotation axis of the bobbin 311 is set to be parallel to an axis perpendicular to the drawing direction (direction indicated by arrow A in the drawing) of the fine carbon fiber drawn from the substrate Z. It is preferable to traverse the bobbin 311 in order to wind up the long fine carbon fiber twisted yarn. Moreover, in order to prevent the slip at the time of winding, the surface of the bobbin 311 may be subjected to anti-slip processing. The method of anti-slip processing is not limited, and examples thereof include a rubber lining, a resin coating, a plain fabric, and an embossing method.

撚掛手段4は、基板Zから引き出されたシート状の微細炭素繊維体の引出方向に沿う回転軸を有するリング状の回転体41と、基板Zから引き出された微細炭素繊維を挟持可能な把持装置42と、回転体41を回転軸周りに回転駆動させるモーター(図示せず)とを備えている。把持装置42は、リング状の回転体41の中央部に配設されており、基板Zから引き出された微細炭素繊維を挟持する一対の回転可能なローラー421,421によって構成されている。各ローラー421の回転軸は、基板Zから引き出される微細炭素繊維の引き出し方向に直交する軸線と平行となるように設定されている。このような構成により、基板Zから引き出された微細炭素繊維に撚りを掛けながら撚糸を製造しつつ、製造された撚糸を後方側(引出手段3側)に導くことができる。   The twisting means 4 includes a ring-shaped rotating body 41 having a rotation axis along the drawing direction of the sheet-like fine carbon fiber drawn from the substrate Z, and a grip capable of sandwiching the fine carbon fiber drawn from the substrate Z. An apparatus 42 and a motor (not shown) that drives the rotating body 41 to rotate around the rotation axis are provided. The gripping device 42 is disposed at the center of the ring-shaped rotator 41 and includes a pair of rotatable rollers 421 and 421 that sandwich the fine carbon fiber drawn from the substrate Z. The rotation axis of each roller 421 is set to be parallel to an axis perpendicular to the drawing direction of the fine carbon fiber drawn from the substrate Z. With such a configuration, the produced twisted yarn can be led to the rear side (the drawing means 3 side) while producing the twisted yarn while twisting the fine carbon fiber drawn from the substrate Z.

散布手段5は、引出手段3によって引き出された微細炭素繊維シート体に霧状液体を散布して微細炭素繊維凝集体を形成するための装置であり、例えば、アトマイザーや加湿器、ネブライザー等を挙げることができる。本実施形態では、超音波により霧状液体を生成するネブライザーを採用している。散布手段5により霧状に散布される液体は、速乾性に富むという観点から揮発性の高い液体(易揮発性液体)であることが好ましい。本実施形態においては、易揮発性液体として、エタノールを採用している。なお、霧状に散布される液体は、炭素数が1〜5の低級アルコール(メタノール、エタノール、プロパノール、ブタノール、ペンタノール)の他、例えば、アセトンやジエチルエーテル、クロロホルム、ジクロロメタン、酢酸エチル、テトラヒドロフランおよびそれら混合液、あるいは水溶液であってもよい。   The spraying means 5 is a device for forming a fine carbon fiber aggregate by spraying a mist-like liquid on the fine carbon fiber sheet drawn by the pulling means 3, and examples thereof include an atomizer, a humidifier, and a nebulizer. be able to. In the present embodiment, a nebulizer that generates mist-like liquid by ultrasonic waves is employed. The liquid sprayed in a mist form by the spraying means 5 is preferably a highly volatile liquid (easily volatile liquid) from the viewpoint of rich quick drying. In the present embodiment, ethanol is adopted as the easily volatile liquid. The liquid sprayed in the form of mist is, for example, acetone, diethyl ether, chloroform, dichloromethane, ethyl acetate, tetrahydrofuran in addition to lower alcohols (methanol, ethanol, propanol, butanol, pentanol) having 1 to 5 carbon atoms. And a mixed solution or an aqueous solution thereof.

挟持手段は、引出手段3によって引き出され、散布手段5により易揮発性液体が散布された微細炭素繊維シート体(微細炭素繊維凝集体)を挟持する装置であり、例えば、図1に示すように、微細炭素繊維凝集体を挟んだ上下にそれぞれ配置される一対の回転可能なローラー61,61により構成されている。各ローラー61の回転軸は、基板Zから引き出される微細炭素繊維シート体の引出方向と直行する軸線と平行となるように設定されている。挟持手段6がある方が、糸ゆれしないため、より安定に糸切れせず糸を撚掛手段4へ送ることができる。なお、各ローラー61を回転駆動する駆動モーターを別途設け、一対のローラー61,61が、基板Zから微細炭素繊維を引き出すように構成してもよい。このような構成の場合、挟持手段6である一対のローラーが、引出手段3の機能をも備えることになる。   The sandwiching means is a device for sandwiching the fine carbon fiber sheet body (fine carbon fiber aggregate) drawn by the pulling means 3 and sprayed with the easily volatile liquid by the spraying means 5, for example, as shown in FIG. And a pair of rotatable rollers 61 and 61 disposed above and below the fine carbon fiber aggregates, respectively. The rotation axis of each roller 61 is set to be parallel to an axis that is orthogonal to the drawing direction of the fine carbon fiber sheet drawn from the substrate Z. Since the yarn is not swayed when the holding means 6 is provided, the yarn can be sent to the twisting means 4 more stably without being broken. In addition, a drive motor that rotationally drives each roller 61 may be provided separately, and the pair of rollers 61 and 61 may be configured to draw the fine carbon fiber from the substrate Z. In the case of such a configuration, the pair of rollers as the clamping means 6 also has the function of the drawing means 3.

上記のような構成を有する基板固定手段2、引出手段3、撚掛手段4、散布手段5および挟持手段6は、図1に示すように配置されている。すなわち、基板Zから引き出される微細炭素繊維の引出方向に沿って、上流側(図1の左側)から基板固定手段2、散布手段5、挟持手段6、撚掛手段4、引出手段3の順に配置されており、基板固定手段2に固定された基板Zから引き出された微細炭素繊維は、散布手段5が配置される領域を通過した後、挟持手段6、撚掛手段4、引出手段3の順に移動する。   The substrate fixing means 2, the drawing means 3, the twisting means 4, the spreading means 5 and the clamping means 6 having the above-described configuration are arranged as shown in FIG. 1. That is, the substrate fixing means 2, the spreading means 5, the clamping means 6, the twisting means 4, and the drawing means 3 are arranged in this order from the upstream side (left side in FIG. 1) along the drawing direction of the fine carbon fibers drawn from the substrate Z. The fine carbon fiber drawn from the substrate Z fixed to the substrate fixing means 2 passes through the region where the spraying means 5 is disposed, and then the clamping means 6, the twisting means 4, and the drawing means 3 in this order. Moving.

このように構成された微細炭素繊維撚糸製造装置1を用いて微細炭素繊維の撚糸を連続的に製造する方法について、以下説明する。   A method for continuously producing fine carbon fiber twisted yarn using the fine carbon fiber twisted yarn production apparatus 1 configured as described above will be described below.

最初に、基板Zに形成される微細炭素繊維を引き出して、当該微細炭素繊維を微細炭素繊維撚糸製造装置1にセッティングする方法について説明する。   First, a method for pulling out fine carbon fibers formed on the substrate Z and setting the fine carbon fibers in the fine carbon fiber twisted yarn manufacturing apparatus 1 will be described.

まず、化学気相成長させた微細炭素繊維の集合体が形成された基板Zを基板固定手段2に固定する。   First, the substrate Z on which the aggregate of fine carbon fibers subjected to chemical vapor deposition is formed is fixed to the substrate fixing means 2.

次に、例えば、図3に示す引出具7を用いて、基板Z上に形成される微細炭素繊維の集合体の側面から微細炭素繊維を引き出す。この引出具7は、極細軸状部71を有しており、その素材は、鉄、アルミニウム、ステンレス、プラスチック、木材、ガラス等であり、特に制限されるものではない。引出具7は微細炭素繊維に対して適度な摩擦抵抗を有していれば良く、引出具7に摩擦を生じさせるために、引出具7の表面に、溝の形成および/または、エンボス加工により微細な突起を形成することが望ましい。引出具7の極細軸状部71の直径は基板Z上に成長させられた微細炭素繊維の平均高さに依存して決まる。微細炭素繊維の平均高さの約1/3以下の直径であることが好ましい。微細炭素繊維の約1/3以下の直径であれば、基板Z上の微細炭素繊維の集合体の中で引出具7が1回転した時に極細軸状部71の周りにほぼ1周以上捲きついてくる。高確率で微細炭素繊維を引き出すには1周以上捲きついていることが大事である。刃径0.03mm〜のマイクロドリルが市販されており、これを引出具7に用いることもできる。   Next, for example, the fine carbon fiber is pulled out from the side surface of the aggregate of the fine carbon fibers formed on the substrate Z using the drawing tool 7 shown in FIG. The drawing tool 7 has an ultrathin shaft portion 71, and the material thereof is iron, aluminum, stainless steel, plastic, wood, glass or the like, and is not particularly limited. The drawing tool 7 only needs to have an appropriate friction resistance with respect to the fine carbon fiber, and in order to cause friction to the drawing tool 7, the surface of the drawing tool 7 is formed by forming grooves and / or embossing. It is desirable to form fine protrusions. The diameter of the ultrathin shaft portion 71 of the extraction tool 7 is determined depending on the average height of the fine carbon fibers grown on the substrate Z. The diameter is preferably about 1/3 or less of the average height of the fine carbon fibers. If the diameter of the fine carbon fiber is about 1/3 or less, when the drawing tool 7 makes one turn in the aggregate of fine carbon fibers on the substrate Z, the fine carbon fiber is wound around the extra-fine shaft portion 71 for almost one turn. come. To pull out fine carbon fiber with high probability, it is important to keep it tight for more than one lap. Micro drills having a blade diameter of 0.03 mm or more are commercially available, and can be used for the drawing tool 7.

このような構造を有する引出具7を用いて、基板Z上に形成される微細炭素繊維の集合体の側面から微細炭素繊維を引き出すには、まず、引出具7の極細軸状部71を基板Z上に成長している微細炭素繊維の側面に突き刺して進入させる。この進入深さは0.01mm以上であることが望ましい。引出具7の極細軸状部71を突き刺す高さ位置は基板Z上に成長している微細炭素繊維の平均高さの1/2以下の高さが好ましい。この進入時に引出具7は回転していても、回転が停止していてもよい。引出具7の極細軸状部71が0.01mm以上進入したところで進入を停止させる。この場所に引出具7が留まった状態で引出具7を1秒間〜5分間、1〜1000rpmで回転させて、微細炭素繊維を把持した後、回転を止め、引出具7を後退させて散布手段5が配置される領域を介して、挟持手段6を構成する一対のローラー61,61間を通過させる。その後、撚掛手段4の一対のローラー421,421間を通過させ、引出手段3である巻き取り装置31のボビン311上まで移動させる。ここで、撚掛手段4を高速回転させて引き出した微細炭素繊維に所望の撚りを掛ける。その後、引き出した微細炭素繊維撚糸をボビン311に接触させて、ボビン311を回転させ、微細炭素繊維撚糸をボビン311に固定した後、ボビン311の回転を一旦停止する。そして、挟持手段6のローラー61,61、撚掛手段4のローラー421,421により引き出された微細炭素繊維を挟み込むことにより装置のセッティングが完了する。   In order to pull out the fine carbon fibers from the side surface of the aggregate of fine carbon fibers formed on the substrate Z using the drawing tool 7 having such a structure, first, the ultrafine shaft portion 71 of the drawing tool 7 is attached to the substrate. The fine carbon fiber growing on Z is pierced into the side surface of the fine carbon fiber. The depth of entry is preferably 0.01 mm or more. The height position at which the ultrathin shaft portion 71 of the drawing tool 7 is pierced is preferably a height of 1/2 or less of the average height of the fine carbon fibers growing on the substrate Z. At this time of entry, the drawing tool 7 may be rotating, or the rotation may be stopped. The entry is stopped when the ultrathin shaft portion 71 of the drawing tool 7 has entered 0.01 mm or more. With the drawing tool 7 remaining in this place, the drawing tool 7 is rotated at 1 to 1000 rpm for 1 second to 5 minutes to grip the fine carbon fiber, and then the rotation is stopped, and the drawing tool 7 is moved backward to spraying means. The pair of rollers 61 and 61 constituting the clamping means 6 are passed through the region where 5 is disposed. Then, it passes between the pair of rollers 421 and 421 of the twisting means 4 and moves onto the bobbin 311 of the winding device 31 which is the drawing means 3. Here, a desired twist is applied to the fine carbon fiber drawn by rotating the twisting means 4 at a high speed. Thereafter, the drawn fine carbon fiber twisted yarn is brought into contact with the bobbin 311, the bobbin 311 is rotated, the fine carbon fiber twisted yarn is fixed to the bobbin 311, and then the rotation of the bobbin 311 is temporarily stopped. Then, the setting of the apparatus is completed by sandwiching the fine carbon fibers drawn by the rollers 61 and 61 of the clamping means 6 and the rollers 421 and 421 of the twisting means 4.

次いで、散布手段5、撚掛手段4及び引出手段3を駆動させることにより、微細炭素繊維撚糸の連続紡糸を開始する。撚掛手段4の回転数は、例えば、1〜60000rpmの間で調整できる。回転数が小さすぎると、微細炭素繊維撚糸に印加できる撚り数が少な過ぎることによって、微細炭素繊維撚糸の糸強度が不足してしまうため好ましくない。一方回転数が大き過ぎると、微細炭素繊維からの微細炭素繊維撚糸の引出安定性が低下するため、好ましくない。また、ボビン311および/または、ローラー61、ローラー421の回転数を調整することにより紡糸速度を調整することができる。紡糸速度は、例えば、0.005〜30m/分の間で調整することができる。巻き取り速度が小さ過ぎては生産性が乏しく、実用的でない。一方巻き取り速度が大き過ぎると、微細炭素繊維撚糸に印加できる撚り数が少な過ぎることによって、微細炭素繊維撚糸の糸強度が不足してしまうため好ましくない。   Next, the spinning means 5, the twisting means 4, and the drawing means 3 are driven to start continuous spinning of fine carbon fiber twisted yarn. The rotation speed of the twisting means 4 can be adjusted between 1 and 60000 rpm, for example. If the number of rotations is too small, the number of twists that can be applied to the fine carbon fiber twisted yarn is too small, which is not preferable because the yarn strength of the fine carbon fiber twisted yarn is insufficient. On the other hand, when the rotational speed is too large, the drawing stability of the fine carbon fiber twisted yarn from the fine carbon fiber is lowered, which is not preferable. Further, the spinning speed can be adjusted by adjusting the rotation speed of the bobbin 311 and / or the roller 61 and the roller 421. The spinning speed can be adjusted, for example, between 0.005 and 30 m / min. If the winding speed is too low, productivity is poor and it is not practical. On the other hand, if the winding speed is too high, the number of twists that can be applied to the fine carbon fiber twisted yarn is too small, which is not preferable because the yarn strength of the fine carbon fiber twisted yarn is insufficient.

引出手段3である巻き取り装置31のボビン311が回転することにより、基板Zに形成される微細炭素繊維が引き出される。この引き出された微細炭素繊維には、撚りが形成されておらずシート状の形態を有している。このシート状の微細炭素繊維体(微細炭素繊維シート体)には、散布手段5によって霧状液体が散布されるが、この霧状液体の散布により、微細炭素繊維体を構成する各微細炭素繊維は濡れることにより互いに凝集し、各微細炭素繊維間の間隔が小さくなる。霧状液体の散布量は、0.01〜10ml/分である。   By rotating the bobbin 311 of the winding device 31 that is the drawing means 3, fine carbon fibers formed on the substrate Z are drawn. The drawn fine carbon fiber is not formed with a twist and has a sheet-like form. The sheet-like fine carbon fiber body (fine carbon fiber sheet body) is sprayed with a mist liquid by the spraying means 5, and each fine carbon fiber constituting the fine carbon fiber body by the spraying of the mist liquid. Are agglomerated with each other by wetting, and the interval between the fine carbon fibers is reduced. The amount of sprayed mist liquid is 0.01 to 10 ml / min.

このように各微細炭素繊維間の間隔が小さくなり、微細炭素繊維の密度が高められた微細炭素繊維シート体(微細炭素繊維凝集体)は、挟持手段6を通過した後、撚掛手段4の高速回転作用により所望の撚りが掛けられ、引出手段3である巻き取り装置31のボビン311に巻き取られる。   Thus, after the fine carbon fiber sheet body (fine carbon fiber aggregate) from which the space | interval between each fine carbon fiber became small and the density of the fine carbon fiber was raised passes the clamping means 6, A desired twist is applied by the high-speed rotation action, and the coil is wound around the bobbin 311 of the winding device 31 which is the drawing means 3.

次に、基板Zの交換を行う方法について図4を用いて説明する。基板Zから微細炭素繊維を引き出して連続して撚糸を製造する場合、基板Z上に形成される微細炭素繊維の集合体の量が少なくなり基板Zを交換する必要が生じるが、このような場合には、以下のようにして基板Zを交換する。まず、基板Z上に形成される微細炭素繊維の集合体の量が少なくなった段階で、一旦、微細炭素繊維撚糸製造装置1の駆動を停止する。次に、挟持手段6を操作して、微細炭素繊維を挟んでいる一対のローラーを互いに離隔する方向に移動させる。その後、基板固定手段2に保持されている基板(旧基板Z1)に隣接させて新しい基板を配置し、当該新しい基板(新基板Z2)から微細炭素繊維を引き出す(図4(a))。なお、新基板Z2から引き出された微細炭素繊維もシート状の形態を有している。そして、旧基板Z1から引き出されているシート状の微細炭素繊維体に重ね合わせて積層シート体を形成した後、散布手段5を駆動させて当該積層シート体に霧状液体を散布して積層シート体を凝集させて、微細炭素繊維凝集積層体を形成する。その後、撚掛手段4を駆動させて、新旧それぞれの基板Z1,Z2から引き出された微細炭素繊維が重なっている部分に撚りを掛ける(図4(b))。次いで、旧基板Z1から引き出されている微細炭素繊維を切断し、基板固定手段2から旧基板Z1を取り外して新基板Z2と交換する(図4(c))。そして、挟持手段6を操作して、新基板Z2から引き出された微細炭素繊維を一対のローラーで挟み込んで基板の交換が完了する。基板交換完了後、微細炭素繊維撚糸製造装置1を駆動し新基板Z2を用いた製糸を再開する。このように、旧基板Z1から引き出された微細炭素繊維と新基板Z2から引き出された微細炭素繊維とをつなぎ合わせて製糸することができるので、撚糸の製糸長に制約を受けることはない。   Next, a method for exchanging the substrate Z will be described with reference to FIG. In the case of continuously producing a twisted yarn by pulling out fine carbon fibers from the substrate Z, the amount of fine carbon fiber aggregates formed on the substrate Z is reduced, and the substrate Z needs to be replaced. First, the substrate Z is replaced as follows. First, when the amount of the fine carbon fiber aggregate formed on the substrate Z is reduced, the driving of the fine carbon fiber twisted yarn manufacturing apparatus 1 is once stopped. Next, the sandwiching means 6 is operated to move the pair of rollers sandwiching the fine carbon fibers in a direction away from each other. Thereafter, a new substrate is placed adjacent to the substrate (old substrate Z1) held by the substrate fixing means 2, and fine carbon fibers are drawn from the new substrate (new substrate Z2) (FIG. 4A). The fine carbon fiber drawn from the new substrate Z2 also has a sheet form. And after forming a laminated sheet body on the sheet-like fine carbon fiber body drawn out from the old substrate Z1, the spraying means 5 is driven to spray the mist liquid onto the laminated sheet body. The body is aggregated to form a fine carbon fiber aggregated laminate. Thereafter, the twisting means 4 is driven to twist the portions where the fine carbon fibers drawn from the old and new substrates Z1, Z2 overlap (FIG. 4 (b)). Next, the fine carbon fiber drawn from the old substrate Z1 is cut, and the old substrate Z1 is removed from the substrate fixing means 2 and replaced with the new substrate Z2 (FIG. 4C). Then, the clamping means 6 is operated to sandwich the fine carbon fiber drawn from the new substrate Z2 with a pair of rollers, and the replacement of the substrate is completed. After the substrate replacement is completed, the fine carbon fiber twisted yarn production apparatus 1 is driven to resume the yarn production using the new substrate Z2. As described above, the fine carbon fibers drawn from the old substrate Z1 and the fine carbon fibers drawn from the new substrate Z2 can be joined to produce yarns, so that there is no restriction on the yarn length of the twisted yarn.

本実施形態に係る微細炭素繊維撚糸製造装置1は、撚掛手段4によってシート状の微細炭素繊維体に撚りが掛けられる前段階において、微細炭素繊維体に霧状液体を散布する散布手段5を備えているため、微細炭素繊維体を構成する各微細炭素繊維を互いに凝集させ、微細炭素繊維の密接度を高めることができる。その結果、微細炭素繊維体を構成する各微細炭素繊維間の摩擦抵抗力が向上し、このような微細炭素繊維体に所望の撚り掛けを施し撚糸を形成するため、ハンドリングに適した強度を有する微細炭素繊維撚糸を安定的に連続して製造することができる。   The fine carbon fiber twisted yarn manufacturing apparatus 1 according to the present embodiment includes a spraying means 5 for spraying a mist-like liquid on the fine carbon fiber body in a stage before the sheet-like fine carbon fiber body is twisted by the twisting means 4. Since it has, each fine carbon fiber which comprises a fine carbon fiber body can be aggregated mutually, and the closeness of a fine carbon fiber can be raised. As a result, the frictional resistance between the fine carbon fibers constituting the fine carbon fiber body is improved, and a desired twist is applied to the fine carbon fiber body to form a twisted yarn, so that it has a strength suitable for handling. Fine carbon fiber twisted yarn can be produced stably and continuously.

なお、図5に散布手段5によってエタノールの霧状液体が散布された領域を含む微細炭素繊維体の写真を示す。この写真から、霧状液体が散布された微細炭素繊維体においては、その微細炭素繊維体に浸透した霧状液体が瞬時に揮発することによって、各微細炭素繊維が互いに凝集し密度が高められている様子が分かる。   In addition, the photograph of the fine carbon fiber body containing the area | region where the mist-like liquid of ethanol was sprayed by the spraying means 5 in FIG. From this photograph, in the fine carbon fiber body in which the atomized liquid is dispersed, the atomized liquid that permeates the fine carbon fiber body volatilizes instantaneously, so that the fine carbon fibers are aggregated to increase the density. You can see how they are.

また、散布手段5において霧状に散布される液体として、アルコール等の易揮発性液体を採用しているので、シート状の微細炭素繊維体に散布された霧状の易揮発性液体は、微細炭素繊維体を構成する各微細炭素繊維を互いに凝集させた後、速やかに気化する。したがって、撚掛手段4により撚りが掛けられる段階において、シート状の微細炭素繊維体を迅速に乾燥した状態に戻すことができ、撚り掛け工程において撚糸が切断されるような事態を確実に防止することができる。   Moreover, since the easily volatile liquid such as alcohol is adopted as the liquid sprayed in the spray means 5, the sprayed easily volatile liquid sprayed on the sheet-like fine carbon fiber body is fine. After each fine carbon fiber which comprises a carbon fiber body is aggregated mutually, it vaporizes rapidly. Therefore, the sheet-like fine carbon fiber body can be quickly returned to the dried state in the stage where the twisting means 4 is twisted, and the situation where the twisted yarn is cut in the twisting process is surely prevented. be able to.

また、基板Zから引き出されたシート状の微細炭素繊維体を挟持する挟持手段6が、散布手段5と撚掛手段4との間に配置されているため、散布手段5により霧状液体が散布されて濡れた状態となっている微細炭素繊維体に撚りが掛かることを防止できる。この結果、散布手段5により霧状液体が散布されている微細炭素繊維体が途中で切断されることを確実に防止できる。   Further, since the sandwiching means 6 for sandwiching the sheet-like fine carbon fiber body drawn from the substrate Z is disposed between the spraying means 5 and the twisting means 4, the spraying means 5 sprays the mist liquid. Thus, it is possible to prevent the fine carbon fiber body in a wet state from being twisted. As a result, it is possible to reliably prevent the fine carbon fiber body on which the mist-like liquid is sprayed by the spraying means 5 from being cut along the way.

また、基板Zを交換する場合において、新旧の基板Z1,Z2からそれぞれ引き出されたシート状の微細炭素繊維体を重ね合わせて形成した積層シート体に霧状液体を散布することにより、霧状液体が揮発する際に、各微細炭素繊維体を構成する各微細炭素繊維が凝集すると共に、各微細炭素繊維体が互いに密接に積層させることができる。このように密接に積層された各微細炭素繊維体に撚りを掛けることにより、旧基板Z1から引き出された微細炭素繊維と新基板Z2から引き出された微細炭素繊維とをつなぎ合わせるため、撚糸のつなぎ目部分における糸強度を高めることが可能になる。   Moreover, when replacing | exchanging the board | substrate Z, by spraying a mist-like liquid on the lamination sheet body formed by superposing | stacking the sheet-like fine carbon fiber body each pulled out from the old and new board | substrates Z1 and Z2, a mist-like liquid When volatilizes, the fine carbon fibers constituting the fine carbon fiber bodies aggregate and the fine carbon fiber bodies can be closely stacked. In order to join the fine carbon fiber drawn from the old substrate Z1 and the fine carbon fiber drawn from the new substrate Z2 by twisting the fine carbon fiber bodies closely stacked in this way, It becomes possible to increase the yarn strength in the portion.

以上、本発明に係る微細炭素繊維撚糸製造装置1の一実施形態について説明したが、本発明の具体的な構成は上記実施形態に限定されない。例えば、図6に示すように、基板固定手段2により保持される基板Zと散布手段5との間に、基板Zから引き出された微細炭素繊維シート体が挿通される貫通孔81が形成された保護カバー8を配置するような構成を採用してもよい。このような構成により、散布手段5から散布される霧状液体が、基板Z上の微細炭素繊維の集合体に降り注ぐことを防止して、基板Zから微細炭素繊維を確実に引く出すことができる状態に維持することができる。   As mentioned above, although one Embodiment of the fine carbon fiber twisted-yarn manufacturing apparatus 1 concerning this invention was described, the specific structure of this invention is not limited to the said embodiment. For example, as shown in FIG. 6, a through hole 81 through which the fine carbon fiber sheet drawn from the substrate Z is inserted is formed between the substrate Z held by the substrate fixing means 2 and the spreading means 5. A configuration in which the protective cover 8 is disposed may be employed. With such a configuration, the mist-like liquid sprayed from the spraying means 5 can be prevented from pouring onto the aggregate of fine carbon fibers on the substrate Z, and the fine carbon fibers can be reliably pulled out from the substrate Z. Can be maintained in a state.

また、上記実施形態においては、撚掛手段4と引出手段3とを別体として構成しているが、例えば、図7に示すように、撚掛手段4が備える把持装置42の代わりに引出手段3を回転体41に一体的に取り付けるように構成してもよい。このような構成を採用する場合、撚掛手段4の回転体41の回転軸に対して引出手段3を構成するボビン311の回転軸が直交するように両者を配置する。このように撚掛手段4と引出手段3とを一体化することにより、微細炭素繊維撚糸製造装置1を小型化できる。   Moreover, in the said embodiment, although the twisting means 4 and the extraction means 3 are comprised as a different body, as shown in FIG. 7, instead of the holding | grip apparatus 42 with which the twisting means 4 is provided, the drawing means is provided, for example. You may comprise so that 3 may be attached to the rotary body 41 integrally. When such a configuration is adopted, both are arranged so that the rotation axis of the bobbin 311 constituting the extraction means 3 is orthogonal to the rotation axis of the rotating body 41 of the twisting means 4. Thus, by integrating the twisting means 4 and the drawing means 3, the fine carbon fiber twisted yarn manufacturing apparatus 1 can be miniaturized.

また、図7に示す微細炭素繊維撚糸製造装置1の構成に対し、撚掛手段4及び引出手段3を一体化した装置と挟持手段6との間に、補助撚掛手段9を設けるようにしてもよい。このような構成を有する微細炭素繊維撚糸製造装置1を図8に示す。図8に示される補助撚掛手段9は、基板Zから引き出されたシート状の微細炭素繊維体の引出方向に沿う回転軸を有し、この回転軸周りに基板Zから引き出された微細炭素繊維体を回転させることにより撚糸を形成するリング状の補助用回転体91を備えている。この補助用回転体91には、引き出されたシート状の微細炭素繊維体を両側から挟んで後方側に送るための一対のローラー921,921により構成される送り手段92が取り付けられている。各ローラー921,921の回転軸は、基板Zから引き出される微細炭素繊維体の引出方向と直行する軸線と平行となるように設定されている。また、各ローラーを回転駆動する駆動モーター(図示せず)が設けられており、送り手段92が、基板Zから微細炭素繊維を引く出す機能を有するように構成してもよい。なお、撚掛手段4及び補助撚掛手段9の回転方向は互いに逆向きである。このように微細炭素繊維撚糸製造装置1を構成した場合、補助撚掛手段9による撚り掛け数と、撚掛手段4による撚り掛け数とが積算された撚り掛け数が、ボビン311に巻き取られる微細炭素繊維撚糸に付与される。例えば、撚り掛け数80000T/mの微細炭素繊維撚糸を製造する時に、撚掛手段4の回転数を1000rpm、補助撚掛手段9の回転数を800rpmとすると、紡糸速度は10m/分となり、撚り掛け数が極めて大きい微細炭素繊維撚糸を高速で製造することが可能になる。   Further, with respect to the configuration of the fine carbon fiber twisted yarn manufacturing apparatus 1 shown in FIG. 7, an auxiliary twisting means 9 is provided between a device in which the twisting means 4 and the drawing means 3 are integrated and the clamping means 6. Also good. FIG. 8 shows a fine carbon fiber twisted yarn manufacturing apparatus 1 having such a configuration. The auxiliary twisting means 9 shown in FIG. 8 has a rotation axis along the drawing direction of the sheet-like fine carbon fiber body drawn from the substrate Z, and the fine carbon fiber drawn from the substrate Z around the rotation axis. A ring-shaped auxiliary rotating body 91 that forms a twisted yarn by rotating the body is provided. The auxiliary rotating body 91 is provided with a feeding means 92 composed of a pair of rollers 921 and 921 for feeding the drawn sheet-like fine carbon fiber body from both sides to the rear side. The rotation axes of the rollers 921 and 921 are set so as to be parallel to an axis line orthogonal to the drawing direction of the fine carbon fiber body drawn from the substrate Z. In addition, a drive motor (not shown) that rotationally drives each roller may be provided, and the feeding unit 92 may be configured to have a function of pulling out fine carbon fibers from the substrate Z. The rotating directions of the twisting means 4 and the auxiliary twisting means 9 are opposite to each other. When the fine carbon fiber twisted yarn manufacturing apparatus 1 is configured as described above, the number of twists obtained by integrating the number of twists by the auxiliary twisting means 9 and the number of twists by the twisting means 4 is wound around the bobbin 311. Applied to fine carbon fiber twisted yarn. For example, when producing a fine carbon fiber twisted yarn having a twisting speed of 80000 T / m, if the rotational speed of the twisting means 4 is 1000 rpm and the rotational speed of the auxiliary twisting means 9 is 800 rpm, the spinning speed is 10 m / min. It becomes possible to produce a fine carbon fiber twisted yarn having a very large multiplication speed at a high speed.

また、図8に示す微細炭素繊維撚糸製造装置1の変形例として、図9に示すような構造も採用できる。この装置においては、撚掛手段4に一体的に取り付けられる引出手段3として、補助撚掛手段9に取り付けられる送り手段92と同様の装置を採用し、撚掛手段4の後方側に、製造された撚糸を巻き取る巻き取り装置31を配置している。なお、撚掛手段4及び補助撚掛手段9の回転方向は同じ向きである。なお、このような構造の場合、補助撚掛手段9及び撚掛手段4における送り手段92と、巻き取り装置31とが、基板Zから微細炭素繊維を引き出す引出手段3の機能を有する。このように微細炭素繊維撚糸製造装置1を構成した場合、補助撚掛手段9による撚り掛け数と、撚掛手段4による撚り掛け数とが積算された撚り掛け数が、ボビン311に巻き取られる微細炭素繊維撚糸に付与される。例えば、撚り掛け数80000T/mの微細炭素繊維撚糸を製造する時に、撚掛手段4の回転数を1000rpm、補助撚掛手段9の回転数を800rpmとすると、紡糸速度は10m/分となり、撚り掛け数が極めて大きい微細炭素繊維撚糸を高速で製造することが可能になる。   Moreover, as a modification of the fine carbon fiber twisted yarn manufacturing apparatus 1 shown in FIG. 8, a structure as shown in FIG. 9 can also be adopted. In this apparatus, as the drawing means 3 that is integrally attached to the twisting means 4, an apparatus similar to the feeding means 92 that is attached to the auxiliary twisting means 9 is adopted, and is manufactured on the rear side of the twisting means 4. A winding device 31 for winding the twisted yarn is disposed. The rotation directions of the twisting means 4 and the auxiliary twisting means 9 are the same. In the case of such a structure, the auxiliary twisting means 9 and the feeding means 92 in the twisting means 4 and the winding device 31 have the function of the drawing means 3 for pulling out the fine carbon fibers from the substrate Z. When the fine carbon fiber twisted yarn manufacturing apparatus 1 is configured in this manner, the number of twists obtained by integrating the number of twists by the auxiliary twisting means 9 and the number of twists by the twisting means 4 is wound around the bobbin 311. Applied to fine carbon fiber twisted yarn. For example, when producing a fine carbon fiber twisted yarn having a twisting speed of 80000 T / m, if the rotational speed of the twisting means 4 is 1000 rpm and the rotational speed of the auxiliary twisting means 9 is 800 rpm, the spinning speed is 10 m / min. It becomes possible to produce a fine carbon fiber twisted yarn having a very large multiplication speed at a high speed.

また、上記実施形態においては、図1に示すように単一の基板Zから微細炭素繊維を引き出して撚糸を製造する構造について説明したが、例えば、図10に示すように複数の基板Zから微細炭素繊維を引き出して撚糸を製造することも可能である。このような場合、図10に示すように各基板Zからそれぞれ引き出されたシート状の微細炭素繊維体を重ね合わせて積層シート体を形成し、当該積層シート体に散布手段5から霧状液体を散布することにより微細炭素繊維凝集積層体を形成し、その後、撚掛手段4によって撚り掛けを施す。各基板Zからそれぞれ引き出されたシート状の微細炭素繊維体を重ね合わせて形成した積層シート体に霧状液体を散布することにより、各微細炭素繊維体を構成する各微細炭素繊維が凝集すると共に、各微細炭素繊維体を互いに密接に積層させることができる。この結果、複数の基板Zから微細炭素繊維を引き出して撚糸を製造する場合であっても、ハンドリングに適した強度を有する撚糸を確実に製造することが可能になる。   Moreover, in the said embodiment, although the structure which draws out fine carbon fiber from the single board | substrate Z as shown in FIG. 1 and manufactures a twisted thread was demonstrated, for example, as shown in FIG. It is also possible to produce a twisted yarn by pulling out carbon fibers. In such a case, as shown in FIG. 10, sheet-like fine carbon fiber bodies drawn from the respective substrates Z are overlapped to form a laminated sheet body, and a mist liquid is applied to the laminated sheet body from the spraying means 5. The fine carbon fiber agglomerated laminate is formed by spraying, and then twisted by the twisting means 4. Each fine carbon fiber constituting each fine carbon fiber aggregates by agglomerating the sprayed liquid onto a laminated sheet formed by superimposing the sheet-like fine carbon fiber drawn from each substrate Z. The fine carbon fiber bodies can be laminated closely to each other. As a result, even when fine carbon fibers are drawn from a plurality of substrates Z to produce a twisted yarn, it is possible to reliably produce a twisted yarn having a strength suitable for handling.

以下に実施例を用いて本発明を詳細に説明する。なお、本発明は下記の実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail using examples. In addition, this invention is not limited to the following Example.

散布手段5から噴霧される液滴の大きさの測定:液滴をオムロン製超音波式ネブライザーNE−U07を用いて噴霧した。液滴の粒子径をイギリス・マルバーン社製のレーザ回折式粒度分布測定装置「マスターサイザー2000」を用いて計測した。測定原理は、Mie理論によるレーザ回折・散乱法に基づく。液滴の体積基準の累積粒度分布を作成し、50%径(メディアン径)をもって霧状液体の粒子径とした。噴霧する溶剤の種類によらず、霧状液体の粒子径は1μm〜5μmであった。   Measurement of size of droplet sprayed from spraying means 5: The droplet was sprayed using an OMRON ultrasonic nebulizer NE-U07. The particle size of the droplets was measured using a laser diffraction particle size distribution measuring device “Mastersizer 2000” manufactured by Malvern, England. The measurement principle is based on the laser diffraction / scattering method based on Mie theory. The volume-based cumulative particle size distribution of the droplets was created, and the 50% diameter (median diameter) was used as the particle diameter of the atomized liquid. Regardless of the type of solvent to be sprayed, the particle size of the mist liquid was 1 μm to 5 μm.

撚糸の直径の測定:日本電子社製の走査電子顕微鏡「JSM−7401F」を用いて、顕微鏡写真を撮影して糸径を測定した。   Measurement of diameter of twisted yarn: Using a scanning electron microscope “JSM-7401F” manufactured by JEOL Ltd., a micrograph was taken to measure the yarn diameter.

撚糸の引張り強度の測定:日本計測システム(株)製の自動荷重試験機「MAX−1KN−S」を用いて、糸長1cm、引張り速度1mm/分で引張り試験を行って測定した。   Measurement of tensile strength of twisted yarn: Using an automatic load tester “MAX-1KN-S” manufactured by Japan Measuring System Co., Ltd., a tensile test was performed at a yarn length of 1 cm and a tensile speed of 1 mm / min.

シリコン基板(市販品、1cm2)に鉄をスパッタリングすることにより、厚さ4nmの鉄皮膜からなる触媒層が積層されたシリコン基板を製造した。この基板を熱CVD装置内に設置し、熱CVD法を行うことにより基板上にカーボンナノチューブ集合体を形成させた。熱CVD装置内に供給するガスは、アセチレンガス及びヘリウムガスの混合ガス(アセチレンガス5.77vol%)とした。熱CVD条件としては、温度:700℃、圧力:大気圧下、初期段階におけるアセチレンガス濃度の上昇速度:0.10vol%/秒、反応時間:10分とした。基板上に成長させたカーボンナノチューブの平均長さは180μm、太さは15nm、層数は10層、嵩密度は30mg/cm2であり、高密度かつ高配向で形成されていた(図2)。   By sputtering iron onto a silicon substrate (commercial product, 1 cm 2), a silicon substrate on which a catalyst layer made of an iron film having a thickness of 4 nm was laminated was manufactured. This substrate was placed in a thermal CVD apparatus, and a carbon nanotube aggregate was formed on the substrate by performing a thermal CVD method. The gas supplied into the thermal CVD apparatus was a mixed gas of acetylene gas and helium gas (acetylene gas 5.77 vol%). The thermal CVD conditions were temperature: 700 ° C., pressure: atmospheric pressure, acetylene gas concentration increase rate in the initial stage: 0.10 vol% / second, and reaction time: 10 minutes. The carbon nanotubes grown on the substrate had an average length of 180 μm, a thickness of 15 nm, a number of layers of 10 and a bulk density of 30 mg / cm 2, and were formed with high density and high orientation (FIG. 2).

上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフ(フェザー剃刀製マイクロサージカルブレードK−715、先端角15°)を用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。   A carbon nanotube substrate Z in which a linear portion having a width of 100 μm is defined using a microknife (Feather Razor microsurgical blade K-715, tip angle 15 °) on the carbon nanotube aggregate obtained as described above. Was made.

カーボンナノチューブ基板Zから、一部のカーボンナノチューブを削り取り、基板の保持に必要なシリコン部分を露出させ、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に基板を保持させた。   A part of the carbon nanotubes was scraped from the carbon nanotube substrate Z, a silicon portion necessary for holding the substrate was exposed, and the substrate was held by the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1).

幅100μmのカーボンナノチューブ集合体の側面に、引出具7(先端直径30μmの市販マイクロドリル)を深さ0.1mm突き刺し、1000rpmで1秒間回転させて、カーボンナノチューブを絡め付けて把持した後、引出具7の回転を止め、当該引出具7をモーター駆動により基板Zから離反させることにより、カーボンナノチューブを連鎖的に連続して引き出した。   A drawing tool 7 (commercially available micro drill with a tip diameter of 30 μm) is pierced 0.1 mm deep on the side surface of the carbon nanotube aggregate having a width of 100 μm, rotated at 1000 rpm for 1 second, entangled and gripped with the carbon nanotubes, and then pulled. The rotation of the extraction tool 7 was stopped, and the extraction tool 7 was separated from the substrate Z by driving the motor, whereby the carbon nanotubes were continuously drawn out in a chain.

引出具7を後退させて散布手段5が配置される領域を介して、挟持手段6を構成する一対のローラー61,61間を通過させた。その後、撚掛手段4の一対のローラー421,421間を通過させ、引出手段3である巻き取り装置31のボビン311上まで移動させ、引き出した微細炭素繊維をボビン311に固定した。   The drawing tool 7 was moved backward to pass between a pair of rollers 61 and 61 constituting the clamping means 6 through a region where the spraying means 5 is disposed. Thereafter, the pair of rollers 421 and 421 of the twisting means 4 was passed through and moved onto the bobbin 311 of the winding device 31 as the drawing means 3, and the drawn fine carbon fiber was fixed to the bobbin 311.

その後、挟持手段6を構成する一対のローラー61,61、撚掛手段4の一対のローラー421,421により微細炭素繊維を挟持した。   Thereafter, the fine carbon fiber was sandwiched between the pair of rollers 61 and 61 constituting the sandwiching means 6 and the pair of rollers 421 and 421 of the twisting means 4.

基板固定手段2と挟持手段6の間に配置した散布手段5(オムロン製超音波式ネブライザーNE−U07)から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1233MPaであった。   From the spraying means 5 (Omron ultrasonic nebulizer NE-U07) disposed between the substrate fixing means 2 and the clamping means 6, ethanol mist having a particle diameter of 1 μm to 5 μm is applied to fine carbon fibers at a spray amount of 0.1 ml / min. While spraying, the twisting means 4 is rotated at 8000 rpm, and further wound at a winding speed of 0.1 m / min, and a continuous twisted yarn of 80000 T / m per 1 m is produced over 10 m without breaking the yarn. We were able to. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1233 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。基板上に成長させたカーボンナノチューブの平均長さは190μm、太さは20nm、層数は15層、嵩密度は20mg/cm2であり、高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅250μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は1.5μm、引張り強度は930MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The average length of the carbon nanotubes grown on the substrate was 190 μm, the thickness was 20 nm, the number of layers was 15, the bulk density was 20 mg / cm 2, and the carbon nanotubes were formed with high density and high orientation. A carbon nanotube substrate Z in which a linear portion having a width of 250 μm was defined was prepared using a microknife for the aggregate of carbon nanotubes obtained as described above. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spraying amount of 0.1 ml / min, twisting means 4 is rotated at 8000 rpm and further wound at a winding speed of 0.1 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 1.5 μm and a tensile strength of 930 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。基板上に成長させたカーボンナノチューブの平均長さは200μm、太さは10nm、層数は7層、嵩密度は40mg/cm2であり、高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅400μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は2.3μm、引張り強度は756MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The carbon nanotubes grown on the substrate had an average length of 200 μm, a thickness of 10 nm, a number of layers of 7, and a bulk density of 40 mg / cm 2, and were formed with high density and high orientation. A carbon nanotube substrate Z in which a linear portion having a width of 400 μm was defined was produced using a microknife for the aggregate of carbon nanotubes obtained as described above. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spraying amount of 0.1 ml / min, twisting means 4 is rotated at 8000 rpm and further wound at a winding speed of 0.1 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 2.3 μm and a tensile strength of 756 MPa.

シリコン基板(市販品、1cm2)に鉄をスパッタリングすることにより、厚さ1nmの鉄皮膜からなる触媒層が積層されたシリコン基板を製造した。この基板を熱CVD装置内に設置し、熱CVD法を行うことにより基板上にカーボンナノチューブ集合体を形成させた。熱CVD装置内に供給するガスは、アセチレンガス及びヘリウムガスの混合ガス(アセチレンガス2.55vol%)とした。熱CVD条件としては、温度:700℃、圧力:大気圧下、初期段階におけるアセチレンガス濃度の上昇速度:0.10vol%/秒、反応時間:10分とした。基板上に成長させたカーボンナノチューブの平均長さは180μm、太さは1nm、層数は1層(単層)、嵩密度は30mg/cm2であり、高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1200MPaであった。   By sputtering iron on a silicon substrate (commercial product, 1 cm 2), a silicon substrate on which a catalyst layer made of an iron film having a thickness of 1 nm was laminated was manufactured. This substrate was placed in a thermal CVD apparatus, and a carbon nanotube aggregate was formed on the substrate by performing a thermal CVD method. The gas supplied into the thermal CVD apparatus was a mixed gas of acetylene gas and helium gas (acetylene gas 2.55 vol%). The thermal CVD conditions were temperature: 700 ° C., pressure: atmospheric pressure, acetylene gas concentration increase rate in the initial stage: 0.10 vol% / second, and reaction time: 10 minutes. The carbon nanotubes grown on the substrate had an average length of 180 μm, a thickness of 1 nm, a number of layers of 1 (single layer), a bulk density of 30 mg / cm 2, and a high density and high orientation. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spraying amount of 0.1 ml / min, twisting means 4 is rotated at 8000 rpm and further wound at a winding speed of 0.1 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1200 MPa.

シリコン基板(市販品、1cm2)に鉄をスパッタリングすることにより、厚さ1.5nmの鉄皮膜からなる触媒層が積層されたシリコン基板を製造した。この基板を熱CVD装置内に設置し、熱CVD法を行うことにより基板上にカーボンナノチューブ集合体を形成させた。熱CVD装置内に供給するガスは、アセチレンガス及びヘリウムガスの混合ガス(アセチレンガス3.05vol%)とした。熱CVD条件としては、温度:700℃、圧力:大気圧下、初期段階におけるアセチレンガス濃度の上昇速度:0.10vol%/秒、反応時間:10分とした。基板上に成長させたカーボンナノチューブの平均長さは180μm、太さは3nm、層数は2層(二層)、嵩密度は30mg/cm2であり、高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1200MPaであった。   By sputtering iron on a silicon substrate (commercial product, 1 cm 2), a silicon substrate on which a catalyst layer made of an iron film having a thickness of 1.5 nm was laminated was manufactured. This substrate was placed in a thermal CVD apparatus, and a carbon nanotube aggregate was formed on the substrate by performing a thermal CVD method. The gas supplied into the thermal CVD apparatus was a mixed gas of acetylene gas and helium gas (acetylene gas 3.05 vol%). The thermal CVD conditions were temperature: 700 ° C., pressure: atmospheric pressure, acetylene gas concentration increase rate in the initial stage: 0.10 vol% / second, and reaction time: 10 minutes. The carbon nanotubes grown on the substrate had an average length of 180 μm, a thickness of 3 nm, a number of layers of 2 (two layers), a bulk density of 30 mg / cm 2, and a high density and high orientation. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spraying amount of 0.1 ml / min, twisting means 4 is rotated at 8000 rpm and further wound at a winding speed of 0.1 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1200 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは170μm、太さは40nmであり、基板上のカーボンナノチューブ集合体は層数35、嵩密度35mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.5ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1170MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 170 μm and a thickness of 40 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 35 layers and a bulk density of 35 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spraying amount of 0.5 ml / min, twisting means 4 is rotated at 8000 rpm and further wound at a winding speed of 0.1 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1170 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは210μm、太さは20nmであり、基板上のカーボンナノチューブ集合体は層数15、嵩密度50mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を1.0ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1250MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The average length of the grown carbon nanotubes was 210 μm and the thickness was 20 nm. The aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 15 layers and a bulk density of 50 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spray rate of 1.0 ml / min, twisting means 4 is rotated at 8000 rpm, and further wound at a winding speed of 0.1 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1250 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは185μm、太さは22nmであり、基板上のカーボンナノチューブ集合体は層数17、嵩密度33mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのアセトン霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1210MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 185 μm and a thickness of 22 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 17 layers and a bulk density of 33 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying acetone mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spray rate of 0.1 ml / min, twisting means 4 is rotated at 8000 rpm, and further wound at a winding speed of 0.1 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1210 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは195μm、太さは10nmであり、基板上のカーボンナノチューブ集合体は層数6、嵩密度27mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのメタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1200MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 195 μm and a thickness of 10 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 6 layers and a bulk density of 27 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying methanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spray rate of 0.1 ml / min, twisting means 4 is rotated at 8000 rpm, and further wound at a winding speed of 0.1 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1200 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは205μm、太さは28nmであり、基板上のカーボンナノチューブ集合体は層数20、嵩密度28mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのジエチルエーテル霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1230MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 205 μm and a thickness of 28 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 20 layers and a bulk density of 28 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While blowing the diethyl ether mist having a particle diameter of 1 μm to 5 μm from the spraying means 5 onto the fine carbon fiber at a spray amount of 0.1 ml / min, the twisting means 4 is rotated at 8000 rpm, and the winding speed is 0.1 m / min. A continuous twisted yarn having a twist number of 80000 T / m per 1 m could be produced over 10 m or more without winding or breaking. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1230 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは235μm、太さは25nmであり、基板上のカーボンナノチューブ集合体は層数18、嵩密度19mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのジクロロメタン霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1255MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 235 μm and a thickness of 25 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 18 layers and a bulk density of 19 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying dichloromethane mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spray rate of 0.1 ml / min, twisting means 4 is rotated at 8000 rpm and further wound at a winding speed of 0.1 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1255 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは150μm、太さは31nmであり、基板上のカーボンナノチューブ集合体は層数21、嵩密度41mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmの酢酸エチル霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1120MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 150 μm and a thickness of 31 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 21 layers and a bulk density of 41 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying ethyl acetate mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spray rate of 0.1 ml / min, twisting means 4 is rotated at 8000 rpm, and the winding speed is 0.1 m / min. A continuous twisted yarn having a twist number of 80000 T / m per 1 m could be produced over 10 m or more without winding or breaking. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1120 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは205μm、太さは17nmであり、基板上のカーボンナノチューブ集合体は層数12、嵩密度50mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのテトラヒドロフラン霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1200MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 205 μm and a thickness of 17 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 12 layers and a bulk density of 50 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying tetrahydrofuran mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spray rate of 0.1 ml / min, twisting means 4 is rotated at 8000 rpm and further wound at a winding speed of 0.1 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1200 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは195μm、太さは35nmであり、基板上のカーボンナノチューブ集合体は層数28、嵩密度28mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール50%、アセトン50%の混合溶液霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1225MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 195 μm and a thickness of 35 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 28 layers and a bulk density of 28 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying a mixed solution mist of 50% ethanol and 50% acetone having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fibers at a spray rate of 0.1 ml / min, the twisting means 4 is rotated at 8000 rpm, and further wound It was wound at a take-up speed of 0.1 m / min, and a continuous twisted yarn having a twist number of 80000 T / m per 1 m could be produced over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1225 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは190μm、太さは15nmであり、基板上のカーボンナノチューブ集合体は層数10、嵩密度38mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのジエチルエーテル50%、ジクロロメタン50%の混合溶液霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1215MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 190 μm and a thickness of 15 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 10 layers and a bulk density of 38 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying a mixed solution mist of 50% diethyl ether and 50% dichloromethane having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fibers at a spray rate of 0.1 ml / min, rotating twisting means 4 at 8000 rpm, Winding was performed at a winding speed of 0.1 m / min, and a continuous twisted yarn having a twist number of 80000 T / m per 1 m could be produced over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1215 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは185μm、太さは10nmであり、基板上のカーボンナノチューブ集合体は層数8、嵩密度38mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール50%水溶液霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1220MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 185 μm and a thickness of 10 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 8 layers and a bulk density of 38 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying 50% aqueous ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spray rate of 0.1 ml / min, the twisting means 4 is rotated at 8000 rpm, and the winding speed is 0.1 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m per 1 m over 10 m or more without winding up in minutes. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1220 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは200μm、太さは20nmであり、基板上のカーボンナノチューブ集合体は層数18、嵩密度35mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのアセトン50%水溶液霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1200MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 200 μm and a thickness of 20 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 18 layers and a bulk density of 35 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying a 50% aqueous solution mist of acetone having a particle diameter of 1 μm to 5 μm from the spraying means 5 onto the fine carbon fiber at a spray rate of 0.1 ml / min, the twisting means 4 is rotated at 8000 rpm, and the winding speed is 0.1 m / It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m per 1 m over 10 m or more without winding up in minutes. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1200 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは185μm、太さは22nmであり、基板上のカーボンナノチューブ集合体は層数17、嵩密度33mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を16000rpmで回転させ、さらに巻取り速度0.2m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1210MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 185 μm and a thickness of 22 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 17 layers and a bulk density of 33 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spraying amount of 0.1 ml / min, twisting means 4 is rotated at 16000 rpm and further wound at a winding speed of 0.2 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1210 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは195μm、太さは15nmであり、基板上のカーボンナノチューブ集合体は層数10、嵩密度30mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を40000rpmで回転させ、さらに巻取り速度0.5m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1220MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 195 μm and a thickness of 15 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 10 layers and a bulk density of 30 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spraying amount of 0.1 ml / min, twisting means 4 is rotated at 40000 rpm and further wound at a winding speed of 0.5 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1220 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは190μm、太さは18nmであり、基板上のカーボンナノチューブ集合体は層数13、嵩密度23mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を800rpmで回転させ、さらに巻取り速度0.01m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1215MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 190 μm and a thickness of 18 nm. The aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 13 layers and a bulk density of 23 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spraying amount of 0.1 ml / min, twisting means 4 is rotated at 800 rpm and further wound at a winding speed of 0.01 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1215 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは150μm、太さは21nmであり、基板上のカーボンナノチューブ集合体は層数15、嵩密度29mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図7)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1115MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 150 μm and a thickness of 21 nm. The aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 15 layers and a bulk density of 29 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 7). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spraying amount of 0.1 ml / min, twisting means 4 is rotated at 8000 rpm and further wound at a winding speed of 0.1 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1115 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは170μm、太さは25nmであり、基板上のカーボンナノチューブ集合体は層数13、嵩密度43mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図8)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を100rpmで回転させ、補助撚掛手段9を80rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1180MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The average length of the grown carbon nanotubes was 170 μm and the thickness was 25 nm. The aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 13 layers and a bulk density of 43 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 8). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spray amount of 0.1 ml / min, twisting means 4 is rotated at 100 rpm, auxiliary twisting means 9 is rotated at 80 rpm, Furthermore, it was wound up at a winding speed of 0.1 m / min, and a continuous twisted yarn having a twist of 80000 T / m per 1 m could be produced over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1180 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは190μm、太さは18nmであり、基板上のカーボンナノチューブ集合体は層数14、嵩密度23mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図8)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を400rpmで回転させ、補助撚掛手段9を200rpmで回転させ、さらに巻取り速度1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1200MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 190 μm and a thickness of 18 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 14 layers and a bulk density of 23 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 8). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from the spraying means 5 onto the fine carbon fiber at a spray amount of 0.1 ml / min, the twisting means 4 is rotated at 400 rpm, the auxiliary twisting means 9 is rotated at 200 rpm, Furthermore, it was wound up at a winding speed of 1 m / min, and a continuous twisted yarn having a twist number of 80000 T / m per 1 m could be produced over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1200 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは210μm、太さは15nmであり、基板上のカーボンナノチューブ集合体は層数10、嵩密度37mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図8)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を4000rpmで回転させ、補助撚掛手段9を200rpmで回転させ、さらに巻取り速度10m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1230MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The average length of the grown carbon nanotubes was 210 μm and the thickness was 15 nm. The aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 10 layers and a bulk density of 37 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 8). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spray amount of 0.1 ml / min, twisting means 4 is rotated at 4000 rpm, auxiliary twisting means 9 is rotated at 200 rpm, Further, it was wound at a winding speed of 10 m / min, and a continuous twisted yarn having a twist number of 80000 T / m per 1 m could be produced over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1230 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは160μm、太さは38nmであり、基板上のカーボンナノチューブ集合体は層数30、嵩密度43mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図9)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を100rpmで回転させ、補助撚掛手段9を80rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1150MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 160 μm and a thickness of 38 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 30 layers and a bulk density of 43 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 9). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spray amount of 0.1 ml / min, twisting means 4 is rotated at 100 rpm, auxiliary twisting means 9 is rotated at 80 rpm, Furthermore, it was wound up at a winding speed of 0.1 m / min, and a continuous twisted yarn having a twist of 80000 T / m per 1 m could be produced over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1150 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは2050μm、太さは18nmであり、基板上のカーボンナノチューブ集合体は層数14、嵩密度26mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図9)の基板固定手段2に固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を1000rpmで回転させ、補助撚掛手段9を800rpmで回転させ、さらに巻取り速度10m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1220MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 2050 μm and a thickness of 18 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 14 layers and a bulk density of 26 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 9). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spraying amount of 0.1 ml / min, twisting means 4 is rotated at 1000 rpm, auxiliary twisting means 9 is rotated at 800 rpm, Further, it was wound at a winding speed of 10 m / min, and a continuous twisted yarn having a twist number of 80000 T / m per 1 m could be produced over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1220 MPa.

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは250μm、太さは18nmであり、基板上のカーボンナノチューブ集合体は層数15、嵩密度37mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Z2枚を、微細炭素繊維撚糸製造装置1(図10)の基板固定手段2にそれぞれ固定した。散布手段5から粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で微細炭素繊維に吹き付けながら、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は1.6μm、引張り強度は900MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 250 μm and a thickness of 18 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 15 layers and a bulk density of 37 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. Two carbon nanotube substrates Z were fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 10). While spraying ethanol mist having a particle diameter of 1 μm to 5 μm from spraying means 5 onto fine carbon fiber at a spraying amount of 0.1 ml / min, twisting means 4 is rotated at 8000 rpm and further wound at a winding speed of 0.1 m / min. It was possible to produce a continuous twisted yarn having a twist number of 80000 T / m over 10 m or more without breaking the yarn. The produced twisted yarn had a diameter of 1.6 μm and a tensile strength of 900 MPa.

微細炭素繊維撚糸製造装置1(図1)において、実施例1と同様にして作製したカーボンナノチューブ基板Z上に形成される微細炭素繊維の集合体の量が少なくなった段階で、一旦、微細炭素繊維撚糸製造装置1の駆動を停止した。次に、挟持手段6を操作して、微細炭素繊維を挟んでいる一対のローラーを互いに離隔する方向に移動させた。   In the fine carbon fiber twisted yarn production apparatus 1 (FIG. 1), once the amount of fine carbon fiber aggregates formed on the carbon nanotube substrate Z produced in the same manner as in Example 1 is reduced, the fine carbon fiber is temporarily used. The drive of the fiber twist production apparatus 1 was stopped. Next, the sandwiching means 6 was operated to move the pair of rollers sandwiching the fine carbon fiber in a direction away from each other.

その後、基板固定手段2に保持されている基板(旧基板Z1)に隣接させて新しい基板(新基板Z2)を配置した。新基板Z2上のカーボンナノチューブ集合体の側面に、引出具7(先端直径30μmの市販マイクロドリル)を深さ0.1mm突き刺し、1000rpmで1秒間回転させてカーボンナノチューブを絡め付け、引出具7をモーター駆動により基板Z2から離反させることにより、カーボンナノチューブを連鎖的に連続して引き出した。   Thereafter, a new substrate (new substrate Z2) was placed adjacent to the substrate (old substrate Z1) held by the substrate fixing means 2. A drawing tool 7 (commercially available micro drill with a tip diameter of 30 μm) is inserted into the side surface of the carbon nanotube aggregate on the new substrate Z2 to a depth of 0.1 mm, and the carbon nanotubes are entangled by rotating at 1000 rpm for 1 second. By separating from the substrate Z2 by driving the motor, the carbon nanotubes were continuously drawn out in a chain.

そして、旧基板Z1から引き出されているシート状の微細炭素繊維体に重ね合わせて積層シート体を形成した後、散布手段5を駆動させて当該積層シート体に粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で散布し、その後、撚掛手段4を10000rpmで1分駆動させて、新旧それぞれの基板Z1,Z2から引き出された微細炭素繊維が重なっている部分に撚りを掛けた。   And after superposing on the sheet-like fine carbon fiber body pulled out from the old substrate Z1 to form a laminated sheet body, the spraying means 5 is driven and ethanol mist having a particle diameter of 1 μm to 5 μm is applied to the laminated sheet body. After spraying at a spray rate of 0.1 ml / min, the twisting means 4 is driven at 10000 rpm for 1 minute, and the portions where the fine carbon fibers drawn from the old and new substrates Z1 and Z2 overlap are twisted. It was.

次いで、旧基板Z1から引き出されている微細炭素繊維をマイクロナイフで切断し、基板固定手段2から旧基板Z1を取り外して新基板Z2と交換した。そして、挟持手段6を操作して、新基板Z2から引き出された微細炭素繊維を一対のローラーで挟み込んで基板の交換を完了させた。基板交換完了後、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1200MPaであった。   Next, the fine carbon fiber drawn from the old substrate Z1 was cut with a microknife, and the old substrate Z1 was removed from the substrate fixing means 2 and replaced with a new substrate Z2. And the clamping means 6 was operated and the fine carbon fiber pulled out from the new board | substrate Z2 was pinched with a pair of roller, and the replacement | exchange of a board | substrate was completed. After completion of the substrate replacement, the twisting means 4 is rotated at 8000 rpm, wound at a winding speed of 0.1 m / min, and continuously twisted at a twist number of 80000 T / m over 10 m without breaking the yarn. Was able to be produced. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1200 MPa.

微細炭素繊維撚糸製造装置1(図1)において、実施例1と同様にして作製したカーボンナノチューブ基板Z上に形成される微細炭素繊維の集合体の量が少なくなった段階で、先に散布手段5を停止した1分後に、微細炭素繊維撚糸製造装置1の駆動を停止した。   In the fine carbon fiber twisted yarn production apparatus 1 (FIG. 1), when the amount of fine carbon fiber aggregates formed on the carbon nanotube substrate Z produced in the same manner as in Example 1 is reduced, the spreading means is first applied. One minute after stopping 5, the drive of the fine carbon fiber twist production apparatus 1 was stopped.

挟持手段6のローラーはそのままで、基板固定手段2に保持されている基板(旧基板Z1)に隣接させて新しい基板(新基板Z2)を配置した。新基板Z2上のカーボンナノチューブ集合体の側面に、引出具7(先端直径30μmの市販マイクロドリル)を深さ0.1mm突き刺し、1000rpmで1秒間回転させてカーボンナノチューブを絡め付け、引出具7をモーター駆動により基板Z2から離反させることにより、カーボンナノチューブを連鎖的に連続して引き出した。   The new substrate (new substrate Z2) was placed adjacent to the substrate (old substrate Z1) held by the substrate fixing means 2, with the rollers of the clamping means 6 unchanged. A drawing tool 7 (commercially available micro drill with a tip diameter of 30 μm) is inserted into the side surface of the carbon nanotube aggregate on the new substrate Z2 to a depth of 0.1 mm, and the carbon nanotubes are entangled by rotating at 1000 rpm for 1 second. By separating from the substrate Z2 by driving the motor, the carbon nanotubes were continuously drawn out in a chain.

新基板Z2から引き出された微細炭素繊維シートを、旧基板Z1から引き出されているシート状の微細炭素繊維体に重ね合わせて積層シート体を形成した後、散布手段5を駆動させて当該積層シート体に散布手段5を駆動させて当該積層シート体に粒子径1μm〜5μmのエタノール霧を0.1ml/分の噴霧量で散布し、当該積層シート体を一体化させた。   After superposing the fine carbon fiber sheet drawn from the new substrate Z2 on the sheet-like fine carbon fiber body drawn from the old substrate Z1 to form a laminated sheet body, the spreading means 5 is driven to drive the laminated sheet The spraying means 5 was driven on the body, and an ethanol mist having a particle diameter of 1 μm to 5 μm was sprayed on the laminated sheet body at a spray amount of 0.1 ml / min to integrate the laminated sheet body.

次いで、旧基板Z1から引き出されている微細炭素繊維をマイクロナイフで切断し、基板固定手段2から旧基板Z1を取り外して新基板Z2と交換し、基板の交換を完了させた。基板交換完了後、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、糸切れすることなく10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.8μm、引張り強度は1200MPaであった。   Next, the fine carbon fiber drawn from the old substrate Z1 was cut with a microknife, the old substrate Z1 was removed from the substrate fixing means 2 and replaced with the new substrate Z2, and the replacement of the substrate was completed. After completion of the substrate replacement, the twisting means 4 is rotated at 8000 rpm, wound at a winding speed of 0.1 m / min, and continuously twisted at a twist number of 80000 T / m over 10 m without breaking the yarn. Was able to be produced. The produced twisted yarn had a diameter of 0.8 μm and a tensile strength of 1200 MPa.

比較例1Comparative Example 1

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは180μm、太さは15nmであり、基板上のカーボンナノチューブ集合体は層数10、嵩密度30mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅100μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5からエタノール霧を微細炭素繊維に吹き付けずに、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は0.9μm、引張り強度は841MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 180 μm and a thickness of 15 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 10 layers and a bulk density of 30 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 100 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). Without spraying the ethanol mist from the spraying means 5 onto the fine carbon fiber, the twisting means 4 is rotated at 8000 rpm, wound at a winding speed of 0.1 m / min, and the number of twists per 1 m is 80000 T / m over 10 m or more. m continuous twisted yarn could be produced. The produced twisted yarn had a diameter of 0.9 μm and a tensile strength of 841 MPa.

比較例2Comparative Example 2

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは190μm、太さは20nmであり、基板上のカーボンナノチューブ集合体は層数15、嵩密度20mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅250μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5からエタノール霧を微細炭素繊維に吹き付けずに、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は1.7μm、引張り強度は603MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 190 μm and a thickness of 20 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 15 layers and a bulk density of 20 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 250 μm was defined was prepared using a microknife for the aggregate of carbon nanotubes obtained as described above. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). Without spraying the ethanol mist from the spraying means 5 onto the fine carbon fiber, the twisting means 4 is rotated at 8000 rpm, wound at a winding speed of 0.1 m / min, and the number of twists per 1 m is 80000 T / m over 10 m or more. m continuous twisted yarn could be produced. The produced twisted yarn had a diameter of 1.7 μm and a tensile strength of 603 MPa.

比較例3Comparative Example 3

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは200μm、太さは10nmであり、基板上のカーボンナノチューブ集合体は層数7、嵩密度40mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅400μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に固定した。散布手段5からエタノール霧を微細炭素繊維に吹き付けずに、撚掛手段4を8000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、10m以上に渡って1mあたりの撚数80000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は2.6μm、引張り強度は451MPaであった。   A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 200 μm and a thickness of 10 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 7 layers and a bulk density of 40 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 400 μm was defined was produced using a microknife for the aggregate of carbon nanotubes obtained as described above. The carbon nanotube substrate Z was fixed to the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1). Without spraying the ethanol mist from the spraying means 5 onto the fine carbon fiber, the twisting means 4 is rotated at 8000 rpm, wound at a winding speed of 0.1 m / min, and the number of twists per 1 m is 80000 T / m over 10 m or more. m continuous twisted yarn could be produced. The produced twisted yarn had a diameter of 2.6 μm and a tensile strength of 451 MPa.

比較例4Comparative Example 4

実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは170μm、太さは40nmであり、基板上のカーボンナノチューブ集合体は層数35、嵩密度35mg/cm2の高密度かつ高配向で形成されていた。上記のようにして得られたカーボンナノチューブ集合体にマイクロナイフを用いて、幅1250μmの直線状の部分を画定した、カーボンナノチューブ基板Zを作製した。カーボンナノチューブ基板Zを、微細炭素繊維撚糸製造装置1(図1)の基板固定手段2に基板を保持させた。
比較例1と同様に、散布手段5からエタノール霧を微細炭素繊維に吹き付けずに、撚掛手段4を4000rpmで回転させ、さらに巻取り速度0.1m/分で巻き取り、10m以上に渡って1mあたりの撚数40000T/mの連続した撚糸を作製することができた。作製した撚糸の直径は7.1μm、引張り強度は148MPaであった。
A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes had an average length of 170 μm and a thickness of 40 nm, and the aggregate of carbon nanotubes on the substrate was formed with a high density and high orientation of 35 layers and a bulk density of 35 mg / cm 2. A carbon nanotube substrate Z in which a linear portion having a width of 1250 μm was defined on the aggregate of carbon nanotubes obtained as described above was produced using a microknife. The carbon nanotube substrate Z was held on the substrate fixing means 2 of the fine carbon fiber twisted yarn manufacturing apparatus 1 (FIG. 1).
As in Comparative Example 1, the twisting means 4 is rotated at 4000 rpm without blowing the ethanol mist from the spraying means 5 onto the fine carbon fiber, and further wound up at a winding speed of 0.1 m / min for over 10 m. A continuous twisted yarn having a twist number of 40000 T / m per 1 m could be produced. The produced twisted yarn had a diameter of 7.1 μm and a tensile strength of 148 MPa.

比較例5Comparative Example 5

比較例4と同様にして作製した直径7.1μmの撚糸を、エタノール溶液に浸した後、乾燥させた。乾燥後の撚糸の引張り強度は148MPaであった。 A twisted yarn having a diameter of 7.1 μm produced in the same manner as in Comparative Example 4 was immersed in an ethanol solution and then dried. The tensile strength of the twisted yarn after drying was 148 MPa.

表1の結果から作成したグラフを図11、12に示す。 The graph created from the result of Table 1 is shown in FIGS.

これらの結果より、エタノールを噴霧したことにより、微細炭素繊維撚糸が引き締まり高強度化されたことがわかる。また、撚糸にエタノールを含浸させるよりも噴霧の方がより有効である。   From these results, it can be seen that by spraying ethanol, the fine carbon fiber twisted yarn was tightened to increase the strength. Moreover, spraying is more effective than impregnating the twisted yarn with ethanol.

以上の説明から明らかなように、本発明方法によれば、ハンドリングに適した強度を有するカーボンナノチューブ撚糸を連続的に製造することが可能となる。   As is clear from the above description, according to the method of the present invention, it is possible to continuously produce a carbon nanotube twisted yarn having a strength suitable for handling.

本発明の一実施形態に係る微細炭素繊維撚糸製造装置の概略構成図である。It is a schematic block diagram of the fine carbon fiber twisted-yarn manufacturing apparatus which concerns on one Embodiment of this invention. カーボンナノチューブを高密度・高配向成長させた基板のSEM写真である。It is a SEM photograph of a substrate on which carbon nanotubes are grown with high density and high orientation. 基板から微細炭素繊維を引き出すための引出具を説明するための説明図である。It is explanatory drawing for demonstrating the drawing tool for drawing out fine carbon fiber from a board | substrate. 微細炭素繊維が形成された基板を交換する方法を説明する説明図である。It is explanatory drawing explaining the method to replace | exchange the board | substrate with which fine carbon fiber was formed. 従来のスクリーン印刷版を示す要部断面図である。It is principal part sectional drawing which shows the conventional screen printing plate. 図1に示す微細炭素繊維撚糸製造装置の第1の変形例を示す概略構成図である。It is a schematic block diagram which shows the 1st modification of the fine carbon fiber twisted-yarn manufacturing apparatus shown in FIG. 図1に示す微細炭素繊維撚糸製造装置の第2の変形例を示す概略構成図である。It is a schematic block diagram which shows the 2nd modification of the fine carbon fiber twisted-yarn manufacturing apparatus shown in FIG. 図1に示す微細炭素繊維撚糸製造装置の第3の変形例を示す概略構成図である。It is a schematic block diagram which shows the 3rd modification of the fine carbon fiber twisted-yarn manufacturing apparatus shown in FIG. 図1に示す微細炭素繊維撚糸製造装置の第4の変形例を示す概略構成図である。It is a schematic block diagram which shows the 4th modification of the fine carbon fiber twisted-yarn manufacturing apparatus shown in FIG. 図1に示す微細炭素繊維撚糸製造装置の第5の変形例を示す概略構成図である。It is a schematic block diagram which shows the 5th modification of the fine carbon fiber twisted-yarn manufacturing apparatus shown in FIG. 実施例1〜3及び比較例1〜3において作製したカーボンナノチューブ撚糸の画定幅と糸平均直径との関係を示すグラフである。It is a graph which shows the relationship between the definition width | variety of the carbon nanotube twisted-yarn produced in Examples 1-3 and Comparative Examples 1-3, and a yarn average diameter. 実施例1〜3及び比較例1〜3において作製したカーボンナノチューブ撚糸の糸平均直径と引張り強度との関係を示すグラフである。It is a graph which shows the relationship between the yarn average diameter of the carbon nanotube twisted yarn produced in Examples 1-3 and Comparative Examples 1-3, and tensile strength.

符号の説明Explanation of symbols

1 微細炭素繊維撚糸製造装置
2 基板固定手段
3 引出手段
4 撚掛手段
41 回転体
42 把持装置
5 散布手段
6 挟持手段
7 引出具
8 保護カバー
9 補助撚掛手段
DESCRIPTION OF SYMBOLS 1 Fine carbon fiber twisted-yarn manufacturing apparatus 2 Substrate fixing means 3 Pull-out means 4 Twisting means 41 Rotating body 42 Holding device 5 Scattering means 6 Holding means 7 Pull-out tool 8 Protective cover 9 Auxiliary twisting means

Claims (8)

基板上に化学気相成長させた微細炭素繊維の集合体から微細炭素繊維の撚糸を連続的に製造する装置であって、
前記基板から微細炭素繊維を引き出して微細炭素繊維シート体を形成可能な引出手段と、
前記引出手段により引き出された微細炭素繊維シート体に霧状液体を散布して微細炭素繊維凝集体を形成可能な散布手段と、
霧状液体を散布して形成された微細炭素繊維凝集体に撚り掛けを施して撚糸を形成する撚掛手段とを備える微細炭素繊維撚糸製造装置。
An apparatus for continuously producing twisted yarns of fine carbon fibers from an aggregate of fine carbon fibers grown by chemical vapor deposition on a substrate,
A drawing means capable of drawing a fine carbon fiber from the substrate to form a fine carbon fiber sheet body;
A spraying means capable of forming a fine carbon fiber aggregate by spraying a mist-like liquid on the fine carbon fiber sheet pulled out by the pulling means;
A fine carbon fiber twisted yarn manufacturing apparatus comprising twisting means for twisting a fine carbon fiber aggregate formed by spraying a mist-like liquid to form a twisted yarn.
前記霧状液体は、霧状の易揮発性液体である請求項1に記載の微細炭素繊維撚糸製造装置。   The fine carbon fiber twisted yarn manufacturing apparatus according to claim 1, wherein the mist liquid is a mist easily volatile liquid. 前記微細炭素繊維は、カーボンナノチューブである請求項1又は2に記載の微細炭素繊維撚糸製造装置。   The apparatus for producing a fine carbon fiber twisted yarn according to claim 1 or 2, wherein the fine carbon fiber is a carbon nanotube. 前記基板から引き出された微細炭素繊維シート体を挟持する挟持手段を更に備えており、
前記挟持手段は、前記基板と前記撚掛手段との間に配置されており、
前記散布手段は、前記基板と前記挟持手段との間に配置されている請求項1から3のいずれかに記載の微細炭素繊維撚糸製造装置。
It further comprises clamping means for clamping the fine carbon fiber sheet body drawn from the substrate,
The clamping means is arranged between the substrate and the twisting means,
The fine carbon fiber twisted yarn manufacturing apparatus according to any one of claims 1 to 3, wherein the spreading means is disposed between the substrate and the clamping means.
前記撚掛手段は、前記基板から引き出された微細炭素繊維シート体の引出方向に沿う回転軸を有し、前記回転軸周りに前記基板から引き出された微細炭素繊維シート体を回転させることにより撚糸を形成する回転体を備えており、
前記引出手段は、前記回転体に一体的に取り付けられている請求項1から4のいずれかに記載の微細炭素繊維撚糸製造装置。
The twisting means has a rotating shaft along the drawing direction of the fine carbon fiber sheet drawn from the substrate, and twists the yarn by rotating the fine carbon fiber sheet drawn from the substrate around the rotating shaft. A rotating body that forms
The apparatus for producing a fine carbon fiber twisted yarn according to any one of claims 1 to 4, wherein the drawing means is integrally attached to the rotating body.
基板上に化学気相成長させた微細炭素繊維の集合体から微細炭素繊維の撚糸を連続的に製造する方法であって、
前記基板から微細炭素繊維を引き出して微細炭素繊維シート体を形成可能な引出ステップと、
前記引出ステップにより引き出された微細炭素繊維シート体に霧状液体を散布して微細炭素繊維凝集体を形成する散布ステップと、
霧状液体を散布して形成された微細炭素繊維凝集体に撚り掛けを施して撚糸を形成する撚掛ステップとを備える微細炭素繊維撚糸製造方法。
A method for continuously producing a fine carbon fiber twisted yarn from an aggregate of fine carbon fibers grown on a substrate by chemical vapor deposition,
A drawing step capable of drawing a fine carbon fiber from the substrate to form a fine carbon fiber sheet body;
A spraying step of spraying a mist-like liquid on the fine carbon fiber sheet body pulled out by the pulling step to form a fine carbon fiber aggregate;
A fine carbon fiber twisted yarn manufacturing method comprising: a twisting step of twisting a fine carbon fiber aggregate formed by spraying a mist-like liquid to form a twisted yarn.
第1基板上及び第2基板上にそれぞれ化学気相成長させた微細炭素繊維の集合体から微細炭素繊維の撚糸を製造する方法であって、
前記第1基板から微細炭素繊維を引き出して第1微細炭素繊維シート体を形成可能な第1引出ステップと、
前記第2基板から微細炭素繊維を引き出して第2微細炭素繊維シート体を形成可能な第2引出ステップと、
前記第1微細炭素繊維シート体及び前記第2微細炭素繊維シート体を重ね合わせて積層シート体を形成する積層ステップと、
前記積層シート体に霧状液体を散布して微細炭素繊維凝集積層体を形成する散布ステップと、
霧状液体を散布して形成された微細炭素繊維凝集積層体に撚り掛けを施して撚糸を形成する撚掛ステップとを備える微細炭素繊維撚糸製造方法。
A method for producing twisted yarns of fine carbon fibers from an aggregate of fine carbon fibers grown on a first substrate and a second substrate, respectively,
A first drawing step capable of forming a first fine carbon fiber sheet by drawing fine carbon fibers from the first substrate;
A second drawing step capable of forming a second fine carbon fiber sheet body by drawing fine carbon fibers from the second substrate;
A laminating step of superposing the first fine carbon fiber sheet body and the second fine carbon fiber sheet body to form a laminated sheet body;
A spraying step of spraying a mist liquid on the laminated sheet body to form a fine carbon fiber aggregated laminate,
A fine carbon fiber twisted yarn manufacturing method comprising: a twisting step of twisting a fine carbon fiber aggregated laminate formed by spraying a mist-like liquid to form a twisted yarn.
前記積層ステップは、第1微細炭素繊維シート体及び第2微細炭素繊維シート体のいずれか一方を切断する切断ステップを備えている請求項7に記載の微細炭素繊維撚糸製造方法。
The said lamination | stacking step is a fine carbon fiber twisted-yarn manufacturing method of Claim 7 provided with the cutting step which cut | disconnects any one of a 1st fine carbon fiber sheet body and a 2nd fine carbon fiber sheet body.
JP2008288595A 2008-11-11 2008-11-11 Apparatus and method for producing fine carbon fiber twisted yarn Expired - Fee Related JP5229732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008288595A JP5229732B2 (en) 2008-11-11 2008-11-11 Apparatus and method for producing fine carbon fiber twisted yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008288595A JP5229732B2 (en) 2008-11-11 2008-11-11 Apparatus and method for producing fine carbon fiber twisted yarn

Publications (2)

Publication Number Publication Date
JP2010116632A true JP2010116632A (en) 2010-05-27
JP5229732B2 JP5229732B2 (en) 2013-07-03

Family

ID=42304457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008288595A Expired - Fee Related JP5229732B2 (en) 2008-11-11 2008-11-11 Apparatus and method for producing fine carbon fiber twisted yarn

Country Status (1)

Country Link
JP (1) JP5229732B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046604A (en) * 2009-08-28 2011-03-10 Qinghua Univ Method for producing carbon nanotube wire structure
JP2011153392A (en) * 2010-01-28 2011-08-11 Osaka Prefecture Carbon nanotube twisted yarn, and method for producing the same
JP2011208296A (en) * 2010-03-29 2011-10-20 Osaka Prefecture Carbon nanotube twisted yarn and method for producing the same
JP2014169521A (en) * 2013-02-05 2014-09-18 Honda Motor Co Ltd Carbon nanotube fiber and manufacturing method thereof
JP2014237563A (en) * 2013-06-07 2014-12-18 株式会社フジクラ Method and apparatus for producing carbon nanofiber aggregate and method and apparatus for producing conductive wire
WO2015011772A1 (en) 2013-07-22 2015-01-29 村田機械株式会社 Yarn manufacturing device
WO2015011769A1 (en) 2013-07-22 2015-01-29 村田機械株式会社 Thread production device, and aggregating part
WO2015011761A1 (en) 2013-07-22 2015-01-29 村田機械株式会社 Thread production device
WO2015011760A1 (en) 2013-07-22 2015-01-29 村田機械株式会社 Yarn manufacturing device
WO2015011768A1 (en) 2013-07-22 2015-01-29 村田機械株式会社 Yarn manufacturing device
WO2015011771A1 (en) 2013-07-22 2015-01-29 村田機械株式会社 Yarn manufacturing device
WO2015083701A1 (en) * 2013-12-03 2015-06-11 国立大学法人静岡大学 Carbon nanotube twisted yarn, and production method and spinning source for carbon nanotube twisted yarn
CN105339535A (en) * 2013-07-05 2016-02-17 村田机械株式会社 Yarn manufacturing apparatus
CN105378165A (en) * 2013-07-22 2016-03-02 村田机械株式会社 Thread production device
WO2016158575A1 (en) * 2015-03-31 2016-10-06 日立造船株式会社 Method for manufacturing carbon nanotube aggregate
WO2017010180A1 (en) * 2015-07-10 2017-01-19 日立造船株式会社 Carbon nanotube web production method, carbon nanotube aggregate production method, and carbon nanotube web production device
WO2017135234A1 (en) * 2016-02-04 2017-08-10 日立造船株式会社 Carbon nanotube twisted yarn production method and carbon nanotube twisted yarn
KR20170107023A (en) * 2015-02-27 2017-09-22 히다치 조센 가부시키가이샤 Method for manufacturing carbon nanotube fiber, device for manufacturing carbon nanotube fiber, and carbon nanotube fiber
KR101925874B1 (en) 2015-06-12 2018-12-06 주식회사 엘지화학 Apparatus for preparing carbon nanotube fiber and process for preparing carbon nanotube fiber using same
US11045791B2 (en) 2016-03-08 2021-06-29 Japan Science And Technology Agency Catalyst and use of same
WO2021131281A1 (en) * 2019-12-27 2021-07-01 トクセン工業株式会社 Production method for long object made from carbon nanotubes
US11208740B2 (en) 2016-01-29 2021-12-28 Hitachi Zosen Corporation Method for producing carbon nanotube yarn
CN114572765A (en) * 2022-02-23 2022-06-03 武汉市碳翁科技有限公司 Carbon nanotube twisting and collecting device and using method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015710A2 (en) 2004-11-09 2007-02-08 Board Of Regents, The University Of Texas System The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
CN105003405B (en) 2012-08-01 2019-07-23 德克萨斯州大学系统董事会 Curling and the torsion of non-crimping nanofiber twisted yarn and polymer fiber and stretching driver
JP6381009B1 (en) * 2018-01-31 2018-08-29 ジャパンマテックス株式会社 Opening carbon fiber ultrafine yarn manufacturing equipment
KR101976736B1 (en) * 2018-03-21 2019-08-28 주식회사 제이오 Carbon nanotube sheet, and apparatus and method for manufacturing the carbon nanotube sheet

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115348A (en) * 1999-10-13 2001-04-24 Nikkiso Co Ltd Sliver yarn-like yarn of carbon nanofiber and method for producing the same
JP2004149996A (en) * 2002-11-01 2004-05-27 Bridgestone Corp Carbon fiber yarn and method for producing the same
JP2004190166A (en) * 2002-12-10 2004-07-08 Carbon Nanotech Research Institute Method and apparatus for collecting carbon nanotube and carbon nanotube roll
JP2004244758A (en) * 2003-02-14 2004-09-02 Toray Ind Inc Nanofiber-containing fibrous structure
WO2005014476A1 (en) * 2003-08-08 2005-02-17 Nec Corporation Apparatus for producing nanocarbon, method for producing nanocarbon and method for collecting nanocarbon
WO2006120803A1 (en) * 2005-05-10 2006-11-16 Sumitomo Precision Products Co., Ltd Highly thermally conductive composite material
JP2007191849A (en) * 2005-12-22 2007-08-02 Toray Ind Inc Method for producing sheet made of ultrafine fiber
WO2007099975A1 (en) * 2006-02-28 2007-09-07 Toyo Boseki Kabushiki Kaisha Carbon nanotube assembly, carbon nanotube fiber and process for producing carbon nanotube fiber
WO2007119747A1 (en) * 2006-04-13 2007-10-25 Toyo Boseki Kabushiki Kaisha Process for continuously producing fine carbon fiber twine, apparatus therefor and fine carbon fiber twine produced by the process
JP2007535464A (en) * 2004-04-27 2007-12-06 ナノソース インコーポレイテッド Nanotube structure manufacturing system and method
JP2008523254A (en) * 2004-11-09 2008-07-03 ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム Production and application of nanofiber ribbons and sheets and nanofiber twisted and untwisted yarns
JP2008202204A (en) * 2007-01-24 2008-09-04 Toray Ind Inc Production method of ultrafine fiber fabric

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115348A (en) * 1999-10-13 2001-04-24 Nikkiso Co Ltd Sliver yarn-like yarn of carbon nanofiber and method for producing the same
JP2004149996A (en) * 2002-11-01 2004-05-27 Bridgestone Corp Carbon fiber yarn and method for producing the same
JP2004190166A (en) * 2002-12-10 2004-07-08 Carbon Nanotech Research Institute Method and apparatus for collecting carbon nanotube and carbon nanotube roll
JP2004244758A (en) * 2003-02-14 2004-09-02 Toray Ind Inc Nanofiber-containing fibrous structure
WO2005014476A1 (en) * 2003-08-08 2005-02-17 Nec Corporation Apparatus for producing nanocarbon, method for producing nanocarbon and method for collecting nanocarbon
JP2007535464A (en) * 2004-04-27 2007-12-06 ナノソース インコーポレイテッド Nanotube structure manufacturing system and method
JP2008523254A (en) * 2004-11-09 2008-07-03 ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム Production and application of nanofiber ribbons and sheets and nanofiber twisted and untwisted yarns
WO2006120803A1 (en) * 2005-05-10 2006-11-16 Sumitomo Precision Products Co., Ltd Highly thermally conductive composite material
JP2007191849A (en) * 2005-12-22 2007-08-02 Toray Ind Inc Method for producing sheet made of ultrafine fiber
WO2007099975A1 (en) * 2006-02-28 2007-09-07 Toyo Boseki Kabushiki Kaisha Carbon nanotube assembly, carbon nanotube fiber and process for producing carbon nanotube fiber
WO2007119747A1 (en) * 2006-04-13 2007-10-25 Toyo Boseki Kabushiki Kaisha Process for continuously producing fine carbon fiber twine, apparatus therefor and fine carbon fiber twine produced by the process
JP2008202204A (en) * 2007-01-24 2008-09-04 Toray Ind Inc Production method of ultrafine fiber fabric

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046604A (en) * 2009-08-28 2011-03-10 Qinghua Univ Method for producing carbon nanotube wire structure
JP2011153392A (en) * 2010-01-28 2011-08-11 Osaka Prefecture Carbon nanotube twisted yarn, and method for producing the same
JP2011208296A (en) * 2010-03-29 2011-10-20 Osaka Prefecture Carbon nanotube twisted yarn and method for producing the same
JP2014169521A (en) * 2013-02-05 2014-09-18 Honda Motor Co Ltd Carbon nanotube fiber and manufacturing method thereof
JP2014237563A (en) * 2013-06-07 2014-12-18 株式会社フジクラ Method and apparatus for producing carbon nanofiber aggregate and method and apparatus for producing conductive wire
CN105339535A (en) * 2013-07-05 2016-02-17 村田机械株式会社 Yarn manufacturing apparatus
JPWO2015011771A1 (en) * 2013-07-22 2017-03-02 村田機械株式会社 Yarn manufacturing equipment
KR101742111B1 (en) 2013-07-22 2017-05-31 무라다기카이가부시끼가이샤 Yarn manufacturing device
WO2015011760A1 (en) 2013-07-22 2015-01-29 村田機械株式会社 Yarn manufacturing device
WO2015011768A1 (en) 2013-07-22 2015-01-29 村田機械株式会社 Yarn manufacturing device
KR101730948B1 (en) * 2013-07-22 2017-04-27 무라다기카이가부시끼가이샤 Thread production device, and aggregating part
US10472739B2 (en) 2013-07-22 2019-11-12 Murata Machinery Ltd. Yarn manufacturing device
KR20160003738A (en) 2013-07-22 2016-01-11 무라다기카이가부시끼가이샤 Thread production device
KR20160013108A (en) 2013-07-22 2016-02-03 무라다기카이가부시끼가이샤 Yarn manufacturing device
WO2015011769A1 (en) 2013-07-22 2015-01-29 村田機械株式会社 Thread production device, and aggregating part
KR20160018591A (en) 2013-07-22 2016-02-17 무라다기카이가부시끼가이샤 Yarn manufacturing device
CN105339537A (en) * 2013-07-22 2016-02-17 村田机械株式会社 Yarn manufacturing device
CN105358751A (en) * 2013-07-22 2016-02-24 村田机械株式会社 Thread production device, and aggregating part
CN105378165A (en) * 2013-07-22 2016-03-02 村田机械株式会社 Thread production device
CN105408535A (en) * 2013-07-22 2016-03-16 村田机械株式会社 Thread production device
US20160160402A1 (en) * 2013-07-22 2016-06-09 Murata Machinery, Ltd. Yarn manufacturing device
JP5943150B2 (en) * 2013-07-22 2016-06-29 村田機械株式会社 Yarn manufacturing apparatus and agglomeration part
JP5943149B2 (en) * 2013-07-22 2016-06-29 村田機械株式会社 Yarn manufacturing equipment
JP5962859B2 (en) * 2013-07-22 2016-08-03 村田機械株式会社 Yarn manufacturing equipment
TWI551743B (en) * 2013-07-22 2016-10-01 Murata Machinery Ltd Line manufacturing device and agglomeration part
US10450678B2 (en) 2013-07-22 2019-10-22 Murata Machinery, Ltd. Yarn manufacturing device
JP6015862B2 (en) * 2013-07-22 2016-10-26 村田機械株式会社 Yarn manufacturing equipment
US10400361B2 (en) 2013-07-22 2019-09-03 Murata Machinery, Ltd. Thread production device, and aggregating part
US10351977B2 (en) 2013-07-22 2019-07-16 Murata Machinery, Ltd. Thread production device
US10179959B2 (en) 2013-07-22 2019-01-15 Murata Machinery, Ltd. Yarn manufacturing device
JPWO2015011761A1 (en) * 2013-07-22 2017-03-02 村田機械株式会社 Yarn manufacturing equipment
JPWO2015011769A1 (en) * 2013-07-22 2017-03-02 村田機械株式会社 Yarn manufacturing apparatus and agglomeration part
WO2015011772A1 (en) 2013-07-22 2015-01-29 村田機械株式会社 Yarn manufacturing device
JPWO2015011772A1 (en) * 2013-07-22 2017-03-02 村田機械株式会社 Yarn manufacturing equipment
TWI637088B (en) * 2013-07-22 2018-10-01 日商村田機械股份有限公司 Yarn manufacturing device
WO2015011771A1 (en) 2013-07-22 2015-01-29 村田機械株式会社 Yarn manufacturing device
WO2015011761A1 (en) 2013-07-22 2015-01-29 村田機械株式会社 Thread production device
TWI627318B (en) * 2013-07-22 2018-06-21 Murata Machinery Ltd Wire manufacturing device
EP3312320A1 (en) 2013-07-22 2018-04-25 Murata Machinery, Ltd. Carbon nanotube yarn production device
US9945053B2 (en) 2013-07-22 2018-04-17 Murata Machinery, Ltd. Yarn manufacturing apparatus
CN105408535B (en) * 2013-07-22 2017-10-13 村田机械株式会社 Yarn manufacture device
KR101800304B1 (en) 2013-07-22 2017-11-22 무라다기카이가부시끼가이샤 Yarn manufacturing device
JPWO2015083701A1 (en) * 2013-12-03 2017-03-16 国立大学法人静岡大学 Carbon nanotube twisted yarn, method for producing carbon nanotube twisted yarn, and spinning source
WO2015083701A1 (en) * 2013-12-03 2015-06-11 国立大学法人静岡大学 Carbon nanotube twisted yarn, and production method and spinning source for carbon nanotube twisted yarn
KR101883889B1 (en) 2015-02-27 2018-08-01 히다치 조센 가부시키가이샤 Method for manufacturing carbon nanotube fiber, device for manufacturing carbon nanotube fiber, and carbon nanotube fiber
KR20170107023A (en) * 2015-02-27 2017-09-22 히다치 조센 가부시키가이샤 Method for manufacturing carbon nanotube fiber, device for manufacturing carbon nanotube fiber, and carbon nanotube fiber
JP2016191173A (en) * 2015-03-31 2016-11-10 日立造船株式会社 Carbon nanotube aggregate manufacturing method
WO2016158575A1 (en) * 2015-03-31 2016-10-06 日立造船株式会社 Method for manufacturing carbon nanotube aggregate
KR101925874B1 (en) 2015-06-12 2018-12-06 주식회사 엘지화학 Apparatus for preparing carbon nanotube fiber and process for preparing carbon nanotube fiber using same
US10899619B2 (en) 2015-07-10 2021-01-26 Hitachi Zosen Corporation Method for producing carbon nanotube web, method for producing carbon nanotube collected product, and apparatus for producing carbon nanotube web
KR102575221B1 (en) * 2015-07-10 2023-09-05 히다치 조센 가부시키가이샤 Method for manufacturing carbon nanotube web, method for manufacturing carbon nanotube aggregate, and apparatus for manufacturing carbon nanotube web
JP2017019690A (en) * 2015-07-10 2017-01-26 日立造船株式会社 Manufacturing method of carbon nanotube web, manufacturing method of carbon nanotube aggregate, and manufacturing apparatus of carbon nanotube web
WO2017010180A1 (en) * 2015-07-10 2017-01-19 日立造船株式会社 Carbon nanotube web production method, carbon nanotube aggregate production method, and carbon nanotube web production device
KR20180028448A (en) * 2015-07-10 2018-03-16 히다치 조센 가부시키가이샤 METHOD FOR MANUFACTURING CARBON NANOTUBE WEB, METHOD FOR MANUFACTURING CARBON NANOTUBE COLLECTION, AND DEVICE FOR PRODUCING CARBON NANOTUBE WEB
US11208740B2 (en) 2016-01-29 2021-12-28 Hitachi Zosen Corporation Method for producing carbon nanotube yarn
CN108699734A (en) * 2016-02-04 2018-10-23 日立造船株式会社 The manufacturing method and carbon nanotube twisted yarn of carbon nanotube twisted yarn
WO2017135234A1 (en) * 2016-02-04 2017-08-10 日立造船株式会社 Carbon nanotube twisted yarn production method and carbon nanotube twisted yarn
EP3412808A4 (en) * 2016-02-04 2019-08-21 Hitachi Zosen Corporation Carbon nanotube twisted yarn production method and carbon nanotube twisted yarn
JP2017137594A (en) * 2016-02-04 2017-08-10 日立造船株式会社 Method for producing carbon nanotube twisted yarn and carbon nanotube twisted yarn
US11045791B2 (en) 2016-03-08 2021-06-29 Japan Science And Technology Agency Catalyst and use of same
WO2021131281A1 (en) * 2019-12-27 2021-07-01 トクセン工業株式会社 Production method for long object made from carbon nanotubes
JP2021107595A (en) * 2019-12-27 2021-07-29 トクセン工業株式会社 Production method of long object comprising carbon nanotube
KR20220082071A (en) * 2019-12-27 2022-06-16 토쿠센 코교 가부시키가이샤 Method for manufacturing an elongated product made of carbon nanotubes
KR102598779B1 (en) 2019-12-27 2023-11-03 토쿠센 코교 가부시키가이샤 Method for manufacturing long objects made of carbon nanotubes
CN114572765A (en) * 2022-02-23 2022-06-03 武汉市碳翁科技有限公司 Carbon nanotube twisting and collecting device and using method
CN114572765B (en) * 2022-02-23 2023-11-21 武汉市碳翁科技有限公司 Carbon nano tube twisting and collecting device and using method

Also Published As

Publication number Publication date
JP5229732B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5229732B2 (en) Apparatus and method for producing fine carbon fiber twisted yarn
JP5699387B2 (en) Carbon nanotube twisted yarn and method for producing the same
WO2017135234A1 (en) Carbon nanotube twisted yarn production method and carbon nanotube twisted yarn
JP5429751B2 (en) Carbon nanotube twisted yarn and method for producing the same
JP6482966B2 (en) Carbon nanotube web manufacturing method, carbon nanotube aggregate manufacturing method, and carbon nanotube web manufacturing apparatus
JP5823404B2 (en) CNT-introduced metal fiber material and method therefor
JP5629918B2 (en) Carbon nanotube aggregate, method for producing the same, and carbon nanotube twisted yarn
CN107429438B (en) Method for producing carbon nanotube aggregate
KR101928128B1 (en) Apparatuses and methods for large-scale production of hybrid fibers containing carbon nanostructures and related materials
WO2007099975A1 (en) Carbon nanotube assembly, carbon nanotube fiber and process for producing carbon nanotube fiber
US20140093728A1 (en) Carbon nanostructures and methods of making the same
US20190047864A1 (en) Carbon nanotube sheet structure and method for its making
JPWO2017131061A1 (en) Method for producing carbon nanotube yarn
WO2016080526A1 (en) Method for producing carbon nanotube sheet, and carbon nanotube sheet
WO2007119747A1 (en) Process for continuously producing fine carbon fiber twine, apparatus therefor and fine carbon fiber twine produced by the process
US9796121B2 (en) Methods of growing carbon nanotubes and forming a carbon nanotube thread
EP2768770A1 (en) Systems and methods for continuously producing carbon nanostructures on reusable substrates
CN111601702B (en) Nanofiber sheet assembly
JP5251342B2 (en) Carbon fiber web manufacturing method
TW201708103A (en) Carbon nanotube web production method, carbon nanotube aggregate production method, and carbon nanotube web production device
CN104709899B (en) A kind of graphene nanobelt carbon fiber and preparation method thereof
JP2014116117A (en) Method of fabricating carbon nanotube bonded conductor material substrate and apparatus for fabricating carbon nanotube bonded conductor material substrate
JP2007113142A (en) Glass chopped strand mat, method for producing the same and automotive molded ceiling material using the same
TW202112655A (en) Method for manufacturing carbon nanotube twisted thread, and device for manufacturing carbon nanotube twisted thread
JP2012136362A (en) Method for manufacturing multilayer carbon nanotube

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120613

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

LAPS Cancellation because of no payment of annual fees