JP2009250110A - Deterioration detection system of expansion joint - Google Patents

Deterioration detection system of expansion joint Download PDF

Info

Publication number
JP2009250110A
JP2009250110A JP2008098884A JP2008098884A JP2009250110A JP 2009250110 A JP2009250110 A JP 2009250110A JP 2008098884 A JP2008098884 A JP 2008098884A JP 2008098884 A JP2008098884 A JP 2008098884A JP 2009250110 A JP2009250110 A JP 2009250110A
Authority
JP
Japan
Prior art keywords
pressure
expansion joint
layers
differential pressure
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008098884A
Other languages
Japanese (ja)
Inventor
Kenji Matsuda
健治 松田
Koji Ikeda
広司 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2008098884A priority Critical patent/JP2009250110A/en
Publication of JP2009250110A publication Critical patent/JP2009250110A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system capable of easily and safely detecting the deterioration, in an expansion joint interposed in a metallic duct connected to combustion equipment such as a gas turbine and an incinerator. <P>SOLUTION: This deterioration detection system has the expansion joint 8A having at least two layers of flexible seal films 15 and 16 airtightly connected to a joint of the metallic duct 5 connected to the combustion equipment, a first differential pressure detecting part 30 for detecting differential pressure between pressure between the flexible seal films 15 and 16 of the two layers and pressure inside of the expansion joint 8A, and a second differential pressure detecting part 31 for detecting differential pressure between the pressure between the flexible seal films 15 and 16 of the two layers and pressure outside of the expansion joint 8A. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガスタービン、ゴミ焼却炉等の燃焼装置のダクトに接続されている伸縮継手の劣化を検知するためのシステムに関する。   The present invention relates to a system for detecting deterioration of an expansion joint connected to a duct of a combustion apparatus such as a gas turbine or a garbage incinerator.

発電用及び機械駆動用の定置ガスタービンは、吸気ダクトを通じて供給される燃焼用空気を圧縮機で圧縮し燃料と混合させて燃焼させ、発生した高温高圧のガスでタービン翼を回転させて動力を得る。燃焼ガスは、排ガスとして排気ダクトから排出される。   In stationary gas turbines for power generation and machine driving, combustion air supplied through an intake duct is compressed by a compressor, mixed with fuel and burned, and turbine blades are rotated by generated high-temperature and high-pressure gas to generate power. obtain. Combustion gas is discharged from the exhaust duct as exhaust gas.

ガスタービンに供給される燃焼用空気は、燃焼用空気を清浄にする吸気フィルターによって外気中に含まれる埃や腐食性成分が除去され、金属製吸気ダクトを通り、ガスタービンに取り込まれる。ガスタービン本体は、作動及び停止に伴って、熱膨張及び熱収縮するため、吸気ダクトとの間にズレが生じる。このズレを吸収するため、吸気ダクトに伸縮継手が介在させられている。一般に、吸気ダクトの伸縮継手は、常温での使用であること、内部流体が清浄であること、内圧は大気圧のマイナス1kPa程度であること、及び外部との気密性が必要なこと等から、伸縮可撓性のあるゴム膜が採用されている。   The combustion air supplied to the gas turbine is taken in the gas turbine through the metal intake duct after dust and corrosive components contained in the outside air are removed by an intake filter that cleans the combustion air. The gas turbine main body expands and contracts due to operation and stoppage, and therefore, a deviation occurs between the gas turbine body and the intake duct. In order to absorb this deviation, an expansion joint is interposed in the intake duct. In general, expansion joints for intake ducts are used at room temperature, the internal fluid is clean, the internal pressure is about minus 1 kPa of atmospheric pressure, and airtightness with the outside is necessary, etc. A rubber film having elastic flexibility is employed.

ガスタービン運転中に吸気ダクトの伸縮継手が破れると(開口ができると)、外気を直接吸い込むことにより、下記(1)〜(4)のような問題が発生する。   When the expansion joint of the intake duct is torn during gas turbine operation (when an opening is made), the following problems (1) to (4) occur due to direct intake of outside air.

(1) 外気中の埃を吸い込むことになり、ガスタービンの空気圧縮機の動静翼に埃が付着し、圧縮効率が低下し、ガスタービンの効率も低下する。   (1) Dust in the outside air is sucked in, and dust adheres to the moving and stationary blades of the air compressor of the gas turbine, reducing the compression efficiency and reducing the efficiency of the gas turbine.

(2) 外気中の埃に、硫黄分、カリウム、ナトリウム、塩素等の腐食性成分が含まれると、タービン動静翼に高温硫化腐食や応力腐食割れを起こす。   (2) When corrosive components such as sulfur, potassium, sodium, and chlorine are contained in the dust in the outside air, high-temperature sulfidation corrosion and stress corrosion cracking occur in the turbine rotor and stator blades.

(3) 吸気フィルターにより清浄にされた空気は、その後空気ダクトを通過しながら整流されガスタービンの空気圧縮部に流入するが、伸縮継手が敗れるとこの整流を阻害し空気圧縮機入口で偏流、乱流、渦流を発生し、空気圧縮機の動静翼の固有振動数と共振すれば翼の折損事故につながる。   (3) The air cleaned by the intake filter is then rectified while passing through the air duct and flows into the air compressor of the gas turbine. However, if the expansion joint is lost, this rectification is inhibited and drifts at the air compressor inlet. If turbulent flow or vortex flow is generated and resonates with the natural frequency of the moving and stationary blades of the air compressor, it will lead to a blade breakage accident.

(4) 伸縮継手がエンクロージャー内部に設置されていると、日常点検では扉を開放して内部点検をする必要があるが、ガスタービン運転中は点検作業者は駆動部に巻き込まれたり、また高温部に触れて火傷するなどの事故につながる危険性がある。   (4) If the expansion joint is installed inside the enclosure, it is necessary to open the door for daily inspections, and the internal inspection must be performed. There is a risk of accidents such as burns when touching a part.

次に、排気ダクトに関し、ガスタービンから排出される排ガスは、500℃を超える高温であるので、排気ダクトを通じて、排ガスボイラに供給され、排熱回収される場合が多い。ガスタービンから排出される排ガスが高温のため、ガスタービンと後流設備(排熱回収用の排ガスボイラー等)とを接続する金属製の排気ダクトにおいても、ダクトの熱膨張・熱収縮を吸収するための伸縮継手が介在される(特許文献1等)。ガスタービンの排気ダクトの伸縮継手が破れると、高温の排ガスが放出されることとなり、危険である。   Next, regarding the exhaust duct, since the exhaust gas discharged from the gas turbine has a high temperature exceeding 500 ° C., the exhaust gas is often supplied to the exhaust gas boiler through the exhaust duct and recovered. Because the exhaust gas discharged from the gas turbine is hot, the metal exhaust duct connecting the gas turbine and the downstream equipment (exhaust heat recovery exhaust gas boiler, etc.) absorbs the thermal expansion and contraction of the duct. Expansion joints are interposed (Patent Document 1, etc.). If the expansion joint of the exhaust duct of the gas turbine is broken, high-temperature exhaust gas is released, which is dangerous.

さらに、ゴミ焼却炉やボイラー等で排出される排ガスも高温となり、これらの燃焼装置の排気ダクトに介在されている伸縮継手も破れると危険である。   Further, exhaust gas discharged from a garbage incinerator, boiler, or the like becomes high in temperature, and it is dangerous if the expansion joints interposed in the exhaust ducts of these combustion apparatuses are broken.

従来では、伸縮継手の破れ等の劣化を検知する監視機能は装備されておらず、目視による日常点検を行い、劣化寿命を予測して交換するなどしていた。
特許第3790403号明細書
Conventionally, a monitoring function for detecting deterioration such as breakage of an expansion joint has not been provided, and daily visual inspection is performed to predict and replace the deterioration life.
Japanese Patent No. 3790403

しかしながら、上記従来のような目視での点検には時間がかかるうえ、点検作業に危険が伴う恐れがある。   However, the visual inspection as described above takes time, and there is a risk that the inspection work may be dangerous.

そこで、本発明は、ガスタービンや焼却炉等の燃焼装置に接続されている金属製ダクトに介在される伸縮継手について、簡易且つ安全に劣化を検知することができるシステムを提供することを目的とする。   Then, this invention aims at providing the system which can detect deterioration easily and safely about the expansion joint interposed in metal ducts connected to combustion apparatuses, such as a gas turbine and an incinerator. To do.

上記目的を達成するため、本発明に係る伸縮継手の劣化検知システムは、燃焼装置に接続される金属性ダクトの継ぎ目に気密的に接続される可撓性シール膜を少なくとも2層有する伸縮継手と、前記2層の可撓性シール膜の少なくとも1方の可撓性シール膜の劣化を検知するために、少なくとも前記2層の可撓性シール膜間の圧力を検出する圧力検出手段と、を有することを特徴とする。   In order to achieve the above object, an expansion joint deterioration detection system according to the present invention includes an expansion joint having at least two flexible sealing films hermetically connected to a seam of a metallic duct connected to a combustion device. A pressure detecting means for detecting a pressure between at least the two layers of the flexible seal films, in order to detect deterioration of at least one of the two layers of the flexible seal films; It is characterized by having.

前記圧力検出手段は、前記2層の可撓性シール膜間の圧力と、前記伸縮継手の内側の圧力との差圧を検出するための第1差圧検出部と、前記2層の可撓性シール膜間の圧力と、前記伸縮継手の外側の圧力との差圧を検出するための第2差圧検出部と、を有することとしても良い。   The pressure detecting means includes a first differential pressure detecting unit for detecting a differential pressure between the pressure between the two layers of flexible seal films and the pressure inside the expansion joint, and the two layers of flexible It is good also as having a 2nd differential pressure | voltage detection part for detecting the differential pressure | voltage between the pressure between adhesive seal membranes, and the pressure outside the said expansion joint.

前記燃焼装置がガスタービンであり、前記伸縮継手は、ガスタービンの吸気ダクトに接続され、且つ、ガスタービンを収容する、換気ファンが設置されたエンクロージャー内に配置され、前記第1差圧検出部は、前記伸縮継手内の燃焼用空気圧力と前記2層の可撓性シール膜間の圧力との差圧を検出し、前記第2差圧検出部は、前記伸縮継手外の前記エンクロージャーで囲まれた周囲雰囲気圧力と前記2層の可撓性シール膜間の圧力との差圧を検出することとしても良い。   The combustion device is a gas turbine, and the expansion joint is disposed in an enclosure that is connected to an intake duct of the gas turbine and accommodates the gas turbine, in which a ventilation fan is installed, and the first differential pressure detection unit Detects the differential pressure between the combustion air pressure in the expansion joint and the pressure between the two layers of flexible seal membranes, and the second differential pressure detector is enclosed by the enclosure outside the expansion joint. It is also possible to detect a differential pressure between the ambient atmospheric pressure and the pressure between the two layers of flexible sealing films.

本発明では、伸縮継手が少なくとも2層の可撓性シール膜を有し、該2層の可撓性シール膜によってダクトの継ぎ目をシールしている。この可撓性シール膜の2層間の圧力と、伸縮継手の内側の圧力(ダクト内の圧力)及び伸縮継手の外側の圧力(ダクト外の圧力)とが、可撓性シール膜の破れる前後で異なれば、これらの圧力変化を監視しておくことにより、可撓性シール膜の破れを検知できる。   In the present invention, the expansion joint has at least two layers of flexible seal membranes, and the two-layer flexible seal membranes seal the duct seams. The pressure between the two layers of the flexible seal membrane, the pressure inside the expansion joint (pressure inside the duct) and the pressure outside the expansion joint (pressure outside the duct) are before and after the flexible seal membrane is broken. If they are different, it is possible to detect the breakage of the flexible sealing film by monitoring these pressure changes.

また、2層の可撓性シール膜のうち、一方の可撓性シール膜が破れても、他方の可撓性シール膜によって伸縮継手内及びダクト内の気密性を確保できる。   Further, even if one of the two layers of the flexible sealing film is broken, the airtightness in the expansion joint and the duct can be secured by the other flexible sealing film.

ガスタービンでは、ガスタービンの運転中は吸気ダクト内に多量の空気が流れ、圧縮機による吸引によって常圧より減圧状態となる。また、ガスタービンが収容されるエンクロージャーには、換気ファンが取り付けられており、換気ファンの換気方式にもよるが、換気ファンの作動中、エンクロージャー内は、常圧に比べて減圧状態または加圧状態となる。そのため、吸気ダクトの伸縮継手がエンクロージャー内に配置されている場合は、2層の可撓性シール膜間に常圧の空気が密封されておれば、該2層の可撓性シール膜間の圧力と伸縮継手の内外の圧力との間に圧力差が生じ、これらの差圧を検出することによって、差圧がゼロになれば可撓性シール膜に破れが生じたことを検知できる。   In the gas turbine, a large amount of air flows in the intake duct during the operation of the gas turbine, and the pressure is reduced from the normal pressure by suction by the compressor. In addition, a ventilation fan is attached to the enclosure in which the gas turbine is housed. Depending on the ventilation method of the ventilation fan, the enclosure is in a reduced pressure state or pressurized state compared to normal pressure during the operation of the ventilation fan. It becomes a state. Therefore, when the expansion joint of the intake duct is disposed in the enclosure, if normal pressure air is sealed between the two layers of flexible seal membranes, the space between the two layers of flexible seal membranes is reduced. A pressure difference is generated between the pressure and the pressure inside and outside the expansion joint, and by detecting these pressure differences, it is possible to detect that the flexible seal film has been torn if the pressure difference becomes zero.

本発明に係る伸縮継手の劣化検知システムの実施形態について、以下に図1〜図5を参照して説明する。なお、全図及び全実施形態を通じ、同様の構成部分については同符号を付した。   An embodiment of a deterioration detection system for an expansion joint according to the present invention will be described below with reference to FIGS. In addition, the same code | symbol was attached | subjected about the same component through all the drawings and all the embodiments.

図1は、ガスタービン発電機の概略構成を示す概念図である。ガスタービン1は、発電機2、減速機3とともに、エンクロージャー4内に収容されている。エンクロージャー4には、吸気ダクト5が挿通されとともに、換気ファン6が取り付けられ、換気ファン6に換気ダクト7が接続されている。吸気ダクト5は、伸縮継手8Aを介して、ガスタービン1の圧縮機9に接続され、吸気フィルター5aで埃等をフィルタリングした燃焼用空気を圧縮機9に供給する。圧縮機9で圧縮された燃焼用空気は、燃料と混合され、燃焼器10で燃焼させられて高温・高圧のガスとなり、タービン11を駆動させる。タービン11及び圧縮機9と軸連結された減速機3を介して発電機2を駆動し、発電する。タービン11から排出される排気ガスは、排気ダクト12から排出される。排気ダクトには、伸縮継手8Bが介在されている。吸気ダクト5及び排気ダクト12は、ともに金属製である。   FIG. 1 is a conceptual diagram showing a schematic configuration of a gas turbine generator. The gas turbine 1 is housed in the enclosure 4 together with the generator 2 and the speed reducer 3. An air intake duct 5 is inserted into the enclosure 4, and a ventilation fan 6 is attached to the enclosure 4. A ventilation duct 7 is connected to the ventilation fan 6. The intake duct 5 is connected to the compressor 9 of the gas turbine 1 through the expansion joint 8A, and supplies the combustion air obtained by filtering dust and the like with the intake filter 5a to the compressor 9. The combustion air compressed by the compressor 9 is mixed with fuel and burned by the combustor 10 to become high-temperature and high-pressure gas, and drives the turbine 11. The generator 2 is driven through the speed reducer 3 connected to the turbine 11 and the compressor 9 to generate electricity. Exhaust gas discharged from the turbine 11 is discharged from the exhaust duct 12. An expansion joint 8B is interposed in the exhaust duct. Both the intake duct 5 and the exhaust duct 12 are made of metal.

図2は、吸気ダクト5に介在されている伸縮継手8Aを拡大して示す断面図である。図2に示すように、2層の可撓性シール膜15、16を備えている。可撓性シール膜15、16は、筒状をしている。可撓性シール膜15、16は、吸引ダクト5の継ぎ目付近の被接続端部5a、5bに固定されたフランジ17、18に、両端部間にスペーサ19を介在させた状態で、当板20を当てて、ボルト・ナット21により締結固定されている。可撓性シール膜15、16の両端間に挟持されるスペーサ19,19により、可撓性シール膜15、16の間Mに密閉された空間が形成されている。なお、可撓性シール膜15、16の吸引ダクト5への固定方法は、図示例の固定構造に限らず、種々の固定構造を採用し得る。   FIG. 2 is an enlarged cross-sectional view of the expansion joint 8 </ b> A interposed in the intake duct 5. As shown in FIG. 2, two layers of flexible sealing films 15 and 16 are provided. The flexible sealing films 15 and 16 have a cylindrical shape. The flexible sealing films 15 and 16 are formed on the plate 20 with flanges 17 and 18 fixed to the connected end portions 5a and 5b near the joint of the suction duct 5 with spacers 19 interposed between both ends. The bolts and nuts 21 are fastened and fixed. A sealed space M is formed between the flexible sealing films 15 and 16 by the spacers 19 and 19 sandwiched between both ends of the flexible sealing films 15 and 16. The fixing method of the flexible seal films 15 and 16 to the suction duct 5 is not limited to the fixing structure in the illustrated example, and various fixing structures can be adopted.

吸引ダクト5の内部を流れる燃焼用空気は常温であるため、可撓性シール膜は、たとえば、ネオプレンゴム、フッ素ゴム、シリコンゴム、ウレタンゴム、ニトリルゴム、ブチルゴム等の伸縮可撓性を有するゴム材料で形成することができ、繊維で強化されていてもよい。スペーサ19も可撓性シール膜と同じ材料で形成してもよいし、可撓性シール膜間のシール性を確保できる材料であれば、他の材料で形成しても良い。図示しないが、図2のスペーサ19を省いて、2枚の筒状の可撓性シール膜を、周縁部だけを接着し、周縁部を除く可撓性シール膜間を気密にしてもよい。あるいは、図3に示すように、2層の可撓性シール膜15、16を周縁部19Aとともに一体成型により構成してもよい。   Since the combustion air flowing inside the suction duct 5 is at room temperature, the flexible sealing film is a rubber having elastic flexibility such as neoprene rubber, fluorine rubber, silicon rubber, urethane rubber, nitrile rubber, butyl rubber, etc. It can be made of a material and may be reinforced with fibers. The spacer 19 may also be formed of the same material as that of the flexible sealing film, or may be formed of other materials as long as the sealing property between the flexible sealing films can be ensured. Although not shown, the spacer 19 in FIG. 2 may be omitted, and the two cylindrical flexible sealing films may be bonded only at the peripheral part to make the space between the flexible sealing films except the peripheral part airtight. Alternatively, as shown in FIG. 3, the two layers of flexible sealing films 15 and 16 may be formed by integral molding together with the peripheral portion 19A.

ガスタービン1が作動しているとき、燃焼用空気Aは、吸気ダクト5を通じて圧縮機9に吸引される。そのため、吸気ダクト5内の圧力Pinは、常圧(大気圧)に比べてマイナス1kPa程度の減圧状態にある。また、ガスタービン1が作動しているとき、エンクロージャー4内を換気ファン6によって換気するため、換気方式によるが、エンクロージャー4内の圧力Poutが常圧に比べて減圧状態または加圧状態となる。伸縮継手8Aの可撓性シール膜15、16の間Mを常圧の空気で満たしておけば、可撓性シール膜15、16の間Mの圧力Pと、伸縮継手8Aの内側を流れる燃焼用空気Aの圧力Pinとの間に圧力差が生じている。また、可撓性シール膜15、16の間Mの圧力Pと、伸縮継手8Aの外側の空気圧(エンクロージャー4で囲まれた雰囲気の圧力)Poutとにも、圧力差が生じている。 When the gas turbine 1 is operating, the combustion air A is sucked into the compressor 9 through the intake duct 5. Therefore, the pressure Pin in the intake duct 5 is in a depressurized state of about minus 1 kPa compared to the normal pressure (atmospheric pressure). Further, when the gas turbine 1 is operating, for ventilating the enclosure 4 by the ventilation fan 6, depending on the ventilation system, the pressure P out of the enclosure 4 is depressurized or pressurized state compared to normal pressure . If the space M between the flexible seal films 15 and 16 of the expansion joint 8A is filled with atmospheric pressure air, the pressure P M between the flexible seal films 15 and 16 and the inside of the expansion joint 8A flow. pressure difference is generated between the pressure P in the combustion air a. In addition, a pressure difference is generated between the pressure P M between the flexible sealing films 15 and 16 and the air pressure P out of the expansion joint 8A (atmosphere pressure surrounded by the enclosure 4) P out .

圧力検出手段として、可撓性シール膜15、16の間Mの圧力Pと伸縮継手8Aの内側の圧力Pinとの差圧dPを検出するための第1差圧検出部30と、可撓性シール膜15、16の間Mの圧力Pと伸縮継手8Aの外側の圧力Poutとの差圧dPを検出するための第2差圧検出部31とが備えられている。 As pressure detecting means, a first differential pressure detecting portion 30 for detecting the differential pressure dP 1 of the inner pressure P in the pressure P M and expansion joints 8A of M between the flexible seal membranes 15 and 16, A second differential pressure detector 31 for detecting a differential pressure dP 2 between the pressure P M between the flexible sealing films 15 and 16 and the pressure P out outside the expansion joint 8A is provided.

第1差圧検出部30は、圧力センサー30aの計測圧力と圧力センサー30bの計測圧力との差圧dPを検出し、第2差圧検出部31は、圧力センサー31aの計測圧力と圧力センサー31bの計測圧力との差圧dPを検出する。差圧の検出は、公知の演算回路により行われ得る。なお、図示例において、圧力センサー30aと31aとを別個のセンサーとしているが、一つの圧力センサーで兼用する回路構成としてもよい。圧力センサーは、公知の圧力センサーを使用でき、例えば、圧電素子を内蔵する圧力センサーを使用し得る。 The first differential pressure detector 30 detects a differential pressure dP 1 between the measured pressure of the pressure sensor 30a and the measured pressure of the pressure sensor 30b, and the second differential pressure detector 31 detects the measured pressure of the pressure sensor 31a and the pressure sensor. detecting the differential pressure dP 2 and 31b of the measurement pressure. The detection of the differential pressure can be performed by a known arithmetic circuit. In the illustrated example, the pressure sensors 30a and 31a are separate sensors, but a circuit configuration may also be used with a single pressure sensor. As the pressure sensor, a known pressure sensor can be used. For example, a pressure sensor incorporating a piezoelectric element can be used.

また、第1差圧検出部30、第2差圧検出部31は、差圧dP、dPを差圧信号として、DCS(Distributed Control System:分散制御システム)等の動力設備制御装置(図示せず。)に伝送する機能を有し得る。なお、DCSは、ガスタービン、発電機、ボイラ、付帯設備などの動力設備を分散制御する公知のシステムである。 Further, the first differential pressure detection unit 30 and the second differential pressure detection unit 31 use the differential pressures dP 1 and dP 2 as differential pressure signals to control power equipment such as a DCS (Distributed Control System) (see FIG. (Not shown)). DCS is a well-known system that performs distributed control of power equipment such as a gas turbine, a generator, a boiler, and incidental equipment.

これらの差圧dP、dPを、第1差圧検出部30及び第2差圧検出部31によって常時監視しておき、ガスタービン作動中にこれらの差圧がゼロになれば、内側の可撓性シール膜15及び外側の可撓性シール膜16の何れかが破れ始め、劣化が始まったと判断し、DCSが自動的に警報を発生させる。なお、可撓性シール膜15、16の間Mは、伸縮継手8Aの内外の圧力と異なる圧力となるように、所定の圧力以下に減圧状態とし、あるいは、不活性ガスを圧入しておいて所定圧力以上の加圧状態としておくこともできる。 These differential pressures dP 1 and dP 2 are constantly monitored by the first differential pressure detection unit 30 and the second differential pressure detection unit 31, and if these differential pressures become zero during operation of the gas turbine, Either one of the flexible sealing film 15 and the outer flexible sealing film 16 starts to be broken, and it is determined that the deterioration has started, and DCS automatically generates an alarm. It should be noted that the space M between the flexible seal films 15 and 16 is reduced to a predetermined pressure or lower, or an inert gas is injected so that the pressure is different from the pressure inside and outside the expansion joint 8A. It can also be set as the pressurization state more than predetermined pressure.

上記のようにして伸縮継手8Aを構成している可撓性シール膜15、16の何れかが破れ始めたことを自動的に検知することができるので、目視検査に比較して、安全且つ迅速に劣化を察知できる。   As described above, since it is possible to automatically detect that one of the flexible sealing films 15 and 16 constituting the expansion joint 8A has started to be broken, it is safer and quicker than the visual inspection. Deterioration can be detected.

第1差圧検出部30及び第2差圧検出部31の双方によって、それぞれの差圧dP、dPを監視しておくことにより、内側の可撓性シール膜15と外側の可撓性シール膜16のどちらが破損したかを判別することができるため、破損した可撓性シールのみを交換することができる。 By monitoring the differential pressures dP 1 and dP 2 by both the first differential pressure detector 30 and the second differential pressure detector 31, the inner flexible seal film 15 and the outer flexible film 15 Since it is possible to determine which of the sealing films 16 has been damaged, only the damaged flexible seal can be replaced.

また、可撓性シール膜15、16の一方の可撓性シール膜が破れたとしても、他方の可撓性シール膜によって伸縮継手8A内の気密性を確保することができるため、破損した可撓性シール膜を新しい伸縮継手に交換するまでの間、ガスタービンを継続して運転することができる。   Even if one of the flexible sealing films 15 and 16 is broken, the other flexible sealing film can secure the airtightness in the expansion joint 8A. The gas turbine can be continuously operated until the flexible sealing film is replaced with a new expansion joint.

さらに、吸気ダクト5に介在された伸縮継手8Aは、劣化を迅速に検知することにより、フィルタリングされていない外部空気が燃焼用空気に混入するのを未然に防ぐことができるので、ガスタービン効率の低下、ガスタービン動静翼の高温硫化腐食及び応力腐食割れ、および、圧縮機動静翼の共振による破損事故を未然に防ぐことができる。   Further, the expansion joint 8A interposed in the intake duct 5 can prevent the external air that has not been filtered from being mixed into the combustion air by quickly detecting the deterioration. It is possible to prevent deterioration, high-temperature sulfidation corrosion and stress corrosion cracking of the gas turbine rotor and stator blades, and damage accidents due to resonance of the compressor rotor and stator blades.

なお、伸縮継手8Aが、エンクロージャー4の外に配置されている場合は、上記したように、可撓性シール膜15、16の間Mを、所定の圧力以下に減圧状態とし、あるいは、不活性ガスを圧入しておいて所定圧力以上の加圧状態としておけばよい。   When the expansion joint 8A is disposed outside the enclosure 4, as described above, the M between the flexible seal films 15 and 16 is brought into a reduced pressure state below a predetermined pressure, or is inactive. It is only necessary to press the gas into a pressurized state that is equal to or higher than a predetermined pressure.

図4は、他の実施形態に係る伸縮継手の劣化検知システムを示す断面図である。この実施形態では、圧力検出手段として、2層の可撓性シール膜15、16の間Mの圧力Pを監視する圧力センサー40のみを備えている。可撓性シール膜15、16の何れかが破損する前の圧力Pが常圧であるとすると、ガスタービン1の作動中に、2層の可撓性シール膜15、16の何れか一方が破れると、可撓性シール膜15、16間の圧力は、Pから、伸縮継手8Aの内側の圧力Pinまたは伸縮継手の外側の周囲圧力Poutに変化するので、2層の可撓性シール膜15、16の何れかが破れ始めたことを検知することができる。この場合、2層の可撓性シール膜15、16の何れが破れたかは、圧力検出手段の計測値が、PinかPoutかによって判定することができる。なお、この例においても、必要に応じ、可撓性シール膜15、16の間Mを、所定の圧力以下に減圧状態とし、あるいは、不活性ガスを圧入しておいて所定圧力以上の加圧状態としてもよい。 FIG. 4 is a cross-sectional view showing an expansion joint deterioration detection system according to another embodiment. In this embodiment, only the pressure sensor 40 that monitors the pressure P M between the two layers of flexible sealing films 15 and 16 is provided as the pressure detection means. Assuming that the pressure PM before any of the flexible sealing films 15 and 16 breaks is normal pressure, either one of the two layers of flexible sealing films 15 and 16 is in operation during the operation of the gas turbine 1. When broken, the pressure between the flexible seal membranes 15 and 16, the P M, so changes to the outside of ambient pressure P out of the inner pressure P in or expansion joint expansion joints 8A, the two-layer flexible It can be detected that any of the sealing films 15 and 16 starts to break. In this case, which of the two layers of the flexible sealing films 15 and 16 is broken can be determined based on whether the measurement value of the pressure detecting means is P in or P out . In this example as well, the M between the flexible seal films 15 and 16 is reduced to a predetermined pressure or lower as necessary, or an inert gas is injected to increase the pressure to a predetermined pressure or higher. It is good also as a state.

次に、ガスタービン1の排気ダクト12の介在されている伸縮継手8Bについて説明する。   Next, the expansion joint 8B in which the exhaust duct 12 of the gas turbine 1 is interposed will be described.

排気ダクト12を流れる排ガスは500℃を超える高温になるため、ガスタービン1の作動と停止に伴い、排気ダクト12が熱膨張と熱収縮を生じる。この熱膨張および熱収縮を吸収するため、排気ダクト12に伸縮継手8Bが介在されている。   Since the exhaust gas flowing through the exhaust duct 12 has a high temperature exceeding 500 ° C., the exhaust duct 12 undergoes thermal expansion and contraction as the gas turbine 1 is activated and stopped. In order to absorb this thermal expansion and contraction, an expansion joint 8B is interposed in the exhaust duct 12.

伸縮継手8Bは,図5に示すように、可撓性シール膜15a、16aが、それらの間にスペーサ19aを介在させて、フランジ17,18に押え板20及びボルト・ナット21によって固定されている。可撓性シール膜15aの内側(排気ダクト12の中心側)に、セラミック繊維、ガラスクロス等で構成される断熱材層50が、排気ダクト12の外周面に溶接されたスタッドボルト51、及び該ボルト51に螺入したナット52によって取り付けられている。可撓性シール膜15a、16aは、4フッ化ポリエチレン樹脂シート等の耐熱性材料が使用され得る。断熱材の構造、可撓性シール膜15a、16aの取付構造及びシール構造等は、図示例に限らず、種々構造のものが採用され得る。   As shown in FIG. 5, the expansion joint 8B has flexible sealing films 15a and 16a fixed to the flanges 17 and 18 by a press plate 20 and bolts and nuts 21 with a spacer 19a interposed therebetween. Yes. A stud bolt 51 in which a heat insulating material layer 50 made of ceramic fiber, glass cloth or the like is welded to the outer peripheral surface of the exhaust duct 12 inside the flexible seal film 15a (center side of the exhaust duct 12), and It is attached by a nut 52 screwed into the bolt 51. The flexible seal films 15a and 16a may be made of a heat resistant material such as a tetrafluoropolyethylene resin sheet. The structure of the heat insulating material, the mounting structure of the flexible seal films 15a and 16a, the seal structure, and the like are not limited to the illustrated examples, and various structures can be employed.

ガスタービン1から排出される高温の排ガスから余熱を回収して、排熱を有効利用するため、ガスタービン1の排気ダクト12は、排熱回収用の排ガスボイラー55(図1)に接続されることが多い。また、排ガスの煙道には、誘引通風機や風量制御用ダンパ等(図示せず。)が設置されている。そのため、ガスタービン1の排気ダクト12内の圧力Pinは、大気圧よりやや高い圧力状態となっている。さらに、ガスタービンの作動中、可撓性シール膜15a、16aの間Mにある空気は、シールされた空間内において高温の排ガスの熱によって膨張し、大気圧よりかなり高い圧力Pになっている。排気ダクト12の伸縮継手8Bは、エンクロージャー4の外部に配置されている(図1参照)と、伸縮継手8Bの外側の周囲雰囲気圧力Poutは、大気圧となる。 In order to recover the residual heat from the high-temperature exhaust gas discharged from the gas turbine 1 and effectively use the exhaust heat, the exhaust duct 12 of the gas turbine 1 is connected to an exhaust gas boiler 55 (FIG. 1) for exhaust heat recovery. There are many cases. An exhaust fan, an air volume control damper, and the like (not shown) are installed in the flue of the exhaust gas. Therefore, the pressure Pin in the exhaust duct 12 of the gas turbine 1 is slightly higher than atmospheric pressure. Furthermore, during operation of the gas turbine, the flexible sealing membrane 15a, 16a is air located between M of the sealed space expands due to the heat of the hot exhaust gas, becomes considerably higher pressure P M than atmospheric pressure Yes. Expansion joint 8B of the exhaust duct 12 is disposed outside the enclosure 4 (see FIG. 1), the ambient atmospheric pressure P out of the outer expansion joint 8B becomes the atmospheric pressure.

このように、ガスタービン1の作動中においては、可撓性シール15a、16aの間M、伸縮継手8Bの内側(排気ダクト12内)、伸縮継手8Bの外側(排気ダクト12外)は、それぞれ異なる圧力状態にある。したがって、これらの圧力状態の差圧を、第1差圧検出部30及び第2差圧検出部31によって監視することにより、伸縮継手8Bの劣化を検知することができる。第1、第2差圧検出部30、31の圧力センサー30a、30b、31aは、高温用のものが用いられる。   Thus, during the operation of the gas turbine 1, M between the flexible seals 15a and 16a, the inside of the expansion joint 8B (inside the exhaust duct 12), and the outside of the expansion joint 8B (outside the exhaust duct 12) are respectively In different pressure conditions. Therefore, the deterioration of the expansion joint 8B can be detected by monitoring the differential pressure in these pressure states by the first differential pressure detector 30 and the second differential pressure detector 31. The pressure sensors 30a, 30b, 31a of the first and second differential pressure detectors 30, 31 are for high temperatures.

なお、排気ダクト12の伸縮継手の場合も、図3で示した例のように、可撓性シール膜15a、15bの間Mの圧力Pのみを監視することによって、伸縮継手8Bの劣化を検知することもできる。 In the case of the expansion joint of the exhaust duct 12, as in the example shown in FIG. 3, the deterioration of the expansion joint 8B can be prevented by monitoring only the pressure P M between the flexible seal films 15a and 15b. It can also be detected.

本発明に関し、上記実施形態では、ガスタービンの例のみについて例示したが、焼却炉その他の燃焼装置にも適用し得る。   In the above embodiment, only the example of the gas turbine is illustrated in the above embodiment, but the present invention can be applied to an incinerator and other combustion apparatuses.

ガスタービン発電設備を示す概略構成図である。It is a schematic block diagram which shows gas turbine power generation equipment. 本発明に係る伸縮継手の劣化検知システムを示す断面図である。It is sectional drawing which shows the deterioration detection system of the expansion joint which concerns on this invention. 本発明に係る伸縮継手の劣化検知システムの変更態様を示す断面図である。It is sectional drawing which shows the change aspect of the deterioration detection system of the expansion joint which concerns on this invention. 本発明に係る伸縮継手の劣化検知システムの、他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the deterioration detection system of the expansion joint which concerns on this invention. 本発明に係る伸縮継手の劣化検知システムの、更に他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the deterioration detection system of the expansion joint which concerns on this invention.

符号の説明Explanation of symbols

1 ガスタービン
4 エンクロージャー
5 吸気ダクト
12 排気ダクト
15 可撓性シール膜
16 可撓性シール膜
30 第1差圧検出部
31 第2差圧検出部
DESCRIPTION OF SYMBOLS 1 Gas turbine 4 Enclosure 5 Intake duct 12 Exhaust duct 15 Flexible seal film | membrane 16 Flexible seal film | membrane 30 1st differential pressure | voltage detection part 31 2nd differential pressure | voltage detection part

Claims (3)

燃焼装置に接続される金属性ダクトの継ぎ目に気密的に接続される可撓性シール膜を少なくとも2層有する伸縮継手と、
前記2層の可撓性シール膜の少なくとも1方の可撓性シール膜の劣化を検知するために、少なくとも前記2層の可撓性シール膜間の圧力を検出する圧力検出手段と、
を有することを特徴とする伸縮継手の劣化検知システム。
An expansion joint having at least two layers of a flexible sealing film hermetically connected to a seam of a metallic duct connected to a combustion device;
A pressure detecting means for detecting a pressure between at least the two layers of the flexible seal films, in order to detect deterioration of at least one of the two layers of the flexible seal films;
A deterioration detection system for an expansion joint, characterized by comprising:
前記圧力検出手段は、
前記2層の可撓性シール膜間の圧力と、前記伸縮継手の内側の圧力との差圧を検出するための第1差圧検出部と、
前記2層の可撓性シール膜間の圧力と、前記伸縮継手の外側の圧力との差圧を検出するための第2差圧検出部と、
を有することを特徴とする請求項1に記載の伸縮継手の劣化検知システム。
The pressure detecting means includes
A first differential pressure detection unit for detecting a differential pressure between the pressure between the two layers of flexible seal films and the pressure inside the expansion joint;
A second differential pressure detection unit for detecting a differential pressure between the pressure between the two layers of the flexible seal film and the pressure outside the expansion joint;
The deterioration detection system for an expansion joint according to claim 1, comprising:
前記燃焼装置がガスタービンであり、
前記伸縮継手は、ガスタービンの吸気ダクトに接続され、且つ、ガスタービンを収容する、換気ファンが設置されたエンクロージャー内に配置され、
前記第1差圧検出部は、前記伸縮継手内の燃焼用空気圧力と前記2層の可撓性シール膜間の圧力との差圧を検出し、
前記第2差圧検出部は、前記伸縮継手外の前記エンクロージャーで囲まれた周囲雰囲気圧力と前記2層の可撓性シール膜間の圧力との差圧を検出することを特徴とする請求項1または2に記載の伸縮継手の劣化検知システム。
The combustion device is a gas turbine;
The expansion joint is connected to an intake duct of a gas turbine, and is disposed in an enclosure in which a ventilation fan is installed and accommodates the gas turbine.
The first differential pressure detection unit detects a differential pressure between a combustion air pressure in the expansion joint and a pressure between the two layers of flexible seal films,
The second differential pressure detection unit detects a differential pressure between an ambient atmospheric pressure surrounded by the enclosure outside the expansion joint and a pressure between the two layers of flexible seal films. The deterioration detection system of the expansion joint as described in 1 or 2.
JP2008098884A 2008-04-07 2008-04-07 Deterioration detection system of expansion joint Pending JP2009250110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098884A JP2009250110A (en) 2008-04-07 2008-04-07 Deterioration detection system of expansion joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098884A JP2009250110A (en) 2008-04-07 2008-04-07 Deterioration detection system of expansion joint

Publications (1)

Publication Number Publication Date
JP2009250110A true JP2009250110A (en) 2009-10-29

Family

ID=41311056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098884A Pending JP2009250110A (en) 2008-04-07 2008-04-07 Deterioration detection system of expansion joint

Country Status (1)

Country Link
JP (1) JP2009250110A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104426A (en) * 2011-11-16 2013-05-30 United Technologies Corp <Utc> Gas turbine engine and flexible seal system for the same
JP2013130215A (en) * 2011-12-20 2013-07-04 Nippon Steel & Sumitomo Metal Corp Expansion joint, and method for detecting broken hole therein using the same
JP2017509885A (en) * 2014-03-14 2017-04-06 ローズマウント インコーポレイテッド Corrosion rate measurement system
US10190968B2 (en) 2015-06-26 2019-01-29 Rosemount Inc. Corrosion rate measurement with multivariable sensor
US10830689B2 (en) 2014-09-30 2020-11-10 Rosemount Inc. Corrosion rate measurement using sacrificial probe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135629A (en) * 1983-12-23 1985-07-19 Yanmar Diesel Engine Co Ltd Power generating apparatus utilizing wholly enclosed gas turbine
JPS62244213A (en) * 1986-04-17 1987-10-24 株式会社東芝 Flexible joint
JPS6357992A (en) * 1986-08-28 1988-03-12 三菱重工業株式会社 Expansion joint
JP2001107745A (en) * 1999-10-06 2001-04-17 Mitsubishi Heavy Ind Ltd Turbine building structure and suction duct

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135629A (en) * 1983-12-23 1985-07-19 Yanmar Diesel Engine Co Ltd Power generating apparatus utilizing wholly enclosed gas turbine
JPS62244213A (en) * 1986-04-17 1987-10-24 株式会社東芝 Flexible joint
JPS6357992A (en) * 1986-08-28 1988-03-12 三菱重工業株式会社 Expansion joint
JP2001107745A (en) * 1999-10-06 2001-04-17 Mitsubishi Heavy Ind Ltd Turbine building structure and suction duct

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104426A (en) * 2011-11-16 2013-05-30 United Technologies Corp <Utc> Gas turbine engine and flexible seal system for the same
JP2013130215A (en) * 2011-12-20 2013-07-04 Nippon Steel & Sumitomo Metal Corp Expansion joint, and method for detecting broken hole therein using the same
JP2017509885A (en) * 2014-03-14 2017-04-06 ローズマウント インコーポレイテッド Corrosion rate measurement system
US9891161B2 (en) 2014-03-14 2018-02-13 Rosemount Inc. Corrosion rate measurement
US10830689B2 (en) 2014-09-30 2020-11-10 Rosemount Inc. Corrosion rate measurement using sacrificial probe
US10190968B2 (en) 2015-06-26 2019-01-29 Rosemount Inc. Corrosion rate measurement with multivariable sensor

Similar Documents

Publication Publication Date Title
JP2009250110A (en) Deterioration detection system of expansion joint
US8721753B2 (en) Method and apparatus for an air filter cartridge replacement assembly
CN102112714B (en) Exhaust gas purifying device
JP2023547577A (en) Systems and methods for fracturing systems
US20150226128A1 (en) Hazardous Gas Detection System for a Gas Turbine Enclosure
ITMI20001932A1 (en) REMOTE DIAGNOSIS SYSTEM OF THE STATE OF WEAR OF THE INTAKE VALVES AND DELIVERY OF ALTERNATIVE COMPRESSORS.
KR101390602B1 (en) High efficiency dust collector of heat recovery boiler iron oxides
JP2019509502A (en) Leakage discharge detection
US20150226129A1 (en) Method for Detecting Hazardous Gas Concentrations within a Gas Turbine Enclosure
JP2004324548A (en) Anomaly monitoring device of equipment, anomaly monitoring device of gas turbine, gas turbine facility and combined power generating facility
KR101598528B1 (en) Particulate exhaust reduction device and sensing system for particulate exhaust reduction having the same
CN109028437B (en) Cooling and ventilating device for basement of coke oven
CN107795340B (en) Turbine temperature control system
CN211343305U (en) Natural gas compressor fault early warning device
RU2725405C1 (en) Method of repairing diffusion hydrogen separator
KR101195326B1 (en) Temperature sensor for exhaust gas of gas turbine
JP3013276B2 (en) High temperature gas filtration equipment
KR200424261Y1 (en) expansion joint with sealing structure
JP2007206022A (en) Temperature measuring device, combustion monitoring device, and gas turbine
JPH07324988A (en) Closed type compressor
CN214466964U (en) Expansion joint leak protection device
JP2904411B1 (en) Peephole damage detection device
US10450891B2 (en) Localized engine protection from corrosion and contamination
JP4692929B2 (en) Device and method for sealing an opening for a negative pressure device
JP2007101040A (en) Poppet type damper, and exhaust gas treatment device using poppet type damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101111

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Effective date: 20111128

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120326