JP2009104492A - Method and apparatus for calculating contact surface pressure and subsurface stress under conformal contact - Google Patents

Method and apparatus for calculating contact surface pressure and subsurface stress under conformal contact Download PDF

Info

Publication number
JP2009104492A
JP2009104492A JP2007277066A JP2007277066A JP2009104492A JP 2009104492 A JP2009104492 A JP 2009104492A JP 2007277066 A JP2007277066 A JP 2007277066A JP 2007277066 A JP2007277066 A JP 2007277066A JP 2009104492 A JP2009104492 A JP 2009104492A
Authority
JP
Japan
Prior art keywords
contact
surface pressure
calculation
calculating
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007277066A
Other languages
Japanese (ja)
Other versions
JP5026225B2 (en
Inventor
Haruo Hase
陽夫 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007277066A priority Critical patent/JP5026225B2/en
Publication of JP2009104492A publication Critical patent/JP2009104492A/en
Application granted granted Critical
Publication of JP5026225B2 publication Critical patent/JP5026225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of calculating contact surface pressure and subsurface stress under conformal contact in a relatively short period of time and with accuracy without using finite element method or boundary element method. <P>SOLUTION: A reference curved surface S is set between two contacting objects M1, M2 and is divided into a mesh where cells are arranged vertically and horizontally. Calculation points for discretely calculating the distance between the contacting objects M1, M2 are defined on the cells. The amount of influence that a point corresponding to each calculation point on the surfaces of the contacting objects M1, M2 has on displacement when a distributed load acts on each cell is calculated. The surface pressure of each cell is calculated using balancing conditional expressions that require that the total of the products of the surface pressures and the amounts of influences of the cells balance a difference between the amount that the contacting objects approach each other and an initial gap between them, and that the total of the surface pressures of the cells balance an external force. In a process for calculating the influence of the displacement and a process for calculating contact surface pressure, the distance over the reference curved surface is used in the calculation of the distance between measuring points, and surface pressure is calculated by making a correction to a normal direction on the basis of a difference in position on the reference curved surface. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、接触領域が平坦と見なせない接触物体間の接触面圧および表面下応力の計算を、有限要素法や境界要素法を使用することなく行う計算方法および装置に関する。   The present invention relates to a calculation method and apparatus for calculating contact surface pressure and subsurface stress between contact objects whose contact area cannot be regarded as flat without using a finite element method or a boundary element method.

接触面圧の計算問題は下記の二つの分野に分けられる。
一つは非共形接触問題(Counter-formal(またはNon-Conforming)Problem )であり、接触領域が接触部の物体半径に比べて小さい場合の問題である。
他の一つは、共形接触問題(Conformal (またはConforming)Problem )であり、接触領域が接触部の物体半径に比べて大きい場合の問題である。
The contact pressure calculation problem can be divided into the following two fields.
One is a non-conformal contact problem (Counter-formal (or Non-Conforming) Problem), which is a problem when the contact area is smaller than the object radius of the contact portion.
The other is a conformal contact problem (Conformal (or Conforming) Problem), which is a problem when the contact area is larger than the object radius of the contact portion.

非共形接触問題(Counter-formal Problem)では、接触領域はほぼ平面上にあると見なせるため、比較的解き易い。
特に接触面が二次関数で表される曲面の場合は、ヘルツ(Hertz )接触理論などが広く用いられており、数表を用いて電卓レベルで計算が可能である。二次関数で表すことができない曲面の場合は、半無限体に集中荷重が作用する場合の解析解(ブジネスク(Boussinesq)の解の重ね合わせにより、数値的に面圧分布を求める手法が知られている。また、これらと類似の解法で各種文献(例えば非特許文献1や非特許文献2)が出ており、この手法をベースとした面圧計算ソフトウェアも市販されている。
特開昭59−69519号公報 ハーネット(Hartnett, M. J. )著 ,「転がり要素軸受の接触応力解析」(“The Analysis of Contact Stresses in Rolling Element Bearings”), ASMEJ. of Lubr., 101, Jan.p105,(1979), 栫井著, 「三次元弾性接触問題の境界要素解析」, トライボロジスト, 36,6,(1991), 429-433
In the non-conformal contact problem (Counter-formal Problem), the contact area can be regarded as being almost on a flat surface, so that it is relatively easy to solve.
In particular, when the contact surface is a curved surface represented by a quadratic function, the Hertz contact theory is widely used, and calculation can be performed at the calculator level using a numerical table. For curved surfaces that cannot be expressed by quadratic functions, a method is known in which the surface pressure distribution is calculated numerically by superimposing analytical solutions when a concentrated load acts on a semi-infinite body (Boussinesq). In addition, various documents (for example, Non-Patent Document 1 and Non-Patent Document 2) have been issued with solutions similar to these, and surface pressure calculation software based on this method is also commercially available.
JP 59-69519 A Harnett, MJ, “The Analysis of Contact Stresses in Rolling Element Bearings”, ASMEJ. Of Lubr., 101, Jan. p105, (1979), Author Sakurai, “Boundary element analysis of three-dimensional elastic contact problems”, Tribologist, 36, 6, (1991), 429-433

しかし、共形接触問題(Conformal Problem )については、上記のような解析手法は適用できないため、有限要素法や境界要素法を用いて解く以外に計算方法がない。
有限要素法や境界要素法を使用して計算する場合、計算時間が多大になるという課題がある。
However, for the conformal problem, there is no calculation method other than solving by using the finite element method or the boundary element method because the above analysis method cannot be applied.
When performing calculations using the finite element method or the boundary element method, there is a problem that the calculation time becomes long.

このような課題を解消する方法,装置として、本出願人は、次に示す方法,装置を先に提案した(特願2007−026577号)。
この提案例は、半無限体に集中荷重が作用したときの変位や表面下応力の解析解を共形接触問題に適用して面圧および表面下応力を計算する手法であり、法線方向荷重作用時はブジネスク(Boussinesq)の解を用いて重ね合わせる。この際に、接触2物体の曲面近傍に基準となる曲面を設置して、その基準曲面をメッシュ分割し、2物体間の距離を計測する点をメッシュ上に設置し、各セルに分布荷重が作用したときの2物体間計測点への変位量の影響を算出する。その位置での接触判定によって接触領域を決め、かつ各セルの面圧の合計が外力と釣合うように2物体間の接近量を決めて、接触面圧を算出する。
As a method and apparatus for solving such a problem, the present applicant has previously proposed the following method and apparatus (Japanese Patent Application No. 2007-026577).
This proposed example is a method for calculating surface pressure and subsurface stress by applying analytical solutions of displacement and subsurface stress when concentrated load is applied to a semi-infinite body to a conformal contact problem. When acting, superimpose using the Boussinesq solution. At this time, a reference curved surface is set in the vicinity of the curved surface of the two contact objects, the reference curved surface is divided into meshes, and a point for measuring the distance between the two objects is set on the mesh. The influence of the displacement amount on the measurement point between the two objects when acting is calculated. A contact area is determined by contact determination at that position, and an amount of approach between the two objects is determined so that the total surface pressure of each cell is balanced with the external force, and the contact surface pressure is calculated.

上記提案例によると、有限要素法や境界要素法を使用する方法に比べて、比較的簡単に短時間で、かつ精度良く、共形接触における接触面圧の計算、さらに表面下の応力の計算をすることができる。
しかし、上記提案例では、3方向の変位を考慮していたため、まだ計算方法が複雑で、かつ数値積分を行うために計算時間がかかる。そのため、より高速な計算を可能にすることが望まれる。
According to the proposed example, the contact surface pressure in conformal contact and subsurface stress can be calculated relatively easily and in a short time and with high accuracy compared to methods using the finite element method or boundary element method. Can do.
However, in the above proposed example, since the displacement in three directions is taken into consideration, the calculation method is still complicated, and it takes time to perform numerical integration. Therefore, it is desired to enable faster calculation.

この発明の目的は、有限要素法や境界要素法を使用することなく、非共形接触問題で行われている数値計算方法を拡張して共形接触問題にも適用できるようにし、かつ上記提案例を改善して、1方向の変位の考慮で計算できて、簡単に短時間で、かつ精度良く、共形接触における接触面圧の計算、さらに表面下の応力の計算をできるようにした方法および装置を提供することを目的とする。   The object of the present invention is to extend the numerical calculation method performed in the non-conformal contact problem without using the finite element method or the boundary element method, and to apply it to the conformal contact problem, and the above proposal A method that improves the example and allows calculation in consideration of displacement in one direction, and enables calculation of contact surface pressure in conformal contact and calculation of subsurface stress in a short time and with high accuracy. And an object to provide an apparatus.

この発明の共形接触下の接触面圧および表面下応力計算方法は、半無限体に集中荷重が作用したときの変位や表面下応力の解析解を共形接触問題に適用して、面圧および表面下応力を計算する手法であって、解析解として、法線方向荷重作用時はブジネスク(Boussinesq)の解を用いる。   The calculation method of contact surface pressure and subsurface stress under conformal contact of the present invention applies the analytical solution of displacement and subsurface stress when a concentrated load is applied to a semi-infinite body to the conformal contact problem. And a subsurface stress calculation method. As an analytical solution, a Boussinesq solution is used when a normal load is applied.

具体的には、この発明の共形接触下の接触面圧計算方法は、外力が作用したときに互いに共形接触(接触領域がほぼ平面上にあると見なせない接触)を行う2つの接触物体M1,M2の接触面における面圧を、コンピュータを用いて計算する方法であって、
前記接触物体の接触面付近の形状、弾性係数、ポアソン比、および作用する外力を入力して記憶手段に記憶させる入力過程(S1)と、入力された値を用いて前記面圧を計算する解析過程(S2)と、計算した結果を出力する出力過程(S3)とでなり、
前記解析過程(S2)として、次の各過程(T1,T2,T4,T5)を含む。
Specifically, the contact surface pressure calculation method under conformal contact according to the present invention includes two contacts that perform conformal contact with each other when the external force is applied (contact that the contact region cannot be regarded as substantially on a plane). A method for calculating the surface pressure at the contact surfaces of the objects M1 and M2 using a computer,
An input process (S1) in which a shape near the contact surface of the contact object, an elastic coefficient, a Poisson's ratio, and an acting external force are input and stored in a storage means, and an analysis for calculating the surface pressure using the input value It consists of a process (S2) and an output process (S3) for outputting the calculated result.
The analysis process (S2) includes the following processes (T1, T2, T4, T5).

すなわち、前記2つの接触物体M1,M2の互いに接する面の近傍に接触面形状に近い形状の基準曲面Sを設定してこの基準曲面SをセルCが縦横に並ぶメッシュに分割し、接触物体M1,M2間の距離を計算する点である計算点Aをセル上に定めるメッシュ分割過程(T1)と、
各セルCに単位分布荷重が作用したときの前記接触物体M1,M2の表面の前記各計算点Aに対応する点の変位への影響量を算出する変位影響算出過程(T2)と、
各セルCにつき面圧Pと前記単位分布荷重による影響量の積の合計が接触領域内部において接触物体間の接近量と初期隙間の差に釣り合い、かつ各セルCの面圧Pの合計が外力Fと釣り合いうという釣り合い条件式から、各セルの面圧Pを算出する接触面圧計算過程(T3)とを含む。
That is, a reference curved surface S having a shape close to the contact surface shape is set in the vicinity of the surfaces of the two contact objects M1 and M2 that are in contact with each other, and the reference curved surface S is divided into meshes in which cells C are arranged vertically and horizontally. , M2 is a mesh division process (T1) for defining a calculation point A on the cell, which is a point for calculating the distance between M2,
A displacement influence calculation step (T2) for calculating an influence amount on a displacement of a point corresponding to each calculation point A on the surface of the contact object M1, M2 when a unit distribution load is applied to each cell C;
The sum of the product of the surface pressure P and the influence amount due to the unit distributed load for each cell C balances the difference between the approach amount between the contact objects and the initial gap in the contact area, and the sum of the surface pressure P of each cell C is the external force. It includes a contact surface pressure calculation process (T3) in which the surface pressure P of each cell is calculated from a balance conditional expression of “F”.

前記変位影響算出過程(T2)および接触面圧計算過程(T3)では、計測点間の距離の算出に上記基準曲面上の距離を用いる。また、基準曲面上の位置の違いによる法線方向の修正を行って面圧を算出する。すなわち、影響係数の算出に基準曲面の法線方向の修正を行って面圧を算出する。   In the displacement influence calculation process (T2) and the contact surface pressure calculation process (T3), the distance on the reference curved surface is used to calculate the distance between measurement points. Also, the normal pressure is corrected by the difference in position on the reference curved surface, and the surface pressure is calculated. That is, the surface pressure is calculated by correcting the normal direction of the reference curved surface in calculating the influence coefficient.

なお、上記基準曲面Sは、2つの接触物体M1,M2の互いに接する面の接触面形状に近い形状であることが好ましい。前記変位影響算出過程(T2)において、各セルCに作用する単位分布荷重は、例えば、均一な面圧とするが、1次関数または2次関数に従って変化する面圧を仮定しても良い。接触物体M1,M2間の距離は、離散的な計測点Aで評価するものとするが、計測点Aは、例えばメッシュの中心にとる。
前記変位影響算出過程(T2)では、単位集中荷重作用時の変位解析解(法線方向の荷重に対しては例えばブジネスク(Boussinesq)の解を1つの要素全域にわたり積分して、要素1つの面圧分布によって生じる2つの接触物体M1,M2の面上の点(上記計測点Aに対応)の変位量を求める。上記の「要素」は、セルのことである。
The reference curved surface S is preferably a shape close to the contact surface shape of the surfaces of the two contact objects M1 and M2 that are in contact with each other. In the displacement influence calculation process (T2), the unit distribution load acting on each cell C is, for example, a uniform surface pressure, but a surface pressure that varies according to a linear function or a quadratic function may be assumed. The distance between the contact objects M1 and M2 is evaluated at discrete measurement points A. The measurement point A is, for example, at the center of the mesh.
In the displacement influence calculation process (T2), a displacement analysis solution when a unit concentrated load is applied (for example, a Boussinesq solution for a load in the normal direction is integrated over the entire area of one element to obtain one element surface. A displacement amount of a point on the surface of the two contact objects M1 and M2 (corresponding to the measurement point A) generated by the pressure distribution is obtained, and the “element” is a cell.

この発明方法は、前記2つの物体M1,M2が、転がり軸受の内輪とボールとである場合に適用することができる。その場合、前記メッシュ分割過程(T1)では、前記基準曲面Sを円筒面とする。
前記変位影響量算出過程(T2)では、前記円筒面からなる基準曲面S上の、円筒中心軸に垂直な平面で切断した断面の円弧に沿う方向の座標位置をx、円筒中心軸に沿う方向の座標位置をy、基準曲面S上の法線方向に離れる座標位置をz、これら3軸方向の変位を、それぞれu,v,wとして、
前記外力が法線方向の力である場合は、次式(1)で表される単位集中荷重作用時の変位解析解wを、全てのセルについて重ね合わせることで前記影響量を計算する。
The method of the present invention can be applied when the two objects M1 and M2 are an inner ring and a ball of a rolling bearing. In that case, in the mesh division process (T1), the reference curved surface S is a cylindrical surface.
In the displacement influence amount calculation step (T2), the coordinate position in the direction along the circular arc of the cross section cut by the plane perpendicular to the cylindrical central axis on the reference curved surface S composed of the cylindrical surface is x, and the direction along the cylindrical central axis. Where y is the coordinate position, z is the coordinate position away from the normal direction on the reference curved surface S, and the displacements in these three axes are u, v, and w, respectively.
When the external force is a force in the normal direction, the influence amount is calculated by superimposing displacement analysis solutions w at the time of unit concentrated load action expressed by the following equation (1) for all cells.

Figure 2009104492
Figure 2009104492

すなわち、この発明方法において、前記変位影響量算出過程(T2)では、単位集中荷重作用時の変位解析解(Boussinesqの解)を1つの要素全域にわたり積分して、要素1つの面圧分布によって生じる2つの接触物体M1,M2の表面上の点(上記計測点Aに対応)の変位量を求める。
位置(θ,y)の要素eが位置(θ’,y’)に及ぼす単位面圧負荷時の変位は(1)式で与える。このとき、基準曲面Sの法線方向が位置により変わるためCOS(θ−θ’) がかかってくる。
ここで重要なのは、(1) 要素間のθ方向距離として基準曲面上の距離(R0θ−R0θ’)を用いる点、(2) 基準曲面Sの法線方向の修正を、上記COS(θ−θ’) で行うこと(すなわち、影響係数の算出に基準曲面Sの法線方向の修正を行って面圧を算出すること)の2点である。
上記(1)式は、解析的に積分可能であり、数値積分は不要となる。
That is, in the method of the present invention, in the displacement influence amount calculation step (T2), the displacement analysis solution (Boussinesq's solution) at the time of unit concentrated load action is integrated over the entire area of one element, and is generated by the surface pressure distribution of one element. Displacement amounts of points on the surfaces of the two contact objects M1 and M2 (corresponding to the measurement point A) are obtained.
The displacement at the time of unit surface pressure load exerted on the position (θ ′, y ′) by the element e at the position (θ, y) is given by the equation (1). At this time, since the normal direction of the reference curved surface S changes depending on the position, COS (θ−θ ′) is applied.
What is important here is that (1) the distance (R0θ−R0θ ′) on the reference curved surface is used as the θ direction distance between elements, and (2) the correction of the normal direction of the reference curved surface S is performed by the COS (θ−θ ') (That is, the surface pressure is calculated by correcting the normal direction of the reference curved surface S in calculating the influence coefficient).
The above equation (1) can be integrated analytically, and numerical integration is not necessary.

前記接触面圧計算過程(T3)は、釣り合い条件式から各セルの面圧Pを算出する過程であり、例えば次のように計算する。
すなわち、次の(2)式が釣り合うように各セルの面圧分布を決める。
The contact surface pressure calculation process (T3) is a process of calculating the surface pressure P of each cell from the balance condition equation, and is calculated as follows, for example.
That is, the surface pressure distribution of each cell is determined so that the following equation (2) is balanced.

Figure 2009104492
Figure 2009104492

また、次の(3)式が釣り合うように接近量をαを求める。   Further, the approach amount α is obtained so that the following equation (3) is balanced.

Figure 2009104492
Figure 2009104492

なお、(2)式は、各セルにつき面圧と前記単位分布荷重による影響量の積の合計が接触領域内部において接触物体間の接近量と初期隙間の差に釣り合うという釣り合い条件式であり、また(1)式で計算される変位wを全要素について重ね合わせる式である。(3)式は、各セルの面圧の合計が外力と釣り合うという釣り合い条件式である。   The formula (2) is a balance condition formula that the sum of the product of the surface pressure and the influence amount due to the unit distribution load for each cell balances the difference between the approach amount between the contact objects and the initial gap inside the contact region, Further, the displacement w calculated by the equation (1) is overlaid for all elements. The expression (3) is a balance condition expression that the total surface pressure of each cell is balanced with the external force.

この発明方法によると、半無限体に集中荷重が作用したときの変位の解析解を共形接触問題に適用し、また接触面圧計算時の計測点間の距離の算出に上記基準曲面上の距離を用い、かつ影響係数の算出に基準曲面の法線方向の修正を行って面圧を算出するようにしたため、比較的簡単に、したがって短時間で、共形接触における接触面圧の計算を行うことができる。
また、有限要素法を用いて接触面圧を計算した場合と同程度に精度の良い計算結果が得られることが、この発明方法と有限要素法との計算結果を比較することで、確認できた。
この発明は、このように、従来では共形接触には半無限体が適用できないと考えられていた共形接触問題に、ブジネスクの半無限体近似の解を適用し、良好な面圧の解析結果を得ることができる。
なお、この発明方法は、非共形接触の場合にも適用可能であるが、非共形接触の場合はより簡単な計算で面圧を求めることができるため、共形接触の場合に効果的となる。
According to the method of the present invention, an analytical solution of displacement when a concentrated load is applied to a semi-infinite body is applied to a conformal contact problem, and the distance between measurement points at the time of contact surface pressure calculation is calculated on the reference curved surface. Since the surface pressure is calculated by using the distance and correcting the normal direction of the reference curved surface to calculate the influence coefficient, the contact surface pressure in conformal contact can be calculated relatively easily and in a short time. It can be carried out.
In addition, it was confirmed by comparing the calculation results between the method of the present invention and the finite element method that the calculation results were as accurate as when the contact surface pressure was calculated using the finite element method. .
In this way, the present invention applies a solution of the Buenesque semi-infinite approximation to the conformal contact problem, which was previously considered to be inapplicable to the conformal contact, and provides an analysis of good surface pressure. The result can be obtained.
Although the method of the present invention can be applied to non-conformal contact, the surface pressure can be obtained by simpler calculation in the case of non-conformal contact. It becomes.

この発明方法において、表面下応力を計算する場合は、上記のいずれかの方法で各セルCの面圧Pを計算した後に、表面下応力を計算する。
この表面下応力計算過程において、
セルに対する荷重が法線方向の力である場合は、次式(4)〜(9)で与えられる単位集中荷重作用時の表面下の応力を用いて、個々のセルCの全域にわたり積分して、かつ全セルCの影響の和をとって表面下応力を求める。
In the method of the present invention, when the subsurface stress is calculated, the subsurface stress is calculated after calculating the surface pressure P of each cell C by any of the above methods.
In this subsurface stress calculation process,
When the load on the cell is a force in the normal direction, it is integrated over the entire area of each cell C using the subsurface stress at the time of unit concentrated load action given by the following equations (4) to (9). The subsurface stress is obtained by taking the sum of the effects of all the cells C.

Figure 2009104492
Figure 2009104492

セルに対する荷重が法線方向の力である場合は、次のように計算する。前記2つの接触物体M1,M2が転がり軸受のボールと内輪とである場合、前記メッシュ分割過程(T1)では、前記のように前記基準曲面Sを円筒面とする。前記変位影響量算出過程(T2)では、前記円筒面からなる基準曲面S上の、円筒中心軸に垂直な平面で切断した断面の円弧に沿う方向の座標位置をθ、円筒中心軸に沿う方向の座標位置をy、基準曲面上の法線方向に離れる座標位置をzとして、
位置(θ,y)の要素eが位置(θ’,y’,z)に及ぼす単位面圧負荷時の剪断応力τzyを、次式(10)で求める。
When the load on the cell is a normal force, it is calculated as follows. When the two contact objects M1 and M2 are a ball and an inner ring of a rolling bearing, the reference curved surface S is a cylindrical surface as described above in the mesh division process (T1). In the displacement influence amount calculation step (T2), the coordinate position in the direction along the circular arc of the cross section cut by the plane perpendicular to the cylindrical central axis on the reference curved surface S made of the cylindrical surface is θ, and the direction along the cylindrical central axis Where y is the coordinate position of z and z is the coordinate position away from the normal direction on the reference curved surface.
The shear stress τzy at the time of unit surface pressure load exerted on the position (θ ′, y ′, z) by the element e at the position (θ, y) is obtained by the following equation (10).

Figure 2009104492
Figure 2009104492

このように表面下応力を計算するについても、計算が比較的簡単で短時間で行え、また精度の良い表面下応力の計算が行える。   As described above, the subsurface stress can be calculated relatively easily and in a short time, and the subsurface stress can be calculated with high accuracy.

この発明方法において、前記解析過程の途中で、前記メッシュに分割する大きさを修正してその修正結果により、メッシュ分割後の各過程を再度行うメッシュ修正過程(T6)を含むようにしても良い。
接触物体の接触面の形状によっては、接触領域の縁がギザギザになるなどして、離散化の誤差が大きくなる場合があるが、解析途中でメッシュを修正することで、離散化の誤差を低減させることができる。
The method of the present invention may include a mesh correction process (T6) in which the size of the mesh is corrected during the analysis process, and each process after the mesh division is performed again according to the correction result.
Depending on the shape of the contact surface of the contact object, the error in discretization may increase due to the edges of the contact area becoming jagged, but the error in discretization is reduced by correcting the mesh during the analysis. Can be made.

なお、この発明方法は、前記2つの接触物体M1,M2が、転がり軸受における内輪または外輪である軌道輪と、ボール等の転動体とである場合に、効果的に適用できる。転がり軸受の軌道輪とボール等の転動体との接触においても、接触領域がほぼ平面上にあると見なせず、共形接触の問題として面圧等を求めることが必要であるため、この発明方法を効果的に適用することができる。   The method of the present invention can be effectively applied when the two contact objects M1 and M2 are a race ring which is an inner ring or an outer ring in a rolling bearing and a rolling element such as a ball. Even in the contact between the bearing ring of the rolling bearing and the rolling element such as a ball, the contact area is not considered to be substantially flat, and it is necessary to obtain the surface pressure as a problem of conformal contact. The method can be applied effectively.

この発明の共形接触下の接触面圧計算装置は、外力が作用したときに互いに共形接触を行う2つの接触物体の接触面における面圧を、計算する装置であって、
前記接触物体M1,M2の接触面付近の形状、弾性係数、ポアソン比、および作用する外力Fを入力して記憶手段6に記憶させる入力処理手段4と、入力された値を用いて前記面圧を計算する解析手段7と、計算した結果を出力する出力処理手段5とでなり、
前記解析手段7として、次の各手段8,9,11,12を備える。
The contact surface pressure calculation device under conformal contact according to the present invention is a device for calculating the surface pressure at the contact surface of two contact objects that make conformal contact with each other when an external force is applied.
Input processing means 4 for inputting the shape of the contact surfaces of the contact objects M1, M2 in the vicinity of the contact surface, the elastic coefficient, the Poisson's ratio, and the acting external force F and storing them in the storage means 6, and the surface pressure using the input values The analysis means 7 for calculating the output and the output processing means 5 for outputting the calculated result,
As the analysis means 7, the following means 8, 9, 11, 12 are provided.

すなわち、前記2つの接触物体M1,M2の互いに接する面の近傍に、基準曲面Sを設定してこの基準曲面SをセルCが縦横に並ぶメッシュに分割し、接触物体M1,M2間の距離を計算する点である計算点Aをセル上に定めるメッシュ分割手段8と、
各セルCに均一な単位分布荷重が作用したときの前記接触物体M1,M2の表面の前記各計算点Aに対応する点の変位への影響量を算出する変位影響算出手段9と、
各セルCにつき面圧Pと前記単位分布荷重による影響量の積の合計が接触領域内部において接触物体間の接近量と初期隙間の差に釣り合、かつ各セルCの面圧Pの合計が外力と釣り合うという釣り合い条件式から、各セルの面圧Pを算出する接触面圧計算手段10とを含む。
前記変位影響算出手段9および接触面圧計算手段10は、計測点間の距離の算出に上記基準曲面S上の距離を用い、かつこの基準曲面S上の位置の違いによる法線方向の修正を行って面圧を算出する。すなわち、影響係数の算出に基準曲面Sの法線方向の修正を行って面圧を算出する。
That is, a reference curved surface S is set in the vicinity of the surfaces of the two contact objects M1 and M2 in contact with each other, the reference curved surface S is divided into meshes in which cells C are arranged vertically and horizontally, and the distance between the contact objects M1 and M2 is determined. Mesh dividing means 8 for defining a calculation point A, which is a point to be calculated, on a cell;
A displacement influence calculating means 9 for calculating an influence amount on a displacement of a point corresponding to each calculation point A on the surface of the contact object M1, M2 when a uniform unit distribution load is applied to each cell C;
The sum of the product of the contact pressure P and the influence amount due to the unit distributed load for each cell C is balanced with the difference between the approach amount between the contact objects and the initial gap in the contact area, and the sum of the contact pressure P of each cell C is And a contact surface pressure calculating means 10 for calculating the surface pressure P of each cell from a balance conditional expression of balancing with an external force.
The displacement influence calculation means 9 and the contact surface pressure calculation means 10 use the distance on the reference curved surface S for calculating the distance between the measurement points, and correct the normal direction by the difference in position on the reference curved surface S. Go to calculate the surface pressure. That is, the surface pressure is calculated by correcting the normal direction of the reference curved surface S in calculating the influence coefficient.

この発明の表面下応力計算装置において、前記2つの接触物体M1,M2が転がり軸受の内輪とボールとである場合に、次の構成としても良い。
前記メッシュ分割手段8は、前記基準曲面Sを円筒面とする。
前記変位影響量算出手段9は、前記円筒面からなる基準曲面S上の、円筒中心軸に垂直な平面で切断した断面の円弧に沿う方向の座標位置をx、円筒中心軸に沿う方向の座標位置をy、基準曲面上の法線方向に離れる座標位置をz、これら3軸方向の変位を、それぞれu,v,wとして、
前記外力が法線方向の力である場合は、次式(1)で表される単位集中荷重作用時の変位解析解wを、全てのセルについて重ね合わせることで前記影響量を計算する。
In the subsurface stress calculation apparatus according to the present invention, when the two contact objects M1 and M2 are an inner ring and a ball of a rolling bearing, the following configuration may be adopted.
The mesh dividing means 8 uses the reference curved surface S as a cylindrical surface.
The displacement influence amount calculation means 9 has a coordinate position in the direction along the circular arc of the cross section cut by a plane perpendicular to the cylindrical central axis on the reference curved surface S made of the cylindrical surface, and x in the direction along the cylindrical central axis. The position is y, the coordinate position away from the normal direction on the reference curved surface is z, and the displacements in these three axes are u, v, and w, respectively.
When the external force is a force in the normal direction, the influence amount is calculated by superimposing displacement analysis solutions w at the time of unit concentrated load action expressed by the following equation (1) for all cells.

Figure 2009104492
Figure 2009104492

この場合に、前記接触面圧計算手段10は、前記(1)式で計算されるz軸方向の変位wを全セルについて重ね合わせる式である次式(2)を、前記釣り合い条件式の一つとして用いて各セルの面圧分布を求める。   In this case, the contact surface pressure calculation means 10 calculates the following equation (2), which is an equation for superimposing the displacement w in the z-axis direction calculated by the equation (1) for all the cells, To obtain the surface pressure distribution of each cell.

Figure 2009104492
Figure 2009104492

また、前記釣り合い条件式の他の一つとして、次式(3)を用いて前記接近量αを求める。   Moreover, the said approach amount (alpha) is calculated | required using following Formula (3) as another one of the said balance conditional expressions.

Figure 2009104492
Figure 2009104492

この構成の面圧計算装置によると、この発明方法を実施して、共形接触を行う接触面における面圧を、比較的簡単に短時間で計算でき、かつ精度良く計算することができる。   According to the surface pressure calculation apparatus having this configuration, the surface pressure at the contact surface that performs conformal contact can be calculated relatively easily in a short time and with high accuracy by implementing the method of the present invention.

この発明の面圧計算装置において、さらに表面下応力の計算機能を付加する場合は、次の表面下応力計算手段13を設けることで、表面下応力計算装置を構成する。
前記表面下応力計算手段13は、セルに対する荷重が法線方向の力である場合は、次式(4)〜(9)で与えられる単位集中荷重作用時の表面下の応力を用いて、個々のセルの全域にわたり積分して、かつ全セルの影響の和をとって表面下応力を求める。
In the surface pressure calculation device according to the present invention, when a subsurface stress calculation function is further added, the subsurface stress calculation device is configured by providing the following subsurface stress calculation means 13.
When the load on the cell is a normal force, the subsurface stress calculation means 13 uses the subsurface stress at the time of unit concentrated load action given by the following equations (4) to (9) to individually The subsurface stress is obtained by integrating over the whole area of the cell and summing the influence of all the cells.

Figure 2009104492
Figure 2009104492

この構成の場合、この発明の表面下応力計算方法を実施して、共形接触を行う接触面における表面下応力を、比較的簡単に短時間で計算でき、かつ精度良く計算することができる。   In the case of this configuration, the subsurface stress calculation method of the present invention can be performed, and the subsurface stress on the contact surface that performs conformal contact can be calculated relatively easily in a short time and with high accuracy.

この発明の共形接触下の接触面圧計算方法および計算装置によると、半無限体に集中荷重が作用したときの変位の解析解を共形接触問題に適用し、また接触面圧計算時の計測点間の距離の算出に上記基準曲面上の距離を用い、かつ影響係数の算出に基準曲面の法線方向の修正を行って面圧を算出するようにしたため、比較的簡単に、したがって短時間で、共形接触における接触面圧の計算が行え、しかも精度の良い計算結果を得ることができる。特に、解析解として、法線方向荷重作用時はブジネスクの解を重ね合わせるようにした場合は、有限要素法を用いて計算した場合と同程度に精度の良い計算結果を得ることができる。
この発明の共形接触下の接触面圧,表面下応力の計算方法および計算装置によると、接触面圧に加えて、さらに表面下応力についても、比較的簡単に短時間で、また精度良く、共形接触における表面下応力の計算を行うことができる。
According to the method and apparatus for calculating the contact surface pressure under conformal contact according to the present invention, the analytical solution of displacement when a concentrated load is applied to a semi-infinite body is applied to the conformal contact problem, and Since the distance on the reference curved surface is used to calculate the distance between measurement points, and the normal pressure direction of the reference curved surface is corrected to calculate the influence coefficient, the surface pressure is calculated relatively easily, and therefore short. It is possible to calculate the contact surface pressure in conformal contact with time, and to obtain an accurate calculation result. In particular, when an analysis solution is made to superimpose a business solution in the case of a normal direction load action, it is possible to obtain a calculation result as accurate as that calculated using the finite element method.
According to the method and apparatus for calculating the contact surface pressure and the subsurface stress under conformal contact of the present invention, in addition to the contact surface pressure, the subsurface stress is also relatively simple and accurate in a short time. Calculations of subsurface stress in conformal contact can be made.

この発明の一実施形態を図1ないし図8と共に説明する。図1は、この発明方法の各過程の流れ図を、図2はこの発明方法を実施する装置の概念構成のブロック図を、図3は接触面圧計算過程の具体例を、図4は接触モデルを、図5は基準曲面の例をそれぞれ示す。
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a flowchart of each process of the method of the present invention, FIG. 2 is a block diagram of a conceptual configuration of an apparatus for carrying out the method of the present invention, FIG. 3 is a specific example of a contact surface pressure calculation process, and FIG. FIG. 5 shows examples of reference curved surfaces.

この共形接触下の接触面圧および表面下応力計算方法は、外力が作用したときに互いに共形接触を行う2つの接触物体M1,M2(図4)の接触面における面圧等を、コンピュータを用いて計算する方法である。2つの接触物体M1,M2は、例えば、転がり軸受におけるボールと内輪とである。
この計算方法は、前記接触物体M1,M2の接触面付近の形状、弾性係数(ここでは、ヤング率Eと、ポアソン比ν)、および作用する外力Fを入力して記憶手段に記憶させる入力過程(S1)と、入力された値を用いて前記面圧を計算する解析過程(S2)と、計算した結果を出力する出力過程(S3)とでなる。解析過程(S2)は、順次行われる次のメッシュ分割過程(T1)、変位影響算出過程(T2)、接触面圧計算過程(T3)、および表面下応力計算過程(T4)を含む。
This contact surface pressure and subsurface stress calculation method under conformal contact is based on the calculation of the surface pressure at the contact surfaces of the two contact objects M1 and M2 (FIG. 4) that perform conformal contact with each other when an external force is applied. It is a method of calculating using. The two contact objects M1 and M2 are, for example, a ball and an inner ring in a rolling bearing.
This calculation method is an input process in which the shape near the contact surface of the contact objects M1 and M2, the elastic modulus (here, Young's modulus E and Poisson's ratio ν), and the acting external force F are input and stored in the storage means. (S1), an analysis process (S2) for calculating the surface pressure using the input value, and an output process (S3) for outputting the calculated result. The analysis process (S2) includes the following mesh division process (T1), displacement influence calculation process (T2), contact surface pressure calculation process (T3), and subsurface stress calculation process (T4), which are sequentially performed.

計算装置となるコンピュータ1(図2)は、中央処理装置(CPU)およびメモリ等の記憶手段(いずれも図示せず)を有し、このコンピュータ1のハードウェア(オペレーションシステムを含む)、およびこのコンピュータ1に実行させる接触面圧・表面下応力計算プログラム(図示せず)により、図2に概念構成で示す各手段が構成される。
入力処理手段4は、入力装置2から、接触物体M1,M2の接触面付近の形状、弾性係数、ポアソン比、および作用する外力Fを入力して入力情報記憶手段6に記憶させる手段である。ここで言う「形状」は、大きさを含む概念である。例えば、前記接触物体M1,M2の接触面付近の形状のデータとしては、ボールからなる接触物体M1の半径R1 と、内輪からなる接触物体M2の軌道面の溝半径R2 軸受のPCD、接触角とを入力する。入力処理手段4は、上記の形状等の情報の他に、後述の解析手段7でメッシュ分割する枡目の各軸方向の大きさやセル個数(NA,NB)等を、入力装置2から入力して入力情報記憶手段6に記憶させる機能を備えるものとしても良い。また、入力処理手段4は、入力装置2から入力された情報に対して、解析手段7で演算するための前処理を行う機能を有するものとしても良い。入力装置2は、キーボード等であっても、また通信手段や記憶素子等であっても良い。入力情報記憶手段6は、コンピュータ1の上記記憶手段における所定の記憶領域である。出力処理手段5は、解析手段7で計算した結果を、液晶ディスプレイ,プリンタ,あるいは通信機器等からなる出力装置3に出力する手段である。
A computer 1 (FIG. 2) serving as a computing device has a central processing unit (CPU) and storage means (not shown) such as a memory, and the hardware (including an operation system) of the computer 1 and this Each means shown in a conceptual configuration in FIG. 2 is configured by a contact surface pressure / subsurface stress calculation program (not shown) executed by the computer 1.
The input processing means 4 is a means for inputting the shape near the contact surface of the contact objects M1 and M2, the elastic coefficient, the Poisson's ratio, and the acting external force F from the input device 2 and storing them in the input information storage means 6. The “shape” here is a concept including size. For example, the shape data in the vicinity of the contact surfaces of the contact objects M1 and M2 include the radius R1 of the contact object M1 made of a ball, the groove radius R2 of the raceway surface of the contact object M2 made of an inner ring, and the PCD and contact angle of the bearing. Enter. In addition to the information on the shape and the like, the input processing unit 4 inputs, from the input device 2, the size of each mesh in the mesh direction divided by the analysis unit 7 described later, the number of cells (NA, NB), and the like. It is good also as a thing provided with the function memorize | stored in the input information storage means 6. Further, the input processing means 4 may have a function of performing preprocessing for calculation by the analysis means 7 on the information input from the input device 2. The input device 2 may be a keyboard or the like, or may be a communication unit or a storage element. The input information storage unit 6 is a predetermined storage area in the storage unit of the computer 1. The output processing means 5 is a means for outputting the result calculated by the analyzing means 7 to the output device 3 composed of a liquid crystal display, a printer, a communication device or the like.

解析手段7は、入力処理手段4で入力されて入力情報記憶手段6に記憶されたデータを用いて前記面圧および表面下応力を計算する手段であり、メッシュ分割手段8、変位影響算出手段9、接触面圧計算手段10、および表面下応力計算手段11を備える。解析手段7に備えられた上記各手段8〜12は、それぞれ図1(B)の流れ図におけるメッシュ分割過程(T1)、変位影響算出過程(T2)、接触面圧計算過程(T3)、および表面下応力計算過程(T4)を実行する手段であり、その実行に必要な計算式や設定値等を記憶している。上記各手段8〜11の具体的な内容は、次に述べる上記各過程(T1)〜(T4)の説明の通りである。
解析手段7は、上記の他に、後に説明するメッシュ修正手段12を有している。
The analysis unit 7 is a unit that calculates the surface pressure and the subsurface stress using the data input by the input processing unit 4 and stored in the input information storage unit 6, and includes a mesh dividing unit 8 and a displacement influence calculation unit 9. A contact surface pressure calculating means 10 and a subsurface stress calculating means 11. The means 8 to 12 provided in the analyzing means 7 are respectively a mesh division process (T1), a displacement influence calculation process (T2), a contact surface pressure calculation process (T3), and a surface in the flowchart of FIG. It is means for executing the lower stress calculation process (T4), and stores calculation formulas, set values, and the like necessary for the execution. The specific contents of the means 8 to 11 are as described in the steps (T1) to (T4) described below.
In addition to the above, the analysis means 7 has a mesh correction means 12 described later.

図1(A)の解析過程(S2)を、同図(B)および図4〜図6と共に説明する。
この解析仮定(S2)は、法線方向加重が作用したときのハーネット(Hartnett) の手法を拡張して共形接触問題(Conformal Problem )を解く手法である。
The analysis process (S2) of FIG. 1 (A) will be described with reference to FIG. 1 (B) and FIGS.
This analysis assumption (S2) is a method for solving the conformal contact problem by extending the Hartnett method when normal direction weighting is applied.

まず、メッシュ分割過程(T1)として、図4のように、接触物体M1,M2の間に基準曲面Sを設定する。この基準曲面Sを、図5,図6のようにセルCが縦横に並ぶメッシュに分割し、接触物体M1,M2間の距離を計算する点である計算点AをセルC上に定める。
上記基準曲面Sは、必ずしも2つの接触物体M1,M2の間でなくても良いが、前記2つの接触物体M1,M2の互いに接する面の近傍に設定する。また、上記基準曲面Sは、2つの接触物体M1,M2の接触面形状に近い形状の曲面とする。
接触物体M1,M2は、例えば図11に示す転がり軸受におけるボール23と内輪21とである。同図の転がり軸受は、内輪21と外輪22の断面円弧面状の軌道面間に複数のボール23を介在させ、ボール23を保持する保持器24を設けたアンギュラ玉軸受、または深溝玉軸受等の玉軸受である。
接触物体M1,M2が、上記のように転がり軸受におけるボールと内輪とである場合、基準曲面Sは円筒面とみなす。同図では、基準曲面Sは、内輪である接触物体M2の軌道面とボールである接触物体M1の外球面との間に介在する円筒面であって、その円筒中心軸は内輪である接触物体M2の軸心と平行としている。
First, as a mesh division process (T1), a reference curved surface S is set between the contact objects M1 and M2 as shown in FIG. The reference curved surface S is divided into meshes in which cells C are arranged vertically and horizontally as shown in FIGS. 5 and 6, and a calculation point A, which is a point for calculating the distance between the contact objects M1 and M2, is determined on the cell C.
The reference curved surface S is not necessarily between the two contact objects M1 and M2, but is set in the vicinity of the surfaces of the two contact objects M1 and M2 that are in contact with each other. The reference curved surface S is a curved surface having a shape close to the contact surface shape of the two contact objects M1 and M2.
The contact objects M1 and M2 are, for example, a ball 23 and an inner ring 21 in the rolling bearing shown in FIG. The rolling bearing shown in the figure is an angular ball bearing, a deep groove ball bearing, or the like in which a plurality of balls 23 are interposed between the raceways having a circular arc cross section of the inner ring 21 and the outer ring 22 and a cage 24 for holding the balls 23 is provided. Ball bearing.
When the contact objects M1 and M2 are the ball and the inner ring in the rolling bearing as described above, the reference curved surface S is regarded as a cylindrical surface. In the figure, the reference curved surface S is a cylindrical surface interposed between the track surface of the contact object M2 that is an inner ring and the outer spherical surface of the contact object M1 that is a ball, and the cylindrical central axis is a contact object that is an inner ring. It is parallel to the axis of M2.

なお、基準曲面Sについて、接触面形状の正確な形状は本来わからないが、ボールと内輪の接触では接触面形状は円筒面の一部に近いとみなせる(解析上もこの基準面を採用している)。また、凸球面と凹球面の接触では接触面形状はほぼ球面とみなせる。従来の「接触面が平坦と見なせる」場合は平面である。複雑な曲面同士の接触では上記のような簡単な曲面で表現できない場合が出てくる。基準面形状をどのようにするかは解析精度に影響してくるため、できるだけ接触面形状に近い方が良いが、複雑にすると計算が難しくなるというデメリットがある。従って「基準曲面S」は解析する人がケースバイケースで適宜決定していく。   In addition, regarding the reference curved surface S, the exact shape of the contact surface shape is not originally known, but it can be considered that the contact surface shape is close to a part of the cylindrical surface in the contact between the ball and the inner ring (this reference surface is also used for analysis). ). Further, when the convex spherical surface and the concave spherical surface are in contact, the contact surface shape can be regarded as a substantially spherical surface. The conventional “contact surface can be regarded as flat” is a flat surface. There are cases where complicated curved surfaces cannot be expressed with simple curved surfaces as described above. How the reference surface shape is made affects the analysis accuracy, so it is better to be as close as possible to the contact surface shape, but there is a demerit that calculation becomes difficult if it is complicated. Accordingly, the “reference curved surface S” is appropriately determined by the person who analyzes it on a case-by-case basis.

計算点Aは、接触物体M1,M2間の距離を離散的な点で評価するものとするためにセルCの位置を代表させる点である。計算点Aは、セルC内の適宜の位置に設定すれば良いが、ここではセルCの中心にとる。
メッシュ分割する枡目の大きさ、つまりセルCの大きさは、適宜設定すればよいが、入力処理手段4からの入力等によって自由に設定可能としても良い。また、基準曲面Sの広さは、接触物体M1,M2の接触領域を全て含むように、接触領域より広めに適宜設定する。ここでは、セルCがX軸方向にNA個、Y軸方向にNB個並ぶ基準曲面Sとする。
The calculation point A is a point that represents the position of the cell C in order to evaluate the distance between the contact objects M1 and M2 as discrete points. The calculation point A may be set at an appropriate position in the cell C. Here, the calculation point A is set at the center of the cell C.
The size of the mesh to be divided into meshes, that is, the size of the cell C may be set as appropriate, but may be freely set by input from the input processing means 4 or the like. Further, the width of the reference curved surface S is appropriately set wider than the contact area so as to include all the contact areas of the contact objects M1 and M2. Here, it is assumed that the reference curved surface S includes NA cells C in the X-axis direction and NB cells in the Y-axis direction.

変位影響算出過程(T2)では、メッシュ分割過程(T1)の後、各セルCに均一な分布荷重Pが作用したときの接触物体M1,M2の表面の前記各計算点Aに対応する点の変位への影響量を算出する。この場合に、ここでは、個々のセルCには全体に均一な面圧Pが作用すると仮定するが、1次関数または2次関数等の所定の関数に従いセルC内の位置によって変わる面圧が作用すると仮定しても良い。   In the displacement influence calculation process (T2), after the mesh division process (T1), the points corresponding to the respective calculation points A on the surfaces of the contact objects M1 and M2 when the uniform distributed load P is applied to each cell C. The amount of influence on the displacement is calculated. In this case, it is assumed here that the uniform surface pressure P acts on the individual cells C as a whole, but the surface pressure that varies depending on the position in the cell C according to a predetermined function such as a linear function or a quadratic function. You may assume that it works.

このとき、互いに直交する3軸方向の座標位置をx,y,z、これら3軸方向の変位を、それぞれu,v,wとして計算する。なお、x,y軸方向の変位u,vは、後に、単位集中荷重作用時の変位解析解(Boussinesqの解)を説明するために記載したが、この発明では、これらx,y軸方向の変位u,vを用いず、z軸方向の変位wのみを用いて計算する。
2つの接触物体M1,M2が、上記のように転がり軸受のボールと内輪であって、基準面Sを円筒面とする場合、この円筒面からなる基準曲面S上の、円筒中心軸に垂直な平面で切断した断面の円弧に沿う方向の座標位置をx、円筒中心軸に沿う方向の座標位置をy、基準曲面上の法線方向に離れる座標位置をz、これら3軸方向の変位を、それぞれu,v,wとする。なお、基準面S上のx座標位置は、角度θにより表現される極座標Ro θで表される。
At this time, the coordinate positions in the three axial directions orthogonal to each other are calculated as x, y, z, and the displacements in these three axial directions are calculated as u, v, and w, respectively. Note that the displacements u and v in the x and y axis directions are described later in order to explain the displacement analysis solution (Boussinesq's solution) when the unit concentrated load is applied. The calculation is performed using only the displacement w in the z-axis direction without using the displacements u and v.
When the two contact objects M1 and M2 are rolling bearing balls and inner rings as described above and the reference surface S is a cylindrical surface, the reference surface S is a cylindrical surface perpendicular to the central axis of the cylinder. The coordinate position in the direction along the circular arc of the cross section cut by the plane is x, the coordinate position in the direction along the cylindrical central axis is y, the coordinate position away from the normal direction on the reference curved surface is z, and the displacement in these three axis directions is Let u, v, and w respectively. The x coordinate position on the reference plane S is represented by polar coordinates Ro θ expressed by an angle θ.

前記変位影響算出過程(T2)では、単位集中荷重作用時の変位解析解(Boussinesqの解)を1つの要素全域にわたり積分して、要素1つの面圧分布によって生じる2接触物体M1,M2の表面上の点(上記計測点Aに対応)の変位量を求める。
すなわち、位置(θ,y)の要素eが位置(θ’,y’)に及ぼす単位面圧負荷時の変位を、次の(1)式で与える。このとき、基準曲面の法線方向が位置により変わるためCOS(θ−θ’) がかかってくる。なお、ここでは、一つのセルCを一つの要素として計算する。
ここで重要なのは、(1) 要素間のθ方向距離として基準面上の距離(R0θ−R0θ’)を用いる点、および(2) 基準面の法線方向の修正を、COS(θ−θ’) の乗算により行うこと(すなわち、影響係数の算出に基準曲面Sの法線方向の修正を行って面圧を算出すること)の2点である。

Figure 2009104492
In the displacement influence calculation process (T2), the surface of the two-contact objects M1 and M2 generated by the surface pressure distribution of one element is obtained by integrating the displacement analysis solution (Boussinesq's solution) at the time of unit concentrated load action over the entire area of one element. A displacement amount of the upper point (corresponding to the measurement point A) is obtained.
That is, the displacement at the time of unit surface pressure load exerted on the position (θ ′, y ′) by the element e at the position (θ, y) is given by the following equation (1). At this time, since the normal direction of the reference curved surface changes depending on the position, COS (θ−θ ′) is applied. Here, one cell C is calculated as one element.
What is important here is that (1) the distance on the reference plane (R0θ−R0θ ′) is used as the θ direction distance between elements, and (2) the normal direction correction of the reference plane is corrected by COS (θ−θ ′ ) (That is, the surface pressure is calculated by correcting the normal direction of the reference curved surface S in calculating the influence coefficient).
Figure 2009104492

なお、前記の式(1)は、単位集中荷重作用時の変位解析解(Boussinesqの解)から、後述のように導かれる。   In addition, said Formula (1) is guide | induced as mentioned later from the displacement analysis solution (solution of Boussinesq) at the time of a unit concentrated load effect | action.

前記接触面圧計算過程(T3)では、各セルCにつき面圧と前記単位分布荷重による影響量の積の合計が接触領域内部において接触物体M1,M2間の接近量と初期隙間の差に釣り合い、かつ各セルCの面圧の合計が外力と釣り合ういう釣り合い条件式から、各セルの面圧を算出する。   In the contact surface pressure calculation process (T3), the sum of the product of the surface pressure and the influence amount due to the unit distributed load for each cell C is balanced with the difference between the approach amount between the contact objects M1 and M2 and the initial gap in the contact region. Further, the surface pressure of each cell is calculated from a balance conditional expression that the total surface pressure of each cell C is balanced with the external force.

接触面圧計算過程(T3)は、具体的には、次の(2)式が釣り合うように面圧分布を決め、また(3)式が釣り合うように、接近量αを求める。(2)式は、各セルCijにつき面圧Pklと前記単位分布荷重による影響量fijklの積の合計が接触領域内部において接触物体M1,M2間の接近量と初期隙間の差Dijに釣り合うという条件式であり、(1)式で求められる変位wを全要素について重ね合わせる式である。(3)式は各セルCijの面圧Pijの合計が外力Fと釣り合ういう条件式である。
なお、Cijは、x軸方向にi番目でy軸方向にj番目にあるセルCを示す。Qklは、x軸方向にk番目でy軸方向にl番目の点Aを示す(なお、i:1〜NA、j:1〜NB、k:1〜NA、l:1〜NB)。
In the contact surface pressure calculation process (T3), specifically, the surface pressure distribution is determined so that the following equation (2) is balanced, and the approach amount α is determined so that the equation (3) is balanced. Equation (2) is a condition that the sum of the product of the surface pressure Pkl and the influence amount fijkl due to the unit distribution load for each cell Cij is balanced with the difference Dij between the approach amount between the contact objects M1 and M2 and the initial gap. This is an equation that superimposes the displacement w obtained by equation (1) for all elements. Expression (3) is a conditional expression that the sum of the surface pressure Pij of each cell Cij is balanced with the external force F.
Note that Cij indicates the cell C that is i-th in the x-axis direction and j-th in the y-axis direction. Qkl indicates the k-th point in the x-axis direction and the l-th point A in the y-axis direction (where i: 1 to NA, j: 1 to NB, k: 1 to NA, l: 1 to NB).

Figure 2009104492
Figure 2009104492

Figure 2009104492
Figure 2009104492

上記の(2)式および(3)式が釣り合うように各セルCの面圧値を決めれば、離散化された全体の面圧分布が求まる。
なお、上記のように(2)式を解く過程で、2つの接触物体M1,M2間の接近量と初期隙間の差Dijが正の値となるセルCijについては、そのセルCijの面圧は零としており、この接近量と初期隙間の差Dijが零または負の値となるセルCijの並び範囲が、接触領域である。
(2)式は、解析的に積分可能であり、数値積分は不要となる。
If the surface pressure value of each cell C is determined so that the above equations (2) and (3) are balanced, the discrete surface pressure distribution can be obtained.
In the process of solving the equation (2) as described above, for the cell Cij in which the difference Dij between the approach amount between the two contact objects M1 and M2 and the initial gap is a positive value, the surface pressure of the cell Cij is The contact area is the arrangement range of the cells Cij in which the difference Dij between the approach amount and the initial gap is zero or a negative value.
Equation (2) can be integrated analytically, and numerical integration is not necessary.

図3に、(2)式、(3)式を、コンピュータにおける接触面圧計算手段10によって解くアルゴリズムの一例を示す。
まず、α値(:2つの接触物体M1,M2の接近量)の初期値を設定する(ステップH1)。
そのα値に応じて各セルCijの接触面圧を設定する(ステップH2)。この場合に、i=1〜NAの範囲、およびj=1〜NBの範囲で全てのセルCijの接触面圧Pijを設定する。その設定した各セルCijの接触面圧Pijで(2)式が成り立つか否かを判定し、成り立たない場合は、セルCijの接触面圧の設定過程(ステップH2)に戻る(H3)。ステップH2では、各セルCijの接触面圧Pijを再度設定し直し、その設定したセルCijの接触面圧Pijで(2)式が成り立つか否かを判定し、成り立たない場合はセルCijの接触面圧Pijを設定過程(H2)に戻る。このような処理を(2)式が成り立つまで繰替し、(2)式が成り立つと、ステップH4に進む。
ステップH4では、(3)式が成り立つか否かを判定し、成り立たない場合は、ステップH1に戻ってα値を、再度設定し直す。
この後、前記と同様にしてステップH2〜H4,H1の処理を繰り返し、(3)式が成り立つと、処理を終了する。
このようにして求めた、式(2)、(3)が成り立つときの、ステップH2で設定した各セルCijの接触面圧Pijが、接触面圧計算手段10の出力となる接触面圧の値である。 なお、セルCijの接触面圧の最初の値は何でもよいが、できるだけ実際の面圧に近い値を設定した方が早く収束する。
FIG. 3 shows an example of an algorithm for solving the equations (2) and (3) by the contact surface pressure calculation means 10 in the computer.
First, the initial value of the α value (: the approaching amount of the two contact objects M1 and M2) is set (step H1).
The contact surface pressure of each cell Cij is set according to the α value (step H2). In this case, the contact pressure Pij of all the cells Cij is set in the range of i = 1 to NA and j = 1 to NB. It is determined whether or not the equation (2) is established based on the set contact surface pressure Pij of each cell Cij, and if not, the process returns to the contact surface pressure setting process (step H2) of the cell Cij (H3). In step H2, the contact surface pressure Pij of each cell Cij is set again, and it is determined whether or not the formula (2) is satisfied by the set contact surface pressure Pij of the cell Cij. If not, the contact of the cell Cij is determined. The surface pressure Pij is returned to the setting process (H2). Such processing is repeated until equation (2) is satisfied, and when equation (2) is satisfied, the process proceeds to step H4.
In Step H4, it is determined whether or not the expression (3) is satisfied. If not, the process returns to Step H1 to reset the α value again.
Thereafter, the processes in steps H2 to H4 and H1 are repeated in the same manner as described above, and the process ends when the expression (3) is established.
The contact surface pressure Pij of each cell Cij set in step H2 when the expressions (2) and (3) are obtained in this way is the value of the contact surface pressure that is the output of the contact surface pressure calculation means 10. It is. Note that the initial value of the contact surface pressure of the cell Cij may be any value, but the convergence is quicker when a value as close to the actual surface pressure as possible is set.

この接触面圧計算方法によると、このように、半無限体に集中荷重が作用したときの変位の解析解を共形接触問題に適用し、また接触面圧計算時の計測点間の距離の算出に上記基準曲面C上の距離を用い、かつ影響係数の算出に基準曲面Cの法線方向の修正を行って面圧を算出するようにしたため、比較的簡単に、したがって短時間で、共形接触における接触面圧の計算を行うことができる。
また、有限要素法を用いて接触面圧を計算した場合と同程度に精度の良い計算結果が得られることが、この実施形態の方法と有限要素法との計算結果を比較することで、確認できた。
この実施形態は、このように、従来では共形接触には半無限体が適用できないと考えられていた共形接触問題に、ブジネスクの半無限体近似の解を適用し、良好な面圧の解析結果を得ることができる。
なお、この発明方法は、非共形接触の場合にも適用可能であるが、非共形接触の場合はより簡単な計算で面圧を求めることができるため、共形接触の場合に効果的となる。
According to this contact surface pressure calculation method, the analytical solution of displacement when a concentrated load is applied to a semi-infinite body is applied to the conformal contact problem, and the distance between measurement points when calculating the contact surface pressure is calculated. Since the distance on the reference curved surface C is used for the calculation and the normal pressure direction of the reference curved surface C is corrected for the calculation of the influence coefficient, the surface pressure is calculated relatively easily. It is possible to calculate the contact pressure in the shape contact.
In addition, it is confirmed by comparing the calculation result between the method of this embodiment and the finite element method that the calculation result is as accurate as when the contact surface pressure is calculated using the finite element method. did it.
As described above, this embodiment applies the solution of the Buenesque's semi-infinite approximation to the conformal contact problem, which is conventionally considered not to be applicable to the conformal contact. Analysis results can be obtained.
Although the method of the present invention can be applied to non-conformal contact, the surface pressure can be obtained by simpler calculation in the case of non-conformal contact. It becomes.

表面下応力計算過程(T4)では、上記のように求めた面圧分布に対して、次式(4)〜(9)で与えられる単位集中荷重作用時の表面下の応力を用いて、個々のセルCの全域にわたり積分して、かつ全セルCの影響の和をとって表面下応力が求まる。   In the subsurface stress calculation process (T4), the surface pressure distribution obtained as described above is used to calculate the individual stress by using the subsurface stress at the time of unit concentrated load action given by the following equations (4) to (9). Subsurface stress is obtained by integrating over the entire area of cell C and summing the effects of all cells C.

Figure 2009104492
Figure 2009104492

セルCに対する荷重が法線方向の力である場合は、次のように計算する。前記2つの接触物体M1,M2が転がり軸受のボールと内輪とである場合、前記メッシュ分割過程(T1)では、前記のように前記基準曲面Sを円筒面とする。前記変位影響量算出過程(T2)では、前記円筒面からなる基準曲面S上の、円筒中心軸に垂直な平面で切断した断面の円弧に沿う方向の座標位置をθ、円筒中心軸に沿う方向の座標位置をy、基準曲面上の法線方向に離れる座標位置をzとして、
位置(θ,y)の要素eが位置(θ’,y’,z)に及ぼす単位面圧負荷時の剪断応力τzyを、次式(10)で求める。
When the load on the cell C is a force in the normal direction, the calculation is performed as follows. When the two contact objects M1 and M2 are a ball and an inner ring of a rolling bearing, the reference curved surface S is a cylindrical surface as described above in the mesh division process (T1). In the displacement influence amount calculation step (T2), the coordinate position in the direction along the circular arc of the cross section cut by the plane perpendicular to the cylindrical central axis on the reference curved surface S made of the cylindrical surface is θ, and the direction along the cylindrical central axis Where y is the coordinate position of z and z is the coordinate position away from the normal direction on the reference curved surface.
The shear stress τzy at the time of unit surface pressure load exerted on the position (θ ′, y ′, z) by the element e at the position (θ, y) is obtained by the following equation (10).

Figure 2009104492
Figure 2009104492

この場合も、積分は解析的に求まるため、数値積分は不要である。   Also in this case, since the integral is obtained analytically, numerical integration is not necessary.

このように表面下応力を計算するについても、計算が比較的簡単で短時間で行え、また精度の良い表面下応力の計算が行える。   As described above, the subsurface stress can be calculated relatively easily and in a short time, and the subsurface stress can be calculated with high accuracy.

なお、上記実施形態において、接触物体M1,M2の形状によっては、接触領域の縁がギザギザにあることがあるが、そのような場合は、解析途中で、例えば接触面圧計算過程(T3)の後、メッシュ分割の修正、つまりセルCの各軸x,y方向の大きさを修正してその修正結果により、メッシュ分割後の各過程を再度行わせるメッシュ修正過程(T5)を含むようにしても良い。
図2のメッシュ修正手段13は、このようなメッシュ修正過程(T5)を実行する手段である。
In the above embodiment, depending on the shapes of the contact objects M1 and M2, the edge of the contact area may be jagged. In such a case, during the analysis, for example, in the contact surface pressure calculation process (T3) Thereafter, the mesh division may be corrected, that is, the size of each cell in the x and y directions may be corrected, and a mesh correction process (T5) may be performed in which each process after mesh division is performed again according to the correction result. .
The mesh correction means 13 in FIG. 2 is a means for executing such a mesh correction process (T5).

接触物体M1,M2が、転がり軸受におけるボールと内輪である場合における、この実施形態、前述の提案例(特願2007−026577号)、および有限要素法(FEM)の計算結果を、図9に示す。3者とも良く一致しており、どれも使用可能レベルである。一方、従来手法(接触面が平坦という前提の解析)では、図10のようであり、正しくない結果となる。   FIG. 9 shows the calculation results of this embodiment, the above-described proposal example (Japanese Patent Application No. 2007-026577), and the finite element method (FEM) when the contact objects M1 and M2 are a ball and an inner ring in a rolling bearing. Show. All three are in good agreement and all are at a usable level. On the other hand, the conventional method (analysis on the premise that the contact surface is flat) is as shown in FIG.

前述の提案例の手法では、3方向の変位を考慮していたため、計算時間が長くかかっていたが(FEMよりは早い)が、この実施形態は、これを1方向とすることができた。また、全順の提案例は数値積分で行っていたが、この実施形態では解析積分に置き換えることができ、計算の簡素化と高速化が達成できた。
計算の所要時間の例を示すと、前述の提案例の手法では197.08秒であったのに対して、実施形態の手法では112.45秒となり、従来手法の57%であった。
In the method of the above-mentioned proposal example, since the displacement in three directions was taken into consideration, it took a long calculation time (faster than FEM). However, in this embodiment, this can be one direction. In addition, the proposed examples in all orders were performed by numerical integration. However, in this embodiment, it can be replaced by analytical integration, and the calculation can be simplified and speeded up.
An example of the time required for calculation is 197.08 seconds in the method of the above-mentioned proposed example, whereas it is 112.45 seconds in the method of the embodiment, which is 57% of the conventional method.

つぎに、上記の式(1)とブジネスク(Boussinesq)の解との関係を説明する。   Next, the relationship between the above equation (1) and the solution of Boussinesq will be described.

作用荷重が法線方向である場合の単位集中荷重作用時の変位解析解であるブジネスク(Boussinesq)の解は、次式(11)〜(13)によって現される。
なお、図7はブジネスクの解の座標系を示す。同図のような半無限体平面の原点Oに単位荷重が作用するとき、任意の点であるQ点のx,y,z方向の変位を、それぞれu,v,wとする。
The solution of Bousnesinesq, which is a displacement analysis solution when a unit concentrated load is applied when the applied load is in the normal direction, is expressed by the following equations (11) to (13).
FIG. 7 shows the coordinate system of the Binesque solution. When a unit load is applied to the origin O of the semi-infinite plane as shown in the figure, the displacements in the x, y, and z directions of an arbitrary point Q are u, v, and w, respectively.

Figure 2009104492
Figure 2009104492

この式から、次のようにして、上記の式(1)が導かれる。

Figure 2009104492
From this equation, the above equation (1) is derived as follows.
Figure 2009104492

これを要素eが点Qに及ぼす変位として相対距離を用いて積分したものが(1)式である。本手法では(1)式のxには基準面上の距離を用いるので、xの代わりにR0θを用いる。なお、積分に当たっては以下の変数変換
x=R0θ ⇒ dx=R0dθ
を用いて(1)式が得られる。
Equation (1) is obtained by integrating this using the relative distance as the displacement of element e on point Q. In this method, since the distance on the reference plane is used for x in equation (1), R 0 θ is used instead of x. For integration, the following variable conversion x = R 0 θ ⇒ dx = R 0
(1) is obtained using.

(A)はこの発明の一実施形態に係る共形接触下の接触面圧および表面下応力計算方法を示す流れ図、(B)はその解析過程の流れ図である。(A) is a flowchart which shows the contact surface pressure under a conformal contact and subsurface stress calculation method based on one Embodiment of this invention, (B) is a flowchart of the analysis process. この発明の一実施形態に係る共形接触下の接触面圧および表面下応力計算装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the contact surface pressure under conformal contact which concerns on one Embodiment of this invention, and a subsurface stress calculation apparatus. 接触面圧計算過程の具体例の流れ図である。It is a flowchart of the specific example of a contact surface pressure calculation process. 接触モデルの一例の説明図である。It is explanatory drawing of an example of a contact model. 基準曲面およびメッシュ分割の形態例を示す説明図である。It is explanatory drawing which shows the example of a form of a reference | standard curved surface and mesh division | segmentation. 基準曲面の展開図である。It is an expanded view of a reference | standard curved surface. ブジネスクの解の座標系の説明図である。It is explanatory drawing of the coordinate system of a solution of a business. 接触物体間の初期隙間の説明図である。It is explanatory drawing of the initial stage clearance gap between contact objects. 接触物体の重荷重時の面圧分布を、この実施形態の方法、提案例の方法、およびFEM解析で求めた結果を示すグラフである。It is a graph which shows the result of having calculated | required the surface pressure distribution at the time of heavy load of a contact object by the method of this embodiment, the method of a proposal example, and FEM analysis. 同接触物体の重荷重時の面圧分布を、市販の軽荷重時用のソフトウェアで計算した結果の説明図である。It is explanatory drawing of the result of having calculated the surface pressure distribution at the time of the heavy load of the contact object with the software for the light load on the market. 同面圧を求める対象となる転がり軸受の部分断面図である。It is a fragmentary sectional view of the rolling bearing used as the object which calculates | requires the same surface pressure.

符号の説明Explanation of symbols

1…コンピュータ
4…入力処理手段
5…出力処理手段
6…入力情報記憶手段
7…解析手段
8…メッシュ分割手段
9…変位影響算出手段
10…接触面圧計算手段
11…表面下応力計算手段
M1,M2…接触物体
S…基準曲面
C…セル
DESCRIPTION OF SYMBOLS 1 ... Computer 4 ... Input processing means 5 ... Output processing means 6 ... Input information storage means 7 ... Analysis means 8 ... Mesh division means 9 ... Displacement influence calculation means 10 ... Contact surface pressure calculation means 11 ... Subsurface stress calculation means M1, M2 ... contact object S ... reference curved surface C ... cell

Claims (10)

外力が作用したときに互いに共形接触を行う2つの接触物体の接触面における面圧を、コンピュータを用いて計算する方法であって、
前記接触物体の接触面付近の形状、弾性係数、ポアソン比、および作用する外力を入力して記憶手段に記憶させる入力過程と、入力された値を用いて前記面圧を計算する解析過程と、計算した結果を出力する出力過程とでなり、
前記解析過程として、
前記2つの接触物体の互いに接する面の近傍に、基準曲面を設定してこの基準曲面をセルが縦横に並ぶメッシュに分割し、接触物体間の距離を計算する点である計算点をセル上に定めるメッシュ分割過程と、
各セルに単位分布荷重が作用したときの前記2つの接触物体の表面の前記各計算点の変位への影響量を算出する変位影響算出過程と、
各セルにつき面圧と前記単位分布荷重による影響量の積の合計が接触領域内部において接触物体間の接近量と初期隙間の差に釣り合い、かつ各セルの面圧の合計が外力と釣り合うという釣り合い条件式から、各セルの面圧を算出する接触面圧計算過程とを含み、
前記変位影響算出過程および接触面圧計算過程では、計測点間の距離の算出に上記基準曲面上の距離を用い、かつこの基準曲面上の位置の違いによる法線方向の修正を行って面圧を算出する、
ことを特徴とする共形接触下の接触面圧計算方法。
A method of calculating a surface pressure at a contact surface of two contact objects that conformally contact each other when an external force is applied using a computer,
An input process for storing the shape near the contact surface of the contact object, an elastic coefficient, a Poisson's ratio, and an external force to be applied and storing it in the storage means, and an analysis process for calculating the surface pressure using the input value; It is an output process that outputs the calculated result.
As the analysis process,
A reference curved surface is set in the vicinity of the surface where the two contact objects contact each other, the reference curved surface is divided into meshes in which cells are arranged vertically and horizontally, and a calculation point which is a point for calculating the distance between the contact objects is placed on the cell. A predetermined mesh division process;
A displacement influence calculation process for calculating an influence amount on a displacement of each of the calculation points on the surfaces of the two contact objects when a unit distribution load is applied to each cell;
The balance that the sum of the product of the surface pressure and the influence amount due to the unit distributed load for each cell balances the difference between the approach amount between the contact objects and the initial gap inside the contact area, and the sum of the surface pressure of each cell balances with the external force. From the conditional expression, including the contact surface pressure calculation process of calculating the surface pressure of each cell,
In the displacement influence calculation process and the contact surface pressure calculation process, the distance between the measurement points is calculated using the distance on the reference curved surface, and the normal direction is corrected by the difference in the position on the reference curved surface to obtain the surface pressure. To calculate,
The contact surface pressure calculation method under conformal contact characterized by the above-mentioned.
請求項1において、前記2つの接触物体が転がり軸受の内輪とボールとであって、
前記メッシュ分割過程では、前記基準曲面を円筒面とし、
前記変位影響量算出過程では、前記円筒面からなる基準曲面上の、円筒中心軸に垂直な平面で切断した断面の円弧に沿う方向の座標位置をx、円筒中心軸に沿う方向の座標位置をy、基準曲面上の法線方向に離れる座標位置をz、前記z軸方向の変位をwとして、
前記外力が法線方向の力である場合は、次式(1)で表される単位集中荷重作用時の変位解析解により前記影響量を計算する、
Figure 2009104492
共形接触下の接触面圧計算方法。
In Claim 1, the two contact objects are an inner ring and a ball of a rolling bearing,
In the mesh division process, the reference curved surface is a cylindrical surface,
In the displacement influence amount calculation process, the coordinate position in the direction along the circular arc of the cross section cut by the plane perpendicular to the cylinder central axis on the reference curved surface made of the cylindrical surface is x, and the coordinate position in the direction along the cylinder central axis is y, z is the coordinate position away from the normal direction on the reference curved surface, and w is the displacement in the z-axis direction.
When the external force is a force in the normal direction, the influence amount is calculated by a displacement analysis solution at the time of unit concentrated load action represented by the following equation (1).
Figure 2009104492
Contact surface pressure calculation method under conformal contact.
請求項2において、前記接触面圧計算過程では、前記(1)式で計算されるz軸方向の変位をwを全セルについて重ね合わせる式である次式(2)を、前記釣り合い条件式の一つとして用いて各セルの面圧分布を求め、
Figure 2009104492
かつ、前記釣り合い条件式の他の一つとして次式(3)を用いて前記接近量αを求める、
Figure 2009104492
共形接触下の接触面圧計算方法。
3. In the contact surface pressure calculation process according to claim 2, the following equation (2), which is an equation for superimposing w in the z-axis direction calculated by the equation (1) for all cells, Use as one to find the surface pressure distribution of each cell,
Figure 2009104492
And, as another one of the balance condition expressions, the approach amount α is obtained using the following expression (3).
Figure 2009104492
Contact surface pressure calculation method under conformal contact.
請求項1ないし請求項3のいずれか1項において、前記解析過程の途中で、前記メッシュに分割する大きさを修正してその修正結果により、メッシュ分割後の各過程を再度行うメッシュ修正過程を含む共形接触下の接触面圧計算方法。   The mesh correction process according to any one of claims 1 to 3, wherein, in the middle of the analysis process, a size to be divided into the meshes is corrected, and each process after mesh division is performed again according to the correction result. Including contact surface pressure calculation method under conformal contact. 外力が作用したときに互いに共形接触を行う2つの接触物体の接触面における面圧および表面下応力を、コンピュータを用いて計算する方法であって、
請求項1ないし請求項4のいずれか1項に記載の接触面圧の計算方法と、この計算方法で各セルの面圧を計算した後に、表面下応力を計算する過程を含み、
この表面下応力計算過程として、
前記外力が法線方向の力である場合は、次式(4)〜(9)で与えられる単位集中荷重作用時の表面下の応力を用いて、個々のセルの全域にわたり積分して、かつ全セルの影響の和をとって表面下応力を求める、
Figure 2009104492
共形接触下の接触面圧および表面下応力計算方法。
A method of calculating, using a computer, the surface pressure and the subsurface stress at the contact surface of two contact objects that make conformal contact with each other when an external force is applied,
The method for calculating the contact surface pressure according to any one of claims 1 to 4, and the step of calculating the subsurface stress after calculating the surface pressure of each cell by this calculation method,
As this subsurface stress calculation process,
When the external force is a force in the normal direction, it integrates over the entire area of each cell using the subsurface stress at the time of unit concentrated load action given by the following equations (4) to (9), and Calculate the subsurface stress by taking the sum of the effects of all cells.
Figure 2009104492
Calculation method of contact surface pressure and subsurface stress under conformal contact.
請求項5において、前記2つの接触物体が転がり軸受の内輪とボールとであって、
前記メッシュ分割過程では、前記基準曲面を円筒面とし、
前記変位影響量算出過程では、前記円筒面からなる基準曲面上の、円筒中心軸に垂直な平面で切断した断面の円弧に沿う方向の座標位置をθ、円筒中心軸に沿う方向の座標位置をy、基準曲面上の法線方向に離れる座標位置をzとして、
位置(θ,y)の要素eが位置(θ’,y’,z)に及ぼす単位面圧負荷時の剪断応力τzyを、次式(10)で求める、
Figure 2009104492
共形接触下の接触面圧および表面下応力計算方法。
In Claim 5, the two contact objects are an inner ring and a ball of a rolling bearing,
In the mesh division process, the reference curved surface is a cylindrical surface,
In the displacement influence amount calculation process, the coordinate position in the direction along the circular arc of the cross section cut by the plane perpendicular to the cylinder central axis on the reference curved surface made of the cylindrical surface is θ, and the coordinate position in the direction along the cylinder central axis is y, z is the coordinate position away from the normal direction on the reference curved surface,
The shear stress τzy at the time of unit surface pressure load that the element e at the position (θ, y) exerts on the position (θ ′, y ′, z) is obtained by the following equation (10).
Figure 2009104492
Calculation method of contact surface pressure and subsurface stress under conformal contact.
外力が作用したときに互いに共形接触を行う2つの接触物体の接触面における面圧を計算する装置であって、
前記接触物体の接触面付近の形状、弾性係数、ポアソン比、および作用する外力を入力して記憶手段に記憶させる入力処理手段と、入力された値を用いて前記面圧を計算する解析手段と、計算した結果を出力する出力処理手段とでなり、
前記解析手段として、
前記2つの接触物体の互いに接する面の近傍に、基準曲面を設定してこの基準曲面をセルが縦横に並ぶメッシュに分割し、接触物体間の距離を計算する点である計算点をセル上に定めるメッシュ分割手段と、
各セルに単位分布荷重が作用したときの前記2つの接触物体の表面の前記各計算点の変位への影響量を算出する変位影響算出手段と、
各セルにつき面圧と前記単位分布荷重による影響量の積の合計が接触領域内部において接触物体間の接近量と初期隙間の差に釣り合い、かつ各セルの面圧の合計が外力と釣り合うという釣り合い条件式から、各セルの面圧を算出する接触面圧計算手段とを含み、
前記変位影響算出手段および接触面圧計算手段は、計測点間の距離の算出に上記基準曲面上の距離を用い、かつこの基準曲面上の位置の違いによる法線方向の修正を行って面圧を算出する、
ことを特徴とする共形接触下の接触面圧計算装置。
A device for calculating the surface pressure at the contact surface of two contact objects that make conformal contact with each other when an external force is applied,
An input processing means for inputting a shape in the vicinity of the contact surface of the contact object, an elastic coefficient, a Poisson's ratio, and an acting external force and storing them in a storage means; and an analysis means for calculating the surface pressure using the input value; And output processing means to output the calculated results,
As the analysis means,
A reference curved surface is set in the vicinity of the surface where the two contact objects contact each other, the reference curved surface is divided into meshes in which cells are arranged vertically and horizontally, and a calculation point which is a point for calculating the distance between the contact objects is placed on the cell. Mesh dividing means to be determined;
A displacement influence calculating means for calculating an influence amount on a displacement of each of the calculation points on the surfaces of the two contact objects when a unit distribution load is applied to each cell;
The balance that the sum of the product of the surface pressure and the influence amount due to the unit distributed load for each cell balances the difference between the approach amount between the contact objects and the initial gap inside the contact area, and the sum of the surface pressure of each cell balances with the external force. Contact surface pressure calculating means for calculating the surface pressure of each cell from the conditional expression,
The displacement influence calculating means and the contact surface pressure calculating means use the distance on the reference curved surface for calculating the distance between the measurement points, and correct the normal direction due to the difference in position on the reference curved surface to obtain the surface pressure. To calculate,
An apparatus for calculating contact pressure under conformal contact.
請求項7において、前記2つの接触物体が転がり軸受の内輪とボールとであって、
前記メッシュ分割手段は、前記基準曲面を円筒面とし、
前記変位影響量算出手段は、前記円筒面からなる基準曲面上の、円筒中心軸に垂直な平面で切断した断面の円弧に沿う方向の座標位置をx、円筒中心軸に沿う方向の座標位置をy、基準曲面上の法線方向に離れる座標位置をz、前記z方向の変位をwとして、
前記外力が法線方向の力である場合は、次式(1)で表される単位集中荷重作用時の変位解析解により前記影響量を計算する、
Figure 2009104492
共形接触下の接触面圧計算装置。
In Claim 7, the two contact objects are an inner ring and a ball of a rolling bearing,
The mesh dividing means has a cylindrical surface as the reference curved surface,
The displacement influence amount calculation means x is a coordinate position in a direction along a circular arc of a cross section cut on a plane perpendicular to the cylinder central axis on a reference curved surface made of the cylindrical surface, and a coordinate position in a direction along the cylinder central axis. y, z is the coordinate position away from the normal direction on the reference curved surface, and w is the displacement in the z direction.
When the external force is a force in the normal direction, the influence amount is calculated by a displacement analysis solution at the time of unit concentrated load action represented by the following equation (1).
Figure 2009104492
Contact surface pressure calculation device under conformal contact.
請求項8において、前記接触面圧計算手段は、前記(1)式で計算されるz軸方向の変位wを全セルについて重ね合わせる式である次式(2)を、前記釣り合い条件式の一つとして用いて各セルの面圧分布を求め、
Figure 2009104492
かつ、前記釣り合い条件式の他の一つとして次式(3)を用いて前記接近量αを求める、
Figure 2009104492
共形接触下の接触面圧計算装置。
9. The contact surface pressure calculation means according to claim 8, wherein the following equation (2), which is an equation for superimposing the displacement w in the z-axis direction calculated by the equation (1) for all cells, To obtain the surface pressure distribution of each cell,
Figure 2009104492
And, as another one of the balance condition expressions, the approach amount α is obtained using the following expression (3).
Figure 2009104492
Contact surface pressure calculation device under conformal contact.
外力が作用したときに互いに共形接触を行う2つの接触物体の接触面における面圧および表面下応力を計算する装置であって、
請求項7ないし請求項9のいずれか1項に記載の接触面圧の計算装置と、表面下応力計算手段とを含み、
この表面下応力計算手段は、
前記外力が法線方向の力である場合は、次式(4)〜(9)で与えられる単位集中荷重作用時の表面下の応力を用いて、個々のセルの全域にわたり積分して、かつ全セルの影響の和をとって表面下応力を求める、
Figure 2009104492
共形接触下の接触面圧および表面下応力計算装置。
An apparatus for calculating the surface pressure and the subsurface stress at the contact surface of two contact objects that make conformal contact with each other when an external force is applied,
A contact surface pressure calculation device according to any one of claims 7 to 9, and a subsurface stress calculation means,
This subsurface stress calculation means
When the external force is a force in the normal direction, it integrates over the entire area of each cell using the subsurface stress at the time of unit concentrated load action given by the following equations (4) to (9), and Calculate the subsurface stress by taking the sum of the effects of all cells.
Figure 2009104492
Contact surface pressure and subsurface stress calculation device under conformal contact.
JP2007277066A 2007-10-25 2007-10-25 Contact surface pressure and subsurface stress calculation method and apparatus under conformal contact Active JP5026225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277066A JP5026225B2 (en) 2007-10-25 2007-10-25 Contact surface pressure and subsurface stress calculation method and apparatus under conformal contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277066A JP5026225B2 (en) 2007-10-25 2007-10-25 Contact surface pressure and subsurface stress calculation method and apparatus under conformal contact

Publications (2)

Publication Number Publication Date
JP2009104492A true JP2009104492A (en) 2009-05-14
JP5026225B2 JP5026225B2 (en) 2012-09-12

Family

ID=40706084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277066A Active JP5026225B2 (en) 2007-10-25 2007-10-25 Contact surface pressure and subsurface stress calculation method and apparatus under conformal contact

Country Status (1)

Country Link
JP (1) JP5026225B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102278966A (en) * 2010-06-13 2011-12-14 罗伯特·博世有限公司 Method for determining abrasion amount, and sliding contact component and manufacturing method thereof
JP2014002426A (en) * 2012-05-24 2014-01-09 Haruo Hase Method and computer program for calculating contact surface pressure between two objects
CN113607317A (en) * 2021-08-04 2021-11-05 大连理工大学 Indirect measuring method and system for raceway contact stress

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW470818B (en) 2000-05-18 2002-01-01 Thk Co Ltd Spherical bearing and method for manufacturing the same
CN105893760B (en) * 2016-04-01 2018-11-16 北京航空航天大学 Tool wear evaluation and prediction technique and system based on broad sense abrasion loss

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102278966A (en) * 2010-06-13 2011-12-14 罗伯特·博世有限公司 Method for determining abrasion amount, and sliding contact component and manufacturing method thereof
CN102278966B (en) * 2010-06-13 2015-07-15 罗伯特·博世有限公司 Method for determining abrasion amount, and sliding contact component and manufacturing method thereof
JP2014002426A (en) * 2012-05-24 2014-01-09 Haruo Hase Method and computer program for calculating contact surface pressure between two objects
CN113607317A (en) * 2021-08-04 2021-11-05 大连理工大学 Indirect measuring method and system for raceway contact stress
CN113607317B (en) * 2021-08-04 2022-08-16 大连理工大学 Indirect measuring method and system for raceway contact stress

Also Published As

Publication number Publication date
JP5026225B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
Le et al. Surface corrections for peridynamic models in elasticity and fracture
Kania et al. A catalogue capacity of slewing bearings
Chin et al. Modeling crack discontinuities without element‐partitioning in the extended finite element method
JP5026225B2 (en) Contact surface pressure and subsurface stress calculation method and apparatus under conformal contact
JP5046671B2 (en) Calculation method of contact pressure and subsurface stress under conformal contact
Kumar et al. Computational synthesis of large deformation compliant mechanisms undergoing self and mutual contact
Forrester Selecting the number of trials in experimental biomechanics studies
Burgelman et al. Influence of wheel–rail contact modelling on vehicle dynamic simulation
Koop et al. Passive dynamic biped walking—Part II: stability analysis of the passive dynamic gait
US11321508B2 (en) Generative design shape optimization with damage prevention over loading cycles for computer aided design and manufacturing
Boffy et al. Multigrid solution of the 3D stress field in strongly heterogeneous materials
Yue et al. Off-line error compensation in corner milling process
Kanovic et al. The modelling of surface roughness after the ball burnishing process with a high-stiffness tool by using regression analysis, artificial neural networks, and support vector regression
Gunia et al. The influence of the geometrical parameters for stress distribution in wire raceway slewing bearing
Kim et al. Finite element analysis for contact problems
Kovalev et al. Railway vehicle dynamics: Some aspects of wheel–rail contact modeling and optimization of running gears
Bureick et al. Fast converging elitist genetic algorithm for knot adjustment in B-spline curve approximation
Higa et al. Wheelset-rail mechanical model for a steady-state dynamic condition and prediction of rolling contact fatigue locci
Bruzzone et al. Gear teeth deflection model for spur gears: proposal of a 3D nonlinear and non-hertzian approach
Cavalieri et al. Numerical solution of frictional contact problems based on a mortar algorithm with an augmented Lagrangian technique
Haug An index 0 Differential-Algebraic equation formulation for multibody dynamics: Holonomic constraints
Blanco-Lorenzo et al. Approximating the influence coefficients of non-planar elastic solids for conformal contact analysis
Hartmann et al. On accuracy and efficiency of constrained reinitialization
Malikov et al. Analytical and numerical calculation of the force and power requirements for air bending of structured sheet metals
Sokołowski et al. Topological derivatives for optimization of plane elasticity contact problems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5026225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250