JP2008259294A - Instantaneous voltage drop compensator - Google Patents

Instantaneous voltage drop compensator Download PDF

Info

Publication number
JP2008259294A
JP2008259294A JP2007098235A JP2007098235A JP2008259294A JP 2008259294 A JP2008259294 A JP 2008259294A JP 2007098235 A JP2007098235 A JP 2007098235A JP 2007098235 A JP2007098235 A JP 2007098235A JP 2008259294 A JP2008259294 A JP 2008259294A
Authority
JP
Japan
Prior art keywords
series transformer
voltage drop
inverter
instantaneous voltage
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007098235A
Other languages
Japanese (ja)
Inventor
Hidehiro Maekawa
英洋 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007098235A priority Critical patent/JP2008259294A/en
Priority to PCT/JP2008/054480 priority patent/WO2008126592A1/en
Priority to TW097109877A priority patent/TW200845532A/en
Publication of JP2008259294A publication Critical patent/JP2008259294A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1807Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
    • H02J3/1814Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators wherein al least one reactive element is actively controlled by a bridge converter, e.g. unified power flow controllers [UPFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that technical difficulty increases when circuit voltage becomes high and economical manufacture becomes difficult in a high speed switch used for an instantaneous voltage drop compensator. <P>SOLUTION: A first series transformer is connected between an AC power supply and a load. The high speed switch and a second series transformer are connected in parallel to a primary side of the series transformer. An output side of an inverter is connected to a primary side of the second series transformer. When instantaneous voltage drops, voltage generated from the inverter is superimposed on power voltage through the second series transformer and the first series transformer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、瞬時電圧低下補償装置に関するものである。   The present invention relates to an instantaneous voltage drop compensation device.

瞬時電圧低下補償装置としては、特許文献1のようなものが知られている。この特許文献1で示される直列形の補償装置は、図4のように構成されている。同図において1は三相の交流電源、2は負荷で、この負荷2と交流電源1との間に高速スイッチ3が接続されている。4は直列変圧器で、その二次巻線は高速スイッチ3と並列に接続され、また、一次巻線はインバータ5の出力側に接続されている。6はエネルギー蓄積要素、7はこのエネルギー蓄積要素6を充電する充電器である。   As an instantaneous voltage drop compensation device, a device as disclosed in Patent Document 1 is known. The series type compensation device disclosed in Patent Document 1 is configured as shown in FIG. In the figure, 1 is a three-phase AC power source, 2 is a load, and a high-speed switch 3 is connected between the load 2 and the AC power source 1. 4 is a series transformer, the secondary winding of which is connected in parallel with the high-speed switch 3, and the primary winding is connected to the output side of the inverter 5. Reference numeral 6 denotes an energy storage element, and reference numeral 7 denotes a charger for charging the energy storage element 6.

図4のように構成された瞬時電圧低下補償装置では、電源正常時には負荷2への電力供給は実線矢印のように高速スイッチ3を介して供給され、電源側で瞬時電圧低下が発生したときは高速スイッチ3をオフにし、電源側の電圧低下量に見合った電圧を、エネルギー蓄積要素6から点線矢印で示すようにインバータ5を介して発生させることで負荷電圧を一定にしている。
特開2006−197792
In the instantaneous voltage drop compensator configured as shown in FIG. 4, when the power supply is normal, the power supply to the load 2 is supplied via the high-speed switch 3 as indicated by the solid line arrow, and when the instantaneous voltage drop occurs on the power supply side The load voltage is kept constant by turning off the high-speed switch 3 and generating a voltage commensurate with the amount of voltage drop on the power supply side from the energy storage element 6 via the inverter 5 as indicated by the dotted line arrow.
JP 2006-197792 A

瞬時電圧低下補償装置に使用される高速スイッチ3は、半導体素子を電圧に見合った数だけ複数個直列接続したものを逆並列に接続させることで回路電圧に適合させている。したがって、回路電圧が高くなればなるほど半導体素子の直列数が多くなってスイッチ遮断時の電圧分担が技術的に難しくなり、電圧分担に裕度を持たすために素子数を増加している。また、回路電圧が高くなることによって絶縁性能を高める必要があり、半導体素子の冷却のための冷却フィンの絶縁、半導体素子の駆動回路の絶縁、回路充電部の絶縁など技術的な困難さが増加し、経済的な製作が困難となっている。   The high-speed switch 3 used in the instantaneous voltage drop compensation device is adapted to the circuit voltage by connecting a plurality of semiconductor elements connected in series corresponding to the voltage in antiparallel. Therefore, the higher the circuit voltage, the greater the number of semiconductor elements connected in series, making it technically difficult to share the voltage when the switch is cut off. The number of elements is increased in order to provide a margin for voltage sharing. In addition, it is necessary to improve the insulation performance by increasing the circuit voltage, and technical difficulties such as insulation of cooling fins for cooling semiconductor elements, insulation of drive circuits of semiconductor elements, insulation of circuit charging parts increase. However, economical production is difficult.

すなわち、半導体素子としてIGBT、GTO、及びサイリスタを使用して高速スイッチを構成すると、技術的に製作容易な適用回路電圧は低圧または高圧回路となる。7000Vを超える回路への適用では、素子の直列数が増加して実現が技術的に難しく経済的な製作ができない。
また、逆に、図4の瞬時電圧低下補償装置の構成を低圧で大電流系統に対して適用すると、使用する半導体素子の平列数が増加して素子の電流分担が技術的に困難になり、経済的な装置の製作ができない。
That is, when an IGBT, GTO, and thyristor are used as semiconductor elements to configure a high-speed switch, the applied circuit voltage that is technically easy to manufacture is a low-voltage or high-voltage circuit. When applied to a circuit exceeding 7000 V, the number of elements in series increases, which is technically difficult to realize and cannot be economically manufactured.
Conversely, if the configuration of the instantaneous voltage drop compensator of FIG. 4 is applied to a large current system at a low voltage, the number of semiconductor elements to be used increases and the current sharing of the elements becomes technically difficult. Can't produce economical equipment.

なお、電源の系統電圧を考慮して、図5で示すように電源1と瞬時電圧低下補償装置との間に降圧変圧器8を接続し、また、瞬時電圧低下補償装置と負荷2との間に昇圧変圧器9を接続することも提案されている。この補償装置では、降圧変圧器8により一旦電源電圧を降圧し、通った後に昇圧変圧器9により昇圧して高電力を負荷2に供給している。この装置の場合、系統容量と同等の変圧器が2台必要となり、また、無負荷損が発生して経済的な装置の製作ができない。   In consideration of the system voltage of the power source, as shown in FIG. 5, a step-down transformer 8 is connected between the power source 1 and the instantaneous voltage drop compensator, and between the instantaneous voltage drop compensator and the load 2. It has also been proposed to connect the step-up transformer 9 to. In this compensation device, the power supply voltage is once stepped down by the step-down transformer 8, and then passed through the step-up transformer 9 to supply high power to the load 2. In the case of this device, two transformers equivalent to the system capacity are required, and no load loss occurs, making it impossible to manufacture an economical device.

したがって、本発明が目的とするとこは、高速スイッチの回路電圧を適当に選定可能な瞬時電圧低下補償装置を提供することにある。   Accordingly, an object of the present invention is to provide an instantaneous voltage drop compensator capable of appropriately selecting a circuit voltage of a high-speed switch.

本発明は、交流電源の瞬時電圧低下時に、エネルギー蓄積要素に蓄積されたエネルギーをインバータを介して系統電圧に重畳する瞬時電圧低下補償装置において、
前記交流電源と負荷間に第1の直列変圧器を接続し、この直列変圧器の一次側に高速スイッチと第2の直列変圧器を並列接続し、この第2の直列変圧器の一次側に前記インバータの出力側を接続したことを特徴としたものである。
The present invention provides an instantaneous voltage drop compensator that superimposes energy stored in an energy storage element on a system voltage via an inverter when an instantaneous voltage drop of an AC power supply is performed.
A first series transformer is connected between the AC power source and the load, a high-speed switch and a second series transformer are connected in parallel to the primary side of the series transformer, and the primary side of the second series transformer is connected. The output side of the inverter is connected.

また、本発明は、請求項1におけるインバータは、単相インバータとし、各相の単相インバータにはそれぞれ前記第1の直列変圧器、高速スイッチ及び第2の直列変圧器を備えた単相インバータ補償装置を構成し、この単相インバータ補償装置を前記交流電源と負荷間の各相に設置したことを特徴としたものである。   Further, according to the present invention, the inverter according to claim 1 is a single-phase inverter, and the single-phase inverter of each phase includes the first series transformer, the high-speed switch, and the second series transformer, respectively. A compensator is configured, and this single-phase inverter compensator is installed in each phase between the AC power supply and the load.

また、本発明は、第1の直列変圧器を三巻線とし、この三巻線直流変圧器の各相間に高速スイッチをそれぞれ接続したことを特徴としたことを特徴としたものである。   Further, the present invention is characterized in that the first series transformer has three windings, and a high-speed switch is connected between each phase of the three-winding DC transformer.

以上のとおり、本発明によれば、直列変圧器の一次側に、電源電圧正常時にはオン状態となっている高速スイッチと第2の直列変圧器を接続したものであるから、高速スイッチの回路電圧を適宜な値に選定することが可能となり、高速スイッチを直接設置することが困難な高電圧系統への設置が可能となるものである。   As described above, according to the present invention, the high-speed switch circuit voltage of the high-speed switch is connected to the primary side of the series transformer because the high-speed switch that is on when the power supply voltage is normal and the second series transformer are connected. Can be selected to an appropriate value, and can be installed in a high-voltage system where it is difficult to directly install a high-speed switch.

図1は、本発明の第1の実施例を示す単結線表示の構成図で、10は三相の交流電源、11は負荷で、この負荷11と交流電源10との間に第1の直列変圧器12の二次次巻線12sが接続されている。また、直列変圧器12の一次巻線12pはΔ結線とされ、その各相間にはそれぞれ高速スイッチ13(13R,13S,13T)が接続されている。高速スイッチ13はGTOなどの素子を逆並列接続した構成にされ、図示省略された制御回路を介してオン・オフ制御される。また、第1の直列変圧器12の一次巻線12pには第2の直列変圧器14の二次次巻線14sが接続され、直列変圧器14の一次巻線14pには三相インバータ15の出力側が接続されている。16はエネルギー蓄積要素、17はこのエネルギー蓄積要素16を充電する充電器である。   FIG. 1 is a configuration diagram of a single connection display showing a first embodiment of the present invention, wherein 10 is a three-phase AC power source, 11 is a load, and a first series between the load 11 and the AC power source 10 is shown. The secondary winding 12s of the transformer 12 is connected. The primary winding 12p of the series transformer 12 is Δ-connected, and high-speed switches 13 (13R, 13S, 13T) are connected between the respective phases. The high-speed switch 13 has a configuration in which elements such as GTO are connected in antiparallel, and is controlled to be turned on / off via a control circuit (not shown). The primary winding 12p of the first series transformer 12 is connected to the secondary winding 14s of the second series transformer 14, and the primary winding 14p of the series transformer 14 is connected to the three-phase inverter 15. The output side is connected. Reference numeral 16 denotes an energy storage element, and reference numeral 17 denotes a charger for charging the energy storage element 16.

図1の回路は次のように動作する。
三相の交流電源10が正常の場合には、電源1から直列変圧器12を介して負荷11に矢印Aで示すように電力が供給されている。このとき、直列変圧器12の一次巻線12pに接続された各高速スイッチ13R〜13Tは短絡状態となっており、電流は各相間を実線矢印Bのように流れている。また、エネルギー蓄積要素16は予め蓄電器17を介して充電されている。
The circuit of FIG. 1 operates as follows.
When the three-phase AC power supply 10 is normal, power is supplied from the power supply 1 to the load 11 via the series transformer 12 as indicated by an arrow A. At this time, the high-speed switches 13R to 13T connected to the primary winding 12p of the series transformer 12 are in a short-circuit state, and current flows between the phases as indicated by a solid arrow B. In addition, the energy storage element 16 is charged in advance via the battery 17.

上記の状態で、電源1に何らかの理由によって瞬時電圧低下が発生すると、制御回路は直ちにこれを検出して高速スイッチ13をオフすると共に、インバータ15に対して瞬時電圧低下分に相当する電圧を発生すべく制御する。これにより、インバータ15は電圧低下分に相当する電圧を発生し、点線矢印Cのルートで直列変圧器12を介して系統電圧へ発生電圧を重畳し、負荷電圧を一定とする。
なお、このときの回路には、一点鎖線で示す矢印Dのように電圧低下発生時の電源1から負荷12への電流と、直列変圧器12の一次巻線12pと直列変圧器14の二次巻線14s間を流れる矢印Dの電流が流れている。
電圧低下現象が解除されれば、高速スイッチ13が再度オン状態となり、インバータ15からの電圧発生は停止する。
In the above state, when an instantaneous voltage drop occurs in the power supply 1 for some reason, the control circuit immediately detects this and turns off the high-speed switch 13 and generates a voltage corresponding to the instantaneous voltage drop to the inverter 15. Control as much as possible. As a result, the inverter 15 generates a voltage corresponding to the voltage drop, superimposes the generated voltage on the system voltage via the series transformer 12 along the route indicated by the dotted arrow C, and makes the load voltage constant.
The circuit at this time includes a current from the power source 1 to the load 12 when a voltage drop occurs as indicated by an arrow D indicated by a one-dot chain line, a primary winding 12p of the series transformer 12, and a secondary of the series transformer 14. A current indicated by an arrow D flowing between the windings 14s flows.
When the voltage drop phenomenon is canceled, the high speed switch 13 is turned on again, and the voltage generation from the inverter 15 is stopped.

この実施例によれば、高速スイッチの回路電圧を適宜な値に選定することが可能となり、7000Vを超える回路に対しても経済的な製作が可能となるものである。なお、直列変圧器12が追加されるが、電圧正常時にはこの直列変圧器には電圧が発生しないので無負荷損は無視することができる。   According to this embodiment, it is possible to select an appropriate value for the circuit voltage of the high-speed switch, and it is possible to economically manufacture a circuit exceeding 7000V. Although a series transformer 12 is added, no voltage is generated in the series transformer when the voltage is normal, so no-load loss can be ignored.

図2は第2の実施例を示したもので、図1の回路は三相構成のインバータを用いた場合を示したものであるが、図2示す実施例では単相インバータ構成とし、エネルギー蓄積要素と充電器はそれぞれ単相インバータ毎に分離構成したものでR相のみを表示し、他のS相、T相も同様に構成されている。すなわち、各相の単相インバータにはそれぞれ第1の直列変圧器と高速スイッチ及び第2の直列変圧器が接続されて単相インバータ補償装置を構成し、この単相インバータ補償装置を交流電源と負荷間の各相に設置して瞬時電圧低下補償装置が構成される。
なお、各相に単相インバータ補償装置を設ける場合、エネルギー蓄積要素と充電器は、各相共通構成としてもよいことは勿論で、それらは適宜選択される。
この実施例の動作及び効果は、図1と同様であるのでその説明は省略する。
FIG. 2 shows a second embodiment, and the circuit of FIG. 1 shows a case where a three-phase inverter is used. In the embodiment shown in FIG. The element and the charger are separately configured for each single-phase inverter, display only the R phase, and the other S phase and T phase are configured in the same manner. That is, the single-phase inverter of each phase is connected to the first series transformer, the high-speed switch, and the second series transformer to form a single-phase inverter compensator, and this single-phase inverter compensator is used as an AC power source. An instantaneous voltage drop compensator is configured for each phase between the loads.
In addition, when providing a single phase inverter compensation apparatus in each phase, as a matter of course, the energy storage element and the charger may have a common configuration for each phase, and they are appropriately selected.
Since the operation and effect of this embodiment are the same as those in FIG.

図3は第3の実施例を示したもので、この実施例は第1の直列変圧器12’を三巻線変圧器とし、その各相間に高速スイッチ13R〜13Tを接続したもので、他は図1の実施例と同様で、動作及び効果も図1と同様であるのでその説明は省略する。   FIG. 3 shows a third embodiment. In this embodiment, the first series transformer 12 ′ is a three-winding transformer, and high-speed switches 13R to 13T are connected between the respective phases. Is the same as that of the embodiment of FIG. 1, and the operation and effect are the same as those of FIG.

本発明の実施形態を示す構成図。The block diagram which shows embodiment of this invention. 本発明の他の実施形態を示す構成図。The block diagram which shows other embodiment of this invention. 本発明の他の実施形態を示す構成図。The block diagram which shows other embodiment of this invention. 従来の瞬時電圧低下補償装置の構成図。The block diagram of the conventional instantaneous voltage drop compensation apparatus. 従来の他の瞬時電圧低下補償装置の構成図。The block diagram of the other conventional instantaneous voltage drop compensation apparatus.

符号の説明Explanation of symbols

10… 交流電源
11… 負荷
12… 第1の直列変圧器
13… 高速スイッチ
14… 第2の直列変圧器
15… インバータ
16… エネルギー蓄積要素
17… 充電器
DESCRIPTION OF SYMBOLS 10 ... AC power supply 11 ... Load 12 ... 1st series transformer 13 ... High speed switch 14 ... 2nd series transformer 15 ... Inverter 16 ... Energy storage element 17 ... Charger

Claims (3)

交流電源の瞬時電圧低下時に、エネルギー蓄積要素に蓄積されたエネルギーをインバータを介して系統電圧に重畳する瞬時電圧低下補償装置において、
前記交流電源と負荷間に第1の直列変圧器を接続し、この直列変圧器の一次側に高速スイッチと第2の直列変圧器を並列接続し、この第2の直列変圧器の一次側に前記インバータの出力側を接続したことを特徴とした瞬時電圧低下補償装置。
In the instantaneous voltage drop compensation device that superimposes the energy stored in the energy storage element on the system voltage via the inverter when the instantaneous voltage drop of the AC power supply,
A first series transformer is connected between the AC power source and the load, a high-speed switch and a second series transformer are connected in parallel to the primary side of the series transformer, and the primary side of the second series transformer is connected. An instantaneous voltage drop compensator characterized by connecting the output side of the inverter.
前記インバータは、単相インバータとし、各相の単相インバータにはそれぞれ前記第1の直列変圧器、高速スイッチ及び第2の直列変圧器を備えた単相インバータ補償装置を構成し、この単相インバータ補償装置を前記交流電源と負荷間の各相に設置したことを特徴とした請求項1記載の瞬時電圧低下補償装置。 The inverter is a single-phase inverter, and a single-phase inverter compensator including the first series transformer, the high-speed switch, and the second series transformer is configured for each phase of the single-phase inverter. 2. The instantaneous voltage drop compensator according to claim 1, wherein an inverter compensator is installed in each phase between the AC power supply and the load. 前記第1の直列変圧器を三巻線とし、この三巻線直流変圧器の各相間に高速スイッチをそれぞれ接続したことを特徴とした請求項1記載の瞬時電圧低下補償装置。 2. The instantaneous voltage drop compensator according to claim 1, wherein the first series transformer has three windings, and a high-speed switch is connected between each phase of the three-winding DC transformer.
JP2007098235A 2007-04-04 2007-04-04 Instantaneous voltage drop compensator Pending JP2008259294A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007098235A JP2008259294A (en) 2007-04-04 2007-04-04 Instantaneous voltage drop compensator
PCT/JP2008/054480 WO2008126592A1 (en) 2007-04-04 2008-03-12 Instantaneous voltage drop compensator
TW097109877A TW200845532A (en) 2007-04-04 2008-03-20 Instantaneous voltage drop compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098235A JP2008259294A (en) 2007-04-04 2007-04-04 Instantaneous voltage drop compensator

Publications (1)

Publication Number Publication Date
JP2008259294A true JP2008259294A (en) 2008-10-23

Family

ID=39863725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098235A Pending JP2008259294A (en) 2007-04-04 2007-04-04 Instantaneous voltage drop compensator

Country Status (3)

Country Link
JP (1) JP2008259294A (en)
TW (1) TW200845532A (en)
WO (1) WO2008126592A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2013006151A (en) * 2010-12-01 2013-09-06 Abb Technology Ag Reactive power compensator, computer programs and computer program products.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028319A (en) * 1996-07-08 1998-01-27 Tohoku Electric Power Co Inc Protective device for series compensation system
JP2001275255A (en) * 2000-03-29 2001-10-05 Shizuki Electric Co Inc Voltage compensating device
CN100364200C (en) * 2004-02-12 2008-01-23 三菱电机株式会社 Power converter

Also Published As

Publication number Publication date
TW200845532A (en) 2008-11-16
WO2008126592A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
Jakka et al. Dual-transformer-based asymmetrical triple-port active bridge (DT-ATAB) isolated DC–DC converter
EP2784925B1 (en) Power conversion device
CA2965488C (en) Multi-mode energy router
US10008856B2 (en) Power system for offshore applications
Krishnamoorthy et al. Wind turbine generator–battery energy storage utility interface converter topology with medium-frequency transformer link
CN205670685U (en) Equipment for transmission electric power
JPWO2007060998A1 (en) AC link bidirectional DC-DC converter, hybrid power supply system and hybrid vehicle using the same
CN102723765A (en) Circuits for DC energy stores
US9479011B2 (en) Method and system for a dual conversion uninterruptible power supply
CN102742142A (en) Electric power conversion device
CN107612408B (en) Energy storage converter and energy storage system
Jimichi et al. Design and loss analysis of a medium-voltage DC-DC converter intended for offshore wind farms
Morais et al. Interlink Converters in DC nanogrids and its effect in power sharing using distributed control
JP5805118B2 (en) Power converter
KR101297080B1 (en) Half bridges multi-module converter using series compensation
JP5971685B2 (en) Power converter
JPWO2014097399A1 (en) Power supply
JP6397872B2 (en) Power system
Krishnamoorthy et al. A new wind turbine generator/battery energy storage utility interface converter topology with medium-frequency transformer
JP2001047894A (en) Alternate current feeding device and control method for the same
JP2008259294A (en) Instantaneous voltage drop compensator
JP6502088B2 (en) POWER SUPPLY SYSTEM, VEHICLE, AND VOLTAGE CONTROL METHOD
JP7307583B2 (en) power supply
JP4351008B2 (en) Uninterruptible power system
JP6705324B2 (en) Power conversion circuit