JP2008254165A - Nano-structure of hydrophobic polymer obtained by using boron compound - Google Patents

Nano-structure of hydrophobic polymer obtained by using boron compound Download PDF

Info

Publication number
JP2008254165A
JP2008254165A JP2008059269A JP2008059269A JP2008254165A JP 2008254165 A JP2008254165 A JP 2008254165A JP 2008059269 A JP2008059269 A JP 2008059269A JP 2008059269 A JP2008059269 A JP 2008059269A JP 2008254165 A JP2008254165 A JP 2008254165A
Authority
JP
Japan
Prior art keywords
spg
swnt
solution
sheet
boron compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008059269A
Other languages
Japanese (ja)
Other versions
JP4785883B2 (en
Inventor
Seiji Shinkai
征治 新海
Shingo Tamesue
真吾 為末
Ryoji Hirose
良治 広瀬
Kazuro Sakurai
和朗 櫻井
Sosuke Numata
宗典 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Mitsui DM Sugar Co Ltd
Original Assignee
Japan Science and Technology Agency
Mitsui Sugar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Mitsui Sugar Co Ltd filed Critical Japan Science and Technology Agency
Priority to JP2008059269A priority Critical patent/JP4785883B2/en
Publication of JP2008254165A publication Critical patent/JP2008254165A/en
Application granted granted Critical
Publication of JP4785883B2 publication Critical patent/JP4785883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To develop techniques to organize a sheet type nano-structure by linking a composite material of a hydrophobic polymer such as a monolayer carbon nanotube wrapped with unmodified polysaccharide. <P>SOLUTION: A sheet type structure is obtained by preliminarily wrapping a hydrophobic polymer with β-1,3-glucan and then crosslinking and connecting the polysaccharides with a boron compound (having two or more reactive moieties composed of B(OH)<SB>2</SB>that can react with a hydroxy group). Schizophyllan is effectively used as the β-1,3-glucan. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、カーボンナノチューブや導電性高分子のごとき疎水性高分子をシート状など規則的なナノ構造体(ナノメートルサイズの構造体)に組織化する技術に関する。   The present invention relates to a technique for organizing a hydrophobic polymer such as a carbon nanotube or a conductive polymer into a regular nanostructure (a nanometer-sized structure) such as a sheet.

カーボンナノチューブや導電性高分子などの疎水性高分子は、規則的な構造体に組織化することにより新たな用途が期待される。例えば、カーボンナノチューブは高いキャリア輸送能を有し、剛直な構造を持つ1次元ナノワイヤーである。それゆえにカーボンナノチューブは分子機械の基礎パーツとして用いるには最適なナノ材料の一つである。しかしながら、カーボンナノチューブは非常に強い凝集性を示し、実際に分子機械としてそれぞれのカーボンナノチューブを規則的に配列させるのは困難を伴う。他にも各種の導電性高分子など高付加価値を有する疎水性高分子は多数あるが、それらの機能を発揮させるためには分散化、薄膜化、シート状、階層化などそれぞれの特性に応じた規則的な形状を具現化することが重要である。   Hydrophobic polymers such as carbon nanotubes and conductive polymers are expected to be used for new purposes by organizing into regular structures. For example, the carbon nanotube is a one-dimensional nanowire having a high carrier transport ability and a rigid structure. Therefore, carbon nanotubes are one of the most suitable nanomaterials for use as basic parts of molecular machines. However, carbon nanotubes exhibit very strong cohesiveness, and it is actually difficult to regularly arrange each carbon nanotube as a molecular machine. There are many other high-value-added hydrophobic polymers such as various conductive polymers, but in order to exert their functions, depending on the respective characteristics such as dispersion, thinning, sheet form, layering, etc. It is important to realize a regular shape.

これまでに本発明者らは、カーボンナノチューブを天然多糖のシゾフィラン(SPG)と複合化させることに成功している。この研究により、非常に凝集しやすいカーボンナノチューブの凝集を防ぎつつ、単一なファイバーとして安定化させることに成功している。
M. Numata, M.Asai, K. Kaneko, T. Hasegawa, K. Sakurai, and S. Shinkai, J. Am. Chem. Soc.,127, 5875 ( 2005). その成果の発展として、カーボンナノチューブや導電性高分子から成る新規な構造体、例えば、シート状の規則的なナノ構造体の開発が望まれている。
To date, the present inventors have succeeded in complexing carbon nanotubes with natural polysaccharide schizophyllan (SPG). This research has succeeded in stabilizing the carbon nanotube as a single fiber while preventing the aggregation of the carbon nanotubes which are very easily aggregated.
M. Numata, M. Asai, K. Kaneko, T. Hasegawa, K. Sakurai, and S. Shinkai, J. Am. Chem. Soc., 127, 5875 (2005). Development of a novel structure made of a conductive polymer, for example, a sheet-like regular nanostructure, is desired.

本発明の目的は、天然で得られる多糖と疎水性高分子の複合体を連結することによって、ナノ構造体に組織化する簡易な新しい技術を提供することにある。   An object of the present invention is to provide a simple new technique for organizing a nanostructure by linking a polysaccharide-hydrophobic polymer complex obtained in nature.

B(OH)から成る部位(Bはホウ素原子を表す)がOH基(水酸基)と結合することはよく知られている(非特許文献2−5)。例えば、図1aにはB(OH)基(ボロン酸基)を有するボロン酸化合物が、糖と混合することによってB(OH)基とcis位の2つのOH基(ジオール基)との間に脱水反応を起こし、糖とボロン酸の間に共有結合が形成される様子を模式的に示している。また、図1bには、ホウ酸イオンが、やはり糖鎖のグルコースのようなジオールに対してB(OH)から成る部位が脱水反応を起こして共有結合が形成される様子を模式的に示している(非特許文献6)。
Y. Kanekiyo,Y. Ono, K. Inoue, M. Sano, S. Shinkai, J. Chem. Soc., Perkin Trans. 2, 557(1999). Y. Kanekiyo,K. Inoue, Y. Ono, M. Sano, S. Shinkai, D-N. Reinhoubt, J. Chem. Soc., PerkinTrans. 2, 2719 (1999). L. K. Mohler,A. W. Czarnik, J. Am. Chem. Soc., 115, 2998 (1993). T- D. James,K. R. A. S. Sandanayake, S. Shinkai, Angew. Chem. Int. Ed, 35, 1910 (1996). T. Ishii, H.Ono, carbohydrate research, 2004, volume 321, pp257-260
It is well known that a site composed of B (OH) 2 (B represents a boron atom) binds to an OH group (hydroxyl group) (Non-patent Documents 2-5). For example, in FIG. 1a, a boronic acid compound having a B (OH) 2 group (boronic acid group) is mixed with a sugar to form a B (OH) 2 group and two OH groups (diol groups) at the cis position. A dehydration reaction is caused in the middle, and a state in which a covalent bond is formed between the sugar and the boronic acid is schematically shown. FIG. 1b schematically shows a state in which a boric acid ion forms a covalent bond by causing a dehydration reaction at a site composed of B (OH) 2 with respect to a diol such as glucose in a sugar chain. (Non-Patent Document 6).
Y. Kanekiyo, Y. Ono, K. Inoue, M. Sano, S. Shinkai, J. Chem. Soc., Perkin Trans. 2, 557 (1999). Y. Kanekiyo, K. Inoue, Y. Ono, M. Sano, S. Shinkai, DN. Reinhoubt, J. Chem. Soc., PerkinTrans. 2, 2719 (1999). LK Mohler, AW Czarnik, J. Am. Chem. Soc., 115, 2998 (1993). T- D. James, KRAS Sandanayake, S. Shinkai, Angew. Chem. Int. Ed, 35, 1910 (1996). T. Ishii, H. Ono, carbohydrate research, 2004, volume 321, pp257-260

本発明に従えば、分子構造として、水酸基と反応し得るB(OH)基から成る反応性部位を2つ以上有するホウ素化合物を用いて、疎水性高分子の周りを多糖がらせん状にラッピングした状態の多糖/疎水性高分子複合体を互いに架橋・連結する。すなわち、ホウ素化合物の1つのB(OH)部位が複合体表面に存在する多糖の2つのOH基(ジオール)と反応するとともに、残りのB(OH)部位が別の多糖/疎水性高分子複合体の糖のジオールと反応することにより、それらの複合体が架橋・連結されて、多糖/疎水性高分子複合体が2次元的に配列されたシート状のナノ構造体が得られる(図2の模式図参照)。 According to the present invention, a polysaccharide is helically wrapped around a hydrophobic polymer using a boron compound having two or more reactive sites consisting of two B (OH) groups capable of reacting with a hydroxyl group as a molecular structure. In this state, the polysaccharide / hydrophobic polymer complex is cross-linked and linked to each other. That is, one B (OH) 2 site of the boron compound reacts with two OH groups (diols) of the polysaccharide present on the complex surface, and the remaining B (OH) 2 site is another polysaccharide / hydrophobic high By reacting with the sugar diol of the molecular complex, the complex is cross-linked and linked to obtain a sheet-like nanostructure in which the polysaccharide / hydrophobic polymer complex is two-dimensionally arranged ( (See schematic diagram in FIG. 2).

本発明により多糖/疎水性高分子複合体を2次元配列させる利点は、多糖に側鎖修飾などを行うことなく簡単な手法で配列させることができる点である。また、シゾフィランに代表される多糖は、導電性高分子など様々な化合物を内部に取り組むことが報告されているが、それらの複合体を二次元的に配列することにより新しい機能性材料の開発にも応用できる可能性を有する。また、架橋剤(ホウ素化合物)を変えることにより用いる架橋剤の分子長に応じて疎水性高分子間の距離の制御も可能となる The advantage of arranging the polysaccharide / hydrophobic polymer complex in two dimensions according to the present invention is that the polysaccharide can be arranged by a simple method without modifying the side chain. In addition, polysaccharides represented by schizophyllan have been reported to work on various compounds such as conductive polymers inside, but it is possible to develop new functional materials by arranging these complexes two-dimensionally. Has the potential to be applied. In addition, the distance between hydrophobic polymers can be controlled according to the molecular length of the crosslinking agent used by changing the crosslinking agent (boron compound).

本発明において架橋剤として用いられるホウ素化合物の好ましい例は、複数のB(OH)基を有するボロン酸化合物、特に、一般式:(HO)B−L−B(OH)で示されるジボロン酸化合物である。ここで式中リンカーに相当するLは芳香族炭化水素基など種々の基を含む原子団を表す。本発明で使用されるのに特に好適なジボロン酸化合物として、図8に示す1,4−フェニレン-ビス-ボロン酸や図10に示す4,4’−ビフェニル-ジボロン酸が挙げられるが、これらに限られるものではない。 A preferred example of the boron compound used as a crosslinking agent in the present invention is a boronic acid compound having a plurality of B (OH) 2 groups, particularly represented by the general formula: (HO) 2 BLB (OH) 2. It is a diboronic acid compound. Here, L corresponding to the linker in the formula represents an atomic group containing various groups such as an aromatic hydrocarbon group. Particularly suitable diboronic acid compounds for use in the present invention include 1,4-phenylene-bis-boronic acid shown in FIG. 8 and 4,4′-biphenyl-diboronic acid shown in FIG. It is not limited to.

さらに、Lに相当する部位に種々の複素環化合物や重合性モノマー/オリゴマーなどの高機能性分子の骨格を導入することにより、ボロン酸化合物が疎水性高分子の架橋材としてだけでなく、包接多糖を経由して疎水性高分子にジボロン酸化合物が有する機能を付与することも可能となる。例えば、図14に示したポルフィリン骨格をもつ化学構造のボロン酸化合物(P-1)〔5,10,15,20−テトラキス(4−ボロニルフェニル)ポルフィリン〕は紫外・可視領域の光吸収能を有し、図18に示したオリゴチオフェン構造をもつジボロン酸化合物(C-1)〔ピリジニウム,4,4’−{2,5−ビス(2,2’−ビチオフェン−5−イル)−1,4−フェニレン}ビス〔1−(ベンジル−4−ボロン酸)メチル〕ブロミド(1:2)〕は架橋後にチオフェン部位を重合させることなどが可能である。   Furthermore, by introducing a skeleton of a high-functional molecule such as various heterocyclic compounds and polymerizable monomers / oligomers at the site corresponding to L, the boronic acid compound can be used not only as a cross-linking material for hydrophobic polymers but also as an encapsulating material. It is also possible to impart the function of the diboronic acid compound to the hydrophobic polymer via the polysaccharide. For example, the boronic acid compound (P-1) [5, 10, 15, 20-tetrakis (4-boronylphenyl) porphyrin] having a chemical structure having a porphyrin skeleton shown in FIG. The diboronic acid compound (C-1) having the oligothiophene structure shown in FIG. 18 [pyridinium, 4,4 ′-{2,5-bis (2,2′-bithiophen-5-yl) -1 , 4-phenylene} bis [1- (benzyl-4-boronic acid) methyl] bromide (1: 2)] can be polymerized at the thiophene site after crosslinking.

本発明において架橋剤として用いられるホウ素化合物には、四ホウ酸、オルトホウ酸、メタホウ酸などのホウ酸、およびそれらの塩であって、B(OH)から成る反応性部位を2つ以上有するものも含まれる。ここで、B(OH)から成る反応性部位は、上述したようなボロン酸化合物におけるようにそれぞれがB(OH)基として複数個存在する場合のみならず、共通のホウ素原子を介してB(OH)部位として複数個形成するものでよい。例えば、図1bに関して既述したように、四ホウ酸ナトリウム(ほう砂)に代表される四ホウ酸塩は、水中で四ホウ酸イオン、すなわち、単一のホウ素原子を介して2つのB(OH)部位を形成して、それぞれが糖鎖のcis−ジオールと脱水縮合して糖鎖間を架橋・連結するように機能する。このように、四ホウ酸塩は、本発明で用いられるのに好適なホウ素化合物の1例である。 The boron compound used as a crosslinking agent in the present invention is boric acid such as tetraboric acid, orthoboric acid, metaboric acid, and salts thereof, and has two or more reactive sites composed of B (OH) 2. Also included. Here, the reactive sites consisting of B (OH) 2, respectively as in the boronic acid compound as described above not only when there exist a plurality as B (OH) 2 group, via a common boron atom A plurality of B (OH) 2 sites may be formed. For example, as already described with respect to FIG. 1b, tetraborate salts, represented by sodium tetraborate (borax), can form tetraborate ions in water, ie, two B ( OH) 2 sites are formed, each functioning to dehydrate and condense with the cis-diol of the sugar chain to crosslink and link the sugar chains. Thus, tetraborate is an example of a boron compound suitable for use in the present invention.

本発明で用いられるのに好ましい多糖は、β−1,3−グルカンであり、シゾフィラン、スクレログルカン、レンチナン、パーキマン、グリホラン、カードランなどの慣用名で知られた各種のβ−1,3−グルカンを用いることができる。これらは、主鎖がβ−結合(β−D−結合)により結合したグルカンで、側鎖の頻度が異なる天然の多糖である。このうち、シゾフィラン、スクレログルカンおよびレンチナンは側鎖の頻度が33〜40%と適量であり、水溶性で利用し易いことから好ましく、特にシゾフィラン(SPG)は筋肉内注射剤として20年以上の使用実績があり安全性も確認されている点から好適である。   A preferred polysaccharide for use in the present invention is β-1,3-glucan, and various β-1,3 known by common names such as schizophyllan, scleroglucan, lentinan, perchiman, glyphoran, curdlan and the like. -Glucans can be used. These are natural polysaccharides whose main chains are linked by β-linkages (β-D-linkages) and have different side chain frequencies. Of these, schizophyllan, scleroglucan and lentinan are preferable because they have a side chain frequency of 33 to 40% and are suitable because they are water-soluble and easy to use. It is suitable because it has been used and its safety has been confirmed.

本発明の原理は、各種の疎水性高分子を用いてナノ構造体を得るのに適用される。本発明において用いられるのに好ましい疎水性高分子として、カーボンナノチューブ、特に単層カーボンナノチューブ(SWNT)、または導電性高分子、例えば、ポリフェニレンエチニレン(PPE)、ポリアセチレン、ポリピロール、ポリチオフェンもしくはこれらの誘導体が挙げられるが、これらに限定されるものではない。   The principle of the present invention is applied to obtain nanostructures using various hydrophobic polymers. Preferred hydrophobic polymers for use in the present invention include carbon nanotubes, particularly single-walled carbon nanotubes (SWNT), or conductive polymers such as polyphenylene ethynylene (PPE), polyacetylene, polypyrrole, polythiophene or their derivatives. However, it is not limited to these.

本発明の構造体は、比較的簡便な方法で調製することができる。すなわち、如上の疎水性高分子の溶液(水溶液)に、超音波照射などの強力な混合条件下に、シゾフィラン等のβ−1,3−グルカンの溶液(溶媒としてDMSOなどの極性溶媒を用いる)を添加し、適当時間(例えば、1日間)室温下に静置した後、遠心分離などによって精製することにより、疎水性高分子がβ−1,3−グルカン分子の内部の疎水性空間に取り込まれ、らせん状のβ−1,3−グルカンにラッピングされた状態の複合体が得られる。このようにして、β−1,3−グルカン/疎水性高分子複合体が形成されることについては本発明者らは既に報告している(非特許文献1,7−9)。このようにして得られた複合体に、如上のホウ素化合物(水溶液)を添加し、室温下に適当時間(例えば7日間)静置することにより、既述のように、ホウ素化合物により多糖(β−1,3−グルカン)の糖鎖間が架橋・連結されて、β−1,3−グルカン/疎水性高分子複合体が2次元的に配列されたナノ構造体が得られる(後述の実施例参照)。
C. Li, M.Numata, M. Takeuti, S. Shinkai, Angew. Chem., 117, 2 (2005) C. Li, M.Numata, T. Hasegawa, K. Sakurai, S. Shinkai, Chem. Lett., 34, 1354 (2005). C. Li, M. Numata, A.-H. Bae, K. Sakurai, S. Shinkai, J. Am. Chem. Soc.,127, 4548 (2005).
The structure of the present invention can be prepared by a relatively simple method. That is, a solution of β-1,3-glucan such as schizophyllan (a polar solvent such as DMSO is used as a solvent) under the above-mentioned hydrophobic polymer solution (aqueous solution) under strong mixing conditions such as ultrasonic irradiation. Is added to the hydrophobic space inside the β-1,3-glucan molecule by allowing it to stand at room temperature for an appropriate time (for example, 1 day) and then purifying it by centrifugation or the like. As a result, a complex wrapped in a helical β-1,3-glucan is obtained. In this way, the present inventors have already reported that a β-1,3-glucan / hydrophobic polymer complex is formed (Non-patent Documents 1 and 7-9). By adding the above boron compound (aqueous solution) to the complex thus obtained and allowing it to stand at room temperature for an appropriate time (for example, 7 days), the polysaccharide (β -1,3-glucan) sugar chains are cross-linked and linked to obtain a nanostructure in which β-1,3-glucan / hydrophobic polymer composites are two-dimensionally arranged (described later). See example).
C. Li, M. Numata, M. Takeuti, S. Shinkai, Angew. Chem., 117, 2 (2005) C. Li, M. Numata, T. Hasegawa, K. Sakurai, S. Shinkai, Chem. Lett., 34, 1354 (2005). C. Li, M. Numata, A.-H. Bae, K. Sakurai, S. Shinkai, J. Am. Chem. Soc., 127, 4548 (2005).

SWNTとSPGの複合化 複合体は遠心分離(1500rpm, 60min.)によって精製を行った。SWNT/H2O(500μL)に対し、超音波照射を行いながらSPG/DMSO(100μL, 5mg/mL)を一気に加えた。これを室温条件下で一日間静置した。上澄み溶液を取り出し、遠心分離(60min.,8×103rpm)にて複合体を沈殿させ、上澄み溶液を取り除き、再び水に再分散させるという操作を3回行い、複合体のみを取り出した。なおこの時の複合体水溶液のpHは7.77であった。四ホウ酸ナトリウム水溶液(0.5mg/mL, pH=9.31)を加え、7日間、室温条件下で静置し、四ホウ酸ナトリウムによる糖鎖間の架橋を試みた。また、SPG/SWNT複合体と四ホウ酸ナトリウムのモル比の異なる3種類のサンプルを調製した。リファレンスとして四ホウ酸ナトリウムを含まないサンプル溶液も同時に調製した(R-1)。またCUR(カードラン)とSWNTの複合体のTEM観察を行うため、次のようにCUR/SWNT複合体の調製を行った。CUR/DMSO(5mg/mL)100μLを超音波照射しながら精製済みcut-SWNT水溶液( 500μL)に混合した。遠心分離により複合体のみを取り出した。複合体溶液にホウ酸ナトリウム水溶液( pH= 9.81)を加え1日間静置した(R-2〜3)。SPGと四ホウ酸ナトリウム水溶液を混合し、これを室温条件下で静置した溶液もリファレンスとして調製した(R-4〜5)。またモノボロン酸であるパラメチルボロン酸とSPG/SWNTを混合したサンプルも調製した(R-6〜8)。表1に調製した溶液中の各成分量を記す。 The complex of SWNT and SPG was purified by centrifugation (1500 rpm, 60 min.). SPG / DMSO (100 μL, 5 mg / mL) was added to SWNT / H 2 O (500 μL) all at once while performing ultrasonic irradiation. This was left still for one day under room temperature conditions. The supernatant solution was taken out, and the complex was precipitated by centrifugation (60 min., 8 × 10 3 rpm), and the supernatant solution was removed and redispersed again in water three times, and only the complex was taken out. The pH of the complex aqueous solution at this time was 7.77. An aqueous sodium tetraborate solution (0.5 mg / mL, pH = 9.31) was added, and the mixture was allowed to stand at room temperature for 7 days, and crosslinking between sugar chains with sodium tetraborate was attempted. Three types of samples with different molar ratios of SPG / SWNT complex and sodium tetraborate were prepared. A sample solution containing no sodium tetraborate was also prepared as a reference (R-1). In addition, in order to perform TEM observation of CUR (curdlan) and SWNT composites, CUR / SWNT composites were prepared as follows. 100 μL of CUR / DMSO (5 mg / mL) was mixed with a purified cut-SWNT aqueous solution (500 μL) with ultrasonic irradiation. Only the complex was removed by centrifugation. An aqueous sodium borate solution (pH = 9.81) was added to the complex solution, and the mixture was allowed to stand for 1 day (R-2 to 3). A solution in which SPG and an aqueous sodium tetraborate solution were mixed and allowed to stand at room temperature was also prepared as a reference (R-4 to 5). Moreover, the sample which mixed the paramethyl boronic acid which is monoboronic acid, and SPG / SWNT was also prepared (R-6-8). Table 1 shows the amount of each component in the prepared solution.

TEM観察 サンプル溶液をTEMグリッド(支持膜なし)にキャストし減圧乾燥後、TEM観察を行った。図4の観察結果、リファレンス溶液R以外のサンプルからシート状の像が多数確認された。シートを形成しているサンプルの中でも溶液中のホウ酸ナトリウムの量が少ない3に特に秩序良く配列した様なシートが多数見られた(図 4f, 4g)。また、R-1にはSWNTが無秩序に凝集したような像のみが見られた。この結果からSWNT-SPGがホウ酸によってシート状に架橋されている可能性が考えられる。この結果は、3ではSPG側鎖の結合サイトの存在量よりもホウ酸の存在量が少ないため結合サイトに均一にホウ酸が結合しやすくなったためであると考えられる。CUR/SWNT複合体に四ホウ酸ナトリウムを混合したサンプルからはSPG/SWNT複合体に四ホウ酸ナトリウムを混合したサンプルにはほとんど見られなかったSWNTがシートを形成せずに存在するというモルフォロジーが主として確認された(図4i)。また、極くまれにシートを形成しているようなモルフォロジーも確認された。これらの結果からCURの4位と5位の水酸基と相互作用しにくいのではあるが多少は相互作用しているということが考えられる。CURの4, 5位でもジオール化するのかもしれないが、CURの4, 5位ではヒドロキシル基がトランスについているので相互作用しにくく、このような違いが現れたと考えられる。SPGとホウ酸ナトリウムを混合したリファレンスサンプル(R-4〜5)からは観察の結果、シート状のモルフォロジーが確認されたが、どれも折り曲がったような像や1次元状に剛直に配列しているようなモルフォロジーとは言いがたい像が得られた。SPG内にSWNTが存在することによって得られる剛直姓が規則的なシートを形成するために必要であるということが考えられる。モノボロン酸化合物とSPG/SWNTを混合したリファレンス溶液からは、どのサンプルも黒い塊やSWNTがバンドル化したようなモルフォロジーが主として観察された。つまり、モノボロン酸ではシートが確認されず、ジボロン酸化合物ではシートが確認されたことから、糖との結合サイトが2つ以上あることがシート形成で必要であると判明した。 The TEM observation sample solution was cast on a TEM grid (without a supporting film), dried under reduced pressure, and then subjected to TEM observation. As a result of the observation in FIG. 4, many sheet-like images were confirmed from samples other than the reference solution R. Among the samples forming the sheet, there were many sheets that were particularly well-ordered in 3 where the amount of sodium borate in the solution was small (Fig. 4f, 4g). Moreover, only the image that SWNT aggregated randomly was seen in R-1. From this result, it is considered that SWNT-SPG may be crosslinked in a sheet form with boric acid. This result is considered to be because the amount of boric acid in 3 was less than the amount of binding sites on the SPG side chain, and thus boric acid was easily bound uniformly to the binding sites. From the sample mixed with sodium tetraborate in the CUR / SWNT composite, there was a morphology in which SWNT that was hardly seen in the sample mixed with sodium tetraborate in the SPG / SWNT composite existed without forming a sheet. Mainly confirmed (Figure 4i). Moreover, the morphology which forms the sheet | seat very rarely was also confirmed. From these results, it is considered that although it is difficult to interact with the hydroxyl groups at the 4th and 5th positions of CUR, it is somewhat interacting. Although it may be converted into diols at the 4th and 5th positions of CUR, the hydroxyl group is attached to trans at the 4th and 5th positions of CUR. As a result of observation from the reference sample (R-4 ~ 5), which is a mixture of SPG and sodium borate, a sheet-like morphology was confirmed. The image which is hard to say with the morphology is obtained. It is possible that the last name obtained by the presence of SWNT in the SPG is necessary to form a regular sheet. From the reference solution in which the monoboronic acid compound and SPG / SWNT were mixed, a black lump or a morphology in which SWNTs were bundled was observed in each sample. That is, since a sheet was not confirmed with monoboronic acid and a sheet was confirmed with diboronic acid compound, it was found that the formation of a sheet requires two or more binding sites with sugar.

HR-TEM観察 図5の結果から2μm四方以上の大きさのシートが多数確認され、TEM観察で見られていたファイバーが架橋されているような像の回折パターンを観察したところ、広範囲に渡って規則的な回折パターンが見られた。この結果から、ほぼ結晶に近い構造体を形成しているという知見が得られた。また、EDX-TEM観察からシート内に四ホウ酸のカウンターであるナトリウムの存在が確認できた。 HR-TEM observation From the results of Fig. 5, a large number of sheets with a size of 2μm square or more were confirmed, and the diffraction pattern of the image in which the fibers observed in TEM observation were cross-linked was observed over a wide range. A regular diffraction pattern was observed. From this result, it was found that a structure close to a crystal was formed. Further, from the EDX-TEM observation, the presence of sodium which is a tetraborate counter was confirmed in the sheet.

SEM観察 次にTEM観察によって最も規則的なシート状の像が確認された各溶液のSEM観察を行い、TEMよりもマクロなモルフォロジーの観察を行った(図6)。各溶液をTEM基盤(支持膜なし)にキャストし、減圧下で乾燥を行った。このサンプルに対するSEM観察からシートが重なっているような像が確認された。このシートは切断SWNTの長さが数百ナノメートルである点とも大きさ的に一致していた。よってSEM観察からも各溶液中においてシートの形成が示された。SEM観察の結果、シート状の像がSWNTを含むどのサンプルからも確認された。SEM観察では大きさが2μm以上のシートが多数見られた。各溶液からシート状のような像が多数確認された。多くは何枚かのシートが重なっていたが、なかには、シートが重なっておらず単独で存在しているような像も見られた。 SEM Observation Next, SEM observation was performed on each solution in which the most regular sheet-like image was confirmed by TEM observation, and macroscopic morphology was observed compared to TEM (FIG. 6). Each solution was cast on a TEM substrate (no support film) and dried under reduced pressure. From the SEM observation of this sample, an image as if the sheets overlapped was confirmed. This sheet also matched in size to the point where the length of the cut SWNT was several hundred nanometers. Therefore, SEM observation also showed the formation of sheets in each solution. As a result of SEM observation, a sheet-like image was confirmed from any sample containing SWNT. Many sheets with a size of 2μm or more were observed by SEM observation. A large number of sheet-like images were confirmed from each solution. In many cases, several sheets overlapped, but there were also images in which the sheets did not overlap and existed alone.

顕微ラマンスペクトル TEM、SEM観察から観察された大きさが500nm程度のシート内にSWNTが存在することの確認を行うために顕微ラマンスペクトル測定を行った。もしもSWNTが存在するならば、SWNTに由来するGバンドが確認されるはずである。測定サンプルは3をガラス基盤にキャストした。十分に乾燥を行った後、顕微ラマンスペクトル測定を行った。図7の測定の結果、Gバンド由来と思われる1600cm-1付近のピークが確認された。また、200cm-1付近にRBM由来と思われるピークも確認された。この結果から、TEM、SEM観察によって得られたシート状モルフォロジー内にSWNTの存在していることが示された。本研究では、切断SWNTとSPGの複合体に四ボロン酸ナトリウムを加えることにより切断SWNTとSPGの複合体の配列を行った。その結果、TEM、AFM観察によってシート状のモルフォロジーが確認され、ラマンスペクトル測定からSWNT由来のGバンド、RBMのピークが確認された。 Micro Raman spectrum measurement was performed to confirm the presence of SWNTs in a sheet having a size of about 500 nm observed from micro Raman spectrum TEM and SEM observation. If SWNT is present, the G band derived from SWNT should be confirmed. The measurement sample was cast 3 on a glass substrate. After sufficiently drying, a micro Raman spectrum was measured. As a result of the measurement in FIG. 7, a peak near 1600 cm −1 that seems to be derived from the G band was confirmed. In addition, a peak considered to be derived from RBM was also observed in the vicinity of 200 cm- 1 . From this result, it was shown that SWNT exists in the sheet-like morphology obtained by TEM and SEM observation. In this study, cleaved SWNT and SPG complexes were sequenced by adding sodium tetraboronate to the cleaved SWNT and SPG complex. As a result, the sheet-like morphology was confirmed by TEM and AFM observation, and the SWNT-derived G band and RBM peak were confirmed by Raman spectrum measurement.

ジボロン酸化合物 架橋剤として、四ホウ酸ナトリウムよりも分子長の長いジボロン酸化合物を用いて架橋実験を試みた。SWNTとSPGの複合体は遠心分離(1500rpm, 60min.)によって精製を行った。SWNT/H2O(500μL)に対し、超音波照射を行いながらSPG/DMSO(50μL, 5mg/mL)を一気に加えた。これを室温条件下で一日間静置した。上澄み溶液を取り出し、遠心分離(60min.,
8×103 rpm)にて複合体を沈殿させ、上澄み溶液を取り除き、再び水に再分散させるという操作を3回行い、複合体のみを取り出した。なおこの時の複合体水溶液のpHは7.07であった。1,4−フェニレン−ビス−ボロン酸水溶液(図8、acetic acid/ sodium acetate buffer)(0.5mg/mL, pH= 9.84)を加え、1日間、室温条件下で静置し、四ホウ酸ナトリウムによる糖鎖間の架橋を試みた。また、SPG/SWNT複合体と四ホウ酸ナトリウムのモル比の異なる3種類のサンプルを調製した。リファレンスとして四ホウ酸ナトリウムを含まないサンプル溶液も同時に調製した。表 2に調製した溶液中の各成分量を記す。
As a diboronic acid compound crosslinking agent, a crosslinking experiment was attempted using a diboronic acid compound having a molecular length longer than that of sodium tetraborate. The complex of SWNT and SPG was purified by centrifugation (1500 rpm, 60 min.). SPG / DMSO (50 μL, 5 mg / mL) was added to SWNT / H 2 O (500 μL) all at once while performing ultrasonic irradiation. This was left still for one day under room temperature conditions. Remove the supernatant solution and centrifuge (60 min.,
The complex was precipitated at 8 × 10 3 rpm), the supernatant solution was removed, and the dispersion was redispersed in water three times, and only the complex was taken out. The pH of the complex aqueous solution at this time was 7.07. 1,4-Phenylene-bis-boronic acid aqueous solution (Figure 8, acetic acid / sodium acetate buffer) (0.5mg / mL, pH = 9.84) was added, and the mixture was allowed to stand at room temperature for 1 day. Sodium tetraborate Attempts were made to crosslink between sugar chains. Three types of samples with different molar ratios of SPG / SWNT complex and sodium tetraborate were prepared. A sample solution containing no sodium tetraborate was also prepared as a reference. Table 2 shows the amount of each component in the prepared solution.

サンプル溶液の上澄みをTEMグリッド(支持膜なし)にキャストし減圧乾燥後、TEM観察を行った。図8の観察の結果、全てのサンプルから大きさが2μm四方以上のシート状の像が確認された。また、シート内にファイバーが配列したような像とモアレ縞が確認された。ただし、サンプル3はキャスト量が少ないためかもしれないが、あまりシートが見られなかった。この結果からSPG/SWNTがホウ酸化合物によってシート状に架橋されているものと考えられる。   The supernatant of the sample solution was cast on a TEM grid (without a supporting film), dried under reduced pressure, and then observed with TEM. As a result of the observation in FIG. 8, a sheet-like image having a size of 2 μm square or more was confirmed from all the samples. In addition, an image as if fibers were arranged in the sheet and moire fringes were confirmed. However, although the sample 3 may be because the cast amount is small, the sheet was not so much seen. From this result, it is considered that SPG / SWNT is crosslinked in a sheet form by a boric acid compound.

溶液の調製 SWNTとSPGの複合体は遠心分離(1500rpm, 60min.)によって精製した。SWNT/H2O(500μL)に対し、超音波照射を行いながらSPG/DMSO(50μL、5mg/mL)を一気に加えた。これを室温条件下で一日間静置した。上澄み溶液を取り出し、遠心分離(60min., 8×103 rpm)にて複合体を沈殿させ、上澄み溶液を取り除き、再び水に再分散させるという操作を3回行い、複合体のみを取り出した。なおこの時の複合体水溶液のpHは7.07であった。4,4’−ビフェニル-ジ-ボロン酸水溶液(図10、acetic acid/sodium acetate buffer)(0.5mg/mL, pH=10.3)を加え、1日間、室温条件下で静置し、ジボロン酸化合物による糖鎖間の架橋を試みた。また、SPG/SWNT複合体とホウ酸化合物のモル比の異なる3種類のサンプルを調製した。リファレンスとしてジボロン酸化合物を含まないサンプル溶液も同時に調製した。表3に調製した溶液中の各成分量を記す。 Solution Preparation The complex of SWNT and SPG was purified by centrifugation (1500 rpm, 60 min.). To SWNT / H 2 O (500 μL), SPG / DMSO (50 μL, 5 mg / mL) was added all at once while performing ultrasonic irradiation. This was left still for one day under room temperature conditions. The supernatant solution was taken out, and the complex was precipitated by centrifugation (60 min., 8 × 10 3 rpm), and the supernatant solution was removed and redispersed again in water three times, and only the complex was taken out. The pH of the complex aqueous solution at this time was 7.07. Add 4,4'-biphenyl-di-boronic acid aqueous solution (Fig. 10, acetic acid / sodium acetate buffer) (0.5mg / mL, pH = 10.3) and let stand at room temperature for 1 day. Attempts were made to crosslink between sugar chains. Three types of samples with different molar ratios of SPG / SWNT complex and boric acid compound were prepared. A sample solution containing no diboronic acid compound was also prepared as a reference. Table 3 shows the amount of each component in the prepared solution.

生成したサンプル溶液の上澄みをTEMグリッド(支持膜なし)にキャストし減圧乾燥後、TEM観察を行った。図10の観察の結果、全てのサンプルから大きさが2μm四方以上のシート状の像が確認された。また、シート内にファイバーが配列したような像とモアレ縞が確認された。この結果からSPG/SWNTがホウ酸化合物によってシート状に架橋されているものと考えられる。   The supernatant of the generated sample solution was cast on a TEM grid (without a supporting film), dried under reduced pressure, and then subjected to TEM observation. As a result of the observation in FIG. 10, a sheet-like image having a size of 2 μm square or more was confirmed from all the samples. In addition, an image as if fibers were arranged in the sheet and moire fringes were confirmed. From this result, it is considered that SPG / SWNT is crosslinked in a sheet form by a boric acid compound.

ジボロン酸化合物によるSPG/PPEの配列 SPG導電性高分子複合体をシート状に配列することは有機ディスプレイなど次世代の電子デバイスの進歩に必要となる。SPG/SWNTの四ホウ酸ナトリウムによる配列の発展として、SPGと複合化させたSPG/PPE複合体を四ホウ酸ナトリウムによって規則的に配列させた(図12)。 Arrangement of SPG / PPE with diboronic acid compound It is necessary for the advancement of next-generation electronic devices such as organic displays to arrange SPG conductive polymer composites in sheet form. As an evolution of the SPG / SWNT arrangement with sodium tetraborate, SPG / PPE complexes complexed with SPG were regularly arranged with sodium tetraborate (FIG. 12).

溶液の調製 PPEとSPGの複合化、複合体の精製は以下のように行った。1M(to monomer unit)SPG水溶液と1M PPE/DMSO溶液を混合し、水2200μLを加えSPGの巻き戻しを行った。これを室温条件下で一日間静置した。四ホウ酸ナトリウム水溶液(acetic
acid/ sodium acetate buffer)(0.5mg/mL, pH=
9.46)を加え、1日間、室温条件下で静置し、四ホウ酸ナトリウムによる糖鎖間の架橋を試みた。また、SPG/SWNT複合体と四ホウ酸ナトリウムのモル比の異なる3種類のサンプルを調製した。リファレンスとして四ホウ酸ナトリウムを含まないサンプル溶液も同時に調製した。表4に調製した溶液中の各成分量を記す。
Preparation of solution Complexing of PPE and SPG and purification of the complex were carried out as follows. 1M (to monomer unit) SPG aqueous solution and 1M PPE / DMSO solution were mixed, and 2200 μL of water was added to unwind SPG. This was left still for one day under room temperature conditions. Sodium tetraborate aqueous solution (acetic
acid / sodium acetate buffer) (0.5mg / mL, pH =
9.46) was added and the mixture was allowed to stand at room temperature for 1 day, and crosslinking between sugar chains with sodium tetraborate was attempted. Three types of samples with different molar ratios of SPG / SWNT complex and sodium tetraborate were prepared. A sample solution containing no sodium tetraborate was also prepared as a reference. Table 4 shows the amount of each component in the prepared solution.

サンプル溶液の上澄みをTEMグリッド(支持膜なし)にキャストし減圧乾燥後、TEM観察を行った。図13の観察の結果、全てのサンプルからシート状の像が確認された。この結果からSPG/SWNT-がホウ酸によってシート状に架橋されている可能性が考えられる。切断したSWNTの長さは数百nmであることからすると長さ的にも1つのシートの長さはほぼ理論値と一致しているようである。   The supernatant of the sample solution was cast on a TEM grid (without a supporting film), dried under reduced pressure, and then observed with TEM. As a result of the observation in FIG. 13, sheet-like images were confirmed from all the samples. From this result, it is considered that SPG / SWNT- may be crosslinked in a sheet form with boric acid. Since the length of the cut SWNT is several hundreds of nanometers, it seems that the length of one sheet is almost the same as the theoretical value.

溶液の調製 ポルフィリンを分子骨格とする架橋剤5,10,15,20-tetrakis(4-boronylphenyl)
porphine(P-1と略記:図14、合成法:非特許文献10−12)によるSPG/SWNT複合体間の架橋を調べるため、P-1のDMSO溶液( 1 mgmL-1)を調製し、これに炭酸-重炭酸緩衝液(100mM, pH=10.0)を加えた。さらに実施例1で調製したSWNT-SPG複合体水溶液(pH=7.8)を加え、SPG側鎖グルコース間を結合した。表5に溶液の成分量を示した。なお、ボロン酸の有無によるSPGとの相互作用の違いを調べるためにボロン酸を含まないポルフィリンTPPS(5,10,15,20−tetraphenyl−21H,23H−porphine−p,p.,p..,p...-
tetrasulfonic acidtetrasodium salt hydrate)を加えたサンプルも作成した。
Arimori,S.; Takeuchi, M.; Shinkai, S. Chem.Lett., 1996, 1, 77, Imada,T.; Murakami, H.; Shinkai, S. Chem. Commun., 1994, 13, 1557, Toi, H.; Nagai, Y.; Aoyama, Y.;Kawabe, H.; Aizawa, K.; Ogoshi, H. Chem. Lett., 1993, 6, 1043.
Preparation of solution Crosslinker with porphyrin as molecular skeleton 5,10,15,20-tetrakis (4-boronylphenyl)
In order to examine the cross-linking between SPG / SWNT complexes by porphine (abbreviated as P-1: FIG. 14, synthesis method: Non-Patent Document 10-12), a DMSO solution (1 mgmL −1 ) of P-1 was prepared, To this was added carbonate-bicarbonate buffer (100 mM, pH = 10.0). Further, an aqueous SWNT-SPG complex solution (pH = 7.8) prepared in Example 1 was added to bond between SPG side chain glucoses. Table 5 shows the component amounts of the solution. Incidentally, porphyrins TPPS containing no acid to examine the differences in interaction with the SPG with or without acid (5,10,15,20-tetraphenyl-21H, 23H -porphine-p, p., P .. , p ...-
A sample to which tetrasulfonic acidtetrasodium salt hydrate) was added was also prepared.
Arimori, S .; Takeuchi, M .; Shinkai, S. Chem. Lett., 1996, 1, 77, Imada, T .; Murakami, H .; Shinkai, S. Chem. Commun., 1994, 13, 1557, Toi, H .; Nagai, Y .; Aoyama, Y .; Kawabe, H .; Aizawa, K .; Ogoshi, H. Chem. Lett., 1993, 6, 1043.

UV-visおよびCDスペクトル測定 SPGと架橋剤P-1の相互作用を確認するため、SPG間の架橋を実施例1と同じ条件化で行った後、UV-visスペクトルおよびCDスペクトルを
光学パス長:1cm、温度:室温, [P-1]=16.2μM、溶媒:H2O/DMSO
(8914:1(v/v))、pH:9.9の条件で測定した。図15の測定結果から、P−1のソーレー帯極大吸収波長である428 nm付近にSPG-SWNTの量に依存した誘起CDが確認された。この結果から、確かにSPGとP-1は相互作用していることが明らかとなった。
UV-vis and CD spectrum measurement In order to confirm the interaction between SPG and crosslinker P-1, crosslinking between SPGs was performed under the same conditions as in Example 1, and then UV-vis spectrum and CD spectrum were measured for optical path length. : 1 cm, temperature: room temperature, [P-1] = 16.2 μM, solvent: H 2 O / DMSO
(8914: 1 (v / v)) and pH: 9.9. From the measurement result of FIG. 15, induced CD depending on the amount of SPG-SWNT was confirmed around 428 nm, which is the maximum absorption wavelength of P-1 in the Soret band. From this result, it became clear that SPG and P-1 interacted.

TEM観察およびEDX-TEM観察 架橋後のSPG/SWNTファイバーの規則的な配列をモルフォロジーの面から確認するため、調製した溶液のTEM観察を行った。
図16のTEM観察の結果、四ホウ酸ナトリウムを架橋剤として用いたサンプルと同じようにシート状の像が確認され、さらにシート状モルフォロジー内に規則構造を示唆するモアレ縞が観察された。また、HR-TEM観察によってファイバーの規則的な配列が確認され確かにSWNTが配列していることが示唆された。さらに、TEM観察で見られたシート状モルフォロジーにEDX-TEM観察を行ったところ、溶液中に存在する化合物の中で架橋剤P-1のみが含む窒素元素の存在が確認された。このことから確かにシート状モルフォロジー内に架橋剤P-1が存在していることが明らかとなった。
TEM observation and EDX-TEM observation In order to confirm the regular arrangement of SPG / SWNT fibers after crosslinking from the aspect of morphology, TEM observation of the prepared solution was performed.
As a result of TEM observation in FIG. 16, a sheet-like image was confirmed in the same manner as the sample using sodium tetraborate as a crosslinking agent, and moire fringes suggesting a regular structure were observed in the sheet-like morphology. In addition, regular arrangement of fibers was confirmed by HR-TEM observation, suggesting that SWNTs were indeed arranged. Further, when EDX-TEM observation was performed on the sheet morphology observed by TEM observation, the presence of nitrogen element contained only in the crosslinking agent P-1 was confirmed among the compounds present in the solution. This clearly showed that the cross-linking agent P-1 was present in the sheet-like morphology.

架橋剤によって形成されたシート状会合体の偏光顕微鏡観察 P-1によって架橋を行ったサンプル溶液をガラスプレートに滴下し減圧条件下で乾燥を行った後、偏光顕微鏡観察を行った。図17に示す偏光顕微鏡観察の結果、偏光子を挿入した場合にも光学的異方性を持つ会合体が多数観察された。 A sample solution cross-linked by polarizing microscope observation P-1 of a sheet-like aggregate formed of a cross-linking agent was dropped on a glass plate and dried under reduced pressure conditions, and then observed under a polarizing microscope. As a result of the polarization microscope observation shown in FIG. 17, many aggregates having optical anisotropy were observed even when a polarizer was inserted.

溶液の調製 ジボロン酸化合物としてPyridinium, 4,4'−{2,5−bis(2,2'−bithiophen−5−yl)−1,4−phenylene}bis [1−(benzyl−4−boronic acid)methyl]−bromide (1:2)(C−1と略記、化学構造:図18、合成参考文献:非特許文献13−15、1H-NMRによる同定:表6)を用いるSPG/SWNT複合体間の架橋を検討するため、C-1/DMSO溶液(0.1mg/mL)を調製し、炭酸−重炭酸緩衝液(100mM, pH= 9.95)を加えた。これに実施例1で調製したSWNT-SPG複合体水溶液を加え、SPG側鎖間の結合を試みた。表7に溶液の成分量を示す。
K.Takahashi,T.Nihira, Bull.Chem.Soc.Jpn, 1992, 65, 1855 R-M.Chen,T-Y.Lue, Tetrahedron, 1998, 54, 119 J.N.Camara,J.T.Suri, F.E.Cappuccio, R.A.Wessling, B.Singaram, Tetrahedron Lett., 2002, 43,1139
Preparation of solution Pyridinium, 4,4 '-{2,5-bis (2,2'-bithiophen-5-yl) -1,4-phenylene} bis [1- (benzyl-4-boronic acid) ) methyl] -bromide (1: 2) (abbreviated as C-1, chemical structure: FIG. 18, synthesis reference: non-patent reference 13-15, identification by 1 H-NMR: Table 6) To examine cross-body cross-linking, a C-1 / DMSO solution (0.1 mg / mL) was prepared and carbonate-bicarbonate buffer (100 mM, pH = 9.95) was added. The SWNT-SPG complex aqueous solution prepared in Example 1 was added to this, and the coupling | bonding between SPG side chains was tried. Table 7 shows the component amounts of the solution.
K. Takahashi, T. Nihira, Bull. Chem. Soc. Jpn, 1992, 65, 1855 RM.Chen, TY.Lue, Tetrahedron, 1998, 54, 119 JNCamara, JTSuri, FECappuccio, RAWessling, B. Singaram, Tetrahedron Lett., 2002, 43, 1139

UV-visおよびCDスペクトル測定 分光学的にSPGとボロン酸が相互作用していることの確認を行った。図19の結果からSPG-SWNTの量に依存した誘起CDが確認された。また、確認された誘起CDは複数の誘起CD同士が重なったような形状であった。現在のところ、単一分子分散状態のC-1およびC-1会合種とSPGとの相互作用により、このような形状のCDスペクトルパターンが得られたものと考えられる。 The interaction between SPG and boronic acid was confirmed by UV-vis and CD spectroscopy . From the results of FIG. 19, induced CD depending on the amount of SPG-SWNT was confirmed. In addition, the confirmed induced CD had a shape in which a plurality of induced CDs overlapped. At present, it is considered that a CD spectrum pattern having such a shape was obtained by the interaction between CPG and C-1 associated species in a single molecule dispersed state and SPG.

TEM観察 調製した溶液をTEMグリッド(カーボン支持膜なし)にキャストしてTEM観察を行った。図20の結果、C-1を含む全てのサンプルからモアレ縞を示すシート状のモルフォロジーが主として観察された。また、SWNT-SPG複合体を含まないサンプルからはC-1が凝集したような像のみが得られた。 TEM observation The prepared solution was cast on a TEM grid (without a carbon support film) and subjected to TEM observation. As a result of FIG. 20, sheet-like morphology showing moire fringes was mainly observed from all the samples containing C-1. Moreover, only an image that C-1 aggregated was obtained from the sample not containing the SWNT-SPG complex.

例えば、導電性高分子複合体をシート状に配列することにより、有機ディスプレイなど次世代電子デバイスの材料として期待される。   For example, by arranging conductive polymer composites in a sheet form, it is expected as a material for next-generation electronic devices such as organic displays.

本発明の原理となるボロン酸化合物の反応特性を示す。The reaction characteristic of the boronic acid compound used as the principle of this invention is shown. 本発明の原理となる四ホウ酸イオンの反応特性を示す。The reaction characteristic of the tetraborate ion used as the principle of this invention is shown. 本発明の概念図を示す。The conceptual diagram of this invention is shown. ジボロン酸化合物による多糖/SWNTs複合体の架橋概念図を示す。The conceptual diagram of the bridge | crosslinking of the polysaccharide / SWNTs complex by a diboronic acid compound is shown. ジボロン酸化合物架橋サンプルのTEM像例を示す。An example of a TEM image of a diboronic acid compound crosslinked sample is shown. ジボロン酸化合物架橋サンプルのHR-TEM像例およびEDX-TEM 観察例を示す。Examples of HR-TEM images and EDX-TEM observations of diboronic acid compound crosslinked samples are shown. ジボロン酸化合物架橋サンプルのSEM像例を示す。The example of a SEM image of the diboronic acid compound crosslinked sample is shown. ジボロン酸化合物架橋サンプルの顕微ラマンスペクトル例を示す。The example of a micro Raman spectrum of the diboronic acid compound crosslinked sample is shown. 1,4-フェニレン-ビス-ボロン酸の構造を示す。Shows the structure of 1,4-phenylene-bis-boronic acid. 1,4-フェニレン-ビス-ボロン酸架橋サンプルのTEM像例を示す。An example of a TEM image of a 1,4-phenylene-bis-boronic acid crosslinked sample is shown. 4,4’-ビフェニル-ジ-ボロン酸の構造を示す。Shows the structure of 4,4'-biphenyl-di-boronic acid. 4,4’-ビフェニル-ジ-ボロン酸架橋サンプルのTEM像例を示す。An example of a TEM image of a 4,4'-biphenyl-di-boronic acid crosslinked sample is shown. 多糖/導電性高分子複合体の架橋概念図を示す。The cross-linking conceptual diagram of a polysaccharide / conductive polymer composite is shown. 多糖/導電性高分子複合体の四ホウ酸ナトリウムによる架橋サンプルのTEM像例を示す。The example of a TEM image of the bridge | crosslinking sample by sodium tetraborate of a polysaccharide / conductive polymer composite is shown. ボロン酸化合物P−1の化学構造を示す。The chemical structure of boronic acid compound P-1 is shown. P−1架橋SPG/SWNT複合体のa.UV-vis図例, b.CD, c.蛍光スペクトル図例(λex=390nm)を示す。An a.UV-vis diagram example, b.CD and c.fluorescence spectrum diagram example (λ ex = 390 nm) of the P-1 cross-linked SPG / SWNT complex are shown. P−1架橋SPG/SWNT複合体のa.TEM像例、b.EDXスペクトル図例を示す。Examples of a.TEM image and b.EDX spectrum of P-1 cross-linked SPG / SWNT composite are shown. P−1架橋SPG/SWNT複合体の偏光顕微鏡像例(a.偏光子なし、b. 偏光子あり)を示す。An example of a polarizing microscope image of a P-1 crosslinked SPG / SWNT composite (a. No polarizer, b. With polarizer) is shown. ジボロン酸化合物C-1の化学構造を示す。1 shows the chemical structure of diboronic acid compound C-1. C−1架橋SPG/SWNT複合体のa.CDスペクトル図例、b. UV-vis,スペクトル図例を示す。Examples of a.CD spectrum and b.UV-vis, spectrum diagram of C-1 crosslinked SPG / SWNT composite are shown. C−1架橋SPG/SWNT複合体のTEM像例を示す。An example of a TEM image of a C-1 crosslinked SPG / SWNT composite is shown.

Claims (9)

水酸基と反応し得るB(OH)から成る反応性部位を2つ以上有するホウ素化合物によりβ−1,3−グルカン/疎水性高分子複合体を架橋して成ることを特徴とするナノ構造体。 A nanostructure comprising a β-1,3-glucan / hydrophobic polymer complex crosslinked with a boron compound having two or more reactive sites composed of B (OH) 2 capable of reacting with a hydroxyl group . 疎水性高分子が単層カーボンナノチューブであることを特徴とする請求項1のナノ構造体。   The nanostructure according to claim 1, wherein the hydrophobic polymer is a single-walled carbon nanotube. 疎水性高分子が導電性高分子であることを特徴とする請求項1のナノ構造体。   The nanostructure according to claim 1, wherein the hydrophobic polymer is a conductive polymer. β−1,3−グルカンがシゾフィランであることを特徴とする請求項1のナノ構造体。   The nanostructure according to claim 1, wherein β-1,3-glucan is schizophyllan. ホウ素化合物が四ホウ酸塩であることを特徴とする請求項1のナノ構造体。   The nanostructure of claim 1, wherein the boron compound is tetraborate. ホウ素化合物が1,4−フェニレン−ビス−ボロン酸塩であることを特徴とする請求項1のナノ構造体。   The nanostructure of claim 1, wherein the boron compound is 1,4-phenylene-bis-boronate. ホウ素化合物が4,4’−ビフェニル−ジ−ボロン酸塩であることを特徴とする請求項1のナノ構造体。   The nanostructure of claim 1, wherein the boron compound is 4,4'-biphenyl-di-boronate. ホウ素化合物が5,10,15,20−テトラキス(4−ボロニルフェニル)ポルフィリンであることを特徴とする請求項1のナノ構造体。   The nanostructure according to claim 1, wherein the boron compound is 5,10,15,20-tetrakis (4-boronylphenyl) porphyrin. ホウ素化合物がピリジニウム,4,4’−{2,5−ビス(2,2’−ビチオフェン−5−イル)−1,4−フェニレン}ビス[1−(ベンジル−4−ボロン酸)メチル]−ブロミド(1:2)であることを特徴とする請求項1のナノ構造体。
The boron compound is pyridinium, 4,4 '-{2,5-bis (2,2'-bithiophen-5-yl) -1,4-phenylene} bis [1- (benzyl-4-boronic acid) methyl]- The nanostructure of claim 1, wherein the nanostructure is bromide (1: 2).
JP2008059269A 2007-03-09 2008-03-10 Hydrophobic polymer nanostructures obtained using boron compounds Expired - Fee Related JP4785883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008059269A JP4785883B2 (en) 2007-03-09 2008-03-10 Hydrophobic polymer nanostructures obtained using boron compounds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007059775 2007-03-09
JP2007059775 2007-03-09
JP2008059269A JP4785883B2 (en) 2007-03-09 2008-03-10 Hydrophobic polymer nanostructures obtained using boron compounds

Publications (2)

Publication Number Publication Date
JP2008254165A true JP2008254165A (en) 2008-10-23
JP4785883B2 JP4785883B2 (en) 2011-10-05

Family

ID=39978266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008059269A Expired - Fee Related JP4785883B2 (en) 2007-03-09 2008-03-10 Hydrophobic polymer nanostructures obtained using boron compounds

Country Status (1)

Country Link
JP (1) JP4785883B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184365A (en) * 2010-03-09 2011-09-22 National Institute Of Advanced Industrial Science & Technology Organic nanotube formed with boronic acid derivative having aromatic group and glycolipid, and method for producing the same
JP2012046596A (en) * 2010-08-25 2012-03-08 Tokyo Metropolitan Univ Polymer gel, method for producing the same, treating agent for cleaning water, and treating method for cleaning water
JP2013030671A (en) * 2011-07-29 2013-02-07 Nichicon Corp Electrode for electric double layer capacitor, manufacturing method of electrode, and electric double layer capacitor using electrode
US10183094B2 (en) 2014-12-01 2019-01-22 Unicharm Corporation Biodegradable water absorbent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104762A (en) * 2003-09-30 2005-04-21 Japan Science & Technology Agency Method for solubilizing carbon nanotube by using beta-1,3-glucan
JP2005512831A (en) * 2001-07-10 2005-05-12 ユニバーシティズ スペース リサーチ アソシエイション Spatial localization of dispersed single-walled carbon nanotubes into useful structures
WO2005108482A1 (en) * 2004-05-07 2005-11-17 Japan Science And Technology Agency Polysaccharide/carbon nanotube composite
WO2005110594A1 (en) * 2004-05-13 2005-11-24 Hokkaido Technology Licensing Office Co., Ltd. Fine carbon dispersion
JP2006160770A (en) * 2004-12-02 2006-06-22 Japan Science & Technology Agency Fiber-like electroconductive polymer and its manufacturing method
JP2006248973A (en) * 2005-03-10 2006-09-21 Japan Science & Technology Agency Fibrous porphyrin assembly with polysaccharide used as one-dimensional host
JP2007513952A (en) * 2003-12-11 2007-05-31 アルコン、インコーポレイテッド Ophthalmic composition comprising a polysaccharide / borate gelling system
JP2007533780A (en) * 2003-09-29 2007-11-22 ル・グループ・リサック・インコーポレーテッド Absorbent or superabsorbent polysaccharide layered silicate nanocomposite material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512831A (en) * 2001-07-10 2005-05-12 ユニバーシティズ スペース リサーチ アソシエイション Spatial localization of dispersed single-walled carbon nanotubes into useful structures
JP2007533780A (en) * 2003-09-29 2007-11-22 ル・グループ・リサック・インコーポレーテッド Absorbent or superabsorbent polysaccharide layered silicate nanocomposite material
JP2005104762A (en) * 2003-09-30 2005-04-21 Japan Science & Technology Agency Method for solubilizing carbon nanotube by using beta-1,3-glucan
JP2007513952A (en) * 2003-12-11 2007-05-31 アルコン、インコーポレイテッド Ophthalmic composition comprising a polysaccharide / borate gelling system
WO2005108482A1 (en) * 2004-05-07 2005-11-17 Japan Science And Technology Agency Polysaccharide/carbon nanotube composite
WO2005110594A1 (en) * 2004-05-13 2005-11-24 Hokkaido Technology Licensing Office Co., Ltd. Fine carbon dispersion
JP2006160770A (en) * 2004-12-02 2006-06-22 Japan Science & Technology Agency Fiber-like electroconductive polymer and its manufacturing method
JP2006248973A (en) * 2005-03-10 2006-09-21 Japan Science & Technology Agency Fibrous porphyrin assembly with polysaccharide used as one-dimensional host

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184365A (en) * 2010-03-09 2011-09-22 National Institute Of Advanced Industrial Science & Technology Organic nanotube formed with boronic acid derivative having aromatic group and glycolipid, and method for producing the same
JP2012046596A (en) * 2010-08-25 2012-03-08 Tokyo Metropolitan Univ Polymer gel, method for producing the same, treating agent for cleaning water, and treating method for cleaning water
JP2013030671A (en) * 2011-07-29 2013-02-07 Nichicon Corp Electrode for electric double layer capacitor, manufacturing method of electrode, and electric double layer capacitor using electrode
US10183094B2 (en) 2014-12-01 2019-01-22 Unicharm Corporation Biodegradable water absorbent

Also Published As

Publication number Publication date
JP4785883B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
Georgakilas et al. Multipurpose organically modified carbon nanotubes: from functionalization to nanotube composites
Tasis et al. Chemistry of carbon nanotubes
Meng et al. Advanced technology for functionalization of carbon nanotubes
Dyke et al. Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization
KR100650233B1 (en) Polymer and method for using the polymer for noncovalently functionalizing nanotubes
Olivier et al. Cellulose nanocrystal-assisted dispersion of luminescent single-walled carbon nanotubes for layer-by-layer assembled hybrid thin films
Li et al. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling
JP5271922B2 (en) Block functionalization method
Karaaslan et al. Nanocrystalline cellulose/β-casein conjugated nanoparticles prepared by click chemistry
Sun et al. Functional polyacetylenes: hybrids with carbon nanotubes
JP4785883B2 (en) Hydrophobic polymer nanostructures obtained using boron compounds
Lee et al. Polynorbornene dicarboximide/amine functionalized graphene hybrids for potential oxygen barrier films
Hong et al. Functionalized multi‐walled carbon nanotubes with poly (N‐(2‐hydroxypropyl) methacrylamide) by RAFT polymerization
Mittal Surface modification of nanotube fillers
Mallakpour et al. Use of valine amino acid functionalized α-MnO2/chitosan bionanocomposites as potential sorbents for the removal of lead (II) ions from aqueous solution
Heydari et al. β-Cyclodextrin-epichlorohydrin polymer/graphene oxide nanocomposite: preparation and characterization
Sakellariou et al. Enhanced polymer grafting from multiwalled carbon nanotubes through living anionic surface-initiated polymerization
WO2004053546A1 (en) Nanotube based non-linear optics and methods of making same
Cirillo et al. Novel carbon nanotube composites by grafting reaction with water-compatible redox initiator system
Sui et al. Injectable supramolecular hybrid hydrogels formed by MWNT‐grafted‐poly (ethylene glycol) and α‐cyclodextrin
Cui et al. Doped polyaniline/multiwalled carbon nanotube composites: Preparation and characterization
Fong et al. Reactive, Aqueous-Dispersible Polyfluorene-Wrapped Carbon Nanotubes Modulated with an Acidochromic Switch via Azide–Alkyne Cycloaddition
Rajendiran et al. Azo dye/cyclodextrin: New findings of identical nanorods through 2: 2 inclusion complexes
Mallakpour et al. Preparation and characterization of starch nanocomposite embedded with functionalized MWCNT: Investigation of optical, morphological, thermal, and copper ions adsorption properties
de Freitas et al. Synthesis and characterization of single wall carbon nanotube-grafted poly (3-hexylthiophene) and their nanocomposites with gold nanoparticles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees