JP2008131756A - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
JP2008131756A
JP2008131756A JP2006314522A JP2006314522A JP2008131756A JP 2008131756 A JP2008131756 A JP 2008131756A JP 2006314522 A JP2006314522 A JP 2006314522A JP 2006314522 A JP2006314522 A JP 2006314522A JP 2008131756 A JP2008131756 A JP 2008131756A
Authority
JP
Japan
Prior art keywords
converter
reactor
semiconductor switches
capacitor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006314522A
Other languages
Japanese (ja)
Inventor
Koya Yoshioka
康哉 吉岡
Ryuji Yamada
隆二 山田
Hisashi Fujimoto
久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006314522A priority Critical patent/JP2008131756A/en
Publication of JP2008131756A publication Critical patent/JP2008131756A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to reduce as much as possible a circulating current flowing between the input and the output of a power conversion device constructed of a converter and an inverter whose direct-current portions are connected in common. <P>SOLUTION: In zero voltage output state, the positive semiconductor switches 8, 10, 12 of the respective phases of the inverter are simultaneously brought into conduction or the semiconductor switches 9, 11, 13 of the respective phases are simultaneously brought into conduction. To prevent this zero voltage output state, a pattern of the switching operation of the semiconductor switches is devised to reduce a circulating current and prevent overvoltage in a direct-current intermediate capacitor 14. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、交流電圧を振幅または周波数の異なる交流電圧に変換する装置、あるいは、交流電圧の振幅または周波数の変動もしくは停電を補償し、安定した電圧を負荷に供給する無停電電源装置の小型化に関する。   The present invention reduces the size of an apparatus that converts an AC voltage into an AC voltage having a different amplitude or frequency, or an uninterruptible power supply that compensates for fluctuations or interruptions in the amplitude or frequency of the AC voltage and supplies a stable voltage to a load. About.

図4に一般的な電力変換装置の構成を示す。
図4において、1は交流電源、2〜13は半導体スイッチ、14は直流コンデンサ、15〜20はリアクトル、21〜26は交流フィルタコンデンサ、27は変圧器である。
2〜7、14、15〜17、21〜23は順変換器を構成しており、交流電源1の交流入力電圧を半導体スイッチ2〜7の高周波スイッチングにより直流電圧に変換し、直流コンデンサ14に供給する。
FIG. 4 shows a configuration of a general power conversion device.
In FIG. 4, 1 is an AC power source, 2 to 13 are semiconductor switches, 14 is a DC capacitor, 15 to 20 are reactors, 21 to 26 are AC filter capacitors, and 27 is a transformer.
2 to 7, 14, 15 to 17, and 21 to 23 constitute a forward converter, which converts the AC input voltage of the AC power source 1 into a DC voltage by high-frequency switching of the semiconductor switches 2 to 7, Supply.

一方、14、8〜13、18〜20、24〜26は逆変換器を構成しており、直流コンデンサ14を直流電圧源として、半導体スイッチ8〜13の高周波スイッチングにより、交流フィルタコンデンサ24〜26を介して負荷に任意の振幅と周波数の交流電圧を供給する。この回路は、交流入力電圧を任意の振幅と周波数の交流電圧に変換する電源装置として、または、図示しない蓄電池を直流部14に接続することにより、交流電源停電時にも負荷への電力供給を継続する、いわゆる無停電電源装置として用いられる。   On the other hand, 14, 8 to 13, 18 to 20, and 24 to 26 constitute an inverse converter, and AC filter capacitors 24 to 26 are formed by high frequency switching of the semiconductor switches 8 to 13 using the DC capacitor 14 as a DC voltage source. An alternating voltage of arbitrary amplitude and frequency is supplied to the load via This circuit continues power supply to the load even during AC power outages as a power supply device that converts AC input voltage into AC voltage of arbitrary amplitude and frequency, or by connecting a storage battery (not shown) to the DC unit 14 It is used as a so-called uninterruptible power supply.

図4では、半導体スイッチ2〜7の高周波スイッチング動作に伴い、同図のR,S,T点に対するP点またはN点の電位は高周波で変動する。また、半導体スイッチ8〜13の高周波スイッチング動作に伴い、同図のU,V,W点のP点またはN点に対する電位も高周波で変動する。一般に、交流電源は1相を直接接地されるか、またはコンデンサを介して1相〜全相を接地されることが多い。このため、図4の回路各部の交流入力に対する高周波電位変動は、大地電位に対する高周波電位変動につながる。この高周波電位変動は、電子機器の誤動作や高周波ノイズを除くためのフィルタ回路の焼損等の問題を起こす原因となることから、これを防止するために、電子機器等の負荷が接続される逆変換器の出力には、図示のような変圧器27を設けて電位変動が伝達されないようにしている。ところが、この絶縁変圧器は装置の中でも大きな体積,質量を占め装置の小型化,軽量化,低コスト化の妨げとなる。   In FIG. 4, with the high-frequency switching operation of the semiconductor switches 2 to 7, the potential at the P point or the N point with respect to the R, S, and T points in FIG. Further, with the high frequency switching operation of the semiconductor switches 8 to 13, the potential with respect to the P point or the N point of the U, V, and W points in FIG. In general, in an AC power supply, one phase is often directly grounded or one phase to all phases are grounded via a capacitor. For this reason, the high-frequency potential fluctuation with respect to the AC input of each part of the circuit in FIG. 4 leads to the high-frequency potential fluctuation with respect to the ground potential. This high-frequency potential fluctuation can cause problems such as malfunction of electronic equipment and burnout of filter circuits to remove high-frequency noise, and in order to prevent this, reverse conversion to which loads such as electronic equipment are connected The output of the transformer is provided with a transformer 27 as shown so that potential fluctuations are not transmitted. However, this isolation transformer occupies a large volume and mass in the device, and hinders the reduction in size, weight and cost of the device.

そこで、出願人は図1のような装置を先に提案している(特願2005−122251号:提案装置とも言う)。
これは、絶縁変圧器を介さずに負荷に直接接続できるようにすることを目的として、入力に対する出力の高周波電位変動を抑制するために、交流フィルタコンデンサ31〜33の共通接続部と、交流フィルタコンデンサ34〜36の共通接続部とをカップリングコンデンサ37で接続したものである。このカップリングコンデンサ37のキャパシタンスを、スイッチング周波数成分に対しては十分インピーダンスが低く、かつ、交流入力電圧の周波数に対しては十分インピーダンスが高くなる(大幅に低くならない)ように選定することで、入出力間は高周波域においては短絡状態となり、入力に対する出力の高周波電位変動が抑制される。
Therefore, the applicant has previously proposed an apparatus as shown in FIG. 1 (Japanese Patent Application No. 2005-122251: also called a proposed apparatus).
This is for the purpose of enabling direct connection to the load without going through an insulation transformer, in order to suppress the high-frequency potential fluctuation of the output with respect to the input, and the common connection part of the AC filter capacitors 31 to 33 and the AC filter A common connection portion of the capacitors 34 to 36 is connected by a coupling capacitor 37. By selecting the capacitance of the coupling capacitor 37 so that the impedance is sufficiently low with respect to the switching frequency component and the impedance is sufficiently high (not significantly reduced) with respect to the frequency of the AC input voltage, The input and output are short-circuited in the high-frequency region, and the high-frequency potential fluctuation of the output with respect to the input is suppressed.

なお、大地電位に対する高周波電位変動を抑制する技術として、上記提案装置の他に特許文献1に示すものもある。
特開平11−235055号公報
As a technique for suppressing the high-frequency potential fluctuation with respect to the ground potential, there is a technique shown in Patent Document 1 in addition to the proposed device.
Japanese Patent Laid-Open No. 11-235055

しかし、図1の装置では、半導体スイッチ2〜13の高周波スイッチング動作に伴い、カップリングコンデンサ37を経路とする循環経路が生成されるとともに、循環経路ができた際に流れる循環電流により、直流コンデンサ14を充電する経路が生成される。そして、この充電動作により直流コンデンサ14の電圧が上昇し過電圧となる場合があり、装置を停止させることになる。ここで、充電動作について詳述する。   However, in the apparatus of FIG. 1, a circulation path having the coupling capacitor 37 as a path is generated along with the high-frequency switching operation of the semiconductor switches 2 to 13, and a DC capacitor is generated by the circulating current that flows when the circulation path is formed. A path for charging 14 is generated. The charging operation may increase the voltage of the DC capacitor 14 and cause an overvoltage, which stops the apparatus. Here, the charging operation will be described in detail.

交流電源から電圧が供給され、順変換器および逆変換器により負荷に任意の振幅と周波数の交流電圧を供給する動作において、例えば半導体スイッチ8,10,12の3つが導通状態で、半導体スイッチ9,11,13の3つが非導通状態であり、さらに、交流フィルタコンデンサ31の電圧が、半導体スイッチ2のダイオードに対して順電圧を印加する状態にある場合、半導体スイッチ8,10,12とリアクトル15と交流フィルタコンデンサ31〜36とカップリングコンデンサ37と半導体スイッチ2のダイオードとにより循環経路が生成され、循環電流が流れる。   In an operation in which a voltage is supplied from an AC power source and an AC voltage having an arbitrary amplitude and frequency is supplied to a load by a forward converter and an inverse converter, for example, three of the semiconductor switches 8, 10, 12 are in a conductive state, and the semiconductor switch 9 , 11 and 13 are in a non-conducting state, and when the voltage of the AC filter capacitor 31 is in a state in which a forward voltage is applied to the diode of the semiconductor switch 2, the semiconductor switch 8, 10, 12 and the reactor 15, the AC filter capacitors 31 to 36, the coupling capacitor 37, and the diode of the semiconductor switch 2 generate a circulation path, and a circulation current flows.

続いて、半導体スイッチ8,10,12のいずれかが非導通状態となり、半導体スイッチ9,11,13の3つのうち半導体スイッチ8,10,12と対になる半導体スイッチが導通状態となった場合、例えばスイッチ12が非導通となりスイッチ13が導通した場合、スイッチ12に流れていた電流はスイッチ13へ移行するため、半導体スイッチ8,10とリアクトル15と交流フィルタコンデンサ31〜36とカップリングコンデンサ37と半導体スイッチ2のダイオードとによる循環経路とともに、直流コンデンサ14とスイッチ13を新たな経路とし、リアクトル15と交流フィルタコンデンサ31〜36とカップリングコンデンサ37と半導体スイッチ2のダイオードを経路とする循環経路が生成される。この際、直流コンデンサ14とスイッチ13を新たな経路として流れる電流は、直流コンデンサ14を充電する電流となる。   Subsequently, when any one of the semiconductor switches 8, 10, and 12 is turned off, and the semiconductor switch that is paired with the semiconductor switches 8, 10, and 12 is turned on among the three semiconductor switches 9, 11, and 13. For example, when the switch 12 is turned off and the switch 13 is turned on, the current flowing through the switch 12 is transferred to the switch 13, so that the semiconductor switches 8, 10, the reactor 15, the AC filter capacitors 31 to 36, and the coupling capacitor 37. And a circulation path by the diode of the semiconductor switch 2, and a circulation path by using the DC capacitor 14 and the switch 13 as new paths, and the reactor 15, the AC filter capacitors 31 to 36, the coupling capacitor 37, and the diode of the semiconductor switch 2 as paths. Is generated. At this time, the current flowing through the DC capacitor 14 and the switch 13 as a new path becomes a current for charging the DC capacitor 14.

逆変換器のスイッチング動作において、上記のように1つの半導体スイッチが導通または非導通になる動作の外に、3つの半導体スイッチが同時に導通,非導通になる場合がある。例えば、導通状態であった半導体スイッチ8,10,12の3つとも同時に非導通状態となり、半導体スイッチ9,11,13の3つが同時に導通状態になる場合が想定される。この場合、半導体スイッチ8,10,12とリアクトル15と交流フィルタコンデンサ31〜36とカップリングコンデンサ37と半導体スイッチ2のダイオードを経路とする循環電流は、直流コンデンサ14とスイッチ9,11,13を新たな経路として、リアクトル15と交流フィルタコンデンサ31〜36とカップリングコンデンサ37と半導体スイッチ2のダイオードを流れる循環電流となる。このとき、循環電流すべてがコンデンサを充電する電流となる。   In the switching operation of the inverse converter, in addition to the operation in which one semiconductor switch is turned on or off as described above, the three semiconductor switches may be turned on and off at the same time. For example, it is assumed that all three semiconductor switches 8, 10, and 12 that have been in a conductive state are simultaneously in a non-conductive state, and three semiconductor switches 9, 11, and 13 are in a conductive state at the same time. In this case, the circulating current through the semiconductor switches 8, 10, 12, the reactor 15, the AC filter capacitors 31 to 36, the coupling capacitor 37, and the diode of the semiconductor switch 2 passes through the DC capacitor 14 and the switches 9, 11, 13. As a new path, the circulating current flows through the reactor 15, the AC filter capacitors 31 to 36, the coupling capacitor 37, and the diode of the semiconductor switch 2. At this time, all the circulating current becomes a current for charging the capacitor.

半導体スイッチ2〜7がスイッチング動作を行ない、順変換器から交流電源側へ電力を戻す動作を行なうことができる場合は、順変換器が直流コンデンサ14を放電させる動作を行なうことになり、上記の循環電流による電圧上昇を防ぐことができる。しかし、順変換器がスイッチング動作を行なわない場合は、半導体スイッチ2〜7で構成される回路は単なるダイオード整流器となり、順変換器から交流電源側へ電力を戻す動作を行なうことができず、直流コンデンサ14を放電させることができないため、上記の循環電流による電圧上昇が起こる。また、順変換器の構成が、例えば混合ブリッジで構成される場合、順変換器から交流電源側へ電力を戻す動作を行なうことができないため、上記の循環電流により直流コンデンサ14の電圧は上昇し、過電圧を生じた場合は、装置を停止させることになる。   When the semiconductor switches 2 to 7 perform the switching operation and can return the power from the forward converter to the AC power supply side, the forward converter performs the operation of discharging the DC capacitor 14, and the above-described operation is performed. Voltage rise due to circulating current can be prevented. However, when the forward converter does not perform the switching operation, the circuit composed of the semiconductor switches 2 to 7 becomes a simple diode rectifier, and cannot perform the operation of returning power from the forward converter to the AC power source side. Since the capacitor 14 cannot be discharged, the voltage rises due to the circulating current. In addition, when the forward converter is composed of, for example, a mixed bridge, the operation of returning power from the forward converter to the AC power source cannot be performed, so the voltage of the DC capacitor 14 increases due to the circulating current. If an overvoltage occurs, the device is stopped.

半導体スイッチ8,10,12と9,11,13の2組が交互に導通,非導通のスイッチング動作を行ない、逆変換器がゼロ電圧出力をしている場合、循環電流による電圧上昇は装置に接続される負荷とは無関係に発生し、この場合が最も上昇する。逆変換器が負荷に任意の振幅と周波数の交流電圧を供給する動作を行なう場合、半導体スイッチ8,10,12と9,11,13の2組のいずれか一方を導通状態にしてゼロ電圧出力をさせる必要があるため、その後のスイッチング動作により直流コンデンサを充電する循環経路が発生する。このとき、無負荷または軽負荷である場合、負荷の消費電力による直流コンデンサの放電量よりも循環電流による充電量が多くなり、直流コンデンサの電圧は上昇し、出力動作中に装置を停止させることになる。
したがって、この発明の課題は、順変換器と逆変換器とからなり、両者の直流部分を共通接続した電力変換装置の入出力間を、カップリングコンデンサにより高周波的に結合させて安定な電圧を負荷に供給する場合に、順,逆変換器間を流れる循環電流を抑制し、直流コンデンサ電圧の上昇を防止することにある。
When two sets of semiconductor switches 8, 10, 12 and 9, 11, 13 perform alternately conducting / non-conducting switching operations and the inverse converter outputs zero voltage, the voltage rise due to the circulating current is It occurs regardless of the connected load, and this case is the highest. When the inverse converter performs an operation of supplying an AC voltage having an arbitrary amplitude and frequency to the load, either one of the semiconductor switches 8, 10, 12 and 9, 11, 13 is turned on to output zero voltage Therefore, a circulation path for charging the DC capacitor is generated by the subsequent switching operation. At this time, if there is no load or light load, the amount of charge due to the circulating current will be larger than the amount of discharge of the DC capacitor due to the power consumption of the load, the voltage of the DC capacitor will rise, and the device will be stopped during output operation become.
Accordingly, an object of the present invention is to provide a stable voltage by coupling the input and output of a power conversion device, which is composed of a forward converter and an inverse converter, and in which both DC portions are connected in common, with a coupling capacitor. When supplying the load, the circulating current flowing between the forward and reverse converters is suppressed to prevent the DC capacitor voltage from rising.

このような課題を解決するため、請求項1の発明では、半導体スイッチ,リアクトルおよび交流フィルタコンデンサからなり、前記半導体スイッチの高周波スイッチング動作により交流−直流変換を行なう順変換器と、半導体スイッチ,リアクトルおよび交流フィルタコンデンサからなり、前記半導体スイッチの高周波スイッチング動作により直流−交流変換を行なう逆変換器とを備え、その直流部分を共通接続するとともに、前記順変換器の交流フィルタコンデンサの一端と逆変換器の交流フィルタコンデンサの一端との間を、前記半導体スイッチのスイッチング周波数において前記リアクトルよりもインピーダンスが十分小さく、かつ、装置の入力周波数または出力周波数において前記交流フィルタコンデンサよりもインピーダンスが大幅に小さくならないキャパシタンスのカップリングコンデンサを介して接続してなる電力変換装置において、
各々が1個または複数個の正側半導体スイッチと負側半導体スイッチとの直列回路により1相分の変換回路を構成し、これを相数分並列接続して逆変換器を構成し、そのスイッチング動作時には、各相の正側半導体スイッチの全てが同時に導通状態となるか、または各相の負側半導体スイッチの全てが同時に導通状態となるゼロ電圧出力状態を回避するようにスイッチングパターンを選択することを特徴とする。つまり、直流コンデンサの充電電圧が過電圧となるまで上昇することが問題なので、この発明ではこれを回避するために、できるだけゼロ電圧出力状態を回避するようにするものである。
In order to solve such a problem, in the invention of claim 1, a forward converter comprising a semiconductor switch, a reactor, and an AC filter capacitor and performing AC-DC conversion by a high-frequency switching operation of the semiconductor switch, a semiconductor switch, and a reactor And an AC converter capacitor, and an inverter that performs DC-AC conversion by high-frequency switching operation of the semiconductor switch, the DC portion is commonly connected, and one end of the AC filter capacitor of the forward converter is inverted Between one end of the AC filter capacitor of the capacitor and the impedance at the switching frequency of the semiconductor switch is sufficiently smaller than that of the reactor, and the impedance is higher than that of the AC filter capacitor at the input frequency or output frequency of the device. The power converter formed by connecting through a small capacitance coupling capacitor which does not become,
Each is composed of a series circuit of one or a plurality of positive-side semiconductor switches and negative-side semiconductor switches to form a conversion circuit for one phase, and this is connected in parallel for the number of phases to form an inverse converter. During operation, the switching pattern is selected so as to avoid a zero voltage output state in which all the positive-side semiconductor switches of each phase are turned on simultaneously or all the negative-side semiconductor switches of each phase are turned on simultaneously. It is characterized by that. That is, since it is a problem that the charging voltage of the DC capacitor rises until it becomes an overvoltage, in the present invention, in order to avoid this, the zero voltage output state is avoided as much as possible.

上記請求項1の発明においては、前記ゼロ電圧出力状態が必要な場合は、前記各相の正側半導体スイッチの全てが同時に導通状態となるスイッチングパターンのみを用いるか、または各相の負側半導体スイッチの全てが同時に導通状態となるスイッチングパターンのみを用いることことができ(請求項2の発明)、また、請求項1または2の発明においては、前記電力変換装置の出力状態または負荷状態に応じて、前記ゼロ電圧出力状態を回避するか否かを切り替えることができる(請求項3の発明)。
これら請求項1〜3のいずれかの発明においては、前記順変換器のリアクトルまたは逆変換器のリアクトルと直列に、もしくは前記順変換器と逆変換器の直流共通部分に、前記リアクトルよりもインダクタンスが十分に大きいコモンモードコイルを接続することができ(請求項4の発明)、または、前記順変換器のリアクトルまたは逆変換器のリアクトルと直列に、もしくは前記順変換器と逆変換器の直流共通部分に、電流が小さいときに前記リアクトルよりもインダクタンスが十分に大きくなる可飽和リアクトルを接続することができる(請求項5の発明)。
In the first aspect of the invention, when the zero voltage output state is required, only the switching pattern in which all the positive-side semiconductor switches of the respective phases are simultaneously turned on or the negative-side semiconductor of each phase is used. Only a switching pattern in which all of the switches are in a conductive state at the same time can be used (invention of claim 2), and in the invention of claim 1 or 2, depending on the output state or load state of the power converter. Thus, whether to avoid the zero voltage output state can be switched (invention of claim 3).
In any one of these claims, the inductor of the forward converter or the reactor of the inverse converter is in series with the reactor, or the DC common part of the forward converter and the inverse converter has an inductance greater than that of the reactor. A common mode coil having a sufficiently large value can be connected (invention of claim 4), or in series with the reactor of the forward converter or the reactor of the reverse converter, or the direct current of the forward converter and the reverse converter A saturable reactor whose inductance is sufficiently larger than that of the reactor when the current is small can be connected to the common portion (invention of claim 5).

この発明によれば、順,逆変換器間を流れる循環電流を、逆変換器のスイッチングパターンを工夫すること、さらにはコモンモードコイルや可飽和リアクトルを挿入することで抑制するようにしたので、直流コンデンサの電圧上昇を未然に防止することが可能となる。   According to the present invention, the circulating current flowing between the forward and reverse converters is suppressed by devising the switching pattern of the reverse converter, and further by inserting a common mode coil and a saturable reactor. It is possible to prevent the voltage rise of the DC capacitor.

図1はこの発明の実施の形態を説明するための回路図である。これは、先に提案装置として説明したものであるが、特に逆変換器のスイッチング動作に特徴を待たせることにより、直流コンデンサ電圧の上昇を抑制するもので、具体的には以下のようにする(方式1)。
すなわち、逆変換器のスイッチング動作において、半導体スイッチ8,10,12の3つ、つまり正側半導体スイッチの全てが同時に導通状態となる場合は、交流出力端子U1,V1,W1ともに直流コンデンサ14の正電位となり、半導体スイッチ9,11,13の3つ、つまり負側半導体スイッチの全てが同時に導通状態となる場合は、交流出力端子U1,V1,W1ともに直流コンデンサ14の負電位となり、このようなスイッチングパターンでは、逆変換器の線間出力はゼロ電圧となっている。
FIG. 1 is a circuit diagram for explaining an embodiment of the present invention. This is what has been described as the proposed device earlier, but it suppresses the rise in the DC capacitor voltage by waiting for the characteristics of the switching operation of the inverse converter, and specifically, as follows. (Method 1).
That is, in the switching operation of the inverse converter, when all of the semiconductor switches 8, 10, and 12, that is, all of the positive side semiconductor switches are simultaneously turned on, the AC output terminals U1, V1, and W1 are both connected to the DC capacitor 14. When three semiconductor switches 9, 11, and 13, that is, all of the negative-side semiconductor switches are in a conductive state at the same time, the AC output terminals U1, V1, and W1 become negative potentials of the DC capacitor 14 as described above. In a simple switching pattern, the line-to-line output of the inverse converter is zero voltage.

直流コンデンサ電圧の上昇は、正側半導体スイッチの全てが同時に導通状態となるか、負側半導体スイッチの全てが同時に導通状態となる場合に流れる循環電流が、その後のスイッチング動作により直流コンデンサに流入することに起因することから、逆変換器の線間出力をゼロ電圧の状態にする必要がある場合は、各相の正側半導体スイッチの全てが同時に導通状態となる動作、または各相の負側半導体スイッチの全てを同時に導通状態にして、瞬間的にゼロ電圧出力を行なうスイッチングパターンではなく、逆変換器の交流フィルタコンデンサ接続点U,V,Wの電圧が平均的にゼロ電圧となるスイッチングパターンを選択するようにする。   The DC capacitor voltage rises because the circulating current that flows when all of the positive-side semiconductor switches are turned on simultaneously or all of the negative-side semiconductor switches are turned on simultaneously flows into the DC capacitor by the subsequent switching operation. Therefore, when it is necessary to set the line-to-line output of the inverter to a zero voltage state, all the positive side semiconductor switches of each phase are turned on simultaneously, or the negative side of each phase Not a switching pattern in which all semiconductor switches are turned on at the same time to output zero voltage instantaneously, but a switching pattern in which the voltage at the AC filter capacitor connection points U, V, and W of the inverse converter becomes zero voltage on average. To select.

例えば、半導体スイッチ8,11,13を導通状態にし、半導体スイッチ9,10,12を非導通状態にする期間と、それと同等の期間だけ半導体スイッチ8,11,13を非導通状態にし、半導体スイッチ9,10,12を導通状態にすると、双方の状態の期間の平均出力電圧はゼロとなる。正側または負側の半導体スイッチの全てが同時に導通状態にならない場合でも、順変換器と逆変換器のそれぞれの半導体スイッチおよびカップリングコンデンサ37を経路とする循環電流が流れるが、正側または負側の半導体スイッチの全てが同時に導通状態となる場合に流れる循環電流よりも電流量が少なくなるので、その後のスイッチング動作で直流コンデンサを充電する循環電流が減少し、直流コンデンサ電圧の上昇を抑制することができる。   For example, the semiconductor switches 8, 11, and 13 are turned off, and the semiconductor switches 8, 11, and 13 are turned off only during a period when the semiconductor switches 9, 10, and 12 are turned off and during a period equivalent thereto. When 9, 10, and 12 are turned on, the average output voltage during the period of both states becomes zero. Even when not all of the positive side or negative side semiconductor switches are turned on at the same time, a circulating current flows through the semiconductor switch and the coupling capacitor 37 of each of the forward converter and the reverse converter. Since the amount of current is less than the circulating current that flows when all of the semiconductor switches on the side are in the conductive state at the same time, the circulating current that charges the DC capacitor is reduced in the subsequent switching operation, and the rise in the DC capacitor voltage is suppressed. be able to.

図1では、また次のようにする(方式2)ことができる。
順変換器で任意の振幅と周波数の交流電圧を供給する動作は、例えば、正側半導体スイッチの全てが同時に導通状態となり、負側半導体スイッチの全てが同時に非導通状態となるスイッチングパターンを初期状態とし、正側半導体スイッチの全てが同時に非導通状態となり、負側半導体スイッチの全てが同時に導通状態となるスイッチングパターンを最終状態とした場合、初期状態から最終状態へ正側半導体スイッチを1相ずつ非導通状態にし、同時に対となる負側半導体スイッチを導通状態にして行くことで実施される。この際、各スイッチングパターンにおいてカップリングコンデンサ37を経路とする循環電流が流れるが、初期状態のスイッチングパターンで流れる循環電流は、順変換器と逆変換器の各半導体スイッチおよびカップリングコンデンサ37のみを経路とし、直流コンデンサを充電することはない。しかし、その後のスイッチングパターンの最終状態までに流れる循環電流は、直流コンデンサを経路とし充電電流となる。
In FIG. 1, the following can be performed (method 2).
The operation of supplying an alternating voltage of arbitrary amplitude and frequency with the forward converter is, for example, an initial state of a switching pattern in which all the positive-side semiconductor switches are simultaneously turned on and all the negative-side semiconductor switches are simultaneously turned off. When the switching pattern in which all the positive-side semiconductor switches are simultaneously turned off and all the negative-side semiconductor switches are simultaneously turned on is set as the final state, the positive-side semiconductor switches are moved from the initial state to the final state one by one. This is implemented by setting the non-conductive state and simultaneously turning the paired negative-side semiconductor switches conductive. At this time, a circulating current flows through the coupling capacitor 37 in each switching pattern. However, the circulating current flowing in the switching pattern in the initial state flows only to each semiconductor switch and the coupling capacitor 37 of the forward converter and the inverse converter. Do not charge the DC capacitor. However, the circulating current flowing until the final state of the subsequent switching pattern becomes a charging current through the DC capacitor.

そこで、上記のスイッチングパターンの初期状態と最終状態は双方とも、逆変換器の線間出力をゼロ電圧状態にするためのスイッチングパターンであることから、最終状態となるスイッチングパターンが必要なときは初期状態に戻すことで、逆変換器の線間出力をゼロ電圧の状態にしながら、直流コンデンサを充電する経路をとらないようにする。これにより、直流コンデンサを充電する循環電流が減少し、直流コンデンサ電圧の上昇を抑制することができる。   Therefore, both the initial state and the final state of the switching pattern are switching patterns for setting the line-to-line output of the inverse converter to the zero voltage state. By returning to the state, the line output of the inverse converter is set to a zero voltage state, and a path for charging the DC capacitor is not taken. As a result, the circulating current for charging the DC capacitor is reduced, and an increase in the DC capacitor voltage can be suppressed.

図1では、さらに次のようにすること(方式3)ができる。
順変換器から交流電源側へ電力を戻す動作を行なえる場合や、逆変換器が負荷に任意の振幅と周波数の交流電圧を供給する動作を行ない、負荷の消費電力による直流コンデンサの放電量よりも、循環電流による充電量が少ない場合は、直流コンデンサ電圧の上昇は起こらない。
そこで、電力変換装置の出力状態または負荷状態に応じて、各相の正側半導体スイッチの全てが同時に非導通状態となるか、または、各相の負側半導体スイッチの全てが同時に導通状態となるゼロ電圧状態を回避するか否かの切り替えを行ない、直流コンデンサ電圧の上昇が起こると判断される状態においては、上記方式1または2のスイッチング動作を行なう。
In FIG. 1, the following can be further performed (method 3).
When the power can be returned from the forward converter to the AC power supply side, or the reverse converter operates to supply an AC voltage with an arbitrary amplitude and frequency to the load. However, when the amount of charge due to the circulating current is small, the DC capacitor voltage does not increase.
Therefore, depending on the output state or load state of the power conversion device, all the positive-side semiconductor switches for each phase are simultaneously turned off or all the negative-side semiconductor switches for each phase are turned on simultaneously. The switching of whether to avoid the zero voltage state is performed, and in the state where it is determined that the DC capacitor voltage rises, the switching operation of the method 1 or 2 is performed.

図2はこの発明の別の実施の形態を示す回路図である。
上記方式1〜3では、直流コンデンサ14を充電する循環電流を減少させることはできるが、いずれのスイッチング動作においても循環経路が形成されるため、循環電流がなくなることはない。そのため、直流コンデンサ14はゆっくりと充電され、いずれは電圧が規定値よりも大きくなり、過電圧を生じた場合は装置を停止させることになる。
FIG. 2 is a circuit diagram showing another embodiment of the present invention.
In the above methods 1 to 3, the circulating current for charging the DC capacitor 14 can be reduced, but the circulating current is not lost in any switching operation because the circulating path is formed. Therefore, the DC capacitor 14 is charged slowly, and eventually the voltage becomes larger than the specified value, and the device is stopped when an overvoltage occurs.

そこで、図2ではコイル50を循環経路である交流入力側に設置し、循環電流を抑制している。循環電流はコイル50に対しコモンモード電流となるので、コモンモードコイルとすることで、装置の入出力交流電流に対してコイル50は影響を与えることがなく、また、そのコアは循環電流に対して飽和しない程度のものでよいので、コイル50を追加しても図4の回路と比べて小型にすることができる。ここでは、コイル50を交流入力側に挿入したが、循環経路内ならば直流部や交流出力側でも良い。ただし、交流入出力の共通接続線上には、そもそもの問題である高周波電位変動を避けるため、インピーダンスをもつ素子を挿入することはできない。   Therefore, in FIG. 2, the coil 50 is installed on the AC input side, which is a circulation path, to suppress the circulation current. Since the circulating current becomes a common mode current for the coil 50, the coil 50 does not affect the input / output AC current of the apparatus by using a common mode coil, and its core has no effect on the circulating current. Therefore, even if the coil 50 is added, the size can be reduced as compared with the circuit of FIG. Here, the coil 50 is inserted on the AC input side, but it may be on the DC section or AC output side as long as it is in the circulation path. However, in order to avoid high-frequency potential fluctuation, which is a problem in the first place, an element having impedance cannot be inserted on the common input / output connection line.

図3はこの発明のさらに別の実施の形態を示す回路図である。
循環電流抑制の目的が、無負荷時の直流過電圧防止のみとなるときは、図3のコモンモードコイル50に代えて過飽和リアクトル51,52,53を挿入しても良い。そのインダクタンス値としては、負荷電流が十分大きく循環電流抑制の必要がないときには小さく、無負荷付近になると大きくなる。また、図3と同様にコアは循環電流に対して飽和しなければ良いので、リアクトル15〜20に比べて小さいものを用いることができる。
FIG. 3 is a circuit diagram showing still another embodiment of the present invention.
When the purpose of circulating current suppression is only to prevent DC overvoltage at no load, supersaturated reactors 51, 52, and 53 may be inserted in place of the common mode coil 50 of FIG. The inductance value is small when the load current is sufficiently large and it is not necessary to suppress the circulating current, and becomes large near the no load. Similarly to FIG. 3, the core is not required to be saturated with respect to the circulating current, so that a smaller core than reactors 15 to 20 can be used.

挿入場所も図3と同じく交流入力側,直流部または交流出力側のいずれでも良いが、電流,電圧制御への影響を避けるため、直流部に挿入するのが適当である。この際、順変換器,逆変換器ともに直流コンデンサを必要とすることから、図示のコンデンサ14を2並列としてその間に過飽和リアクトルを設ける構成となる。なお、リアクトル15〜20に電流ゼロ付近でインダクタンス値が非常に大きくなる特性(いわゆるスイング特性)を持つものを用いても、同様の効果を得ることができる。   The insertion place may be any of the AC input side, DC section, or AC output side as in FIG. 3, but it is appropriate to insert it into the DC section in order to avoid the influence on the current and voltage control. At this time, since both the forward converter and the reverse converter require a DC capacitor, the illustrated capacitor 14 is arranged in parallel and a supersaturated reactor is provided between them. The same effect can be obtained even if the reactors 15 to 20 have characteristics (so-called swing characteristics) in which the inductance value becomes very large near zero current.

なお、以上では主として3相回路について説明したが、この発明は単相や多相の回路にも同様に適用することができる。   Although the above description has mainly focused on the three-phase circuit, the present invention can be similarly applied to single-phase and multi-phase circuits.

この発明の実施の形態および提案装置を説明するための回路図Circuit diagram for explaining the embodiment of the present invention and the proposed apparatus この発明の他の実施の形態を示す回路図Circuit diagram showing another embodiment of the present invention この発明のさらに他の実施の形態を示す回路図Circuit diagram showing still another embodiment of the present invention 一般的な電力変換装置例を示す回路図Circuit diagram showing a typical power converter

符号の説明Explanation of symbols

1…交流電源、2〜13…半導体素子スイッチ、14…直流中間コンデンサ、15〜20…リアクトル、31〜36…フィルタコンデンサ、37…カップリングコンデンサ、50…コモンモードコイル、51〜53…可飽和リアクトル。   DESCRIPTION OF SYMBOLS 1 ... AC power source, 2-13 ... Semiconductor element switch, 14 ... DC intermediate capacitor, 15-20 ... Reactor, 31-36 ... Filter capacitor, 37 ... Coupling capacitor, 50 ... Common mode coil, 51-53 ... Saturable Reactor.

Claims (5)

半導体スイッチ,リアクトルおよび交流フィルタコンデンサからなり、前記半導体スイッチの高周波スイッチング動作により交流−直流変換を行なう順変換器と、半導体スイッチ,リアクトルおよび交流フィルタコンデンサからなり、前記半導体スイッチの高周波スイッチング動作により直流−交流変換を行なう逆変換器とを備え、その直流部分を共通接続するとともに、前記順変換器の交流フィルタコンデンサの一端と逆変換器の交流フィルタコンデンサの一端との間を、前記半導体スイッチのスイッチング周波数において前記リアクトルよりもインピーダンスが十分小さく、かつ、装置の入力周波数または出力周波数において前記交流フィルタコンデンサよりもインピーダンスが大幅に小さくならないキャパシタンスのカップリングコンデンサを介して接続してなる電力変換装置において、
各々が1個または複数個の正側半導体スイッチと負側半導体スイッチとの直列回路により1相分の変換回路を構成し、これを相数分並列接続して逆変換器を構成し、そのスイッチング動作時には、各相の正側半導体スイッチの全てが同時に導通状態となるか、または各相の負側半導体スイッチの全てが同時に導通状態となるゼロ電圧出力状態を回避するようにスイッチングパターンを選択することを特徴とする電力変換装置。
A forward converter comprising a semiconductor switch, a reactor and an AC filter capacitor, which performs AC-DC conversion by a high-frequency switching operation of the semiconductor switch, and a DC switch by a high-frequency switching operation of the semiconductor switch, comprising a semiconductor switch, a reactor and an AC filter capacitor. An inverter for performing AC conversion, and the DC portion thereof is connected in common, and between one end of the AC filter capacitor of the forward converter and one end of the AC filter capacitor of the reverse converter, A capacitance coupling capacitor whose impedance is sufficiently lower than that of the reactor at a switching frequency and whose impedance is not significantly lower than that of the AC filter capacitor at the input frequency or output frequency of the device. The power converter formed by connecting via the capacitors,
Each is composed of a series circuit of one or a plurality of positive-side semiconductor switches and negative-side semiconductor switches to form a conversion circuit for one phase, and this is connected in parallel for the number of phases to form an inverse converter. During operation, the switching pattern is selected so as to avoid a zero voltage output state in which all the positive-side semiconductor switches of each phase are turned on simultaneously or all the negative-side semiconductor switches of each phase are turned on simultaneously. The power converter characterized by the above-mentioned.
前記ゼロ電圧出力状態が必要な場合は、前記各相の正側半導体スイッチの全てが同時に導通状態となるスイッチングパターンのみを用いるか、または各相の負側半導体スイッチの全てが同時に導通状態となるスイッチングパターンのみを用いることを特徴とする請求項1に記載の電力変換装置。   When the zero voltage output state is required, use only a switching pattern in which all the positive-side semiconductor switches of each phase are simultaneously turned on, or all of the negative-side semiconductor switches of each phase are simultaneously turned on. The power converter according to claim 1, wherein only the switching pattern is used. 前記電力変換装置の出力状態または負荷状態に応じて、前記ゼロ電圧出力状態を回避するか否かを切り替えることを特徴とする請求項1または2に記載の電力変換装置。   The power converter according to claim 1 or 2, wherein whether to avoid the zero voltage output state is switched according to an output state or a load state of the power converter. 前記順変換器のリアクトルまたは逆変換器のリアクトルと直列に、もしくは前記順変換器と逆変換器の直流共通部分に、前記リアクトルよりもインダクタンスが十分に大きいコモンモードコイルを接続することを特徴とする請求項1〜3のいずれか1つに記載の電力変換装置。   A common mode coil having a sufficiently larger inductance than that of the reactor is connected in series with the reactor of the forward converter or the reactor of the reverse converter, or a direct current common part of the forward converter and the reverse converter. The power converter according to any one of claims 1 to 3. 前記順変換器のリアクトルまたは逆変換器のリアクトルと直列に、もしくは前記順変換器と逆変換器の直流共通部分に、電流が小さいときに前記リアクトルよりもインダクタンスが十分に大きくなる可飽和リアクトルを接続することを特徴とする請求項1〜3のいずれか1つに記載の電力変換装置。   A saturable reactor whose inductance is sufficiently larger than that of the reactor when the current is small is connected in series with the reactor of the forward converter or the reactor of the reverse converter or in a DC common part of the forward converter and the reverse converter. It connects, The power converter device as described in any one of Claims 1-3 characterized by the above-mentioned.
JP2006314522A 2006-11-21 2006-11-21 Power conversion device Pending JP2008131756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314522A JP2008131756A (en) 2006-11-21 2006-11-21 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006314522A JP2008131756A (en) 2006-11-21 2006-11-21 Power conversion device

Publications (1)

Publication Number Publication Date
JP2008131756A true JP2008131756A (en) 2008-06-05

Family

ID=39557075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314522A Pending JP2008131756A (en) 2006-11-21 2006-11-21 Power conversion device

Country Status (1)

Country Link
JP (1) JP2008131756A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217043A (en) * 2009-03-17 2010-09-30 Fuji Electric Holdings Co Ltd Apparatus for testing power conversion apparatus
CN103190061A (en) * 2010-11-09 2013-07-03 株式会社安川电机 Filter circuit, and bidirectional power conversion apparatus provided with same
WO2024040609A1 (en) * 2022-08-26 2024-02-29 西门子股份公司 Motor driver and motor driving system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133633A (en) * 1990-09-25 1992-05-07 Isao Takahashi Uninterruptible power unit
JPH0984357A (en) * 1995-09-19 1997-03-28 Yaskawa Electric Corp Filter circuit for pwm inverter
JPH10337047A (en) * 1997-06-03 1998-12-18 Fuji Electric Co Ltd Polyphase output power converting circuit
JP2006121890A (en) * 2004-09-22 2006-05-11 Matsushita Electric Ind Co Ltd Dc power supply and compressor drive device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133633A (en) * 1990-09-25 1992-05-07 Isao Takahashi Uninterruptible power unit
JPH0984357A (en) * 1995-09-19 1997-03-28 Yaskawa Electric Corp Filter circuit for pwm inverter
JPH10337047A (en) * 1997-06-03 1998-12-18 Fuji Electric Co Ltd Polyphase output power converting circuit
JP2006121890A (en) * 2004-09-22 2006-05-11 Matsushita Electric Ind Co Ltd Dc power supply and compressor drive device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217043A (en) * 2009-03-17 2010-09-30 Fuji Electric Holdings Co Ltd Apparatus for testing power conversion apparatus
CN103190061A (en) * 2010-11-09 2013-07-03 株式会社安川电机 Filter circuit, and bidirectional power conversion apparatus provided with same
CN103190061B (en) * 2010-11-09 2015-08-05 株式会社安川电机 Filter circuit and possess the bi-directional electric power converting means of this filter circuit
WO2024040609A1 (en) * 2022-08-26 2024-02-29 西门子股份公司 Motor driver and motor driving system

Similar Documents

Publication Publication Date Title
CA2373762C (en) Method and apparatus for converting a dc voltage to an ac voltage
JP6232944B2 (en) Multi-level power converter
KR101971648B1 (en) Full-bridge power converter
Liu et al. High step-up Y-source inverter with reduced DC-link voltage spikes
JPH11234923A (en) Uninterruptive power supply
WO2016163201A1 (en) Power conversion device
US7969128B2 (en) Bi-directional power supply with isolated output
JPWO2002082627A1 (en) Power converter
US7372711B2 (en) Circuit and method for reducing voltage spikes due to magnetizing current imbalances and power converter employing the same
JP2009171807A (en) Three-phase voltage type inverter system
Le et al. Fault-tolerant control of three-phase bidirectional current-fed dual active bridge DC-DC converter
JP2008131756A (en) Power conversion device
CN112014727B (en) Testing device for harmonic current switching capacity of tap switch
JP2013062904A (en) Regenerative motor end surge voltage suppression apparatus, motor drive system, and regenerative motor end surge voltage suppression method
KR101862517B1 (en) Multi-phase inverter using independent-type multi H-bridge
JP6444204B2 (en) Power converter
WO2007116444A1 (en) Power supply apparatus and power supply control method
JP2019187101A (en) Multilevel power conversion device
JPH08322268A (en) Three-/single-phase voltage converter
JP2005304165A (en) Power supply device
JP2023114025A (en) Charging system, charging method, and program
KR100679984B1 (en) Current Source Radio Frequency Source Circuit
JP2014180167A (en) DC-DC converter
EP2975727A1 (en) Three-wire UPS system with artificial neutral
JP2019180192A (en) Snubber circuit and power conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228