JP2008107119A - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP2008107119A
JP2008107119A JP2006288122A JP2006288122A JP2008107119A JP 2008107119 A JP2008107119 A JP 2008107119A JP 2006288122 A JP2006288122 A JP 2006288122A JP 2006288122 A JP2006288122 A JP 2006288122A JP 2008107119 A JP2008107119 A JP 2008107119A
Authority
JP
Japan
Prior art keywords
current
peak value
core
circuit
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006288122A
Other languages
Japanese (ja)
Other versions
JP4716030B2 (en
Inventor
Takashi Urano
高志 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006288122A priority Critical patent/JP4716030B2/en
Publication of JP2008107119A publication Critical patent/JP2008107119A/en
Application granted granted Critical
Publication of JP4716030B2 publication Critical patent/JP4716030B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize miniaturization, weight reduction, and cost reduction, by acquiring a constitution having a core and windings of a half of a conventional case, comprising one measuring closed magnetic circuit core and two windings of one excitation winding and one detection winding. <P>SOLUTION: This sensor includes the closed magnetic circuit core 1 wherein a magnetic flux by a current to be measured is generated, the excitation winding 2 and a feedback winding 3 applied to the closed magnetic circuit core 1, a series circuit by an oscillator 4 and a resistance 5 connected between both ends of the excitation winding 2, a positive side peak detection circuit 6 for detecting a positive side peak value of an AC voltage generated in the excitation winding 2 and a negative side peak detection circuit 7 for detecting a negative side peak value of the AC voltage, and an amplifier 8 for magnetic equilibrium for sending a feedback current into the feedback winding 3 so that a difference between the positive side peak value detected by the positive side peak detection circuit 6 and the negative side peak value detected by the negative side peak detection circuit 7 becomes zero. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、工作機械や、ハイブリッドカー、EV車等に使用される、電流を非接触で高精度で計測する「磁気平衡式電流センサ」に係り、特にホール素子、MR素子等の磁気感応素子を使用しないで、交流だけでなく、直流を精度良く計測可能な電流センサに関する。   The present invention relates to a “magnetic balance type current sensor” that is used in machine tools, hybrid cars, EV cars, and the like, and that measures current with high accuracy in a non-contact manner, and in particular, magnetically sensitive elements such as Hall elements and MR elements. It is related with the current sensor which can measure not only alternating current but direct current accurately.

従来から、非接触型電流センサとしては、(1)フィードバックをかけない所謂「開ループ型」の磁気比例式電流センサと、(2)磁気平衡式であるフィードバック型電流センサとがある。   Conventionally, as the non-contact type current sensor, there are (1) a so-called “open loop type” magnetic proportional current sensor that does not apply feedback, and (2) a feedback type current sensor that is magnetically balanced.

(1) 開ループ型の磁気比例式電流センサは、磁気コアの一部にギャップを設け、ホール素子等の直流磁気に感応する素子を挿入し、前記磁気コアを貫通する貫通電流に比例して前記磁気コア内部に発生する磁束を検知し、出力とするものである。この磁気比例式電流センサは、構成は簡単であるが、開ループ型であるため、温度によるホール素子の感度変化が直接的にセンサ出力の精度を悪化させ、温度依存性が大きいという欠点があった。但し、低価格であるため、それほど精度が要求されない用途で使用されている。 (1) An open-loop type magnetic proportional current sensor has a gap in a part of a magnetic core, an element sensitive to DC magnetism such as a Hall element is inserted, and is proportional to the through current passing through the magnetic core. The magnetic flux generated inside the magnetic core is detected and output. Although this magnetic proportional current sensor has a simple configuration, it is of an open loop type, so that the sensitivity change of the Hall element due to temperature directly deteriorates the accuracy of the sensor output, and has a drawback that the temperature dependence is large. It was. However, because of its low price, it is used in applications that do not require much precision.

(2) フィードバック型電流センサは、上記(1)の「開ループ型」に対して「閉ループ型」である。磁気コアの一部にホール素子を挿入した(1)と同じ構成でも、回路的にギャップ内の磁束が常時ゼロとなるように、被測定電流が発生する磁束をフィードバック巻線にフィードバック電流を流し、所謂「等アンペア・ターンの原理」により相殺する。ホール素子の感度特性が温度等により変化してもセンサ出力に影響を与えないという利点があり、温度依存性が少ない高精度な電流センサが構成される。但し、ホール素子のオフセットの温度依存性の影響は受けてしまうという欠点があった。 (2) The feedback type current sensor is a “closed loop type” with respect to the “open loop type” in the above (1). Even with the same configuration as (1) in which a Hall element is inserted in a part of the magnetic core, the feedback current is passed through the feedback winding with the magnetic flux generated by the current to be measured so that the magnetic flux in the gap is always zero. This is offset by the so-called “equal amp turn principle”. Even if the sensitivity characteristic of the Hall element changes due to temperature or the like, there is an advantage that the sensor output is not affected, and a highly accurate current sensor with less temperature dependency is configured. However, there is a drawback that the temperature dependence of the offset of the Hall element is affected.

なお、ホール素子のオフセットとは、ホール素子を貫通する磁束がゼロの時に、例えば25℃時にホール素子出力がゼロであっても、低温や高温時に出力がゼロとならない温度に依存する誤差成分のことである。即ち、被測定電流が0[A]時の、温度による誤差のことを言う。   The offset of the Hall element is an error component depending on the temperature at which the output does not become zero at low or high temperatures even when the Hall element output is zero at 25 ° C. when the magnetic flux penetrating the Hall element is zero. That is. That is, it means an error due to temperature when the measured current is 0 [A].

また、ホール素子等の磁気感応素子を使用しない電流センサも提案されており、公知例として下記特許文献1,2に記載の技術が知られている。   Further, a current sensor that does not use a magnetically sensitive element such as a Hall element has been proposed, and the techniques described in Patent Documents 1 and 2 below are known as known examples.

特開平2002−22774号公報Japanese Patent Laid-Open No. 2002-22774 特開平9−113543号公報JP-A-9-113543

特許文献1は、測定用コアと基準用コアの2つのコアを備え、両コアに励振コイルを巻き、高周波励振電源から並列に励振し、検出コイルを両コアにそれぞれ巻き、零磁界制御回路に接続している。また、前記測定用コアに導線を貫通させ、かつ逆励磁コイルを巻回している。そして、前記測定用コアを貫通した導線に被測定電流を流したときに、両コアの磁界の差を零磁界制御回路で検出し、ゼロ磁界となるように逆励磁回路を作動させて逆励磁コイルに電流を流し、このときの出力を計測することにより、前記導線に流れる被測定電流を求めるものである。   Patent Document 1 includes two cores, a measurement core and a reference core, in which both coils are wound with excitation coils, excited in parallel from a high-frequency excitation power source, and detection coils are wound on both cores, respectively. Connected. Further, a conducting wire is passed through the measurement core and a reverse excitation coil is wound. Then, when a current to be measured is passed through the conducting wire passing through the measurement core, the difference between the magnetic fields of both cores is detected by the zero magnetic field control circuit, and the reverse excitation circuit is operated so that the zero magnetic field is obtained. A current to be measured flows through the conducting wire by passing a current through the coil and measuring the output at this time.

これにより、分解能が高く、高精度な電流センサが得られるとしている。また、ホール素子を使用しないため、ホール素子による温度依存性の影響がないという長所がある。   As a result, a current sensor with high resolution and high accuracy can be obtained. Further, since the Hall element is not used, there is an advantage that there is no influence of temperature dependency by the Hall element.

特許文献1の問題点は、測定用と基準用の2個の磁気コアを使用し、両コアに励振コイル2個、検出コイル2個を設け、さらに測定用コアに逆励磁コイル1個を設ける必要があり、合計5個のコイルが必要となり構成が複雑化する。また、コアの材質として、ヒステリシスの磁束レベルの勾配がほぼ90度に近い、高価なアモルファス合金(又はパーマロイ)を使用し、しかもコア2個を必要とするため、コスト高となり、電流センサとしての形状が大きくなり、重量が重くなるという欠点があった。   The problem of Patent Document 1 is that two magnetic cores for measurement and reference are used, two excitation coils and two detection coils are provided on both cores, and one reverse excitation coil is provided on the measurement core. This requires a total of five coils, which complicates the configuration. In addition, as the material of the core, an expensive amorphous alloy (or permalloy) having a hysteresis magnetic flux level gradient of nearly 90 degrees is used, and two cores are required. There was a drawback that the shape was large and the weight was heavy.

特許文献2は、1つの鉄心に2つの巻線を施した電流検出部を設け、第1の巻線に交流電圧をコンデンサを介して加えて誘起電圧を誘起させ、誘起電圧源を直流電圧検出装置に入力し、直流電路に被検出直流電流が流れるとき出力電圧を得る。この出力電圧を制御信号とするブースタを設け、ブースタの出力電流を第2の巻線の一方の端子から他方の端子に接続された負荷抵抗に流す。この負荷抵抗の両端に発生した電圧を平滑装置を通して交流分を除去し、被検出直流電流に比例した出力電圧が得られるように構成している。   Patent Document 2 provides a current detection unit in which two windings are applied to one iron core, an AC voltage is applied to the first winding through a capacitor to induce an induced voltage, and an induced voltage source is detected as a DC voltage. The output voltage is obtained when the detected DC current flows through the DC circuit and is input to the apparatus. A booster using the output voltage as a control signal is provided, and the output current of the booster is passed from one terminal of the second winding to the load resistor connected to the other terminal. The voltage generated at both ends of the load resistor is removed from the alternating current through a smoothing device, and an output voltage proportional to the detected direct current is obtained.

従来の磁気コアにギャップを設けてホール素子を挿入した電流センサは、磁気抵抗が増大し発生磁束が減少するため、感度が低くなる欠点を、特許文献2ではギャップを無くした手段により、高感度にできるとしている。   A conventional current sensor in which a Hall element is inserted by providing a gap in a magnetic core increases the magnetoresistance and decreases the generated magnetic flux, so that the sensitivity is lowered. It can be done.

特許文献2の問題点は、電流検出部に被検出直流電流が流れた時に、第1巻線に誘起する交流電圧の、正の半波巾と負の半波巾に生じる電気角の差を、波形整形、整流平滑、電圧増幅を含む直流電圧検出装置で検出するため、回路が複雑になるという欠点があった。   The problem of Patent Document 2 is that the difference in electrical angle that occurs between the positive half-wave width and the negative half-wave width of the AC voltage induced in the first winding when a detected DC current flows through the current detector. In addition, since the detection is performed by a DC voltage detection device including waveform shaping, rectification smoothing, and voltage amplification, there is a drawback that the circuit becomes complicated.

本発明は、上記の点に鑑み、1個の測定用閉磁路コアと、これに設けられる励磁巻線1個及び検出(フィードバック)巻線1個の計2個の巻線とからなる、従来例(特許文献1)の半分のコア・巻線構成とし、小型、軽量化、原価低減を図ることのできる磁気平衡式の電流センサを提供することを目的とする。   In view of the above points, the present invention is composed of a single closed magnetic circuit core for measurement and a total of two windings, one excitation winding and one detection (feedback) winding. An object of the present invention is to provide a magnetic balance type current sensor that has a half core / winding configuration of the example (Patent Document 1) and can be reduced in size, weight, and cost.

また、本発明は、前記測定用閉磁路コアにフィードバック電流を流す制御回路が、正と負のピーク値だけにより動作するため、従来例(特許文献2)のように、正と負の電気角の差を直流変換して増幅するという複雑な回路は必要なく、より簡単な回路構成として部品点数の低減を図ることのできる磁気平衡式の電流センサを提供することをもう一つの目的とする。   Further, according to the present invention, since the control circuit that feeds the feedback current to the measurement closed magnetic circuit core operates only by the positive and negative peak values, the positive and negative electrical angles as in the conventional example (Patent Document 2). Another object is to provide a magnetic balance type current sensor capable of reducing the number of parts as a simpler circuit configuration without requiring a complicated circuit for DC conversion and amplifying the difference.

本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するために、本発明のある態様の電流センサは、被測定電流による磁束が発生する閉磁路コアと、
前記閉磁路コアに施された励磁巻線及びフィードバック巻線と、
前記励磁巻線の両端間に接続された、交流電圧源と抵抗との直列回路と、
前記励磁巻線に生じる交流電圧の正側ピーク値を検出する正側ピーク検出回路、及び前記交流電圧の負側ピーク値を検出する負側ピーク検出回路と、
前記正側ピーク検出回路で検出された正側ピーク値と、前記負側ピーク検出回路で検出された負側ピーク値との差がゼロになるように前記フィードバック巻線にフィードバック電流を流す磁気平衡用増幅器とを備えたことを特徴としている。
In order to achieve the above object, a current sensor according to an aspect of the present invention includes a closed magnetic circuit core that generates a magnetic flux due to a current to be measured;
An excitation winding and a feedback winding applied to the closed magnetic circuit core;
A series circuit of an AC voltage source and a resistor connected between both ends of the excitation winding;
A positive-side peak detection circuit for detecting a positive-side peak value of the AC voltage generated in the excitation winding, and a negative-side peak detection circuit for detecting a negative-side peak value of the AC voltage;
Magnetic balance in which a feedback current is passed through the feedback winding so that the difference between the positive peak value detected by the positive peak detection circuit and the negative peak value detected by the negative peak detection circuit is zero. And an amplifier for use.

前記電流センサでは、磁気平衡状態において、前記正側ピーク値と前記負側ピーク値が等しくなり、前記閉磁路コアのB−H曲線内に描かれるマイナーループが、原点0を中心として、第1象限と第3象限にて常時、対称形となることを特徴としている。   In the current sensor, in the magnetic equilibrium state, the positive peak value and the negative peak value are equal, and the minor loop drawn in the BH curve of the closed magnetic circuit core is the first centered on the origin 0. The quadrant and the third quadrant are always symmetrical.

本発明に係る電流センサは、ホール素子等の磁気感応素子を使用せず、被測定電流による磁束が発生する閉磁路コアのB−H曲線(例えば図2)の特性を利用して電流検出を行っており、B−H曲線の原点0を中心とした正側及び負側波形の対称性は温度に依存しない。このため、ホール素子等の磁気感応素子を使用した場合の温度変化によるオフセット変動は受けないから、温度変化に対する安定性を確保できる。   The current sensor according to the present invention does not use a magnetically sensitive element such as a Hall element, and performs current detection using the characteristic of a BH curve (for example, FIG. 2) of a closed magnetic circuit core that generates a magnetic flux due to a current to be measured. The symmetry of the positive and negative waveforms around the origin 0 of the BH curve is independent of temperature. For this reason, since the offset variation due to the temperature change when using a magnetically sensitive element such as a Hall element is not affected, the stability against the temperature change can be ensured.

特許文献1ではコア2個と5巻線が必要であったが、本発明の電流センサでは、コア1個と2巻線に半減でき、小型、軽量化が可能である。   In Patent Document 1, two cores and five windings are required. However, the current sensor of the present invention can be halved to one core and two windings, and can be reduced in size and weight.

さらに、特許文献2では、波形整形回路等を含む複雑な直流電圧検出装置を用いているが、本発明の電流センサではピーク値だけを検出することにより制御できるため、より簡単な回路構成を実現できる。   Furthermore, in Patent Document 2, a complex DC voltage detection device including a waveform shaping circuit or the like is used, but the current sensor of the present invention can be controlled by detecting only the peak value, thereby realizing a simpler circuit configuration. it can.

以下、本発明を実施するための最良の形態として、電流センサの実施の形態を図面に従って説明する。   Hereinafter, as the best mode for carrying out the present invention, an embodiment of a current sensor will be described with reference to the drawings.

図1は磁気平衡型の電流センサの全体構成を示す回路図であり、図2乃至図4はその動作原理を示す説明図、図5は図1の回路図における各部の波形図である。   FIG. 1 is a circuit diagram showing the overall configuration of a magnetic balance type current sensor, FIGS. 2 to 4 are explanatory diagrams showing the operation principle, and FIG. 5 is a waveform diagram of each part in the circuit diagram of FIG.

図1において、1は測定用コアとしての閉磁路コアであり、これに励磁巻線2及びフィードバック巻線3がそれぞれ巻回されている。閉磁路コア1には直流バイアス電流となる被測定電流Ipが流れる電流路10が設けられている(図示の場合貫通している)。   In FIG. 1, reference numeral 1 denotes a closed magnetic circuit core as a measurement core, on which an excitation winding 2 and a feedback winding 3 are wound. The closed magnetic circuit core 1 is provided with a current path 10 through which a measured current Ip serving as a DC bias current flows (through in the case of illustration).

励磁巻線2の両端子2a,2b間には、交流電圧源としての発振器(オシレータ)4と負荷抵抗(直列抵抗)5との直列回路が接続されている。また、端子2bはグランドに接続されている。   A series circuit of an oscillator (oscillator) 4 serving as an AC voltage source and a load resistor (series resistor) 5 is connected between both terminals 2 a and 2 b of the excitation winding 2. The terminal 2b is connected to the ground.

励磁巻線2の端子2aには励磁巻線2に生じる交流電圧の正側ピーク値を検出する正側ピーク検出回路6、及び前記交流電圧の負側ピーク値を検出する負側ピーク検出回路7が接続され、正側ピーク検出回路6で検出された正側ピーク値と、負側ピーク検出回路7で検出された負側ピーク値との差がゼロになるようにフィードバック巻線3にフィードバック電流を流す磁気平衡用増幅器8が設けられている。フィードバック巻線3に直列にセンサ出力電圧を取り出すための検出抵抗9が挿入されている。なお、ここでは正側ピーク値と負側ピーク値とは共に正の符号を持つものとして説明する。   A terminal 2a of the exciting winding 2 has a positive peak detecting circuit 6 for detecting the positive peak value of the alternating voltage generated in the exciting winding 2, and a negative peak detecting circuit 7 for detecting the negative peak value of the alternating voltage. Is connected to the feedback winding 3 so that the difference between the positive peak value detected by the positive peak detection circuit 6 and the negative peak value detected by the negative peak detection circuit 7 becomes zero. Is provided. A detection resistor 9 for taking out the sensor output voltage is inserted in series with the feedback winding 3. Here, it is assumed that both the positive peak value and the negative peak value have a positive sign.

ここで、図1の回路図の全体動作説明に先立って、図2乃至図4を用いて電流検出の原理について説明する。   Here, prior to the description of the overall operation of the circuit diagram of FIG. 1, the principle of current detection will be described with reference to FIGS.

図2は本実施の形態で用いる閉磁路コア1のB−H曲線(ヒステリシス曲線)の1例であり、コア材質としては、保磁力(Hc)が小さく、比透磁率が十分大きい(例えば、100,000以上)強磁性体が望ましく、アモルファス合金やパーマロイが挙げられる。   FIG. 2 is an example of the BH curve (hysteresis curve) of the closed magnetic circuit core 1 used in the present embodiment. As the core material, the coercive force (Hc) is small and the relative permeability is sufficiently large (for example, 100,000 or more) is desirable, and examples thereof include amorphous alloys and permalloy.

本実施の形態では閉磁路コア1の具体例として、PCパーマロイ(初透磁率60,000、最大透磁率180,000、飽和磁束密度0.65[T]、保磁力1.2[A/m]でギャップ無し品を使用している。   In the present embodiment, as a specific example of the closed magnetic circuit core 1, PC permalloy (initial permeability 60,000, maximum permeability 180,000, saturation magnetic flux density 0.65 [T], coercive force 1.2 [A / m ] With no gap.

閉磁路コア1の直流特性は図2中のメジャーループで示され、このコアに巻いた励磁巻線2に交流バイアスを印加すると、以下に述べるようにメジャーループ内に小さなマイナーループを描く。   The DC characteristic of the closed magnetic circuit core 1 is shown by a major loop in FIG. 2. When an AC bias is applied to the excitation winding 2 wound around this core, a small minor loop is drawn in the major loop as described below.

(a) 閉磁路コア1への直流バイアスがゼロ(即ち、被測定電流Ip=0)のとき、交流バイアスを励磁巻線2に印加すると、図2中のOa(原点0に一致)を中心として第1象限と第3象限に点対称(180度回転した図形が重なり合う)なマイナーループ(a)上で動作する。 (A) When the DC bias to the closed magnetic circuit core 1 is zero (that is, the current to be measured Ip = 0), when an AC bias is applied to the excitation winding 2, the center is Oa (matches the origin 0) in FIG. As shown in FIG. 3, the operation is performed on a minor loop (a) that is point-symmetric (a figure rotated by 180 degrees overlaps) in the first and third quadrants.

(b) 次に、図3に示すように、閉磁路コア1に正側の直流バイアス電流(即ち、正側の被測定電流+Ip[A])が流れると、閉磁路コア1内部の磁界の強さH1は、
H1=+Ip×1[ターン]/L [A/m]
但し、L[m]:閉磁路コアの平均磁路長、被測定電流Ipは閉磁路コア1を貫通して流れるもの(1ターン)とした。
(B) Next, as shown in FIG. 3, when a positive DC bias current (that is, positive measured current + Ip [A]) flows through the closed magnetic circuit core 1, the magnetic field inside the closed magnetic circuit core 1 is reduced. Strength H1 is
H1 = + Ip × 1 [turn] / L [A / m]
However, L [m]: the average magnetic path length of the closed magnetic circuit core, and the measured current Ip flow through the closed magnetic circuit core 1 (one turn).

動作するマイナーループは図2中(b)に示すように、Obを中心として非対称形となる。   As shown in FIG. 2B, the minor loop that operates is asymmetric with respect to Ob.

(c) 閉磁路コア1に負側の直流バイアス電流(即ち、負側の被測定電流−Ip[A])が流れたとき、(b)と同様にOcを中心として非対称形のマイナーループを描く。 (C) When a negative DC bias current (that is, negative measured current −Ip [A]) flows through the closed magnetic circuit core 1, an asymmetric minor loop centered on Oc as in (b). Draw.

図4(A),(B),(C)は、それぞれマイナーループ(a)、マイナーループ(b)、マイナーループ(c)をその中心Oa,Ob,Ocを中心として描いたものである。   4A, 4B, and 4C depict the minor loop (a), the minor loop (b), and the minor loop (c), respectively, with their centers Oa, Ob, and Oc as the centers.

図4(A)の場合、中心Oaに対してマイナーループは点対称であり(180度回転した図形が重なり合う)、|BA1|=|BA2|である。(B)の場合、中心Obに対してマイナーループは非対称であり、|BB1|<|BB2|、(C)の場合も、中心Ocに対してマイナーループは非対称であり、|BC1|>|BC2|である。また、図4(B)と(C)のマイナーループは相互に形が異なる。 In the case of FIG. 4A, the minor loop is point-symmetric with respect to the center Oa (the figures rotated by 180 degrees overlap), and | B A1 | = | B A2 |. For (B), the minor loop is asymmetrical with respect to the center Ob, | B B1 | <| B B2 |, in the case of (C), a minor loop for center Oc is asymmetric, | B C1 |> | B C2 |. Also, the minor loops in FIGS. 4B and 4C have different shapes.

図1の電流センサでは、被測定電流Ipが電流路10に流れることにより図4(B)又は(C)の状態にあるとき、フィードバック巻線3にフィードバック電流Isを流して閉磁路コア1内の磁界がゼロとなるようにし、そのフィードバック電流Isの電流値から被測定電流Ipを測定する。すなわち、閉磁路コア1内の磁界ゼロは図4(A)のように|BA1|=|BA2|となることから検知でき、そのとき、「等アンペア・ターンの原理」により、
Ip×Np=Is×Ns …(1)
(但し、Np:被測定電流Ipの電流路10の巻数(閉磁路コア1を1回貫通している例では1ターン)、Ns:フィードバック巻線3の巻数。)
が成立し、(1)式から被測定電流Ipは、
Ip=Is×Ns/Np …(2)
となる。
In the current sensor of FIG. 1, when the measured current Ip flows through the current path 10 and is in the state of FIG. 4B or FIG. The measured current Ip is measured from the current value of the feedback current Is. That is, the magnetic field zero in the closed magnetic circuit core 1 can be detected from | B A1 | = | B A2 | as shown in FIG. 4A. At that time, according to the “equal ampere-turn principle”,
Ip × Np = Is × Ns (1)
(However, Np: the number of turns of the current path 10 of the current Ip to be measured (one turn in the case of passing through the closed magnetic circuit core 1 once), Ns: the number of turns of the feedback winding 3.
And the measured current Ip is
Ip = Is × Ns / Np (2)
It becomes.

図1の電流センサでは、測定用コアとしての閉磁路コア1に巻回する励磁巻線2の巻数は例えば50ターン、フィードバック巻線3の巻数は例えば10ターンとしている。   In the current sensor of FIG. 1, the number of turns of the excitation winding 2 wound around the closed magnetic circuit core 1 as the measurement core is, for example, 50 turns, and the number of turns of the feedback winding 3 is, for example, 10 turns.

励磁巻線2には、交流バイアス印加用の交流電圧源としての発振器4と負荷抵抗5との直列回路が接続されている。負荷抵抗5を挿入する理由は、発振器4を定電圧源と見なすことができるため、閉磁路コア1の透磁率、すなわち励磁巻線2のインピーダンスが変化したときに、励磁巻線2の両端子2a,2b間の波形が負荷抵抗5の電圧降下で変化するようにするためである。発振器4の発振周波数は数10kHz〜数100kHzであり、発振波形は正弦波が最も好ましく、三角波や正弦波に近似した台形波も使用できる。   A series circuit of an oscillator 4 and a load resistor 5 as an AC voltage source for applying an AC bias is connected to the excitation winding 2. The reason why the load resistor 5 is inserted is that the oscillator 4 can be regarded as a constant voltage source. Therefore, when the permeability of the closed magnetic circuit core 1, that is, the impedance of the excitation winding 2 changes, both terminals of the excitation winding 2 are changed. This is because the waveform between 2a and 2b changes with the voltage drop of the load resistor 5. The oscillation frequency of the oscillator 4 is several tens kHz to several hundreds kHz, and the oscillation waveform is most preferably a sine wave, and a trapezoidal wave approximated to a triangular wave or a sine wave can also be used.

励磁巻線2の一方の端子2bはグランドレベルとされ、他方の端子2aに現れる誘起電圧は正側ピーク検出回路6及び負側ピーク検出回路7に印加される。   One terminal 2 b of the excitation winding 2 is set to the ground level, and the induced voltage appearing on the other terminal 2 a is applied to the positive peak detection circuit 6 and the negative peak detection circuit 7.

正側ピーク検出回路6は、演算増幅器OP1と、その出力電圧を整流するダイオードD1と、ダイオードD1の整流電圧で充電されるコンデンサC1とを有し、正側ピーク値をホールドしたコンデンサC1の端子電圧が磁気平衡用増幅器8の一方の入力端に入力される。   The positive-side peak detection circuit 6 includes an operational amplifier OP1, a diode D1 that rectifies its output voltage, and a capacitor C1 that is charged with the rectified voltage of the diode D1, and a terminal of the capacitor C1 that holds the positive-side peak value. A voltage is input to one input terminal of the magnetic balance amplifier 8.

負側ピーク検出回路7は、負側の波形を正側に反転する増幅度1の反転増幅器11(インバータ:演算増幅器OP2と抵抗12,13からなる)と、演算増幅器OP3と、その出力電圧を整流するダイオードD2と、ダイオードD2の整流電圧で充電されるコンデンサC2とを有する。そして、負側ピーク値(絶対値)をホールドしたコンデンサC2の端子電圧が磁気平衡用増幅器8の他方の入力端に入力される。   The negative-side peak detection circuit 7 includes an inverting amplifier 11 (inverter: composed of an operational amplifier OP2 and resistors 12 and 13) having an amplification factor 1 for inverting the negative waveform to the positive side, an operational amplifier OP3, and its output voltage. A diode D2 for rectification and a capacitor C2 charged with a rectified voltage of the diode D2 are included. The terminal voltage of the capacitor C2 holding the negative peak value (absolute value) is input to the other input terminal of the magnetic balance amplifier 8.

磁気平衡用増幅器8は、正側ピーク検出回路6の出力端6cの直流電圧値と、負側ピーク検出回路7の出力端7dの直流電圧値とが等しくなるようにフィードバック巻線3にフィードバック電流Isを流す。   The magnetic balance amplifier 8 feeds a feedback current to the feedback winding 3 so that the DC voltage value at the output terminal 6c of the positive peak detection circuit 6 is equal to the DC voltage value at the output terminal 7d of the negative peak detection circuit 7. Let Is flow.

すると、閉磁路コア1内部において、「等アンペア・ターンの原理」により、前記(1)式が成り立つ。例えば、被測定電流Ipが2[A]流れる電流路10の巻数Npを1ターン、フィードバック巻線3の巻数Nsを10ターンとしたときは、フィードバック電流Is=0.2[A]となる。
1[ターン]×2[A]=10[ターン]×0.2[A]=2[AT]
Then, in the closed magnetic circuit core 1, the above equation (1) is established according to the “equal ampere-turn principle”. For example, when the number of turns Np of the current path 10 through which the measured current Ip flows 2 [A] is 1 turn and the number of turns Ns of the feedback winding 3 is 10 turns, the feedback current Is = 0.2 [A].
1 [turn] × 2 [A] = 10 [turn] × 0.2 [A] = 2 [AT]

フィードバック電流Isの測定値は、フィードバック巻線3に直列に接続された検出抵抗9の両端より被測定電流Ipに比例したセンサ出力電圧として取り出すことができる。   The measured value of the feedback current Is can be taken out as a sensor output voltage proportional to the measured current Ip from both ends of the detection resistor 9 connected in series to the feedback winding 3.

図1の電流センサの各部の波形を図5に示す。図5(1)は図2の(a)の被測定電流Ip=0[A]で磁気平衡状態にあるときを示す。この場合、正側ピーク値m[V]と負側ピーク値n[V]とが等しく、フィードバック電流Is=0となる。   The waveform of each part of the current sensor of FIG. 1 is shown in FIG. FIG. 5 (1) shows a state where the measured current Ip = 0 [A] in FIG. 2 (a) is in a magnetic equilibrium state. In this case, the positive peak value m [V] and the negative peak value n [V] are equal, and the feedback current Is = 0.

図5(2)は図2の(b)の状態で被測定電流Ip=+2[A]で非平衡状態にあるときを示す。このとき、正側ピーク値p[V]よりも負側ピーク値q[V]が大きくなり、図1の正側ピーク検出回路6の出力端6cと負側ピーク検出回路7の出力端7dの電圧値は相違し(出力端6cの電圧値<出力端7dの電圧値)、前記(1)式が成立して図5(4)の磁気平衡状態となるようにフィードバック電流がフィードバック巻線3に流されることになる。   FIG. 5 (2) shows a state where the measured current Ip = + 2 [A] is in an unbalanced state in the state of FIG. 2 (b). At this time, the negative peak value q [V] becomes larger than the positive peak value p [V], and the output terminal 6c of the positive peak detection circuit 6 and the output terminal 7d of the negative peak detection circuit 7 in FIG. The voltage values are different (the voltage value of the output terminal 6c <the voltage value of the output terminal 7d), and the feedback current is fed to the feedback winding 3 so that the equation (1) is satisfied and the magnetic equilibrium state of FIG. Will be swept away.

図5(3)は図2の(c)の状態で被測定電流Ip=−2[A]で非平衡状態にあるときを示す。このとき、正側ピーク値r[V]は負側ピーク値s[V]よりも大きくなり、前記出力端6cと出力端7dの電圧値は相違し(出力端6cの電圧値>出力端7dの電圧値)、このときも図5(4)の磁気平衡状態となるようにフィードバック電流がフィードバック巻線3に流されることになる。フィードバック電流Isが流れて磁気平衡状態となると、図2のB−H曲線において、Ob点、Oc点は原点0に戻り、再びm=nとなる。   FIG. 5 (3) shows a state where the measured current Ip = −2 [A] is in an unbalanced state in the state of FIG. 2 (c). At this time, the positive peak value r [V] is larger than the negative peak value s [V], and the voltage values of the output terminal 6c and the output terminal 7d are different (voltage value of the output terminal 6c> output terminal 7d). In this case, the feedback current is passed through the feedback winding 3 so that the magnetic equilibrium state shown in FIG. When the feedback current Is flows and the magnetic equilibrium state is reached, the Ob point and the Oc point return to the origin 0 in the BH curve of FIG. 2, and m = n again.

従って、被測定電流Ipが変化しても、図1の磁気平衡用増幅器8が常時磁気平衡状態となるように自動的にかつ正確にフィードバック電流Isを流し、被測定電流Ipを高精度にモニタ可能な電流センサを構成できる。   Therefore, even if the measured current Ip changes, the feedback current Is flows automatically and accurately so that the magnetic balance amplifier 8 of FIG. 1 is always in a magnetic equilibrium state, and the measured current Ip is monitored with high accuracy. Possible current sensors can be constructed.

この実施の形態によれば、次の通りの効果を得ることができる。   According to this embodiment, the following effects can be obtained.

(1) ホール素子等の磁気感応素子を使用せず、被測定電流Ipによる磁束が発生する閉磁路コア1のB−H曲線(例えば図2)の特性を利用して電流検出を行っており、B−H曲線の原点0を中心とした正側及び負側波形の対称性は温度に依存しない。このため、ホール素子等の磁気感応素子を使用した場合の温度変化によるオフセット変動は受けないから、温度変化に対する安定性を確保できる。従って、周囲温度に影響されない高精度の電流検出が可能である。 (1) Current detection is performed using the characteristics of the BH curve (for example, FIG. 2) of the closed magnetic circuit core 1 in which the magnetic flux generated by the current Ip to be measured is generated without using a magnetic sensitive element such as a Hall element The symmetry of the positive and negative waveforms around the origin 0 of the BH curve does not depend on temperature. For this reason, since the offset variation due to the temperature change when using a magnetically sensitive element such as a Hall element is not affected, the stability against the temperature change can be ensured. Therefore, highly accurate current detection that is not affected by the ambient temperature is possible.

(2) 特許文献1ではコア2個と5巻線が必要であったが、本実施の形態の電流センサでは、コア1個と2巻線に半減でき、小型、軽量化が可能である。 (2) In Patent Document 1, two cores and five windings are required. However, the current sensor according to the present embodiment can be halved to one core and two windings, and can be reduced in size and weight.

(3) 特許文献2では、波形整形回路を含む複雑な直流電圧検出装置を用いているが、本実施の形態の電流センサではピーク値だけを検出することにより制御できるため、より簡単な回路構成を実現できる。 (3) In Patent Document 2, a complex DC voltage detection device including a waveform shaping circuit is used. However, the current sensor according to the present embodiment can be controlled by detecting only the peak value, so that the circuit configuration is simpler. Can be realized.

なお、正側及び負側ピーク検出回路は演算増幅器を用いた図1の回路に限定されず、他の回路構成としてもよい。   The positive side and negative side peak detection circuits are not limited to the circuit of FIG. 1 using operational amplifiers, and may have other circuit configurations.

以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。   Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.

本発明に係る電流センサの実施の形態を示す回路図である。It is a circuit diagram showing an embodiment of a current sensor according to the present invention. 本発明の実施の形態で用いる閉磁路コアのB−H曲線(ヒステリシス曲線)及びその内側のマイナーループを示す説明図である。It is explanatory drawing which shows the BH curve (hysteresis curve) of the closed magnetic circuit core used by embodiment of this invention, and the minor loop inside it. 閉磁路コアに流れる直流バイアス電流(被測定電流)とコア内の磁界の強さ等を示す説明図である。It is explanatory drawing which shows the direct-current bias current (current to be measured) which flows into a closed magnetic circuit core, the strength of the magnetic field in a core, etc. 直流バイアス電流とマイナーループとの関係を示す説明図である。It is explanatory drawing which shows the relationship between DC bias current and a minor loop. 実施の形態の回路図の各部の波形を磁気平衡状態と非平衡状態について説明する波形図である。It is a wave form diagram explaining the waveform of each part of the circuit diagram of an embodiment about a magnetic equilibrium state and a non-equilibrium state.

符号の説明Explanation of symbols

1 閉磁路コア
2 励磁巻線
3 フィードバック巻線
4 発振器
5 負荷抵抗
6 正側ピーク検出回路
7 負側ピーク検出回路
8 磁気平衡用増幅器
9 検出抵抗
10 電流路
11 反転増幅器
C1,C2 コンデンサ
D1,D2 ダイオード
OP1,OP2,OP3 演算増幅器
DESCRIPTION OF SYMBOLS 1 Closed magnetic circuit core 2 Excitation winding 3 Feedback winding 4 Oscillator 5 Load resistance 6 Positive side peak detection circuit 7 Negative side peak detection circuit 8 Magnetic balance amplifier 9 Detection resistance 10 Current path 11 Inversion amplifier C1, C2 Capacitor D1, D2 Diode OP1, OP2, OP3 operational amplifier

Claims (2)

被測定電流による磁束が発生する閉磁路コアと、
前記閉磁路コアに施された励磁巻線及びフィードバック巻線と、
前記励磁巻線の両端間に接続された、交流電圧源と抵抗との直列回路と、
前記励磁巻線に生じる交流電圧の正側ピーク値を検出する正側ピーク検出回路、及び前記交流電圧の負側ピーク値を検出する負側ピーク検出回路と、
前記正側ピーク検出回路で検出された正側ピーク値と、前記負側ピーク検出回路で検出された負側ピーク値との差がゼロになるように前記フィードバック巻線にフィードバック電流を流す磁気平衡用増幅器とを備えたことを特徴とする電流センサ。
A closed magnetic circuit core that generates magnetic flux due to the current to be measured;
An excitation winding and a feedback winding applied to the closed magnetic circuit core;
A series circuit of an AC voltage source and a resistor connected between both ends of the excitation winding;
A positive-side peak detection circuit for detecting a positive-side peak value of the AC voltage generated in the excitation winding, and a negative-side peak detection circuit for detecting a negative-side peak value of the AC voltage;
Magnetic balance in which a feedback current is passed through the feedback winding so that the difference between the positive peak value detected by the positive peak detection circuit and the negative peak value detected by the negative peak detection circuit is zero. A current sensor.
磁気平衡状態において、前記正側ピーク値と前記負側ピーク値が等しくなり、前記閉磁路コアのB−H曲線内に描かれるマイナーループが、原点0を中心として、第1象限と第3象限にて常時、対称形となる請求項1記載の電流センサ。   In the magnetic equilibrium state, the positive peak value and the negative peak value are equal, and the minor loop drawn in the BH curve of the closed magnetic circuit core has a first quadrant and a third quadrant with the origin 0 as the center. 2. The current sensor according to claim 1, which is always symmetrical.
JP2006288122A 2006-10-23 2006-10-23 Current sensor Expired - Fee Related JP4716030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006288122A JP4716030B2 (en) 2006-10-23 2006-10-23 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288122A JP4716030B2 (en) 2006-10-23 2006-10-23 Current sensor

Publications (2)

Publication Number Publication Date
JP2008107119A true JP2008107119A (en) 2008-05-08
JP4716030B2 JP4716030B2 (en) 2011-07-06

Family

ID=39440594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288122A Expired - Fee Related JP4716030B2 (en) 2006-10-23 2006-10-23 Current sensor

Country Status (1)

Country Link
JP (1) JP4716030B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2762902A3 (en) * 2013-01-31 2017-12-20 Siemens Aktiengesellschaft Current mutual inductor and current detection circuit of same
JP2020522714A (en) * 2017-06-09 2020-07-30 エルエス、エレクトリック、カンパニー、リミテッドLs Electric Co., Ltd. Current detector
CN111665383A (en) * 2020-05-22 2020-09-15 哈尔滨工业大学 Full-digital fluxgate type current sensor
CN111929492A (en) * 2020-08-17 2020-11-13 哈尔滨工业大学 Full-digital fluxgate type closed-loop current sensor and current signal acquisition method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445616B (en) * 2011-10-21 2013-10-09 中国北方车辆研究所 Interference simulating experimental method for vehicle DC power supply

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218475A (en) * 1989-11-06 1991-09-26 Nkk Corp Method and device for measuring current
JPH1054848A (en) * 1996-05-06 1998-02-24 Vacuumschmelze Gmbh Current-compensating type current sensor
JPH11316248A (en) * 1998-04-30 1999-11-16 Sony Corp Peak detecting circuit
JP2001056349A (en) * 1999-08-20 2001-02-27 Hioki Ee Corp Peak value measuring device
JP2007033222A (en) * 2005-07-27 2007-02-08 Tdk Corp Current sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218475A (en) * 1989-11-06 1991-09-26 Nkk Corp Method and device for measuring current
JPH1054848A (en) * 1996-05-06 1998-02-24 Vacuumschmelze Gmbh Current-compensating type current sensor
JPH11316248A (en) * 1998-04-30 1999-11-16 Sony Corp Peak detecting circuit
JP2001056349A (en) * 1999-08-20 2001-02-27 Hioki Ee Corp Peak value measuring device
JP2007033222A (en) * 2005-07-27 2007-02-08 Tdk Corp Current sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2762902A3 (en) * 2013-01-31 2017-12-20 Siemens Aktiengesellschaft Current mutual inductor and current detection circuit of same
JP2020522714A (en) * 2017-06-09 2020-07-30 エルエス、エレクトリック、カンパニー、リミテッドLs Electric Co., Ltd. Current detector
US11385265B2 (en) 2017-06-09 2022-07-12 Ls Electric Co., Ltd. Current sensing device
CN111665383A (en) * 2020-05-22 2020-09-15 哈尔滨工业大学 Full-digital fluxgate type current sensor
CN111665383B (en) * 2020-05-22 2022-06-21 哈尔滨工业大学 Full-digital fluxgate type current sensor
CN111929492A (en) * 2020-08-17 2020-11-13 哈尔滨工业大学 Full-digital fluxgate type closed-loop current sensor and current signal acquisition method thereof
CN111929492B (en) * 2020-08-17 2022-07-29 哈尔滨工业大学 Full-digital fluxgate type closed-loop current sensor and current signal acquisition method thereof

Also Published As

Publication number Publication date
JP4716030B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
KR100993928B1 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
KR101329240B1 (en) Non-contact current measuring apparatus using flux gate
WO2013088766A1 (en) Current sensor
JP5308500B2 (en) Geomagnetic sensor
EP2871485B1 (en) Current detection device
JP2001013231A (en) Magnetic sensor formed on semiconductor substrate
CN103308743B (en) Direct current metering device
EP0380562B1 (en) Magnetometer employing a saturable core inductor
CN108732404B (en) Current sensor and multi-flux balance control circuit thereof
WO1989002082A1 (en) Single-winding magnetometer
JPH03218475A (en) Method and device for measuring current
Yang et al. A new compact fluxgate current sensor for AC and DC application
CN108562778A (en) A kind of open type current sensor and its control method
JP4716030B2 (en) Current sensor
CN112986654A (en) Current measuring device of broadband alternating current and direct current
JP2012037508A (en) Current sensor
JP2008532012A (en) Current sensor with annular coil
JP2816175B2 (en) DC current measuring device
JP2007033222A (en) Current sensor
JPH06347489A (en) Electric current sensor
JP2008014921A (en) Direct-current detecting method and dc detector
JP2004239828A (en) Flux gate magnetic field sensor
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
US5831424A (en) Isolated current sensor
JP2617570B2 (en) Magnetic measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R150 Certificate of patent or registration of utility model

Ref document number: 4716030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees