JP2008104284A - Dispersed power system - Google Patents

Dispersed power system Download PDF

Info

Publication number
JP2008104284A
JP2008104284A JP2006284395A JP2006284395A JP2008104284A JP 2008104284 A JP2008104284 A JP 2008104284A JP 2006284395 A JP2006284395 A JP 2006284395A JP 2006284395 A JP2006284395 A JP 2006284395A JP 2008104284 A JP2008104284 A JP 2008104284A
Authority
JP
Japan
Prior art keywords
power
power storage
storage device
charging operation
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006284395A
Other languages
Japanese (ja)
Other versions
JP4738312B2 (en
Inventor
Yuichi Nagayama
祐一 永山
Hiroyuki Morita
浩之 森田
Yuji Sakuma
雄二 佐久間
Mikihiko Tsuji
幹彦 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006284395A priority Critical patent/JP4738312B2/en
Publication of JP2008104284A publication Critical patent/JP2008104284A/en
Application granted granted Critical
Publication of JP4738312B2 publication Critical patent/JP4738312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To carry out auxiliary charging operation by only the generated power intrinsic to a dispersed power system using a power storage device requiring auxiliary charging operation. <P>SOLUTION: The dispersed power system includes the power storage device 16 and is so constructed that the system output is stabilized by charging or discharging the power storage device. The system requires auxiliary charging operation for regularly bringing the power storage device into a specified charged state. The dispersed power system includes multiple power storage devices 16a, 16b. The power storage devices are selectively used for charging/discharging and for auxiliary charging operation. The system output is stabilized by charging or discharging the power storage device (e.g., 16a) for charging/discharging. The power storage device (e.g., 16b) for auxiliary charging operation is brought into a charged state in which it stores power equal to or higher than power for auxiliary charging operation, which is power required for carrying out auxiliary charging operation with the power storage device for charging/discharging. It is kept in a standby state until the power storage device for charging/discharging requires auxiliary charging operation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、分散型電源システムに関し、特にシステムからの出力の安定化のために蓄電装置が設けられており、その蓄電装置に対して定期的に規定の充電状態とさせるための補充電操作を必要とする分散型電源システムに関する。   The present invention relates to a distributed power supply system, and in particular, a power storage device is provided for stabilizing the output from the system, and a supplementary charging operation for periodically setting the power storage device to a specified charging state is performed. The present invention relates to a required distributed power supply system.

分散型電源システムには、例えば風力発電装置や太陽光発電装置などのように風況や日射量のような自然条件の影響を受け、そのために発電出力に大きな変動を避けがたい発電源が用いられる場合が少なくない。このような分散型電源システムでは、電力会社の系統に接続する系統接続型の場合、あるいはそうでない独立運転を行う独立型の場合のいずれであってもシステムからの出力の変動を適切に抑えるための出力制御が必要となる。   For distributed power systems, for example, wind power generators and solar power generators are used that are affected by natural conditions such as wind conditions and solar radiation, and for this reason, a power generation source that cannot avoid large fluctuations in power generation output is used. There are many cases. In such a distributed power supply system, in order to appropriately suppress fluctuations in the output from the system, whether it is a grid connection type connected to a power company system or a stand alone type operation that does not. Output control is required.

その出力制御には蓄電装置を用いるのが一般的である。すなわち、システム内に蓄電装置を設け、その蓄電装置の充放電により出力変動を抑制する手法である。こうした分散型電源システムにおける出力変動抑制用の蓄電装置には、一般的に鉛蓄電池やナトリウム・イオウ電池(NaS電池)がなど用いられる。それは、これらの電池が小型で容量が大きく、安定性も高いなどの理由によるもので、なかでも、量産化が進み、低コストであるなどの理由から鉛蓄電池が広く使われている。   A power storage device is generally used for the output control. In other words, this is a technique in which a power storage device is provided in the system and output fluctuation is suppressed by charging and discharging the power storage device. In general, a lead storage battery, a sodium-sulfur battery (NaS battery), or the like is used as a power storage device for suppressing output fluctuation in such a distributed power supply system. This is because these batteries are small in size, large in capacity, and high in stability. Among them, lead storage batteries are widely used because of their mass production and low cost.

ただ、鉛蓄電池やNaS電池は、定期的に規定の充電状態(通常は満充電状態)にする必要がある。例えば鉛蓄電池を用いた蓄電装置は、その蓄電容量の例えば50%程度の充電状態を基準として充放電を行うように制御されるのが通常で、このような状態のまま充放電を継続させると、寿命が短くなるなどの好ましくない結果を招くことから、例えば1週間ごとにというように定期的に規定充電状態まで充電する必要がある。その操作は補充電操作と呼ばれる。   However, lead storage batteries and NaS batteries need to be regularly charged (normally fully charged). For example, a power storage device using a lead storage battery is normally controlled to charge and discharge based on a charging state of, for example, about 50% of its storage capacity, and charging and discharging are continued in such a state. Since this leads to undesirable results such as shortening the service life, it is necessary to charge the battery to a specified charge state periodically, for example, every week. This operation is called a supplementary charging operation.

補充電操作では、一定の電力を安定的に供給しながら規定充電状態まで充電することが求められ、それには一定の時間、例えば8時間ほどの時間がかかる。したがって補充電操作には一定な電力を一定の時間にわたって安定的に必要とする。このため風力発電装置や太陽光発電装置などのような発電出力が大きく変動する発電源を用いている分散型電源システムでは、その本来の発電源からの電力だけでは適切な補充電操作が困難となる。   In the auxiliary charging operation, it is required to charge to a specified charging state while stably supplying a constant power, which takes a certain time, for example, about 8 hours. Therefore, the auxiliary charging operation requires a constant power stably over a certain time. For this reason, in a distributed power supply system using a power generation source with a large fluctuation in power generation output, such as a wind power generation device or a solar power generation device, it is difficult to perform an appropriate supplementary charging operation using only the power from the original power generation source. Become.

そこで、従来では独立型の場合であれば、補充電操作用の発電源を設け、その補充電操作用発電源からの電力をシステム本来の発電源からの電力と併用して補充電操作を行い、また系統接続型の場合であれば、系統から供給される電力をシステム本来の発電源からの電力と併用して補充電操作を行うようにしていた。   Therefore, conventionally, in the case of an independent type, a power source for auxiliary charging operation is provided, and the power from the power source for auxiliary charging operation is used together with the power from the system's original power source to perform the auxiliary charging operation. In the case of the system connection type, the supplementary charging operation is performed using the power supplied from the system together with the power from the system's original power source.

そうした分散型電源システムの構成例を独立型の場合について図4に示す。この例の分散型電源システムは、システム本来の発電源が風力発電機(風力発電装置)1である。風力発電機1にはその出力をコントロールする出力制御装置2が接続されており、この出力制御装置2を介してシステム監視制御装置3による制御の下で需要負荷4に対して電力を供給するようにされている。また風力発電機1と需要負荷4をつなぐ送電経路に蓄電装置5が接続され、この蓄電装置5にシステム監視制御装置3による制御の下で充放電させることで需要負荷4に対する供給電力の安定化を図るようにされている。すなわち需要負荷4に対し風力発電機1の発電電力が過剰な場合は、蓄電装置5に発電電力の過剰分を吸収させ、逆に需要負荷に対し風力発電機1の発電電力が不足する場合は、蓄電装置5から不足分を放電させることでシステムの安定的な継続運転を行えるようにされている。   An example of the configuration of such a distributed power supply system is shown in FIG. In the distributed power supply system of this example, the power generation source of the system is a wind power generator (wind power generator) 1. An output control device 2 for controlling the output is connected to the wind power generator 1, and power is supplied to the demand load 4 through the output control device 2 under the control of the system monitoring control device 3. Has been. In addition, a power storage device 5 is connected to a power transmission path connecting the wind power generator 1 and the demand load 4, and the power supply to the demand load 4 is stabilized by charging and discharging the power storage device 5 under the control of the system monitoring control device 3. It is intended to plan. That is, when the generated power of the wind power generator 1 is excessive with respect to the demand load 4, the power storage device 5 absorbs the excess generated power, and conversely, when the generated power of the wind power generator 1 is insufficient with respect to the demand load. By discharging the shortage from the power storage device 5, the system can be stably operated continuously.

蓄電装置5は、鉛蓄電池6と双方向インバータ7を含む構成とされている。このため蓄電装置5は定期的な補充電操作を必要とする。しかし発電出力が大きく変動する風力発電機1の電力では補充電操作が困難である。そこで、蓄電装置5の補充電操作用の発電源としてディーゼル発電装置8を設け、蓄電装置5の補充電操作が必要になった際には、ディーゼル発電装置8を作動させ、システム監視制御装置3による制御の下で、ディーゼル発電装置8からの電力と風力発電機1からの電力により蓄電装置5の補充電操作を行うようにされている。   The power storage device 5 includes a lead storage battery 6 and a bidirectional inverter 7. For this reason, the electrical storage apparatus 5 requires periodic supplementary charging operation. However, the auxiliary charging operation is difficult with the power of the wind power generator 1 whose power generation output varies greatly. Therefore, the diesel power generation device 8 is provided as a power generation source for the auxiliary charging operation of the power storage device 5, and when the auxiliary charging operation of the power storage device 5 becomes necessary, the diesel power generation device 8 is activated and the system monitoring control device 3. Under the control of, the auxiliary charging operation of the power storage device 5 is performed by the electric power from the diesel power generation device 8 and the electric power from the wind power generator 1.

以上のような分散型電源システムについては、例えば特許文献1〜特許文献3に開示の例が知られており、また非特許文献1に開示の例が知られている。   Examples of the distributed power supply system as described above are disclosed in, for example, Patent Documents 1 to 3, and Non-Patent Document 1 discloses an example.

特開2005−295621号公報JP 2005-295621 A 特開2000−4544号公報Japanese Patent Laid-Open No. 2000-4544 特開平8−22841号公報JP-A-8-22841 「太陽光発電システム国際共同実証開発 太陽光発電系統連系システム実証研究 平成15年度成果報告書」(独立法人新エネルギー・産業技術総合開発機構)"Solar Power Generation System International Joint Demonstration Solar Power System Interconnection System Demonstration Research Report 2003" (New Energy and Industrial Technology Development Organization)

上記のように従来の分散型電源システムでは、システム出力安定化用の蓄電装置に補充電操作を必要とする場合に、補充電操作用の発電源を設け、それを用いて補充電操作を行うか、または電力会社の系統からの供給電力で補充電操作を行うというように、システム本来の発電源以外の電力を用いて補充電操作を行うようにしていた。このような分散型電源システムは、その補充電操作に起因して、いくつかの問題を残している。   As described above, in the conventional distributed power supply system, when a power storage device for stabilizing system output requires a supplementary charging operation, a power source for supplementary charging operation is provided and the supplementary charging operation is performed using the power source. Alternatively, the auxiliary charging operation is performed using electric power other than the system's original power generation source, such as performing the auxiliary charging operation with the power supplied from the power company system. Such a distributed power supply system has some problems due to its auxiliary charging operation.

例えば補充電操作に電力会社の系統からの電力を利用する場合に立地の制約を受けるという問題がその1つである。すなわち補充電操作に系統からの電力を利用する場合には、系統からの電力の供給を受けることができない場所には分散型電源システムを設置できないという問題である。また補充電操作用の発電源を設ける場合には、その発電源のためにコスト上昇を招くという問題がある。さらに環境への負荷低減を図るべくシステム本来の発電源を風力発電や太陽光発電のような自然エネルギー利用型とする場合に、その環境への負荷低減レベルを低下させてしまうという問題もある。すなわち補充電操作用の発電源としてディーゼル発電装置などを用いると、その発電源が直接的に環境へ負荷をかけることになってしまい、また系統からの電力で補充電操作をするにしても電力会社の発電所を通じて間接的に環境へ負荷をかけることになってしまう。   For example, there is a problem that location restrictions are imposed when power from a power company system is used for the auxiliary charging operation. In other words, when power from the grid is used for the auxiliary charging operation, there is a problem that a distributed power supply system cannot be installed in a place where the supply of power from the grid cannot be received. Further, when a power generation source for auxiliary charging operation is provided, there is a problem that the cost increases due to the power generation. Furthermore, when the original power generation source of the system is of a natural energy utilization type such as wind power generation or solar power generation in order to reduce the environmental load, there is a problem that the environmental load reduction level is lowered. In other words, if a diesel generator or the like is used as a power generation source for the auxiliary charging operation, the power generation source directly imposes a load on the environment. Indirect load on the environment through the company's power plant.

以上のような問題は、システム本来の発電源による電力だけを用いて補充電操作を行えるようにすることで解消することができる。したがって本発明の課題は、補充電操作を必要とする蓄電装置を用いている分散型電源システムについて、システム本来の発電源による電力だけで補充電操作を行えるようにし、これにより分散型電源システムの立地制約問題やコスト問題を解消できるようにし、さらには環境負荷低減性の分散型電源システムにおける環境負荷低減性を高めることができるようにすることにある。   The problems as described above can be solved by making it possible to perform a supplementary charging operation using only the electric power from the power generation source of the system. Accordingly, an object of the present invention is to make it possible for a distributed power supply system using a power storage device that requires a supplementary charging operation to perform a supplementary charging operation only with the power generated by the system's original power source. It is intended to be able to solve the location constraint problem and the cost problem, and to further improve the environmental load reduction in the distributed power supply system having a low environmental load.

本発明では上記課題を解決するために、蓄電装置を備え、前記蓄電装置の充放電によりシステム出力の安定化を図るようにされ、そして前記蓄電装置に対して定期的に規定充電状態とさせるための補充電操作が必要とされている分散型電源システムにおいて、前記蓄電装置を複数台で設け、これら複数台の蓄電装置を充放電用と補充電操作用に使い分けるように運用し、充放電用の蓄電装置の充放電によりシステム出力の安定化を図る一方で、補充電操作用の蓄電装置は、前記充放電用の蓄電装置に補充電操作を行うのに必要な電力である補充電操作用電力以上の電力を蓄えた充電状態にして待機させ、前記充放電用の蓄電装置に補充電操作が必要となった際に当該補充電操作用の蓄電装置からの電力で補充電操作を行うように運用するものとしたことを特徴としている。   In order to solve the above-described problem, the present invention includes a power storage device, is configured to stabilize system output by charging and discharging the power storage device, and to periodically set the power storage device to a specified charge state. In a distributed power supply system in which a supplementary charging operation is required, a plurality of the power storage devices are provided, and the plurality of power storage devices are operated so as to be used separately for charge / discharge and supplementary charge operations. While the system output is stabilized by charging / discharging the power storage device, the power storage device for supplementary charging operation is used for the supplementary charging operation, which is power necessary for performing the supplementary charging operation on the power storage device for charging / discharging. The battery is charged in a state of charge that stores more power than the power, and when the charge / discharge power storage device requires a supplementary charge operation, the supplementary charge operation is performed with the power from the power storage device for the supplementary charge operation. What to use It is characterized in that the.

このように複数台の蓄電装置を設け、それらを充放電用と補充電操作用に使い分けるように運用することにより、システム本来の発電源による電力だけでの補充電操作が可能となる。このため上記のような分散型電源システムによれば、立地制約問題やコスト問題を有効に解消でき、また環境負荷低減性の分散型電源システムにおける環境負荷低減性を高めることができる。   As described above, by providing a plurality of power storage devices and using them separately for charging and discharging and supplementary charging operations, it is possible to perform a supplementary charging operation only with electric power from the power generation source of the system. For this reason, according to the distributed power supply system as described above, it is possible to effectively solve the location restriction problem and the cost problem, and it is possible to improve the environmental load reduction performance in the distributed power supply system with reduced environmental load.

上記のような分散型電源システムについては、前記複数の蓄電装置を、前記充放電用と前記補充電操作用を一定期間ごとに循環的に切り替える運用である充放電/補充電操作ローテーションで運用するようにするのが好ましい。このようにすることで、複数の蓄電装置の寿命を見かけ上で延ばすことができ、これにより蓄電装置を複数台設けるについてのコスト上昇分を吸収でき、コスト面の優位性をより高めることが可能となる。   In the distributed power supply system as described above, the plurality of power storage devices are operated in a charge / discharge / auxiliary charge operation rotation which is an operation of cyclically switching between the charge / discharge and the auxiliary charge operation at regular intervals. It is preferable to do so. In this way, the lifetime of a plurality of power storage devices can be apparently extended, which can absorb the increased cost of providing a plurality of power storage devices, and can further enhance the cost advantage. It becomes.

また本発明では上記課題を解決するために、蓄電装置を備え、前記蓄電装置の充放電によりシステム出力の安定化を図るようにされ、そして前記蓄電装置に対して定期的に規定充電状態とさせるための補充電操作が必要とされている分散型電源システムにおいて、システム本来の発電源が安定して発電できる電力以下の電力で補充電操作を可能とする程度以下の蓄電容量とした蓄電装置を複数台設け、そして通常状態では前記複数台の蓄電装置の全台を充放電モードで運用し、この全台充放電モード運用中に、前記複数台の蓄電装置のいずれかが補充電操作を必要とする時期になったら、その蓄電装置を補充電操作モードに切り替えて前記システム本来の発電源からの電力で補充電操作を行うようにされていることを特徴としている。   According to the present invention, in order to solve the above-described problem, a power storage device is provided, the system output is stabilized by charging and discharging the power storage device, and the power storage device is periodically set to a specified charge state. In a distributed power supply system in which a supplementary charging operation is required, a power storage device having a storage capacity of less than or equal to a degree that enables the supplementary charging operation with power less than the power that can be stably generated by the original power generation source of the system Multiple units are installed, and in the normal state, all of the plurality of power storage devices are operated in the charge / discharge mode, and any one of the plurality of power storage devices needs a supplementary charging operation during the operation of the full unit charge / discharge mode. When the time comes, the power storage device is switched to the auxiliary charging operation mode, and the auxiliary charging operation is performed with the electric power from the original power generation source of the system.

このようにシステム本来の発電源の安定的発電可能な電力以下の電力で補充電操作を可能とする程度以下の蓄電容量とした蓄電装置を複数台で設け、これら蓄電装置を充放電モードと補充電操作モードについて切り替えて運用することで、システム本来の発電源による電力だけでの補充電操作が可能となる。このため上記のような分散型電源システムによれば、立地制約問題やコスト問題を有効に解消でき、また環境負荷低減性の分散型電源システムにおける環境負荷低減性を高めることができる。   In this way, a plurality of power storage devices having a storage capacity of less than or equal to the extent that can perform supplementary charging operation with power that is less than the power that can be stably generated by the system's original power generation source are provided, and these power storage devices are supplemented with charge / discharge mode By switching and operating the charging operation mode, it is possible to perform a supplementary charging operation using only the electric power generated by the original power generation system. For this reason, according to the distributed power supply system as described above, it is possible to effectively solve the location restriction problem and the cost problem, and it is possible to improve the environmental load reduction performance in the distributed power supply system with reduced environmental load.

上記のような分散型電源システムについては、一定期間をおいて順に補充電操作時期が前記複数台の蓄電装置のそれぞれに来るようなローテーション運用で前記複数台の蓄電装置を運用し、前記複数台の蓄電装置のいずれかに補充電操作時期が来る度にその蓄電装置に対して前記補充電操作を行うようにするのが好ましい。このようにすることにより、複数台の蓄電装置に対する運用上での均等性を与えることができる。その結果、蓄電装置の見かけ上での寿命延長を複数の蓄電装置について均等化でき、これにより蓄電装置を複数台設けるについてのコスト上昇分を吸収でき、コスト面の優位性をより高めることが可能となる。   For the distributed power supply system as described above, the plurality of power storage devices are operated in a rotation operation such that a supplementary charging operation timing comes to each of the plurality of power storage devices in order after a certain period of time. It is preferable that the auxiliary charging operation is performed on the power storage device each time the auxiliary charging operation time comes to any of the power storage devices. By doing so, it is possible to provide operational uniformity for a plurality of power storage devices. As a result, the apparent life extension of the power storage device can be equalized for multiple power storage devices, which can absorb the increased cost of installing multiple power storage devices and further increase the cost advantage It becomes.

以上のような本発明によれば、補充電操作を必要とする蓄電装置を用いている分散型電源システムについて、システム本来の発電源による電力だけで補充電操作を行えるようになり、これにより分散型電源システムの立地制約問題やコスト問題を解消でき、さらには環境負荷低減性の分散型電源システムにおける環境負荷低減性を高めることができるようになる。   According to the present invention as described above, with respect to a distributed power supply system using a power storage device that requires a supplementary charging operation, the supplementary charging operation can be performed only with the power generated by the original power generation system. It is possible to solve the location constraint problem and cost problem of the type power supply system, and it is possible to further improve the environmental load reduction in the distributed power supply system having a reduced environmental load.

以下では、本発明を実施するための形態について説明する。図1に、第1の実施形態による分散型電源システムの構成を示す。本実施形態の分散型電源システム11は、電力会社の系統と接続しない独立型であり、複数の蓄電装置を設け、それら複数の蓄電装置を充放電用と補充電操作用に使い分けることで、システム本来の発電源による電力だけでの補充電操作を可能とする方式である。   Below, the form for implementing this invention is demonstrated. FIG. 1 shows a configuration of a distributed power supply system according to the first embodiment. The distributed power supply system 11 of the present embodiment is an independent type that is not connected to a power company system, and is provided with a plurality of power storage devices, and the plurality of power storage devices are selectively used for charge / discharge and auxiliary charging operations. This is a method that enables a supplementary charging operation only with electric power from the original power generation source.

分散型電源システム11は、システム本来の発電源として1台または複数台で設けられる風力発電機12を備えている。風力発電機12にはその出力をコントロールする出力制御装置13が接続されており、この出力制御装置13を介してシステム監視制御装置14による制御の下で需要負荷15に対して電力を供給するようにされている。   The distributed power supply system 11 includes a wind power generator 12 provided as one or a plurality of power generation sources inherent to the system. The wind power generator 12 is connected to an output control device 13 for controlling the output thereof, and power is supplied to the demand load 15 through the output control device 13 under the control of the system monitoring control device 14. Has been.

風力発電機12と需要負荷15をつなぐ送電経路には、2台の蓄電装置16(16a、16b)が接続されている。2台の蓄電装置16a、16bは、いずれも鉛蓄電池17と双方向インバータ18を含む同一の構成とされ、また蓄電容量も同一とされている。このように蓄電装置16を複数台、具体的には2台で設けたのは、上述のようにシステム本来の発電源による電力だけで補充電操作を行えるようにするためである。すなわち2台の蓄電装置16の一方を充放電用、他方を補充電操作用として運用し、補充電操作用の蓄電装置16で充放電用の蓄電装置16の補充電操作を行えるようにすることで、システム本来の発電源による電力だけでの補充電操作を可能としているものである。2台の蓄電装置16の充放電用と補充電操作用の使い分けは以下のようにしてなされる。   Two power storage devices 16 (16 a and 16 b) are connected to the power transmission path connecting the wind power generator 12 and the demand load 15. Each of the two power storage devices 16a and 16b has the same configuration including the lead storage battery 17 and the bidirectional inverter 18, and the storage capacity is also the same. The reason for providing a plurality of power storage devices 16 in this way, specifically, two, is to allow the auxiliary charging operation to be performed only with the electric power from the power generation source inherent in the system as described above. That is, one of the two power storage devices 16 is operated for charging / discharging and the other is operated for auxiliary charging operation, so that the auxiliary charging operation of the power storage device 16 for charging / discharging can be performed by the power storage device 16 for auxiliary charging operation. Thus, it is possible to perform a supplementary charging operation only with electric power from the power generation source inherent in the system. The two power storage devices 16 are separately used for charging / discharging and auxiliary charging operation as follows.

例えば蓄電装置16aが充放電用であれば、システム監視制御装置14による制御の下で、蓄電装置16aにその蓄電容量の例えば50%程度の充電量を基準として充放電させることで需要負荷15に対する供給電力(システムの出力電力)の安定化を図る。すなわち需要負荷15に対し風力発電機12の発電電力が過剰な場合は、蓄電装置16aに発電電力の過剰分を吸収させ、逆に需要負荷に対し風力発電機12の発電電力が不足する場合は、蓄電装置16aから不足分を放電させることでシステムの安定的な継続運転を行えるようにする。   For example, if the power storage device 16a is used for charging / discharging, the power storage device 16a is charged / discharged on the basis of a charge amount of, for example, about 50% of the power storage capacity under the control of the system monitoring control device 14 to meet the demand load 15. Stabilize supply power (system output power). That is, when the generated power of the wind power generator 12 is excessive with respect to the demand load 15, the power storage device 16a absorbs the excess generated power, and conversely, the generated power of the wind power generator 12 is insufficient with respect to the demand load. By discharging the shortage from the power storage device 16a, stable continuous operation of the system can be performed.

一方、蓄電装置16bは、補充電操作用とし、充放電用の蓄電装置16aに補充電操作を行うのに必要な電力、つまり補充電操作用電力以上の電力を蓄えた充電状態(通常は蓄電容量の100%である満充電状態)にして、充放電用の蓄電装置16aに補充電操作が必要となるまで待機させる。   On the other hand, the power storage device 16b is used for a supplementary charging operation, and is a charged state (usually a power storage device) that stores power necessary for performing a supplementary charging operation to the power storage device 16a for charging / discharging, that is, power equal to or higher than the power for auxiliary charging operation. The fully charged state that is 100% of the capacity) is placed on standby until the charge / discharge power storage device 16a requires an auxiliary charging operation.

充放電用の蓄電装置16aは、例えば1週間程度のサイクルで定期的に補充電操作を必要とする。充放電用の蓄電装置16aに補充電操作が必要な時期になったら補充電操作を行う。その補充電操作は、補充電操作用の蓄電装置16bからの放電で得られる電力と風力発電機12からの電力をシステム監視制御装置14による制御の下で併用して行う。具体的にいうと、例えば充電状態X%までは風力発電機12からの電力を主に用いて充電し、そのX%充電状態から規定の充電状態(通常は満充電状態)までは補充電操作用の蓄電装置16bからの電力で充電する、というようにして補充電操作を行う。このような補充電操作とするのは、補充電操作で充電用電力に高い安定性を必要とするのはX%充電状態から規定充電状態までのことであり、X%充電状態までは充電用電力に必ずしも高い安定性を必要としないという理由による。   The power storage device 16a for charging / discharging requires a supplementary charging operation periodically, for example, in a cycle of about one week. The auxiliary charging operation is performed when the auxiliary charging operation is required for the power storage device 16a for charging and discharging. The auxiliary charging operation is performed by using the electric power obtained by discharging from the power storage device 16b for the auxiliary charging operation and the electric power from the wind power generator 12 under the control of the system monitoring control device 14. More specifically, for example, the power from the wind power generator 12 is mainly charged until the charging state X%, and the supplementary charging operation is performed from the X% charging state to the specified charging state (normally the full charging state). The auxiliary charging operation is performed in such a manner that the battery is charged with electric power from the power storage device 16b. The reason why such a supplementary charging operation is used is that charging power needs high stability in the supplementary charging operation from the X% charged state to the specified charged state, and until the X% charged state is used for charging. This is because power does not necessarily require high stability.

また蓄電装置16aと蓄電装置16bは、以上のような充放電用と補充電操作用を一定期間ごとに交代するようにされている。つまり蓄電装置16aと蓄電装置16bは、循環的に充放電用と補充電操作用に切り替える、充放電/補充電操作ローテーションで運用するようされている。   In addition, the power storage device 16a and the power storage device 16b are configured so as to alternate between charge / discharge and supplementary charge operation as described above at regular intervals. That is, the power storage device 16a and the power storage device 16b are operated in a charge / discharge / auxiliary charge operation rotation in which the charge / discharge operation and the auxiliary charge operation are cyclically switched.

具体的にいうと、例えば蓄電装置16aを充放電用として例えば1週間運用した後、蓄電装置16aに補充電操作が必要になったら、その時点で上述のようにして蓄電装置16aに補充電操作を行う。そして蓄電装置16aの補充電操作が例えば8時間をかけて終えたら、その時点で蓄電装置16aを補充電操作用に切り替えて待機させ、その一方で、蓄電装置16bを充放電用に切り替え、以後1週間の間、充放電用として運用する。   Specifically, for example, after the power storage device 16a has been operated for one week for charging and discharging, for example, when the power storage device 16a needs to be supplemented, at that time, the power storage device 16a is operated as described above. I do. Then, when the auxiliary charging operation of the power storage device 16a is completed over, for example, 8 hours, at that time, the power storage device 16a is switched to the auxiliary charging operation to be on standby, while the power storage device 16b is switched to charge / discharge. Operates for charging and discharging for one week.

このような充放電/補充電操作ローテーション運用とすることにより、蓄電装置16における鉛蓄電池17の寿命を見かけ上で延ばすことができる。すなわちローテーション運用とすることにより、単位時間当たりでの蓄電装置16の充放電繰返し回数を半減させることができ、これにより充放電の繰返し回数に相関する鉛蓄電池17の寿命を見かけ上でほぼ2倍に延ばすことができる。このことは、システム本来の発電源による電力だけで補充電操作を行えるようにするために蓄電装置16を複数台設ける場合のコスト上昇分を鉛蓄電池17の見かけ上での寿命延長で吸収できることに結びつく。つまり蓄電装置16を複数台設けても、実質的にはコスト上昇を招かないで済むといことである。   By performing such charge / discharge / auxiliary charge operation rotation operation, the life of the lead storage battery 17 in the power storage device 16 can be apparently extended. That is, the rotation operation can halve the number of charge / discharge repetitions of the power storage device 16 per unit time, and thus the life of the lead storage battery 17 correlated with the number of charge / discharge repetitions is almost doubled. Can be extended. This means that the increase in cost in the case where a plurality of power storage devices 16 are provided so that the auxiliary charging operation can be performed only by the electric power generated by the system's original power source can be absorbed by extending the apparent life of the lead storage battery 17. Tie. That is, even if a plurality of power storage devices 16 are provided, the cost is not substantially increased.

なお、分散型電源システム11の運用開始時には、例えば蓄電装置16aを充放電用として例えば50%の充電状態とし、蓄電装置16bを補充電操作用として満充電状態にする必要があるが、そのための充電は適当な外部電源を用いて予め行っておくことになる。   At the start of operation of the distributed power supply system 11, for example, the power storage device 16a needs to be charged for 50% for charging and discharging, and the power storage device 16b needs to be fully charged for auxiliary charging operation. Charging is performed in advance using a suitable external power source.

以上のように本実施形態の分散型電源システム11は、蓄電装置16を2台設け、この2台の蓄電装置16の充放電用と補充電操作用としての使い分けにより、システム本来の発電源による電力だけでの補充電操作を可能とする。このため分散型電源システム11によれば、立地制約問題やコスト問題を有効に解消でき、また環境負荷低減性の分散型電源システムにおける環境負荷低減性を高めることができる。   As described above, the distributed power supply system 11 of the present embodiment is provided with two power storage devices 16, and the two power storage devices 16 are used for charging / discharging and for auxiliary charging operation. Allows supplementary charging operation using only electric power. For this reason, according to the distributed power supply system 11, the location constraint problem and the cost problem can be effectively solved, and the environmental load reduction property in the distributed power supply system having the environmental load reduction property can be enhanced.

ここで、以上の実施形態では、蓄電装置を2台としていたが、3台以上の蓄電装置を設ける形態とすることもできる。3台以上の蓄電装置を設ける場合には、その内の1台を補充電操作用とし、その補充電操作用蓄電装置を充放電/補充電操作ローテーション運用とすることになる。   Here, in the above embodiment, the number of power storage devices is two. However, a configuration in which three or more power storage devices are provided may be employed. When three or more power storage devices are provided, one of the power storage devices is used for auxiliary charging operation, and the power storage device for auxiliary charging operation is used for charge / discharge / auxiliary charging operation rotation operation.

次に第2の実施形態について説明する。図2に、第2の実施形態による分散型電源システムの構成を示す。本実施形態の分散型電源システム21は、充放電用の蓄電装置と補充電操作用の蓄電装置の切換えを直流部分で行うようにし、また蓄電装置の充放電運転のための双方向インバータと充電専用の充電器を併設してこれら双方向インバータと充電器を切り替えて使用するようにしていることに特徴があり、これを除いて、第1の実施形態における分散型電源システム11と同様である。したがって以下では、本実施形態に特徴的な構成を主に説明し、分散型電源システム11と共通する要素は図1と同一の符号で示し、それらについての説明は省略する。   Next, a second embodiment will be described. FIG. 2 shows a configuration of a distributed power supply system according to the second embodiment. The distributed power supply system 21 of the present embodiment switches the charging / discharging power storage device and the auxiliary charging power storage device at the DC portion, and also performs bidirectional inverter and charging for charging / discharging operation of the power storage device. It is characterized in that a dedicated charger is provided to switch between the bidirectional inverter and the charger. Except for this, it is the same as the distributed power supply system 11 in the first embodiment. . Therefore, hereinafter, the characteristic configuration of the present embodiment will be mainly described. Elements common to the distributed power supply system 11 are denoted by the same reference numerals as those in FIG. 1 and description thereof will be omitted.

分散型電源システム21は、それぞれ鉛蓄電池17だけを含む構成とされた2台の蓄電装置22(22a、22b)を備え、また蓄電装置22の充放電用に用いられる双方向インバータ23と蓄電装置22の補充電操作時の充電用に用いられる充電器24を備え、さらに蓄電装置22の充放電用と補充電操作用の切換え操作のための切換盤25を備えている。ここで、双方向インバータ23は補充電操作のための充電機能を備えていないタイプである。そしてこのために充電器24が設けられている。   The distributed power supply system 21 includes two power storage devices 22 (22a and 22b) each including only the lead storage battery 17, and a bidirectional inverter 23 and a power storage device used for charging and discharging the power storage device 22. 22 includes a charger 24 used for charging at the time of the auxiliary charging operation 22, and further includes a switching board 25 for switching operation for charging / discharging the power storage device 22 and auxiliary charging operation. Here, the bidirectional inverter 23 is a type that does not have a charging function for the auxiliary charging operation. For this purpose, a charger 24 is provided.

切換盤25は、切換器26〜29を備えており、これら切換器26〜29の開閉で蓄電装置22の充放電用と補充電操作用の切換えを行う。具体的にいうと、蓄電装置22aを充放電用とし、蓄電装置22bを補充電操作用とする場合は、切換器26を閉、切換器27を開、切換器28を開、切換器29を閉とする。これにより蓄電装置22aは、双方向インバータ23に接続して充放電用として運用され、蓄電装置22bは、充電器24に接続して補充電操作用として待機させられる。一方、蓄電装置22aが補充電操作を必要とする時期になったら、切換器26を開、切換器27を閉、切換器28を閉、切換器29を開とする。これにより蓄電装置22aが充電器24に接続するとともに、蓄電装置22bが双方向インバータ23に接続するので、蓄電装置22bに蓄えてある電力を双方向インバータ23と充電器24を通して蓄電装置22aへ供給して蓄電装置22aの補充電操作を行う。そして蓄電装置22aの補充電操作が例えば8時間をかけて終えたら、その時点で切換器26を閉、切換器27を開、切換器28を開、切換器29を閉とすることで、蓄電装置22aを補充電操作用に切り替えて待機させるとともに、蓄電装置22bを充放電用に切り替え、以後1週間の間、充放電用として運用する。   The switching board 25 includes switching units 26 to 29, and switching between charging and discharging of the power storage device 22 and auxiliary charging operation is performed by opening and closing these switching units 26 to 29. Specifically, when the power storage device 22a is used for charging / discharging and the power storage device 22b is used for supplementary charging operation, the switch 26 is closed, the switch 27 is opened, the switch 28 is opened, and the switch 29 is turned on. Closed. As a result, the power storage device 22a is connected to the bidirectional inverter 23 and operated for charging / discharging, and the power storage device 22b is connected to the charger 24 and placed on standby for the auxiliary charging operation. On the other hand, when it is time for the power storage device 22a to require an auxiliary charging operation, the switch 26 is opened, the switch 27 is closed, the switch 28 is closed, and the switch 29 is opened. As a result, the power storage device 22a is connected to the charger 24, and the power storage device 22b is connected to the bidirectional inverter 23. Therefore, the power stored in the power storage device 22b is supplied to the power storage device 22a through the bidirectional inverter 23 and the charger 24. Then, the auxiliary charging operation of the power storage device 22a is performed. Then, when the auxiliary charging operation of the power storage device 22a is completed over, for example, 8 hours, the switching device 26 is closed, the switching device 27 is opened, the switching device 28 is opened, and the switching device 29 is closed. The apparatus 22a is switched to the auxiliary charging operation to be on standby, and the power storage apparatus 22b is switched to charging / discharging. Thereafter, the apparatus 22a is operated for charging / discharging for one week.

次に第3の実施形態について説明する。図3に、第3の実施形態による分散型電源システムの構成を示す。本実施形態の分散型電源システム31は、系統接続型であり、システム本来の発電源が安定して発電できる電力以下の電力で補充電操作を可能とする程度以下の蓄電容量とした蓄電装置を複数台設けることで、システム本来の発電源による電力だけでの補充電操作を可能とする方式である。   Next, a third embodiment will be described. FIG. 3 shows a configuration of a distributed power supply system according to the third embodiment. The distributed power supply system 31 of the present embodiment is a grid connection type, and a power storage device having a power storage capacity of a degree that allows a supplementary charging operation with a power that is less than the power that can be stably generated by the original power generation source of the system. By providing a plurality of units, a supplementary charging operation can be performed only with electric power from the system's original power generation source.

分散型電源システム31は、システム本来の発電源として太陽電池モジュール(太陽光発電装置)32を備えている。太陽電池モジュール32にはその出力をコントロールする出力制御装置33が接続されており、この出力制御装置33を介してシステム監視制御装置34による制御の下で負荷需要35や電力会社の系統36に対して電力を供給するようにされている。   The distributed power supply system 31 includes a solar cell module (solar power generation device) 32 as an original power generation source of the system. An output control device 33 for controlling the output is connected to the solar cell module 32, and the load demand 35 and the power company system 36 are controlled via the output control device 33 under the control of the system monitoring control device 34. To supply power.

太陽電池モジュール32と系統36をつなぐ送電経路には、4台の蓄電装置37(37a〜37d)が接続されている。4台の蓄電装置37a〜37dは、いずれも鉛蓄電池38と双方向インバータ39を含む同一の構成とされている。また4台の蓄電装置37a〜37dは、太陽電池モジュール32が安定して発電できる電力以下の電力で補充電操作を可能とする程度以下の蓄電容量という条件の下で同一の蓄電容量とされている。   Four power storage devices 37 (37 a to 37 d) are connected to the power transmission path connecting the solar cell module 32 and the system 36. All of the four power storage devices 37 a to 37 d have the same configuration including the lead storage battery 38 and the bidirectional inverter 39. Further, the four power storage devices 37a to 37d have the same power storage capacity under the condition that the power storage capacity is less than or equal to the power that can be stably generated by the solar cell module 32 and that allows the auxiliary charging operation to be performed. Yes.

このように複数台、具体的には4台の蓄電装置37a〜37dを設けることにより、システム本来の発電源による電力だけでの補充電操作を行うことができるようになる。具体的には以下のとおりである。   As described above, by providing a plurality of power storage devices 37a to 37d, specifically, four power storage devices 37a to 37d, it is possible to perform a supplementary charging operation using only the electric power generated by the system's original power generation source. Specifically, it is as follows.

通常状態では4台の蓄電装置37a〜37dの全台を充放電モードで運用し、システム監視制御装置34による制御の下で、蓄電装置37a〜37dのそれぞれに蓄電容量の例えば50%程度の充電量を基準として充放電させることで需要負荷35や系統36に対する供給電力の安定化を図っている。そして蓄電装置37a〜37dのいずれか、例えば蓄電装置37aが補充電操作を必要とする時期になったら、その蓄電装置37aを補充電操作モードに切り替えて補充電操作を行う。上述のように蓄電装置37は、その蓄電容量が太陽電池モジュール32の安定的発電可能な電力以下の電力で補充電操作を可能とする程度以下とされている。このため蓄電装置37aの補充電操作は、太陽電池モジュール32からの電力だけで行うことができる。こうした補充電操作は、4台の蓄電装置37a〜37dに対して順次的になされる。つまり補充電操作時期が一定期間をおいて順に蓄電装置37a〜37dのそれぞれに来るようなローテーション運用で蓄電装置37a〜37dを運用し、いずれかに補充電操作時期が来る度にその蓄電装置37に対する補充電操作を行うということである。
以上のように本実施形態の分散型電源システム31は、システム本来の発電源、具体的には太陽電池モジュール32の安定的発電可能な電力以下の電力で補充電操作を可能とする程度以下の蓄電容量とした蓄電装置37a〜37dを設け、これら蓄電装置37a〜37dを充放電モードと補充電操作モードについて切り替えて運用するとともに、その運用における補充電操作時期についてローテーション運用することで、システム本来の発電源による電力だけでの補充電操作を可能とする。このため分散型電源システム31によれば、立地制約問題やコスト問題を有効に解消でき、また環境負荷低減性の分散型電源システムにおける環境負荷低減性を高めることができる。
In the normal state, all of the four power storage devices 37a to 37d are operated in the charge / discharge mode, and under the control of the system monitoring control device 34, the power storage devices 37a to 37d are charged with, for example, about 50% of the storage capacity. Charging / discharging is performed based on the amount to stabilize the power supplied to the demand load 35 and the system 36. When one of the power storage devices 37a to 37d, for example, the power storage device 37a has reached a time when a supplementary charging operation is required, the power storage device 37a is switched to the supplementary charging operation mode to perform the supplementary charging operation. As described above, the power storage device 37 has a power storage capacity that is less than or equal to the extent that the supplementary charging operation can be performed with power equal to or lower than the power that can be stably generated by the solar cell module 32. For this reason, the auxiliary charging operation of the power storage device 37 a can be performed only with the electric power from the solar cell module 32. Such an auxiliary charging operation is sequentially performed on the four power storage devices 37a to 37d. That is, the power storage devices 37a to 37d are operated in a rotation operation such that the auxiliary charging operation timing sequentially reaches each of the power storage devices 37a to 37d after a certain period, and each time the auxiliary charging operation timing comes, the power storage device 37 This means that a supplementary charging operation is performed.
As described above, the distributed power supply system 31 of the present embodiment has a power generation capacity that is less than or equal to the extent that enables the auxiliary charging operation with the power generated by the system, specifically, the power that can be stably generated by the solar cell module 32. The power storage devices 37a to 37d having the power storage capacity are provided, the power storage devices 37a to 37d are operated by switching between the charge / discharge mode and the auxiliary charge operation mode, and the auxiliary charge operation timing in the operation is rotated, so that the system itself This makes it possible to perform a supplementary charging operation using only the power from the power source. For this reason, according to the distributed power supply system 31, the location constraint problem and the cost problem can be effectively solved, and the environmental load reduction performance in the distributed power supply system with environmental load reduction performance can be enhanced.

以上、本発明を実施するためのいくつかの形態について説明したが、これらは代表的な例に過ぎず、本発明は、その趣旨を逸脱することのない範囲で様々な形態で実施することができる。   As mentioned above, although several forms for implementing this invention were demonstrated, these are only typical examples, and this invention can be implemented with various forms in the range which does not deviate from the meaning. it can.

第1の実施形態による分散型電源システムの構成を示す図である。1 is a diagram illustrating a configuration of a distributed power supply system according to a first embodiment. 第2の実施形態による分散型電源システムの構成を示す図である。It is a figure which shows the structure of the distributed power supply system by 2nd Embodiment. 第3の実施形態による分散型電源システムの構成を示す図である。It is a figure which shows the structure of the distributed power supply system by 3rd Embodiment. 従来の分散型電源システムの構成例を示す図である。It is a figure which shows the structural example of the conventional distributed power supply system.

符号の説明Explanation of symbols

11、21、31 分散型電源システム
12 風力発電機(システム本来の発電源)
16、22、37 蓄電装置
32 太陽電池モジュール(システム本来の発電源)
11, 21, 31 Distributed power system 12 Wind power generator (system's original power generation)
16, 22, 37 Power storage device 32 Solar cell module (original power generation system)

Claims (4)

蓄電装置を備え、前記蓄電装置の充放電によりシステム出力の安定化を図るようにされ、そして前記蓄電装置に対して定期的に規定充電状態とさせるための補充電操作が必要とされている分散型電源システムにおいて、
前記蓄電装置を複数台で設け、これら複数台の蓄電装置を充放電用と補充電操作用に使い分けるように運用し、充放電用の蓄電装置の充放電によりシステム出力の安定化を図る一方で、補充電操作用の蓄電装置は、前記充放電用の蓄電装置に補充電操作を行うのに必要な電力である補充電操作用電力以上の電力を蓄えた充電状態にして待機させ、前記充放電用の蓄電装置に補充電操作が必要となった際に当該補充電操作用の蓄電装置からの電力で補充電操作を行うように運用するものとしたことを特徴とする分散型電源システム。
A dispersion that includes a power storage device, is designed to stabilize system output by charging / discharging the power storage device, and requires a supplementary charging operation to periodically bring the power storage device into a specified charge state Type power supply system,
While providing a plurality of power storage devices, and operating the plurality of power storage devices separately for charge / discharge and auxiliary charge operation, while stabilizing the system output by charging / discharging the charge / discharge power storage device The power storage device for supplementary charging operation is placed in a standby state in which the power storage device for charging / discharging stores power more than the power for supplementary charging operation, which is the power necessary for performing the supplementary charging operation. A distributed power supply system that is operated so as to perform a supplementary charging operation with electric power from the power storage device for the auxiliary charging operation when the auxiliary charging operation is required for the electric storage device for discharging.
前記複数の蓄電装置は、前記充放電用と前記補充電操作用を一定期間ごとに循環的に切り替える運用である充放電/補充電操作ローテーションで運用するようにされていることを特徴とする請求項1に記載の分散型電源システム。   The plurality of power storage devices are operated in a charge / discharge / supplement charge operation rotation, which is an operation in which the charge / discharge and the supplementary charge operation are cyclically switched every predetermined period. Item 2. The distributed power supply system according to Item 1. 蓄電装置を備え、前記蓄電装置の充放電によりシステム出力の安定化を図るようにされ、そして前記蓄電装置に対して定期的に規定充電状態とさせるための補充電操作が必要とされている分散型電源システムにおいて、
システム本来の発電源が安定して発電できる電力以下の電力で補充電操作を可能とする程度以下の蓄電容量とした蓄電装置を複数台設け、そして通常状態では前記複数台の蓄電装置の全台を充放電モードで運用し、この全台充放電モード運用中に、前記複数台の蓄電装置のいずれかが補充電操作を必要とする時期になったら、その蓄電装置を補充電操作モードに切り替えて前記システム本来の発電源からの電力で補充電操作を行うようにされていることを特徴とする分散型電源システム。
A dispersion that includes a power storage device, is designed to stabilize system output by charging / discharging the power storage device, and requires a supplementary charging operation to periodically bring the power storage device into a specified charge state Type power supply system,
A plurality of power storage devices having a storage capacity of less than or equal to a level that enables supplementary charging operation with power that can be stably generated by the system's original power generation power source, and all of the plurality of power storage devices in a normal state Is operated in the charge / discharge mode, and when any of the plurality of power storage devices needs a supplementary charging operation during the operation of the charging / discharging mode for all units, the power storage device is switched to the auxiliary charging operation mode. The distributed power supply system is configured such that a supplementary charging operation is performed with electric power from the power generation source inherent in the system.
一定期間をおいて順に補充電操作時期が前記複数台の蓄電装置のそれぞれに来るようなローテーション運用で前記複数台の蓄電装置を運用し、前記複数台の蓄電装置のいずれかに補充電操作時期が来る度にその蓄電装置に対して前記補充電操作を行うようにされていることを特徴とする請求項3に記載の分散型電源システム。   A plurality of power storage devices are operated in a rotation operation such that a supplementary charging operation timing comes to each of the plurality of power storage devices in order after a certain period of time, and a supplementary charging operation timing is set to one of the plurality of power storage devices. The distributed power supply system according to claim 3, wherein the auxiliary charging operation is performed on the power storage device every time when the power comes.
JP2006284395A 2006-10-18 2006-10-18 Distributed power system Active JP4738312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284395A JP4738312B2 (en) 2006-10-18 2006-10-18 Distributed power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284395A JP4738312B2 (en) 2006-10-18 2006-10-18 Distributed power system

Publications (2)

Publication Number Publication Date
JP2008104284A true JP2008104284A (en) 2008-05-01
JP4738312B2 JP4738312B2 (en) 2011-08-03

Family

ID=39438177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284395A Active JP4738312B2 (en) 2006-10-18 2006-10-18 Distributed power system

Country Status (1)

Country Link
JP (1) JP4738312B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038664A1 (en) * 2008-09-30 2010-04-08 日本碍子株式会社 Method for controlling sodium-sulfur battery
WO2011051997A1 (en) * 2009-10-26 2011-05-05 新神戸電機株式会社 Lead storage battery operating method and electrical storage device equipped with lead storage battery operated by this operating method
EP2333893A1 (en) * 2008-09-30 2011-06-15 NGK Insulators, Ltd. Method for controlling sodium-sulfur batteries
JP2011250664A (en) * 2010-05-31 2011-12-08 Hitachi Consumer Electronics Co Ltd Electrical apparatus control system and electrical equipment controller
JP2012010549A (en) * 2010-06-28 2012-01-12 Fujitsu Ltd Electric power standardization system
JP4875779B1 (en) * 2011-06-09 2012-02-15 ネクストワンクリエイト有限会社 Power supply system, power supply apparatus, and power supply method
JP2012161190A (en) * 2011-02-01 2012-08-23 Tabuchi Electric Co Ltd Photovoltaic power generation system
JP2012249447A (en) * 2011-05-30 2012-12-13 Hitachi Engineering & Services Co Ltd Wind power generator system and wind power generator extension method in the system
JP2013099125A (en) * 2011-11-01 2013-05-20 Ohk Kenkyusho:Kk Hybrid charger and hybrid power storage device
WO2014013854A1 (en) * 2012-07-17 2014-01-23 株式会社村田製作所 Sensor tag and power supply module for energy harvesting
JP2016077101A (en) * 2014-10-08 2016-05-12 株式会社明電舎 Interconnection system, and control method for interconnection system
WO2023175745A1 (en) * 2022-03-15 2023-09-21 本田技研工業株式会社 Control device, control method, program, and recording medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999160B2 (en) 2014-10-02 2016-09-28 富士ゼロックス株式会社 Paper processing apparatus, image forming system, and rotating member pair

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025169A (en) * 1999-07-06 2001-01-26 Nissin Electric Co Ltd Power storage method and power storage device
JP2001157383A (en) * 1999-11-25 2001-06-08 Nissin Electric Co Ltd Power storage device
JP2002058175A (en) * 2000-08-07 2002-02-22 Japan Storage Battery Co Ltd Independent power supply system
JP2008072774A (en) * 2006-09-12 2008-03-27 Meidensha Corp Natural energy generated output equalization arrangement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025169A (en) * 1999-07-06 2001-01-26 Nissin Electric Co Ltd Power storage method and power storage device
JP2001157383A (en) * 1999-11-25 2001-06-08 Nissin Electric Co Ltd Power storage device
JP2002058175A (en) * 2000-08-07 2002-02-22 Japan Storage Battery Co Ltd Independent power supply system
JP2008072774A (en) * 2006-09-12 2008-03-27 Meidensha Corp Natural energy generated output equalization arrangement

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333894A4 (en) * 2008-09-30 2012-07-18 Ngk Insulators Ltd Method for controlling sodium-sulfur battery
US8723359B2 (en) 2008-09-30 2014-05-13 Ngk Insulators, Ltd. Method for controlling sodium-sulfur battery
WO2010038664A1 (en) * 2008-09-30 2010-04-08 日本碍子株式会社 Method for controlling sodium-sulfur battery
EP2333894A1 (en) * 2008-09-30 2011-06-15 NGK Insulators, Ltd. Method for controlling sodium-sulfur battery
JP5453288B2 (en) * 2008-09-30 2014-03-26 日本碍子株式会社 Control method of sodium-sulfur battery
US20110200852A1 (en) * 2008-09-30 2011-08-18 Ngk Insulators, Ltd. Method for controlling sodium-sulfur battery
US20110206954A1 (en) * 2008-09-30 2011-08-25 Ngk Insulators, Ltd. Method for controlling sodium-sulfur batteries
US8420240B2 (en) * 2008-09-30 2013-04-16 Ngk Insulators, Ltd. Method for controlling sodium-sulfur batteries
EP2333893A1 (en) * 2008-09-30 2011-06-15 NGK Insulators, Ltd. Method for controlling sodium-sulfur batteries
EP2333893A4 (en) * 2008-09-30 2012-07-11 Ngk Insulators Ltd Method for controlling sodium-sulfur batteries
JP4941618B2 (en) * 2009-10-26 2012-05-30 新神戸電機株式会社 Operation method of lead storage battery and power storage device including lead storage battery operated by the operation method
CN102150316B (en) * 2009-10-26 2013-12-25 新神户电机株式会社 Lead storage battery operating method and electrical storage device equipped with lead storage battery operated by this operating method
CN102150316A (en) * 2009-10-26 2011-08-10 新神户电机株式会社 Lead storage battery operating method and electrical storage device equipped with lead storage battery operated by this operating method
WO2011051997A1 (en) * 2009-10-26 2011-05-05 新神戸電機株式会社 Lead storage battery operating method and electrical storage device equipped with lead storage battery operated by this operating method
US8441236B2 (en) 2009-10-26 2013-05-14 Shin-Kobe Electric Machinery Co., Ltd. Grid plate for lead acid storage battery, plate, and lead acid storage battery provided with same plate
JP2011250664A (en) * 2010-05-31 2011-12-08 Hitachi Consumer Electronics Co Ltd Electrical apparatus control system and electrical equipment controller
JP2012010549A (en) * 2010-06-28 2012-01-12 Fujitsu Ltd Electric power standardization system
JP2012161190A (en) * 2011-02-01 2012-08-23 Tabuchi Electric Co Ltd Photovoltaic power generation system
JP2012249447A (en) * 2011-05-30 2012-12-13 Hitachi Engineering & Services Co Ltd Wind power generator system and wind power generator extension method in the system
JP4875779B1 (en) * 2011-06-09 2012-02-15 ネクストワンクリエイト有限会社 Power supply system, power supply apparatus, and power supply method
US9118211B2 (en) 2011-06-09 2015-08-25 Next One Create, Ltd. Power supply system, power-supply device and power-supply method
JP2013099125A (en) * 2011-11-01 2013-05-20 Ohk Kenkyusho:Kk Hybrid charger and hybrid power storage device
WO2014013854A1 (en) * 2012-07-17 2014-01-23 株式会社村田製作所 Sensor tag and power supply module for energy harvesting
JP2016077101A (en) * 2014-10-08 2016-05-12 株式会社明電舎 Interconnection system, and control method for interconnection system
WO2023175745A1 (en) * 2022-03-15 2023-09-21 本田技研工業株式会社 Control device, control method, program, and recording medium

Also Published As

Publication number Publication date
JP4738312B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4738312B2 (en) Distributed power system
CN102593956B (en) Energy-storage system and control method thereof
US9362745B2 (en) Power storage module and power storage device
JP5028517B2 (en) DC power supply system
JP6289661B2 (en) Power supply device, power supply system, and control method for power supply device
KR101754157B1 (en) Energy storage system and method to improve efficiency of energy by the system
JP2007252146A (en) Power supply system
EP2858200A1 (en) Power supply system
KR20170079677A (en) Battery management device and battery energy storing system
JP5539094B2 (en) Emergency power supply
JP2014220874A (en) Power supply system, control device for power supply system, control method for power supply system, and power supply program
KR101672751B1 (en) Energy management system by means of mutual interlocking battery management system and power management system and controlling method thereof
JP5820984B2 (en) Power distribution system
JP2016103915A (en) Storage battery system and power storage method
JP2010226857A (en) Power supply system
JP4624717B2 (en) Power system
KR102654899B1 (en) Direct current distribution based charging/discharging system for battery formation
KR102463396B1 (en) Energy storage system
JPWO2019053824A1 (en) Power adjustment device for solar power plant, power generation system, and power adjustment method for solar power plant
US20170338657A1 (en) Micro grid stabilization device
KR20170022735A (en) Energy Storage System and managing method for the same
CN105515158A (en) High-reliability satellite power supply controller digital control system
JP4654262B2 (en) DC power supply system and charging method thereof
KR20180122254A (en) Apparatus for converting power and method for using the same
JP2009201240A (en) Dc power supply system, and method of charging and controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4738312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3