JP2008104262A - Islanding pevention for apparatus distributed power unit - Google Patents

Islanding pevention for apparatus distributed power unit Download PDF

Info

Publication number
JP2008104262A
JP2008104262A JP2006283049A JP2006283049A JP2008104262A JP 2008104262 A JP2008104262 A JP 2008104262A JP 2006283049 A JP2006283049 A JP 2006283049A JP 2006283049 A JP2006283049 A JP 2006283049A JP 2008104262 A JP2008104262 A JP 2008104262A
Authority
JP
Japan
Prior art keywords
phase
voltage
power supply
distribution system
distributed power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006283049A
Other languages
Japanese (ja)
Inventor
Yozo Ito
洋三 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2006283049A priority Critical patent/JP2008104262A/en
Publication of JP2008104262A publication Critical patent/JP2008104262A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an islanding prevention which apparatus modifies a protective function for interconnection with a commercial system, in a low-voltage distribution system which has a DC power source such as a solar cell, a fuel cell, etc. <P>SOLUTION: The distributed power unit 10 has the DC power source 11, an inverter 12 which converts the DC power generated from the DC power source 11, and an interconnection breaker 13 for interconnecting with a single-phase three-line type low-voltage distribution system 3. Besides, it is connected with the single-phase three-line low-voltage distribution system. It is provided with a voltage unbalance detector 16 which detects the unbalance between the two interphase voltages of the single-phase three-line low-voltage distribution system 3 connected to the distributed power unit 10. A controller 14 stops the above inverter 12 or disconnects the decentralized power unit from the single-phase three-line type low-voltage distribution system by means of the above system breaker 13 when the voltage unbalance detector 16 detects the unbalance between the two interphase voltages of the single-phase three-line type low-voltage distribution system 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、太陽電池や燃料電池等の直流電源部を有する分散電源装置の単独運転防止装置に関するものであって、特に、商用系統へ系統連系するに当たっての保護機能に改良を施したものである。   The present invention relates to an isolated operation prevention device for a distributed power supply device having a direct current power supply unit such as a solar cell or a fuel cell, and in particular, an improvement in a protection function for system interconnection to a commercial system. is there.

近年、省エネルギー、CO2排出量削減への関心の高まりから、燃料電池等の新エネルギー発電装置や、ガスエンジンコージェネレーションシステム等の実用化が進んできている。これらの分散電源装置は直流電力をインバータにより交流電力に変換して利用する形態が一般的である。また、運用方法としては、商用系統から独立して運転するのではなく、商用系統へ系統連系することを基本としている。そのため、商用系統へ連系する際には、系統連系に関わる幾つかの保護機能が必要である。   In recent years, due to increased interest in energy saving and CO2 emission reduction, new energy power generation devices such as fuel cells, gas engine cogeneration systems, and the like have been put into practical use. These distributed power supply apparatuses generally use a form in which DC power is converted to AC power by an inverter. In addition, the operation method is basically based on grid connection to the commercial system, rather than operating independently from the commercial system. Therefore, when connecting to a commercial system, some protection functions related to the system connection are necessary.

その中の重要な保護機能として、系統停電時に分散電源装置が運転継続する、いわゆる単独運転状態となった場合に分散電源装置を系統から解列するための単独運転防止装置の設置が必要である。   As an important protection function, it is necessary to install an isolated operation prevention device to disconnect the distributed power supply device from the system when the distributed power supply device continues to operate in the event of a system power outage, or when it is in a so-called isolated operation state. .

すなわち、この種の系統連系システムでは、需要家側設備の自家用発電装置による直流の発電電力をインバータにより交流電力に変換して配電系統に連系させており、インバータの出力電圧は配電系統と同一の大きさで同一周波数に制御されている。また、自家用発電装置による発電電力量を常に最大に引き出すように、インバータによって自家用発電装置の動作電圧点が制御されている。   That is, in this type of grid interconnection system, DC power generated by private power generators on the customer side equipment is converted into AC power by an inverter and linked to the distribution system. The output voltage of the inverter is connected to the distribution system. The same size and the same frequency are controlled. In addition, the operating voltage point of the private power generator is controlled by the inverter so that the amount of power generated by the private power generator is always maximized.

この系統連系システムにおいて、点検や工事、事故等により配電系統の電源供給が停止(遮断)された場合、自家用発電装置及びインバータを配電系統に連系したまま運転すると、いわゆる逆電圧による逆潮流が停電状態の系統に流れ込み、配電系統の安全性を脅かすおそれがある。このため、需要家側設備の単独運転状態を確実に検出してインバータを配電系統から切り離す(解列する)必要がある。   In this grid-connected system, when the power supply of the distribution system is stopped (cut off) due to inspection, construction, accident, etc., if the power generator and inverter are operated while connected to the distribution system, the reverse power flow caused by the so-called reverse voltage May flow into the grid in a power outage and threaten the safety of the distribution system. For this reason, it is necessary to reliably detect the isolated operation state of the customer-side equipment and disconnect (disconnect) the inverter from the distribution system.

単独運転検出機能は受動と能動の2つの方式があり、系統停電時に解列される遮断器から下流の単独運転系統内の分散電源装置から出力される有効電力Pと無効電力Qが負荷の要求量とどちらかでも不平衡状態になっていれば受動式で検出可能である。   The islanding operation detection function has two methods, passive and active. The active power P and the reactive power Q output from the distributed power supply device in the islanding system downstream from the circuit breaker disconnected at the time of a system power failure are the load requirements. If it is in an unbalanced state with either quantity, it can be detected passively.

しかし分散電源装置から出力される有効電力Pと無効電力Qが負荷の要求する有効電力P,無効電力Qと両方とも合致した需給バランスした状態では、受動式では検出できないため、分散電源装置側において常時微少な外乱を系統に与え、単独運転移行後に、この外乱により顕著になる電圧や周波数などの変動を検出する能動方式により単独運転を防止することが必要となる。   However, since the active power P and the reactive power Q output from the distributed power supply device are in a balanced supply and demand state where both the active power P and the reactive power Q required by the load match, it cannot be detected passively. It is necessary to prevent isolated operation by an active system that constantly applies a slight disturbance to the system and detects fluctuations such as voltage and frequency that become noticeable due to the disturbance after the transition to isolated operation.

太陽光や燃料電池などの分散電源が、住宅用(家庭用)コージェネレーションシステムとして普及が進むにつれて、比較的狭い地域に密集して設置される場合があり、いわゆる高密度連系状態となるケースがある。このような高密度連系状態では能動方式が発生する微小変動が相殺し合って、単独運転状態の検出感度が低下する場合があり課題となっている。   When distributed power sources such as solar and fuel cells are widely used as residential (household) cogeneration systems, they may be densely installed in a relatively small area, resulting in a so-called high-density interconnected state. There is. In such a high-density interconnected state, minute fluctuations generated by the active method cancel each other, and the detection sensitivity of the isolated operation state may decrease, which is a problem.

能動方式としてさまざまな方式が提案されており、同一方式の組合せであれば、相互干渉により検出感度が低下しないことは実試験等で検証されているが、異種方式を組合せた場合には検出感度が低下するケースも発生することから、他の方式と干渉しない新しい能動方式の開発も進められている。   Various methods have been proposed as active methods, and it has been verified by actual tests that the detection sensitivity does not decrease due to mutual interference if the same method is combined. Therefore, there is a case in which a decrease occurs. Therefore, development of a new active method that does not interfere with other methods is being promoted.

この感度低下を防ぐために、高圧配電線の短絡故障時の線間電圧の低下や地絡故障時の零相電圧の発生を検出して、強制的に負荷を投入して需給アンバランス状態にさせる方式(特許文献1参照)や、単独運転移行時に低圧配電線の周波数・高調波含有率等が変動することを検出して分散電源装置の専用負荷抵抗を投入して、不足電圧検出により停止させる方式(特許文献2参照)などが提案されている。   To prevent this decrease in sensitivity, a drop in line voltage at the time of a short-circuit failure of a high-voltage distribution line or the occurrence of zero-phase voltage at the time of a ground fault is detected, and a load is forcibly applied to bring the supply and demand unbalanced state. The system (see Patent Document 1) or when the frequency / harmonic content of the low-voltage distribution line fluctuates at the time of shifting to single operation, and the dedicated load resistance of the distributed power supply device is turned on, and it is stopped by detecting the undervoltage A method (see Patent Document 2) has been proposed.

特開2005-341666号公報JP 2005-341666 A 特開2002-291158号公報JP 2002-291158 A

前記特許文献1や特許文献2の発明は、常時微かな外乱を系統に与えることなく、単独運転移行時の電圧、周波数及び高調波含有率の特異な変化を検出するという受動方式であるためどうしても不要動作が生じる不都合があり、従来では、この受動方式と、検出後に抵抗を投入して需給アンバランス状態にするという能動方式とを組み合わせることにより、受動方式の課題である不要動作防止を図っている。   Just for the invention of Patent Document 1 and Patent Document 2 is a passive system that constantly faint disturbance without giving to the system, the voltage at the time of islanding migration, to detect specific changes in the frequency and harmonic content There is an inconvenience that unnecessary operation occurs. Conventionally, by combining this passive method with the active method that puts resistance after detection and puts it into an unbalanced state of supply and demand, it is aimed at preventing unnecessary operation that is a problem of the passive method Yes.

しかし前記のような従来方式では、系統電圧や周波数を監視するための検出装置や単独運転の判定を行う演算装置等を外部に設けることが必要があり、コストや設置面で不利であることは否めない、という問題があった。   However, in the conventional method as described above, it is necessary to provide a detection device for monitoring the system voltage and frequency, an arithmetic device for performing determination of isolated operation, etc., which is disadvantageous in terms of cost and installation. There was a problem that could not be denied.

本発明は前記のような従来技術の問題点を解決するために提案されたものであって、その目的は、外部に新たな検出装置や演算装置を設けることなく、検出感度が低下せずに単独運転を検出することができる分散電源装置の単独運転防止装置を提供することを目的とする。   The present invention has been proposed in order to solve the above-described problems of the prior art, and its purpose is to provide a new detection device and arithmetic device outside without reducing the detection sensitivity. It is an object of the present invention to provide an isolated operation prevention device for a distributed power supply device that can detect an isolated operation.

前記の目的を達成するために、本発明の分散電源装置の単独運転防止装置は、直流電源部と、当該直流電源部から発生する直流電力を交流に変換するインバータと、単相3線式低圧配電系統に連系するための連系遮断器とを具備し、かつ単相3線式低圧配電系統に接続された分散電源装置と、前記分散電源装置に接続された単相3線式低圧配電系統の2つの相間電圧の不平衡を検出する電圧不平衡検出装置と、前記電圧不平衡検出装置により単相3線式低圧配電系統の2つの相間電圧の不平衡を検出した場合に、前記インバータの停止あるいは前記系統遮断器による分散電源装置の単相3線式低圧配電系統からの解列を行う制御装置と、を備えたことを特徴とする。   In order to achieve the above object, an isolated operation prevention device for a distributed power supply apparatus according to the present invention includes a DC power supply unit, an inverter for converting DC power generated from the DC power supply unit to AC, a single-phase three-wire low voltage A distributed power supply device having a connection circuit breaker for connecting to a distribution system and connected to a single-phase three-wire low-voltage distribution system; and a single-phase three-wire low-voltage distribution connected to the distributed power supply device A voltage imbalance detection device for detecting an imbalance between two phase voltages of the system, and the inverter when the voltage imbalance detection device detects a voltage imbalance between two phases of a single-phase three-wire low-voltage distribution system. Or a control device for disconnecting from the single-phase three-wire low-voltage distribution system of the distributed power supply device by the system breaker.

すなわち、発電設備出力と負荷がバランスしていることが単独運転状態の継続条件であるが、その条件が成立する確率が低いことに加えて、一般家庭に供給される電気方式である100V/200Vの単相3線式の場合は、R相負荷とT相負荷がバランスして、かつその状態が系統遮断器の再閉路までの時間継続するという条件も重なることはほとんどありえない。   That is, the balance between the power generation facility output and the load is a continuation condition of the single operation state, but in addition to the low probability that the condition is satisfied, it is an electric system that is supplied to a general household 100V / 200V In the case of the single-phase three-wire system, it is unlikely that the condition that the R-phase load and the T-phase load are balanced and that the state continues for the time until the reclosing of the system breaker overlaps.

そこで、本発明では、この点に着目して、単相3線式の系統側停電時に200V出力のインバータ等の電源が接続されていると、R相負荷とT相負荷の不平衡により、R相とT相の電圧が不平衡となる、すなわち負荷の比率に応じて片相は上昇し、他相は低下することを利用して、電圧不平衡検出装置を従来技術における受動並びに能動的単独運転検出装置の代わりとするものである。   Therefore, in the present invention, focusing on this point, if a power source such as a 200 V output inverter is connected at the time of a single-phase three-wire system power failure, the R-phase load and the T-phase load are unbalanced. By utilizing the fact that the phase and T phase voltages become unbalanced, that is, one phase rises according to the load ratio and the other phase falls, the voltage unbalance detection device is made passive and active alone in the prior art. This is a substitute for the operation detection device.

本発明によれば、従来技術における受動並びに能動的単独運転検出装置が不要となり、簡単な構成でしかも確実に分散電源装置の単独運転を防止することが可能になる。   According to the present invention, the passive and active isolated operation detection devices in the prior art are not required, and it is possible to reliably prevent the isolated operation of the distributed power supply device with a simple configuration.

(1)第1実施形態
以下、本発明の第1実施形態を、図1の構成図に従って具体的に説明する。
(1) First Embodiment Hereinafter, a first embodiment of the present invention will be described in detail with reference to the block diagram of FIG.

図1において、分散電源装置10は、100V/200Vの単相3線式低圧配電系統3と電気的に接続されている。この分散電源装置10は、直流電源部11と、前記直流電源部11が発生する直流電力を交流電力へ変換する200V単相2線式インバータ12と、分散電源装置10と配電系統との連系または解列を行う連系遮断器13と、インバータ12の停止並びに連系遮断器13の解列指令を出力する制御装置14と、受動式単独運転検出装置15および電圧不平衡検出装置16から構成される。   In FIG. 1, the distributed power supply device 10 is electrically connected to a 100V / 200V single-phase three-wire low-voltage distribution system 3. This distributed power supply apparatus 10 includes a DC power supply section 11, a 200V single-phase two-wire inverter 12 that converts DC power generated by the DC power supply section 11 into AC power, and a connection between the distributed power supply apparatus 10 and a distribution system. Alternatively, it includes a connection breaker 13 that performs disconnection, a control device 14 that stops the inverter 12 and outputs a disconnection command for the connection breaker 13, a passive single operation detection device 15, and a voltage imbalance detection device 16. Is done.

電圧不平衡検出装置16は、上位の遮断器(図示しない系統遮断器)を開放したときなどに、需要家負荷30のR相負荷31とT相負荷32との不平衡により生じる過電圧を検出し、これを制御装置14に出力することで、制御装置14からインバータ12の停止指令または分散電源装置10を解列するための連系遮断器13の作動指令を出力させるためのものである。   The voltage imbalance detection device 16 detects an overvoltage generated due to an imbalance between the R-phase load 31 and the T-phase load 32 of the customer load 30 when a host circuit breaker (system breaker not shown) is opened. By outputting this to the control device 14, a stop command for the inverter 12 or an operation command for the interconnection breaker 13 for disconnecting the distributed power supply device 10 is output from the control device 14.

この電圧不平衡検出装置16としては、一例として、平成16年10月1日付け資源エネルギー庁「電力品質確保に係る系統連系技術要件ガイドライン」において、発電設備等の電気方式と連系する系統の電気方式が異なっても連系できる技術要件として規定されている保護装置をそのまま使用してもよい。   As an example of the voltage imbalance detection device 16, a grid connected to an electrical system such as a power generation facility in the “Resource grid interconnection technical requirement guideline for ensuring power quality” dated October 1, 2004, as a resource energy agency. Even if the electrical system is different, a protective device defined as a technical requirement that can be connected may be used as it is.

一方、単相3線式低圧配電系統3は、6600Vの高圧配電系統1から柱上変圧器2により降圧されるとともに、100V/200Vの単相3線式に電気方式も変換されるが、国内のほとんどの一般家庭等に供給されている低圧配電系統構成である。   On the other hand, the single-phase three-wire low-voltage distribution system 3 is stepped down from the 6600V high-voltage distribution system 1 by the pole transformer 2, and the electric system is also converted into a 100V / 200V single-phase three-wire system. It is a low-voltage distribution system configuration that is supplied to most households.

次に、前記のような構成を有する第1実施形態の作用を、図3の動作フローチャートに従って説明する。
分散電源装置10は低圧配電系統3へ連系して運転している。分散電源装置10の発電出力が、需要家負荷30よりも大きい場合は、需要家負荷30を賄った余剰分が他の需要家負荷もしくは柱上変圧器2を介して高圧配電線10に供給される。逆に分散電源装置10の発電出力が、需要家負荷30よりも小さい場合は、その差分(不足分)が高圧配電線10から需要家負荷30に供給される。
Next, the operation of the first embodiment having the above-described configuration will be described according to the operation flowchart of FIG.
The distributed power supply device 10 is operated in conjunction with the low voltage distribution system 3. When the power generation output of the distributed power supply 10 is larger than the customer load 30, the surplus that covers the customer load 30 is supplied to the high-voltage distribution line 10 via another customer load or the pole transformer 2. The Conversely, when the power generation output of the distributed power supply 10 is smaller than the consumer load 30, the difference (shortage) is supplied from the high-voltage distribution line 10 to the consumer load 30.

このような状態において、高圧配電線10のいずれかで事故が発生した場合(図3のステップ301)、図示しない系統遮断器が解列して(ステップ302)、分散電源装置10は系統と切り離された状態となる(ステップ303)。説明を簡単にするために、系統と切り離されたエリアの発電装置が分散電源装置10のみとし、負荷についても需要家負荷30だけとする。   In such a state, when an accident occurs in any of the high-voltage distribution lines 10 (step 301 in FIG. 3), a system breaker (not shown) is disconnected (step 302), and the distributed power supply apparatus 10 is disconnected from the system. (Step 303). In order to simplify the description, it is assumed that the power generation device in the area separated from the system is only the distributed power supply device 10 and the load is only the customer load 30.

分散電源装置10から出力される有効電力Pと無効電力Qが、需要家負荷30の要求する有効電力Pと無効電力Qのどちらかでも不平衡になっていれば(ステップ304のYES)、系統の電圧もしくは周波数が変化するので(ステップ305)、図示しない電圧や周波数保護装置により単独運転を検出でき(ステップ306)、それを受けて制御装置14が、インバータ12の停止並びに連系遮断器13の解列指令を出すことで、単独運転の防止処置をとることができる(ステップ307)。   If the active power P and reactive power Q output from the distributed power supply apparatus 10 are unbalanced in either the active power P or reactive power Q requested by the customer load 30 (YES in step 304), the system (Step 305), the isolated operation can be detected by a voltage or frequency protection device (not shown) (step 306), and in response to this, the control device 14 stops the inverter 12 and the interconnection breaker 13 Can be taken to prevent isolated operation (step 307).

逆に分散電源装置10から出力される有効電力Pと無効電力Qが、需要家負荷30の要求する有効電力Pと無効電力Qのどちらとも平衡状態になっていると(ステップ304のNO)、電圧や周波数並びに位相等の変化が生じないため、図示しない電圧や周波数保護装置並びに受動式の単独運転検出装置では単独運転の検出はできない。   Conversely, when the active power P and the reactive power Q output from the distributed power supply device 10 are in equilibrium with both the active power P and the reactive power Q requested by the customer load 30 (NO in step 304), Since changes in voltage, frequency, phase, etc. do not occur, the isolated operation cannot be detected by a voltage or frequency protection device and a passive isolated operation detection device (not shown).

しかし需要家負荷30のR相負荷31とT相負荷32が不平衡の場合には(ステップ308のYES)、その負荷の比率に応じて、100V/200Vの単相3線式低圧配電系統の中性線に対する両側の電圧(R相電圧とT相電圧と呼ぶ)のどちらかが上昇し、電圧不平衡となるため、電圧不平衡検出装置16が動作する(ステップ309)。   However, when the R-phase load 31 and the T-phase load 32 of the customer load 30 are unbalanced (YES in step 308), the 100V / 200V single-phase three-wire low-voltage distribution system is selected according to the load ratio. Since either of the voltages on both sides of the neutral line (referred to as R-phase voltage and T-phase voltage) rises and voltage imbalance occurs, the voltage imbalance detection device 16 operates (step 309).

そして、制御装置14がこの電圧不平衡検出装置16の動作信号を受けてインバータ12の停止指令並びに連系遮断器13の解列指令を出すことにより、受動式単独運転検出装置15だけでは検出できない単独運転のケースでも単独運転防止処置をとることができる(ステップ307)。   Then, the control device 14 receives the operation signal of the voltage imbalance detection device 16 and issues a stop command for the inverter 12 and a disconnection command for the interconnection breaker 13 so that it cannot be detected only by the passive islanding detection device 15. Even in the case of an isolated operation, an isolated operation prevention measure can be taken (step 307).

すなわち、発電設備出力と負荷がバランスしていることが単独運転状態の継続条件であるが、その条件が成立する確率が低いことに加えて、一般家庭に供給される電気方式である100V/200Vの単相3線式の場合は、R相負荷31とT相負荷32がバランスして、かつその状態が系統遮断器の再閉路までの時間継続するという条件も重なることはほとんどありえない。   That is, the balance between the power generation facility output and the load is a continuation condition of the single operation state, but in addition to the low probability that the condition is satisfied, it is an electric system that is supplied to a general household 100V / 200V In the case of the single-phase three-wire type, the condition that the R-phase load 31 and the T-phase load 32 are balanced and the state continues for the time until reclosing of the system breaker can hardly overlap.

そこで、本発明では、この点に着目して、単相3線式の系統側停電時に200V出力のインバータ等の電源が接続されていると、R相負荷とT相負荷の不平衡により、R相とT相の電圧が不平衡となる、すなわち負荷の比率に応じて片相は上昇し、他相は低下することを利用して、電圧不平衡検出装置16を受動並びに能動的単独運転検出装置の代わりとするものである。   Therefore, in the present invention, focusing on this point, if a power source such as a 200 V output inverter is connected at the time of a single-phase three-wire system power failure, the R-phase load and the T-phase load are unbalanced. The voltage imbalance detector 16 is detected passively and actively by using the fact that the phase and T phase voltages are unbalanced, that is, one phase rises and the other phase falls according to the load ratio. It is a substitute for the device.

分散型電源装置10の設置場所が決定した時点で、事前に柱上変圧器2の下流の負荷状況を計測し、R相側負荷とT相側負荷が一致するケースが瞬間的にしか発生しないことが確認できれば、本実施形態の構成で、単独運転状態の継続を防止することで実用上問題ないと考えられる。   When the installation location of the distributed power supply 10 is determined, the load situation downstream of the pole transformer 2 is measured in advance, and the case where the R-phase side load and the T-phase side load coincide with each other only occurs instantaneously. If it can be confirmed, with the configuration of the present embodiment, it is considered that there is no practical problem by preventing the continuation of the single operation state.

以上の通り、本実施形態の単独運転防止装置では、能動方式の単独運転検出装置が不要となるため、能動方式が発生する微小変動が相殺し合って、単独運転状態の検出感度が低下することもない。その結果、太陽光や燃料電池などの分散電源が、住宅用(家庭用)コージェネレーションシステムとして、100V/200Vの単相3線式低圧配電系統の比較的狭い地域に密集して設置される、いわゆる高密度連系状態となっても、不平衡過電圧は全ての分散電源に対して生じるため、検出感度は一切低下しない。   As described above, the isolated operation prevention device of the present embodiment does not require an active isolated operation detection device, so that the minute fluctuations generated by the active method cancel each other and the detection sensitivity of the isolated operation state decreases. Nor. As a result, distributed power sources such as sunlight and fuel cells are densely installed in a relatively narrow area of a 100V / 200V single-phase three-wire low-voltage distribution system as a residential (household) cogeneration system. Even in a so-called high-density interconnected state, unbalanced overvoltage is generated for all distributed power supplies, so the detection sensitivity is not lowered at all.

また200V単相2線式インバータを採用している分散電源装置においては、電圧不平衡を検出する装置を有しているため、内部並びに外部に新たな検出装置や判定装置等を追加する必要もない。   In addition, since the distributed power supply device adopting the 200V single-phase two-wire inverter has a device for detecting voltage imbalance, it is also necessary to add a new detection device, determination device, etc. inside and outside. Absent.

(2)第2実施形態
図2は、本発明の第2実施形態に係る単独運転防止装置のシステム構成図である。この第2実施形態は、前記第1実施形態の電圧不平衡検出装置16の系統側において、各電源相間に開閉器21を有する抵抗装置20を配設したものである。
(2) Second Embodiment FIG. 2 is a system configuration diagram of an isolated operation preventing apparatus according to a second embodiment of the present invention. In the second embodiment, on the system side of the voltage imbalance detection device 16 of the first embodiment, a resistance device 20 having a switch 21 is provided between the power supply phases.

図2において、抵抗装置20は100V/200Vの単相3線式低圧配電系統3の中性相とT相の電源相に、開閉器21と直列に接続される。なおこの抵抗と開閉器の直列体は中性相とR相の電源相にも同じように接続されるが、図では省略する。また、この開閉器21は、機械式開閉器あるいは半導体スイッチで構成される。   In FIG. 2, the resistance device 20 is connected in series with the switch 21 to the neutral phase and the T-phase power phase of the 100 V / 200 V single-phase three-wire low-voltage distribution system 3. Note that the series body of the resistor and the switch is similarly connected to the neutral phase and the R phase power supply phase, but is omitted in the figure. The switch 21 is composed of a mechanical switch or a semiconductor switch.

このような構成を有する第2実施形態の動作を説明する。なお、第1実施形態の作用の説明と同じように、単独運転系統の発電装置が分散電源装置10のみとし、負荷についても需要家負荷30だけとする前提で説明する。   The operation of the second embodiment having such a configuration will be described. Similar to the description of the operation of the first embodiment, the description will be made on the assumption that the power generation apparatus of the single operation system is only the distributed power supply apparatus 10 and the load is only the consumer load 30.

分散電源装置10が単独運転状態になった場合、分散電源装置10から出力される有効電力Pと無効電力Qが、需要家負荷30の要求する有効電力Pと無効電力Qの関係が平衡か否かで、通常の電圧もしくは周波数保護装置か、電圧不平衡検出装置16で単独運転状態を検出して、それを受けて制御装置14がインバータ12の停止並びに連系遮断器13の解列指令を出すことで、単独運転の防止処置をとることができる。この点は、前記第1実施形態と同様である。   When the distributed power supply device 10 is in an independent operation state, the active power P and the reactive power Q output from the distributed power supply device 10 are in balance with the active power P and the reactive power Q required by the customer load 30. In the normal voltage or frequency protection device or the voltage imbalance detection device 16, the isolated operation state is detected, and in response to this, the control device 14 stops the inverter 12 and issues a disconnection command for the interconnection breaker 13. By taking it out, it is possible to take measures to prevent isolated operation. This is the same as in the first embodiment.

ところが、前記第1実施形態においては、発電設備出力と負荷がバランスした上に、R相負荷31とT相負荷32の不平衡率が小さく、R相電圧もしくはT相電圧の過電圧レベルが小さい場合には、電圧・周波数保護装置や電圧不平衡装置16によって単独運転状態の検出が困難になる可能性がある。   However, in the first embodiment, when the power generation facility output and the load are balanced, the unbalance rate between the R-phase load 31 and the T-phase load 32 is small, and the R-phase voltage or the overvoltage level of the T-phase voltage is small. In some cases, the voltage / frequency protection device and the voltage imbalance device 16 may make it difficult to detect the isolated operation state.

そこで、第2実施形態においては、そのような場合であっても、単独運転の状態を確実に検出し、単独運転を阻止できるようにしたものである。以下のその作用について説明する。   Therefore, in the second embodiment, even in such a case, the state of the isolated operation can be reliably detected and the isolated operation can be prevented. The operation will be described below.

まず分散電源装置10が連系している100V/200Vの単相3線式低圧配電系統3のR相電圧とT相電圧を制御装置14で常時監視し、どちらかの電圧が例えば定格の95%を下回った場合に、電圧が低下した相に接続されている開閉器21を制御装置14からの信号で閉することにより、抵抗装置20をT相負荷32に並列に接続させる。ここでは図示の関係からT相電圧が低下したとして説明する。   First, the control device 14 constantly monitors the R-phase voltage and the T-phase voltage of the 100V / 200V single-phase three-wire low-voltage distribution system 3 to which the distributed power supply device 10 is connected. When the voltage is lower than%, the resistance device 20 is connected in parallel to the T-phase load 32 by closing the switch 21 connected to the phase in which the voltage is reduced by a signal from the control device 14. Here, the description will be made assuming that the T-phase voltage is reduced from the illustrated relationship.

抵抗装置20を追加しても、系統が正常の場合には、R相電圧とT相電圧は変化しないが、もし単独運転移行により電圧不平衡が生じてT相電圧が低下した場合には、抵抗追加によりR相負荷31と、T相負荷32+抵抗装置20の負荷の不平衡率が拡大する方向に作用するため、T相電圧は更に低下する。   Even if the resistance device 20 is added, if the system is normal, the R-phase voltage and the T-phase voltage do not change, but if a voltage imbalance occurs due to the shift to the single operation, the T-phase voltage decreases. The addition of the resistor acts in the direction in which the unbalance rate of the load of the R-phase load 31 and the T-phase load 32 + the resistance device 20 increases, so that the T-phase voltage further decreases.

逆にR相電圧は上昇し電圧不平衡検出装置16が検知して、制御装置14がインバータ12の停止並びに連系遮断器13の解列指令を出すことで、単独運転の継続防止処置をとることができる。   Conversely, the R-phase voltage rises and is detected by the voltage imbalance detection device 16, and the control device 14 issues a stop command for the inverter 12 and a disconnection command for the interconnection breaker 13, thereby taking measures to prevent the continuation of the single operation. be able to.

ここでは単相3線式のそれぞれの相電圧のどちらかが低下したことを検出して、当該相に接続されている抵抗装置を投入すると説明したが、相電圧のどちらかが低下することにより、他相の電圧は上昇するので、どちらかの相電圧が上昇したことにより、抵抗装置を投入しても同じ作用となることは明らかである。   Here, it has been explained that either one of the phase voltages of the single-phase three-wire system has been reduced and a resistance device connected to the phase is turned on. However, when one of the phase voltages drops, Since the voltage of the other phase rises, it is clear that the same effect is obtained even if the resistance device is turned on because one of the phase voltages has risen.

以上の通り、この第2実施形態によれば、第1実施形態と同様に、能動方式の単独運転検出装置が不要となるため、能動方式が発生する微小変動が相殺し合って、単独運転状態の検出感度が低下することもない。その結果、太陽光や燃料電池などの分散電源が、住宅用(家庭用)コージェネレーションシステムとして、100V/200Vの単相3線式低圧配電系統の比較的狭い地域に密集して設置される、いわゆる高密度連系状態となっても、不平衡過電圧は全ての分散電源に対して生じるため、検出感度は一切低下しない。   As described above, according to the second embodiment, as in the first embodiment, the active type isolated operation detecting device is not required, so that the minute fluctuations generated by the active method cancel each other, and the isolated operation state The detection sensitivity is not lowered. As a result, distributed power sources such as sunlight and fuel cells are densely installed in a relatively narrow area of a 100V / 200V single-phase three-wire low-voltage distribution system as a residential (household) cogeneration system. Even in a so-called high-density interconnected state, unbalanced overvoltage is generated for all distributed power supplies, so the detection sensitivity is not lowered at all.

特に、第1実施形態に比べて、抵抗装置2組と開閉器2組が追加となるが、抵抗投入は短時間で良いことから大容量の抵抗装置は不要である。さらに分散電源装置10が、ヒータ等の補機を有する燃料電池等の場合には、そのヒータを短時間投入することで、単独運転への移行の有無の確認は可能となる。   In particular, compared with the first embodiment, two sets of resistance devices and two sets of switches are added. However, since a short time is required for turning on the resistors, a large-capacity resistance device is unnecessary. Further, in the case where the distributed power supply 10 is a fuel cell or the like having an auxiliary machine such as a heater, it is possible to confirm whether or not there is a shift to the single operation by turning on the heater for a short time.

本発明の第1の実施形態の単独運転防止装置のシステム構成図。The system block diagram of the isolated operation prevention apparatus of the 1st Embodiment of this invention. 本発明の第2の実施形態の単独運転防止装置のシステム構成図。The system block diagram of the isolated operation prevention apparatus of the 2nd Embodiment of this invention. 第1実施形態の動作を示すフローチャート。The flowchart which shows operation | movement of 1st Embodiment.

符号の説明Explanation of symbols

1…高圧配電系統
2…柱上変圧器
3…低圧配電系統(単相3線式)
10…分散電源装置
11…直流電源部
12…インバータ
13…連系遮断器
14…制御装置
15…電圧不平衡検出装置
20…抵抗装置
21…開閉器
30…需要家負荷
31…R相負荷
32…T相負荷
DESCRIPTION OF SYMBOLS 1 ... High voltage distribution system 2 ... Pole transformer 3 ... Low voltage distribution system (single phase 3 wire type)
DESCRIPTION OF SYMBOLS 10 ... Distributed power supply device 11 ... DC power supply part 12 ... Inverter 13 ... Interconnection circuit breaker 14 ... Control device 15 ... Voltage imbalance detection device 20 ... Resistance device 21 ... Switch 30 ... Consumer load 31 ... R phase load 32 ... T-phase load

Claims (3)

直流電源部と、当該直流電源部から発生する直流電力を交流に変換するインバータと、単相3線式低圧配電系統に連系するための連系遮断器とを具備し、かつ単相3線式低圧配電系統に接続された分散電源装置と、
前記分散電源装置に接続された単相3線式低圧配電系統の2つの相間電圧の不平衡を検出する電圧不平衡検出装置と、
前記電圧不平衡検出装置により単相3線式低圧配電系統の2つの相間電圧の不平衡を検出した場合に、前記インバータの停止あるいは前記系統遮断器による分散電源装置の単相3線式低圧配電系統からの解列を行う制御装置と、
を備えたことを特徴とする分散電源装置の単独運転防止装置。
A DC power supply unit, an inverter for converting DC power generated from the DC power supply unit into AC, and a connection breaker for connecting to a single-phase three-wire low-voltage distribution system; Distributed power supply device connected to a low-voltage distribution system,
A voltage imbalance detection device for detecting an imbalance between two phase voltages of a single-phase three-wire low-voltage distribution system connected to the distributed power supply device;
When the voltage unbalance detection device detects an unbalance between two phase voltages of a single-phase three-wire low-voltage distribution system, the inverter is stopped or the single-phase three-wire low-voltage distribution of the distributed power supply by the system breaker A control device for disconnecting from the system;
An isolated operation preventing device for a distributed power supply device, comprising:
前記制御装置が、単相3線式低圧配電系統の各相間の電圧を監視する電圧モニタ部と、片相の電圧がしきい値を越えた場合に信号を出力する判定部とを備え、
前記単相3線式低圧配電系統の各相間に接続された抵抗装置と、片相の電圧がしきい値を越えた場合に前記制御装置により前記抵抗装置を投入する開閉手段を有することを特徴とする請求項1に記載の分散電源装置の単独運転防止装置。
The control device includes a voltage monitoring unit that monitors a voltage between each phase of a single-phase three-wire low-voltage distribution system, and a determination unit that outputs a signal when the voltage of one phase exceeds a threshold value,
A resistance device connected between each phase of the single-phase three-wire low-voltage distribution system, and an opening / closing means for turning on the resistance device by the control device when the voltage of one phase exceeds a threshold value The isolated operation prevention device for a distributed power supply device according to claim 1.
前記開閉手段は、機械式開閉器あるいは半導体スイッチで構成されることを特徴とする請求項2に記載の分散電源装置の単独運転防止装置。   3. The isolated operation prevention apparatus for a distributed power supply according to claim 2, wherein the opening / closing means includes a mechanical switch or a semiconductor switch.
JP2006283049A 2006-10-17 2006-10-17 Islanding pevention for apparatus distributed power unit Pending JP2008104262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283049A JP2008104262A (en) 2006-10-17 2006-10-17 Islanding pevention for apparatus distributed power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283049A JP2008104262A (en) 2006-10-17 2006-10-17 Islanding pevention for apparatus distributed power unit

Publications (1)

Publication Number Publication Date
JP2008104262A true JP2008104262A (en) 2008-05-01

Family

ID=39438156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283049A Pending JP2008104262A (en) 2006-10-17 2006-10-17 Islanding pevention for apparatus distributed power unit

Country Status (1)

Country Link
JP (1) JP2008104262A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211546A (en) * 2014-04-25 2015-11-24 シャープ株式会社 Power conditioner
US9459310B2 (en) 2012-03-13 2016-10-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation Inverter test apparatus
CN107039976A (en) * 2017-06-08 2017-08-11 山东鲁能智能技术有限公司 It is a kind of to lead the intelligent anti-islanding system of the power distribution network passively combined and configuration operation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9459310B2 (en) 2012-03-13 2016-10-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation Inverter test apparatus
JP2015211546A (en) * 2014-04-25 2015-11-24 シャープ株式会社 Power conditioner
CN107039976A (en) * 2017-06-08 2017-08-11 山东鲁能智能技术有限公司 It is a kind of to lead the intelligent anti-islanding system of the power distribution network passively combined and configuration operation method
CN107039976B (en) * 2017-06-08 2019-07-26 山东鲁能智能技术有限公司 It is a kind of to lead the power distribution network intelligence anti-islanding system passively combined and configuration operation method

Similar Documents

Publication Publication Date Title
Telukunta et al. Protection challenges under bulk penetration of renewable energy resources in power systems: A review
Engelen et al. The feasibility of small-scale residential DC distribution systems
US10749348B2 (en) Power control apparatus, control method for power control apparatus, power control system, and control method for power control system
US9906034B2 (en) Power generation and control system
KR102383907B1 (en) Brushless permanent magnet generator plus auxiliary voltage source constant potential exciter
Lin et al. Regional protection scheme designed for low-voltage micro-grids
Nthontho et al. Protection of domestic solar photovoltaic based microgrid
Udgave et al. A review on Distribution Network protection with penetration of Distributed Generation
JP5971716B2 (en) Distribution board and distributed power supply system
JP2013009482A (en) Electricity distribution system
Rath et al. A comprehensive review on microgrid protection: issues and challenges
Khademlahashy et al. A review on protection issues in micro-grids embedded with distribution generations
JP6712217B2 (en) Power system
JP6717705B2 (en) Power system
JP2008104262A (en) Islanding pevention for apparatus distributed power unit
JP5877352B2 (en) Power distribution system
Gomez et al. Distributed generation: Exploitation of islanding operation advantages
JP2005245136A (en) Reverse-tidal-current-preventing systematically interconnecting system
JP5652814B2 (en) Distributed power supply system
JP3728200B2 (en) Power generation system and installation method thereof
Khan Impact of distributed generation on electrical power network
JP2951141B2 (en) Method of improving unbalance in single-phase three-wire line and power supply device used therefor
JPH04308427A (en) Ac power supplying system
JP6797073B2 (en) Operation control device and power generation equipment
JP6730172B2 (en) Power system