JP2008064473A - Water level measuring system - Google Patents

Water level measuring system Download PDF

Info

Publication number
JP2008064473A
JP2008064473A JP2006239508A JP2006239508A JP2008064473A JP 2008064473 A JP2008064473 A JP 2008064473A JP 2006239508 A JP2006239508 A JP 2006239508A JP 2006239508 A JP2006239508 A JP 2006239508A JP 2008064473 A JP2008064473 A JP 2008064473A
Authority
JP
Japan
Prior art keywords
water level
power
power supply
level measurement
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006239508A
Other languages
Japanese (ja)
Inventor
Yoshinori Kimura
伊徳 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Denshikiki Co Ltd
Original Assignee
Yokogawa Denshikiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Denshikiki Co Ltd filed Critical Yokogawa Denshikiki Co Ltd
Priority to JP2006239508A priority Critical patent/JP2008064473A/en
Publication of JP2008064473A publication Critical patent/JP2008064473A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the possibility of damaging water gauges due to the intrusion of indirect lightning strokes to electric supply lines. <P>SOLUTION: A water level measuring system includes a water gauge which is provided for the inside of a river for outputting water level measurement data measured on the basis of electric power accumulated in a prescribed electricity accumulation means to the outside as light signals and which is provided with an indirect lightning stroke protecting means; a power supply device provided separately from the water gauge for supplying electric power for the water gauge via a prescribed electric supply line; an optical fiber for transmission having one end connected to the water gauge for transmitting light signals; and a data processing device connected to the other end of the optical fiber for transmission for acquiring water level measurement data by receiving light signals and for applying prescribed processing to the water level measurement data. The indirect lightning stroke protecting means detects the supply of power from the power supply device for the water gauge and leaves the electric supply line open in the case where the supply of power for the water gage is not in a supplying state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、屋外の各種水位を計測する水位計測システムに関する。   The present invention relates to a water level measurement system for measuring various outdoor water levels.

河川の水位を計測するシステム(水位計測システム)として、水位計と、該水位計に電力を供給する給電装置と、水位計から供給された計測データを処理するデータ処理装置とから構成されるものがある。このような水位計測システムでは、水位計は河川内に水没状態に設けられ、給電装置は河川から多少離れた所に配置された中継箱内に設けられ、またデータ処理装置は、水位計及び中継箱から離間すると共に河川を管理するための局舎内に設けられている。
このような水位計測システムについては、周知技術としてまた実施技術として当業者間で広く知られているものであるが、出願人は上記水位計測システムが記載された公知文献を現時点で把握していない。
As a system for measuring the water level of a river (water level measurement system), it is composed of a water level meter, a power supply device for supplying power to the water level meter, and a data processing device for processing measurement data supplied from the water level meter There is. In such a water level measurement system, the water level gauge is provided in a submerged state in the river, the power feeding device is provided in a relay box located slightly away from the river, and the data processing device is provided with a water level gauge and a relay. It is located in a station building that is separated from the box and manages the river.
Such a water level measurement system is widely known among those skilled in the art as a well-known technique and as an implementation technique, but the applicant does not grasp the publicly known literature describing the water level measurement system at the present time. .

ところで、上記河川用の水位計測システムのように、屋外の対象物(河川)の水位を計測する水位計測システムでは、落雷に対する耐性を確保する必要がある。その一環として、河川用の水位計測システムでは水位計が取得した計測データを光ファイバを用いて局舎に伝送することが行われているが、水位計への給電については中継箱内の給電装置から電線(給電線)を介して行われるために、給電線に誘導雷が侵入して水位計を破損させる虞がある。   By the way, in the water level measurement system that measures the water level of an outdoor object (river) like the river water level measurement system, it is necessary to ensure the resistance to lightning. As part of this, the river water level measurement system transmits the measurement data obtained by the water level gauge to the central office using optical fiber. The power supply device in the junction box is used to supply power to the water level gauge. Since this is carried out via an electric wire (feeding line), there is a risk that an induced lightning will enter the feeding line and damage the water level gauge.

本発明は、上述した事情に鑑みてなされたものであり、給電線への誘導雷の侵入による水位計の破損の虞を低減することを目的とするものである。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to reduce the possibility of damage to a water level meter due to intrusion of an induced lightning into a power supply line.

上記目的を達成するために、本発明では、第1の解決手段として、河川内に設けられ、所定の蓄電手段に蓄電した電力に基づいて計測した水位計測データを光信号として外部に出力すると共に誘導雷保護手段を備えた水位計と、該水位計と離間して設けられ、前記水位計に所定の給電線を介して電力を給電する給電装置と、一端が前記水位計に接続され、前記光信号を伝送する伝送用光ファイバと、該伝送用光ファイバの他端に接続され、前記光信号を受光することにより水位計測データを取得し、該水位計測データに所定の処理を施すデータ処理装置とを備え、前記誘導雷保護手段は、給電装置から水位計への給電を検知し、給電状態でない場合には給電線を開放状態とする、という手段を採用する。   In order to achieve the above object, in the present invention, as a first solution means, water level measurement data provided in a river and measured based on the power stored in a predetermined power storage means is output to the outside as an optical signal. A water level meter provided with an induced lightning protection means, a power supply device that is provided apart from the water level meter and supplies power to the water level meter via a predetermined power supply line, and one end connected to the water level meter, Data processing for transmitting an optical signal and transmitting the optical signal to the other end of the optical fiber for transmission, receiving the optical signal to obtain water level measurement data, and performing predetermined processing on the water level measurement data The induced lightning protection means employs means for detecting power feeding from the power feeding device to the water level gauge and opening the power supply line when not in the power feeding state.

また、第2の解決手段として、上記第1の手段において、蓄電手段は電気二重層コンデンサである、という手段を採用する。 Further, as the second solving means, in the first means, a means that the power storage means is an electric double layer capacitor is adopted.

第3の解決手段として、上記第1または第2の手段において、水位計は、水位をパルス信号の繰返周波数として検出する水位センサと、前記パルス信号のエッジを検出するエッジ検出回路と、エッジ検出回路の出力を光信号に変換して伝送用光ファイバに出力する電気/光変換器とを備える、という手段を採用する。   As a third solving means, in the first or second means, the water level meter includes a water level sensor that detects the water level as a repetition frequency of the pulse signal, an edge detection circuit that detects an edge of the pulse signal, an edge An electric / optical converter that converts the output of the detection circuit into an optical signal and outputs the optical signal to the transmission optical fiber is employed.

第4の解決手段として、上記第1〜第3いずれかの手段において、前記誘導雷保護手段は、半導体スイッチを用いることにより給電線の開放状態/接続状態を切り替える、という手段を採用する。   As a fourth solving means, in any one of the first to third means, the induced lightning protection means adopts means for switching the open / connected state of the feeder line by using a semiconductor switch.

本発明によれば、誘導雷保護手段によって給電状態でない場合には給電線を開放状態とするので、給電状態でない場合においては給電線への誘導雷の侵入による水位計の破損の虞を低減することができる。
また、通常の二次電池よりも高速充電が可能な電気二重層コンデンサを蓄電手段とするので、1回の充電に要する時間を二次電池の場合よりも短縮することができるので、給電状態において誘導雷が給電線に侵入する確率を低減させることが可能であり、よって誘導雷による水位計の破損の虞を低減することができる。
さらには、水位センサから出力される水位に対応した繰返周波数のパルス信号をエッジ検出回路を用いてエッジ検出信号に変換し、このエッジ検出信号を電気/光変換器で光信号に変換して伝送用光ファイバに出力するので、上記パルス信号をそのまま光信号に変換する場合よりも電気/光変換器が消費する電力を低減することが可能である。したがって、水位計に対する充電回数を低減することができるので、給電状態において誘導雷が給電線に侵入する確率を低減させることが可能であり、よって誘導雷による水位計の破損の虞を低減することができる。
According to the present invention, since the power supply line is opened when it is not in the power supply state by the induced lightning protection means, the risk of damage to the water level gauge due to the intrusion of the induced lightning into the power supply line is reduced in the case of not being in the power supply state. be able to.
In addition, since an electric double layer capacitor that can be charged at a higher speed than a normal secondary battery is used as a storage means, the time required for one charge can be shortened compared to the case of a secondary battery. It is possible to reduce the probability that the induced lightning enters the power supply line, and thus it is possible to reduce the possibility of the water level gauge being damaged by the induced lightning.
Furthermore, a pulse signal having a repetition frequency corresponding to the water level output from the water level sensor is converted into an edge detection signal using an edge detection circuit, and the edge detection signal is converted into an optical signal by an electric / optical converter. Since the signal is output to the transmission optical fiber, it is possible to reduce the power consumed by the electrical / optical converter as compared with the case where the pulse signal is directly converted into the optical signal. Therefore, since the number of times the water level gauge is charged can be reduced, it is possible to reduce the probability that the induced lightning will enter the power supply line in the power supply state, and thus reduce the possibility of the water level gauge being damaged by the induced lightning. Can do.

以下、図面を参照して、本発明の一実施形態について説明する。図1は、本実施形態に係る水位計測システムの全体構成を示すシステム構成図である。この図に示すように、本水位計測システムは、水位計1、給電装置2、給電線3、伝送用光ファイバ4、データ受信回路5及びデータ処理装置6を備えている。
また、図2は上記水位計1の給電系と給電装置2の要部詳細構成を示す回路図であり、図3は上記水位計1のデータ出力系と局舎内のデータ受信回路5の要部詳細構成を示すブロック図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a system configuration diagram showing an overall configuration of a water level measurement system according to the present embodiment. As shown in the figure, the water level measurement system includes a water level gauge 1, a power feeding device 2, a power feeding line 3, a transmission optical fiber 4, a data receiving circuit 5, and a data processing device 6.
FIG. 2 is a circuit diagram showing the detailed configuration of the main part of the power supply system and power supply device 2 of the water level gauge 1, and FIG. 3 shows the essential components of the data output system of the water level gauge 1 and the data receiving circuit 5 in the station building. It is a block diagram which shows a part detailed structure.

水位計1は、図示するように河川内に水没するように設けられており、給電装置2から給電線3を介して給電される電力に基づいて河川の水位を計測し、その水位計測データを伝送用光ファイバ4の一端に出力する。このような上記水位計1は、図2及び図3に示すように、保護回路1a(誘導雷保護手段)、レギュレータ1b、電気二重層コンデンサ1c、水位センサ1d、エッジ検出回路1m及びE/O変換器1nを備えている。なお、水位計1の各構成要素については後述する。   The water level meter 1 is provided so as to be submerged in the river as shown in the figure. The water level meter 1 measures the water level of the river based on the electric power supplied from the power supply device 2 through the power supply line 3, and uses the water level measurement data. Output to one end of the transmission optical fiber 4. As shown in FIGS. 2 and 3, the water level meter 1 includes a protection circuit 1a (inductive lightning protection means), a regulator 1b, an electric double layer capacitor 1c, a water level sensor 1d, an edge detection circuit 1m, and an E / O. A converter 1n is provided. In addition, each component of the water level meter 1 will be described later.

給電装置2は、図1に示すように水位計1からある程度離間した場所に配置された中継箱内に設けられており、図2に示すように電源装置2a、スイッチ2b,2b、リレー駆動回路2c及びタイマ2dを備えている。電源装置2aは商用交流電力(例えばAC100V)を10V程度の直流電力に変換してスイッチ2b、2bに出力する。スイッチ2b、2bは、リレー駆動回路2cによって開閉する接点スイッチであり、電源装置2aの出力端と給電装置2の出力端との間(電源装置2aと給電線3との間)に対として設けられている。リレー駆動回路2cはタイマ2dから入力される制御信号に基づいて上記スイッチ2b、2bを駆動する。タイマ2dは、常時時刻を計時し、予め設定された時刻(設定時刻)を計時する度に上記制御信号をリレー駆動回路2cに出力する。   The power feeding device 2 is provided in a relay box disposed at a certain distance from the water level gauge 1 as shown in FIG. 1, and as shown in FIG. 2, a power supply device 2a, switches 2b and 2b, a relay drive circuit 2c and timer 2d. The power supply device 2a converts commercial AC power (for example, AC 100V) into DC power of about 10V and outputs it to the switches 2b and 2b. The switches 2b and 2b are contact switches that are opened and closed by a relay drive circuit 2c, and are provided as a pair between the output end of the power supply device 2a and the output end of the power supply device 2 (between the power supply device 2a and the power supply line 3). It has been. The relay drive circuit 2c drives the switches 2b and 2b based on a control signal input from the timer 2d. The timer 2d always counts the time, and outputs the control signal to the relay drive circuit 2c every time a preset time (set time) is counted.

給電線3は、図2に示すように一対の電線であり、一端が給電装置2の出力端(スイッチ2b、2bの出力端)に接続され、他端が上記水位計1の入力端(受電端)に接続されている。伝送用光ファイバ4は、一般的な光通信で使用されている石英ファイバと同一のものであり、一端が水位計1のデータ出力端(E/O変換器1nの出力端)に接続され、他端がデータ受信回路5の入力端(O/E変換器5aの入力端)に接続されている。   As shown in FIG. 2, the feeder 3 is a pair of electric wires, one end is connected to the output end of the feeder 2 (the output end of the switches 2b and 2b), and the other end is the input end of the water level gauge 1 (power reception). End). The transmission optical fiber 4 is the same as the quartz fiber used in general optical communication, and one end is connected to the data output end of the water level gauge 1 (the output end of the E / O converter 1n), The other end is connected to the input end of the data receiving circuit 5 (the input end of the O / E converter 5a).

データ受信回路5は、図3に示すようにO/E変換器5a及び1/2分周器5bを備えており、伝送用光ファイバ4を介して水位計1から入力された光信号を受信し、当該受信によって得られた水位計測データをデータ処理装置6に出力する。なお、O/E変換器5a及び1/2分周器5bの詳細については説明の都合上後述する。データ処理装置6は、上記データ受信回路5から入力された水位計測データを所定のフォーマットに変換し、時系列順に順次記憶する。   As shown in FIG. 3, the data receiving circuit 5 includes an O / E converter 5a and a 1/2 frequency divider 5b, and receives an optical signal input from the water level gauge 1 via the transmission optical fiber 4. Then, the water level measurement data obtained by the reception is output to the data processing device 6. Details of the O / E converter 5a and the 1/2 frequency divider 5b will be described later for convenience of explanation. The data processing device 6 converts the water level measurement data input from the data receiving circuit 5 into a predetermined format and stores it sequentially in time series.

続いて、上記水位計1及びデータ受信回路5の詳細について説明する。
水位計1の保護回路1aは、図2に示すように避雷器1e、抵抗器1f,1g,1k、ダイオード1h及びフォトカプラ1i,1jを備えている。避雷器1e、抵抗器1f,1g及びダイオード1hは、誘導雷による異常な高電圧をサージするための異常電圧サージ機能を実現する回路素子であり、抵抗器1k及びフォトカプラ1i,1jは、給電装置2から水位計1への給電線3による給電状態(給電/非給電)を検知し、この給電状態に応じて給電線3の水位計1への接続状態(接続/非接続)を切り替える接続切替機能を実現する回路素子である。
Next, details of the water level gauge 1 and the data receiving circuit 5 will be described.
As shown in FIG. 2, the protection circuit 1a of the water level gauge 1 includes a lightning arrester 1e, resistors 1f, 1g, and 1k, a diode 1h, and photocouplers 1i and 1j. The lightning arrester 1e, the resistors 1f and 1g, and the diode 1h are circuit elements that realize an abnormal voltage surge function to surge an abnormal high voltage due to induced lightning, and the resistor 1k and the photocouplers 1i and 1j are power supply devices. Connection switching for detecting the power supply state (power supply / non-power supply) from the power supply line 2 to the water level gauge 1 and switching the connection state (connection / non-connection) of the power supply line 3 to the water level meter 1 according to this power supply state It is a circuit element that realizes the function.

避雷器1eは、図示するように給電線3の他端間に設けられ、抵抗器1fは一端が一方の給電線3の他端に接続され、また抵抗器1gは一端が他方の給電線3の他端に接続され、またダイオード1hは、ソード端子が抵抗器1fの他端に、アノード端子が抵抗器1fの他端にそれぞれ接続されている。また、抵抗器1kは、一端が抵抗器1fの他端(つまりダイオード1hのカソード端子)に、他端がフォトカプラ1iにおけるフォトダイオードのアノード端子にそれぞれ接続されている。一方のフォトカプラ1iは、フォトダイオードのカソード端子が他方のフォトカプラ1jにおけるフォトダイオードのアノード端子に、フォトトランジスタのドレイン端子が抵抗器1fの他端に、フォトトランジスタのソース端子がレギュレータ1bの一方の入力端にそれぞれ接続されている。フォトカプラ1jは、フォトダイオードのカソード端子及びフォトトランジスタのドレイン端子が抵抗器1gの他端(つまりダイオード1hのアノード端子)に、フォトトランジスタのソース端子がレギュレータ1bの他方の入力端にそれぞれ接続されている。   The lightning arrester 1e is provided between the other ends of the power supply line 3 as shown in the figure, one end of the resistor 1f is connected to the other end of the one power supply line 3, and one end of the resistor 1g is connected to the other power supply line 3. The diode 1h has a sword terminal connected to the other end of the resistor 1f and an anode terminal connected to the other end of the resistor 1f. The resistor 1k has one end connected to the other end of the resistor 1f (that is, the cathode terminal of the diode 1h) and the other end connected to the photodiode anode terminal of the photocoupler 1i. In one photocoupler 1i, the cathode terminal of the photodiode is the anode terminal of the photodiode in the other photocoupler 1j, the drain terminal of the phototransistor is the other end of the resistor 1f, and the source terminal of the phototransistor is one of the regulator 1b. Are connected to the input terminals respectively. In the photocoupler 1j, the cathode terminal of the photodiode and the drain terminal of the phototransistor are connected to the other end of the resistor 1g (that is, the anode terminal of the diode 1h), and the source terminal of the phototransistor is connected to the other input terminal of the regulator 1b. ing.

レギュレータ1bは、上記給電線3及び保護回路1aを介して給電装置2から入力された10V程度の直流電力を5V程度の直流電力に電力変換して電気二重層コンデンサ1cに出力する。電気二重層コンデンサ1cは、一端がレギュレータ1bの一方の出力端に、他端がレギュレータ1bの他方の出力端にそれぞれ接続されており、レギュレータ1bから直流電力が供給されている状態では当該直流電力に基づいて電荷を充電し、レギュレータ1bからの直流電力の供給が停止した状態においては、蓄電した電荷を放電して水位センサ1dに電力として供給する。なお、電気二重層コンデンサ1cにレギュレータ1bから直流電力が供給される状態では、当該直流電力の一部が電気二重層コンデンサ1cに充電され、残りが水位センサ1dに電力として供給される。   The regulator 1b converts the DC power of about 10V input from the power supply device 2 through the power supply line 3 and the protection circuit 1a into DC power of about 5V, and outputs it to the electric double layer capacitor 1c. The electric double layer capacitor 1c has one end connected to one output end of the regulator 1b and the other end connected to the other output end of the regulator 1b. When the DC power is supplied from the regulator 1b, the DC power In the state where the charge is charged based on the above and the supply of DC power from the regulator 1b is stopped, the stored charge is discharged and supplied to the water level sensor 1d as power. In the state where DC power is supplied from the regulator 1b to the electric double layer capacitor 1c, a part of the DC power is charged to the electric double layer capacitor 1c and the rest is supplied to the water level sensor 1d as power.

水位センサ1dは、このようにして電気二重層コンデンサ1cあるいはレギュレータ1bから供給される電力によって作動するものであり、河川の水位を検出し、当該水位に対応した繰返周波数のパルス信号を検出信号としてエッジ検出回路1mに出力する。この検出信号は、Duty比(デューティ比)が略50%のパルス信号であり、エッジ検出回路1mは、このような検出パルス信号の立ち上がりエッジを検出し、当該立ち上がりエッジにおいて時間幅が極端に狭いパルスが並ぶエッジ検出信号(デューティ比が略5%程度)をE/O変換器1nに出力する。E/O変換器1nは、上記エッジ検出信号(電気信号)を光検出信号に変換して伝送用光ファイバ4に出力する。   The water level sensor 1d is thus operated by the electric power supplied from the electric double layer capacitor 1c or the regulator 1b, detects the water level of the river, and detects a pulse signal having a repetition frequency corresponding to the water level as a detection signal. To the edge detection circuit 1m. This detection signal is a pulse signal having a duty ratio (duty ratio) of approximately 50%, and the edge detection circuit 1m detects the rising edge of such a detection pulse signal, and the time width is extremely narrow at the rising edge. An edge detection signal in which pulses are arranged (duty ratio is about 5%) is output to the E / O converter 1n. The E / O converter 1n converts the edge detection signal (electric signal) into a light detection signal and outputs the light detection signal to the transmission optical fiber 4.

データ受信回路5におけるO/E変換器5aは、上記光検出信号を受光(光電変換)することによりエッジ検出信号を再生して1/2分周器5bに出力する。1/2分周器5bは、このエッジ検出信号を1/2分周することにより、上記水位センサ1dが出力する検出パルス信号の1/2の繰返周波数を有する周波数変換パルス信号を生成してデータ処理装置6に出力する。   The O / E converter 5a in the data receiving circuit 5 receives the photodetection signal (photoelectric conversion) to reproduce the edge detection signal and outputs it to the ½ frequency divider 5b. The 1/2 frequency divider 5b divides the edge detection signal by 1/2 to generate a frequency conversion pulse signal having a 1/2 repetition frequency of the detection pulse signal output from the water level sensor 1d. To the data processing device 6.

次に、このように構成された水位計測システムの時系列的な動作について詳しく説明する。   Next, a time-series operation of the water level measurement system configured as described above will be described in detail.

最初に、給電装置2から水位計1への給電動作について図2を参照して説明すると、給電装置2のタイマ2dは、常時時刻を計時しており、所定の設定時刻になるとその度に制御信号を所定時間だけリレー駆動回路2cに出力する。例えば、タイマ2dは、3時間が経過する度に2分間だけ制御信号をリレー駆動回路2cに出力し、その結果、リレー駆動回路2cは、3時間毎に2分間だけスイッチ2bを閉状態にし、それ以外の期間ではスイッチ2bを開状態とする。すなわち、水位計1には3時間毎に2分間だけ給電線3を介して10Vの直流電力が供給される。   First, the power feeding operation from the power feeding device 2 to the water level gauge 1 will be described with reference to FIG. 2. The timer 2d of the power feeding device 2 always keeps time, and is controlled whenever a predetermined set time is reached. The signal is output to the relay drive circuit 2c for a predetermined time. For example, the timer 2d outputs a control signal to the relay drive circuit 2c for 2 minutes every 3 hours, so that the relay drive circuit 2c closes the switch 2b for 2 minutes every 3 hours, In other periods, the switch 2b is opened. In other words, the water level meter 1 is supplied with DC power of 10 V through the feeder line 3 for 2 minutes every 3 hours.

給電装置2から水位計1へ10Vの直流電力が給電されている状態においては、一対の給電線3間には当然に10Vの電位差が生じる、例えば一方の給電線3(抵抗器1f側)が10Vの電位の場合、他方の給電線3(抵抗器1g側)は0Vの電位となるので、各々の給電線3間に直列接続された状態のフォトカプラ1i,1jの各フォトダイオードは何れもON状態となり、この結果、各給電線3の他端は、レギュレータ1bの各入力単に接続された状態となる。一方、給電装置2から水位計1への給電がない状態においては、一対の給電線3間には電位差が生じないので、フォトカプラ1i,1jの各フォトダイオードは何れもOFF状態であり、よって各給電線3の他端は開放状態となる。   In the state where 10V DC power is supplied from the power supply device 2 to the water level gauge 1, a potential difference of 10V naturally occurs between the pair of power supply lines 3. For example, one power supply line 3 (resistor 1f side) is provided. In the case of a potential of 10 V, the other feeder line 3 (resistor 1 g side) has a potential of 0 V. Therefore, each of the photodiodes of the photocouplers 1 i and 1 j connected in series between the feeder lines 3 is all. As a result, the other end of each power supply line 3 is simply connected to each input of the regulator 1b. On the other hand, when there is no power supply from the power supply device 2 to the water level gauge 1, since no potential difference is generated between the pair of power supply lines 3, each photodiode of the photocouplers 1i and 1j is in an OFF state. The other end of each power supply line 3 is in an open state.

すなわち、水位計測システムでは、直流電力が給電装置2から水位計1に給電されている期間のみにおいて、各給電線3が水位計1に接続され、給電の停止期間においては各給電線3は水位計1から切り離された状態となる。また誘導雷による給電線3の高電圧は、避雷器1e、抵抗器1f,1g及びダイオード1hによる異常電圧サージ機能によってサージされる。したがって、この状態において、誘導雷が給電線3に侵入しても、レギュレータ1bや電気二重層コンデンサ1c、水位センサ1d等、水位計1を構成する各要素は、抵抗器1kとフォトカプラ1i,1jとによる接続切替機能と上記異常電圧サージ機能との両機能によってより保護され、破壊あるいは故障するの虞が低減する。   That is, in the water level measurement system, each power line 3 is connected to the water level gauge 1 only during a period in which DC power is supplied from the power supply device 2 to the water level gauge 1, and each power line 3 is connected to the water level during a power supply stop period. It is in a state of being disconnected from the total 1. Further, the high voltage of the feeder 3 due to the induced lightning is surged by an abnormal voltage surge function by the lightning arrester 1e, resistors 1f and 1g and the diode 1h. Therefore, in this state, even if induced lightning enters the feeder line 3, each element constituting the water level gauge 1, such as the regulator 1b, the electric double layer capacitor 1c, and the water level sensor 1d, includes a resistor 1k, a photocoupler 1i, 1j is further protected by both the connection switching function and the abnormal voltage surge function, and the possibility of breakdown or failure is reduced.

また、給電装置2から水位計1に給電される直流電力は、レギュレータ1bによって5Vの直流電圧に電力変換され、電気二重層コンデンサ1cに充電されるが、給電装置2から水位計1への給電は、上述したように3時間の間に2分間だけであり、極めて短時間である。このような給電時間の短さは、蓄電手段として充電時間が通常の二次電池に比較して極端に短い電気二重層コンデンサ1cを用いたこと、また後述するようにエッジ検出回路1mを設けたことにより実現されたものである。   Further, the DC power fed from the power feeding device 2 to the water level gauge 1 is converted into a DC voltage of 5V by the regulator 1b and charged in the electric double layer capacitor 1c. As mentioned above, it is only 2 minutes in 3 hours, and is extremely short. Such a short feeding time is due to the fact that the electric double layer capacitor 1c is used as the power storage means, which has an extremely short charging time compared to a normal secondary battery, and an edge detection circuit 1m is provided as will be described later. It is realized by this.

すなわち、蓄電手段として二次電池を用いた場合には1回の充電時間を1時間程度に設定する必要があるが、この場合、充電時間が長い分だけ充電中に落雷が発生して誘導雷が給電線3に侵入する確率が高くなる。これに対して、水位計測システムでは、電気二重層コンデンサ1cを蓄電手段として用いるので、1回の充電時間が2分間と二次電池に比べて極端に短く、よって誘導雷が給電線3に侵入する確率が低い。したがって、水位計1の誘導雷による故障確率を低減することが可能である。   That is, when a secondary battery is used as the power storage means, it is necessary to set the charge time for one time to about 1 hour. In this case, a lightning strike occurs during charging for the long charge time, and induced lightning. Is likely to enter the feeder line 3. On the other hand, in the water level measurement system, since the electric double layer capacitor 1c is used as a power storage means, one charging time is 2 minutes, which is extremely short compared to the secondary battery, and thus induced lightning enters the feeder line 3. The probability of doing is low. Therefore, it is possible to reduce the failure probability due to the induced lightning of the water level gauge 1.

続いて、水位計測データの伝送動作について図3を参照して説明すると、水位センサ1dは、河川の水位に対応した繰返周波数のパルス信号を検出信号として出力する。この検出信号は、デューティ比が略50%のパルス信号であるが、エッジ検出回路1mによってエッジ検出信号に変換された後にE/O変換器1nで光検出信号に変換され、伝送用光ファイバ4によって局舎に伝送されて記録される。   Subsequently, the transmission operation of the water level measurement data will be described with reference to FIG. 3. The water level sensor 1d outputs a pulse signal having a repetition frequency corresponding to the water level of the river as a detection signal. This detection signal is a pulse signal having a duty ratio of about 50%, but is converted into an edge detection signal by the edge detection circuit 1m, and then converted into a light detection signal by the E / O converter 1n. Is transmitted to the station and recorded.

ここで、本水位計測システムでは、デューティ比が略50%の検出信号をE/O変換器1nに直接供給して光信号に変換するのではなく、検出信号をエッジ検出回路1mによってデューティ比が略5%程度のエッジ検出信号に変換された後にE/O変換器1nで光検出信号に変換するので、E/O変換器1nにおける電力消費を大幅に低減することができる。   Here, in the present water level measurement system, a detection signal having a duty ratio of about 50% is not directly supplied to the E / O converter 1n and converted into an optical signal, but the detection signal is converted into an optical signal by the edge detection circuit 1m. Since it is converted into an optical detection signal by the E / O converter 1n after being converted into an edge detection signal of about 5%, power consumption in the E / O converter 1n can be greatly reduced.

すなわち、図3において波形で示すように、検出信号はデューティ比が略50%、つまりON状態とOFF状態の時間比率が略等しいが、エッジ検出信号は、デューティ比が略5%程度なので、ON状態とOFF状態の時間比率が大きく異なる(図3ではON状態の時間がOFF状態の時間よりも極端に短い)。したがって、エッジ検出回路1mを設けることによって、E/O変換器1nにおける発光状態の時間を非発光状態の時間よりも極端に短くすることが可能であり、よってE/O変換器1nの消費電力を大幅に低減することができる。   That is, as shown by the waveform in FIG. 3, the detection signal has a duty ratio of approximately 50%, that is, the time ratio between the ON state and the OFF state is approximately equal, but the edge detection signal has a duty ratio of approximately 5%, The time ratio between the state and the OFF state is greatly different (in FIG. 3, the ON state time is extremely shorter than the OFF state time). Therefore, by providing the edge detection circuit 1m, it is possible to make the time of the light emitting state in the E / O converter 1n extremely shorter than the time of the non-light emitting state, and thus the power consumption of the E / O converter 1n. Can be greatly reduced.

このようなエッジ検出回路1mに起因するE/O変換器1nの消費電力低減によって水位計1の全体としての消費電力を大幅に低減することが可能である。本水位計測システムでは、これによって蓄電手段として通常の二次電池に比較して蓄電容量の小さい電気二重層コンデンサ1cを用いた場合であっても、給電間隔を3時間間隔と比較的長く設定することを可能としており、以って誘導雷が給電線3に侵入する確率、つまり誘導雷による水位計1の故障確率を低減している。   By reducing the power consumption of the E / O converter 1n caused by the edge detection circuit 1m, it is possible to significantly reduce the power consumption of the water level meter 1 as a whole. In this water level measurement system, even when the electric double layer capacitor 1c having a smaller storage capacity than that of a normal secondary battery is used as the storage means, the power supply interval is set to a relatively long interval of 3 hours. Therefore, the probability that the induced lightning enters the feeder line 3, that is, the failure probability of the water level gauge 1 due to the induced lightning is reduced.

なお、本発明は、上述した実施形態に限定されるものではなく、例えば以下のような変形が考えられる。
(1)上記実施形態では接続切替機能を抵抗器1kとフォトカプラ1i,1jとによって構成したが、接続切替機能の構成はこれに限定されない。例えば、接続切替機能の前段に設けられた避雷器1e、抵抗器1f,1g及びダイオード1hによる異常電圧サージ機能によって誘導雷の電圧は数十ボルト程度まで低減されるので、フォトカプラ1i,1jに変えて数十ボルト程度の耐圧を有する他のスイッチ素子を用いても良い。
In addition, this invention is not limited to embodiment mentioned above, For example, the following modifications can be considered.
(1) Although the connection switching function is configured by the resistor 1k and the photocouplers 1i and 1j in the above embodiment, the configuration of the connection switching function is not limited to this. For example, the voltage of the induced lightning is reduced to about several tens of volts by the abnormal voltage surge function provided by the lightning arrester 1e, the resistors 1f and 1g and the diode 1h provided in the previous stage of the connection switching function. Other switch elements having a withstand voltage of about several tens of volts may be used.

(2)上記実施形態では1つの電気二重層コンデンサ1cによって蓄電手段を構成したが、並列接続あるいは/及び直列接続された複数の電気二重層コンデンサによって蓄電手段を構成するようにしても良い。 (2) In the above embodiment, the power storage means is configured by one electric double layer capacitor 1c. However, the power storage means may be configured by a plurality of electric double layer capacitors connected in parallel or / and in series.

本発明の一実施形態に係わる水位計測システムの全体構成を示すシステム構成図である。It is a system configuration figure showing the whole water level measurement system composition concerning one embodiment of the present invention. 本発明の一実施形態に係わる水位計測システムの水位計1の給電系と給電装置2の要部詳細構成を示す回路図である。It is a circuit diagram which shows the principal part detailed structure of the electric power feeding system of the water level indicator 1 of the water level measuring system concerning one Embodiment of this invention, and the electric power feeder 2. FIG. 本発明の一実施形態に係わる水位計測システムの信号伝送構成を示すブロック図である。It is a block diagram which shows the signal transmission structure of the water level measurement system concerning one Embodiment of this invention.

符号の説明Explanation of symbols

1……水位計、1a……保護回路(誘導雷保護手段)、1b……レギュレータ、1c……電気二重層コンデンサ、1d……水位センサ、1m……エッジ検出回路、1n……E/O変換器、2……給電装置、2a……電源装置、2b……スイッチ、2c……リレー駆動回路、2d……タイマ、3……給電線、4……伝送用光ファイバ、5……データ受信回路、5a……O/E変換器、5b……1/2分周器、6……データ処理装置   DESCRIPTION OF SYMBOLS 1 ... Water level meter, 1a ... Protection circuit (induction lightning protection means), 1b ... Regulator, 1c ... Electric double layer capacitor, 1d ... Water level sensor, 1m ... Edge detection circuit, 1n ... E / O Converter, 2 ... Power supply device, 2a ... Power supply device, 2b ... Switch, 2c ... Relay drive circuit, 2d ... Timer, 3 ... Power supply line, 4 ... Transmission optical fiber, 5 ... Data Receiver circuit, 5a ... O / E converter, 5b ... 1/2 divider, 6 ... data processing device

Claims (3)

河川内に設けられ、所定の蓄電手段に蓄電した電力に基づいて計測した水位計測データを光信号として外部に出力すると共に誘導雷保護手段を備えた水位計と、
該水位計と離間して設けられ、前記水位計に所定の給電線を介して電力を給電する給電装置と、
一端が前記水位計に接続され、前記光信号を伝送する伝送用光ファイバと、
該伝送用光ファイバの他端に接続され、前記光信号を受光することにより水位計測データを取得し、該水位計測データに所定の処理を施すデータ処理装置とを備え、
前記誘導雷保護手段は、給電装置から水位計への給電を検知し、給電状態でない場合には給電線を開放状態とする
ことを特徴とする水位計測システム。
A water level meter provided in the river, which outputs water level measurement data measured based on the power stored in the predetermined power storage means to the outside as an optical signal, and includes an induced lightning protection means,
A power supply device that is provided apart from the water level meter and supplies power to the water level meter via a predetermined power supply line;
One end is connected to the water level gauge, a transmission optical fiber for transmitting the optical signal,
A data processing device connected to the other end of the transmission optical fiber, receiving water level measurement data by receiving the optical signal, and performing a predetermined process on the water level measurement data;
The induced lightning protection means detects power feeding from the power feeding device to the water level gauge, and when not in a power feeding state, opens the power feeding line.
前記蓄電手は、電気二重層コンデンサであることを特徴とする請求項1記載の水位計測システム。   The water level measurement system according to claim 1, wherein the power storage hand is an electric double layer capacitor. 前記誘導雷保護手段は、半導体スイッチを用いることにより給電線の開放状態/接続状態を切り替えることを特徴とする請求項1または2記載の水位計測システム。   The water level measurement system according to claim 1 or 2, wherein the induced lightning protection means switches between an open state / connected state of the feeder line by using a semiconductor switch.
JP2006239508A 2006-09-04 2006-09-04 Water level measuring system Pending JP2008064473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239508A JP2008064473A (en) 2006-09-04 2006-09-04 Water level measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239508A JP2008064473A (en) 2006-09-04 2006-09-04 Water level measuring system

Publications (1)

Publication Number Publication Date
JP2008064473A true JP2008064473A (en) 2008-03-21

Family

ID=39287333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239508A Pending JP2008064473A (en) 2006-09-04 2006-09-04 Water level measuring system

Country Status (1)

Country Link
JP (1) JP2008064473A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180698A (en) * 2015-03-24 2016-10-13 株式会社コロナ Water detection electrode circuit, and hot-water heater
JP2016180669A (en) * 2015-03-24 2016-10-13 横河電子機器株式会社 Optical power supply-type water-level gauge
JP2016180670A (en) * 2015-03-24 2016-10-13 横河電子機器株式会社 Optical power supply-type water-level gauge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074825A (en) * 1983-09-30 1985-04-27 Fujitsu Ltd Optical transmitter
JPS62264399A (en) * 1986-05-12 1987-11-17 富士通株式会社 Feeder system
JPH06177833A (en) * 1992-12-07 1994-06-24 Matsushita Electric Ind Co Ltd Optical spatial digital signal transmitter
JP2002327917A (en) * 2001-05-01 2002-11-15 Opt Techno:Kk Liquid tank for burning appliance
JP2005269776A (en) * 2004-03-18 2005-09-29 Honda Motor Co Ltd Switch changeover position determining apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074825A (en) * 1983-09-30 1985-04-27 Fujitsu Ltd Optical transmitter
JPS62264399A (en) * 1986-05-12 1987-11-17 富士通株式会社 Feeder system
JPH06177833A (en) * 1992-12-07 1994-06-24 Matsushita Electric Ind Co Ltd Optical spatial digital signal transmitter
JP2002327917A (en) * 2001-05-01 2002-11-15 Opt Techno:Kk Liquid tank for burning appliance
JP2005269776A (en) * 2004-03-18 2005-09-29 Honda Motor Co Ltd Switch changeover position determining apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180698A (en) * 2015-03-24 2016-10-13 株式会社コロナ Water detection electrode circuit, and hot-water heater
JP2016180669A (en) * 2015-03-24 2016-10-13 横河電子機器株式会社 Optical power supply-type water-level gauge
JP2016180670A (en) * 2015-03-24 2016-10-13 横河電子機器株式会社 Optical power supply-type water-level gauge

Similar Documents

Publication Publication Date Title
US10616970B2 (en) Powering an emergency lighting system
US9480127B2 (en) Ambient lighting control system
CN102590605B (en) For measuring the AC current sensor of AC electric current in conductor and the indication mechanism containing this sensor
US10355639B2 (en) Safe photovoltaic system
US8509422B2 (en) Encoding status signals in DC voltage levels
WO2016109461A1 (en) Rapid shutdown solid state circuit for photovoltaic energy generation systems
EP2735092B1 (en) Power harvesting device
KR200457335Y1 (en) Smart photovoltaic power generation system
CN101871964A (en) Remote counter for lightning arrester
JP2008064473A (en) Water level measuring system
CN108981851B (en) Field device
TW201144777A (en) Radiation sensor
KR101014269B1 (en) A photovoltaic power generation system
CN105980871B (en) Method and apparatus for measuring battery list pond electric current
RU2525581C1 (en) Electronic current and voltage sensor on high potential
KR101347845B1 (en) Monitoring system for solar power generater
EP3246714A1 (en) Inverter having a revenue grade meter
RU2516034C1 (en) Current and voltage measurement device in high-voltage network
CN102185360A (en) High-voltage charged display locking device
US11211863B2 (en) Arrangement and method for current measurement
KR101383700B1 (en) Wireless sensing apparatus for high-voltage power line
US20200127603A1 (en) Solar energy detection module and solar panel
RU2009108751A (en) POWER ELECTRIC CONTROL AND PROTECTIVE CONTROL SYSTEM AND TRACTION SUBSTATION CONTROL SYSTEM USING AC CONTROL AND PROTECTION DEVICES
CN201117100Y (en) High pressure system on-line detecting device
JP2018007135A (en) Signal transfer circuit and instrumentation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131