JP2008027407A - Dc output power supply - Google Patents

Dc output power supply Download PDF

Info

Publication number
JP2008027407A
JP2008027407A JP2006221269A JP2006221269A JP2008027407A JP 2008027407 A JP2008027407 A JP 2008027407A JP 2006221269 A JP2006221269 A JP 2006221269A JP 2006221269 A JP2006221269 A JP 2006221269A JP 2008027407 A JP2008027407 A JP 2008027407A
Authority
JP
Japan
Prior art keywords
circuit
power supply
current
voltage
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006221269A
Other languages
Japanese (ja)
Inventor
Takeshi Suzuki
健 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006221269A priority Critical patent/JP2008027407A/en
Publication of JP2008027407A publication Critical patent/JP2008027407A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a DC output power supply having idling current of zero not by using a transformer and a three-terminal regulator but by using a MOSFET. <P>SOLUTION: A node between C1 and AC of a circuit obtained by serially connecting an AC power supply AC, a diode D, a MOSFET Q and a capacitor C1 is considered as zero point as shown in figure 1. If voltage B is applied between gates of the zero point and the MOSFET Q, voltage of C1 becomes nearly equal to "voltage B minus threshold voltage of Q" and both ends of C1 become the DC output power supply. In the circuit, idling current of exciting current of the transformer and circuit current of the three-terminal regulator becomes nearly zero, current flows in from input if the current flows in a load circuit RL, however, the current from input is zero if the current of the RL is zero. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、MOSFETまたはIGBTを利用した直流出力電源に関する。
実施例は全てNチャンネルMOSFETであるが、簡単な回路変更でPチャンネルMOSFETまたはNチャンネルIGBTやPチャンネルIGBTも使用可能である。
明細書で使用する混同しやすい下記用語を、念のため最初に記す。
▲1▼入力電源:交流電源。
▲2▼電源回路:▲1▼の交流電源を入力とし、▲3▼の直流を出力する電源回路。図1の回路では、MOSFETQ、コンデンサC1、電池B、抵抗器R1の部分である。
▲3▼直流出力電源:▲2▼の電源回路で使用するコンデンサC1の両端が、直流出力電源である。
▲4▼出力電圧:▲3▼の直流出力電源の電圧が出力電圧。
▲5▼負荷回路電流:▲3▼の直流出力電源から負荷回路に流れ出る電流。
The present invention relates to a DC output power source using a MOSFET or an IGBT.
The embodiments are all N-channel MOSFETs, but P-channel MOSFETs, N-channel IGBTs or P-channel IGBTs can be used with simple circuit changes.
The following confusing terms used in the specification are listed first to make sure.
(1) Input power supply: AC power supply.
(2) Power supply circuit: A power supply circuit that takes the AC power of (1) as an input and outputs the DC of (3). In the circuit of FIG. 1, it is a part of MOSFETQ, capacitor C1, battery B, and resistor R1.
(3) DC output power supply: Both ends of the capacitor C1 used in the power supply circuit of (2) are DC output power supplies.
(4) Output voltage: The voltage of the DC output power source of (3) is the output voltage.
(5) Load circuit current: Current flowing out from the DC output power source of (3) to the load circuit.

最近の大型の電源回路はスイッチング・レギュレータ電源回路を用いることが多いが、一般的な電子回路に用いる直流20V以下で平均電流が数十mA以下の小型の電源回路は図4のようにトランスで降圧した交流を整流平滑して、三端子レギュレータ等で出力電圧を制御した電圧を使用することが多い。この回路では、負荷回路電流の有無に無関係にトランスでは励磁電流と称するアイドリング電流(出力電圧を発生させるために流しておく電流で、出力電流の有無に無関係に流れている電流)および三端子レギュレータでは回路電流(バイアス電流とも言われる)と称するアイドリング電流が流れて電力を消費する。例えば、直流電源の電圧が15Vで回路電流が10mAであれば、回路電流による電力のみでも150mWの電力になる。実際の商品では、トランスの励磁電流と三端子レギュレータの回路電流等による待機電力は数Wの商品が多い。即ち、従来回路では負荷回路電流がゼロであっても電源をオフにしなければ前記電力を消費している。また、トランスは比較的大型で高価な部品であり、できたらトランスを使用しないで回路設計ができることが望ましい。
雑誌「トランジスタ技術」CQ出版株式会社、2000年5月号、P.168〜169、図6。 雑誌「電子技術」日刊工業新聞社、2001年4月号、P.34、図4
In recent large-scale power supply circuits, switching regulator power supply circuits are often used, but a small power supply circuit with a DC of 20V or less and an average current of several tens of mA or less used for a general electronic circuit is a transformer as shown in FIG. In many cases, a voltage obtained by rectifying and smoothing the stepped-down alternating current and controlling the output voltage with a three-terminal regulator or the like is used. In this circuit, an idling current called an exciting current (current that flows in order to generate an output voltage and flows regardless of the presence or absence of the output current) and a three-terminal regulator regardless of the presence or absence of the load circuit current Then, an idling current called a circuit current (also called a bias current) flows to consume power. For example, if the voltage of the DC power supply is 15 V and the circuit current is 10 mA, the power from the circuit current alone is 150 mW. In actual products, there are many products with several watts of standby power due to the exciting current of the transformer and the circuit current of the three-terminal regulator. That is, in the conventional circuit, even if the load circuit current is zero, the power is consumed unless the power is turned off. Further, the transformer is a relatively large and expensive part, and it is desirable that the circuit design can be performed without using the transformer.
Magazine “Transistor Technology” CQ Publishing Co., Ltd., May 2000, P.I. 168-169, FIG. Magazine “Electronic Technology” Nikkan Kogyo Shimbun, April 2001, P.I. 34, FIG.

従来回路では図4のように交流電源ACをトランスTRに接続し、TRの2次電圧をダイオードブリッジDBで全波整流し、三端子レギュレータで電圧制御した電圧を負荷回路RLに印加する。なお、通常は三端子レギュレータの前後には、それぞれコンデンサC4とC5が接続される。この回路では段落「0002」にて説明のように、例え負荷回路電流がゼロであってもトランスTRの励磁電流と三端子レギュレータの回路電流により電力が発生すると言う問題とトランス自体が大型で高価であるという問題があった。  In the conventional circuit, as shown in FIG. 4, an AC power supply AC is connected to a transformer TR, a secondary voltage of TR is full-wave rectified by a diode bridge DB, and a voltage controlled by a three-terminal regulator is applied to a load circuit RL. Normally, capacitors C4 and C5 are connected before and after the three-terminal regulator, respectively. In this circuit, as explained in paragraph “0002”, even if the load circuit current is zero, power is generated by the exciting current of the transformer TR and the circuit current of the three-terminal regulator, and the transformer itself is large and expensive. There was a problem of being.

交流電源に、ダイオードと抵抗器とMOSFETとコンデンサを直列接続する。ダイオードのアノードは交流電源側で、MOSFETのドレインは抵抗器側で、MOSFETのソースはコンデンサ側である。この回路で、コンデンサと交流電源の接続点を0点として、MOSFETのゲートと0点間に直流電圧を印加すれば、コンデンサの両端子が直流出力電源になる。この電源はアイドリング電流≒ゼロなので、アイドリング時の入力電力は漏れ電流によるマイクロワット(μW)オーダーである。  A diode, a resistor, a MOSFET, and a capacitor are connected in series to the AC power source. The anode of the diode is on the AC power supply side, the drain of the MOSFET is on the resistor side, and the source of the MOSFET is on the capacitor side. In this circuit, if the connection point between the capacitor and the AC power supply is 0, and a DC voltage is applied between the gate of the MOSFET and the 0 point, both terminals of the capacitor become DC output power. Since this power supply has idling current ≈ zero, the input power at idling is on the order of microwatts (μW) due to leakage current.

本提案電源は小電力の電源や間欠通電回路の電源に適している。
特に、防犯/防災機器等の電源回路には最適な電源になる。
The proposed power source is suitable for a low-power power source or a power source for an intermittent energization circuit.
In particular, it is an optimal power source for power circuits such as crime prevention / disaster prevention equipment.

以下、本発明の実施の形態を図1〜図3に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は本発明の請求項1にかかわる実施例で交流電源を半波整流している。まず、図1を説明する。交流電源ACの黒点側にダイオードDのアノードを接続し、Dのカソードに抵抗器R1を接続し、R1の別の端子にMOSFETQのドレインを接続し、QのソースにコンデンサC1の黒点側を接続し、C1の非黒点側は交流電源ACの非黒点側に接続するが、この接続点を0点とする。半波整流電圧を平滑するため、0点とダイオードDのカソード間にはコンデンサC2を接続する(コンデンサC2は必ずしも接続の必要はない)。また、0点とMOSFETQのゲート間にはゲート側を正にして電池Bを接続する。負荷回路RLをコンデンサC1の両端に接続する。
次に図2を説明する。図2はMOSFETである2SK3109の伝達特性の低電流部分でゲートソース間電圧Vgsとドレイン電流Idの関係である。交流電源ACはドレイン電流を充分に流せる電圧であるとする。図2のグラフではドレイン電流Id=1mAのときのゲートソース間電圧Vgsは3.7Vである。例えば、図1の点線部分である電源回路で電池Bの電圧が9.5Vで負荷回路電流が1mAであれば図2のグラフにより、コンデンサC1の電圧=9.5V−3.7V=5.8Vでなければならない(図2のドレイン電流=1mAの横軸を参照)。同じ方法でまとめると、ドレイン電流Id=0.01〜0.1〜1〜10mAであれば、ゲートソース間電圧Vgs=3.4〜3.5〜3.7〜4.0Vとなり、コンデンサC1の電圧=6.1〜6.0〜5.8〜5.5Vになる。ドレイン電流Id=0.01mA以下時のコンデンサC1の電圧はグラフより6.1Vと推定される。この関係を一般式にすれば、「C1の電圧≒Bの電圧−Qのしきい値電圧」になる(しきい値電圧とは、ドレイン電流が1mAのときのゲートソース間電圧)。このことを図1の点線部分に適用して動作を考えてみる。電池Bの電圧が9.5Vとして負荷回路RLに電流が流れないとする。この回路がオンされた時はコンデンサC1の電圧はゼロであり、MOSFETQはゲートソース間電圧Vgs≒9.5Vになるので図2のグラフに基づくドレイン電流IdでC1を充電し、C1の電圧が漸増する(図2はドレイン電流Idが低電流部分のみなのでゲートソース間電圧Vgs=9.5V部分のグラフは記載ないが、別の資料よりVgs=9.5VではId≒15Aであり、実際は抵抗器R1で抑制された電流が流れる)。コンデンサC1への充電電流によりC1の電圧が漸増すればMOSFETQのゲートソース間電圧Vgsは漸減しドレイン電流Idも漸減するが、C1の電圧≒6.1VになればC1は完全に充電が完了するので、ドレイン電流Id≒ゼロ、ゲートソース間電圧Vgs≒3.4V、コンデンサC1の電圧≒6.1Vになる。次に負荷回路RLにImAの電流が安定的に流れれば前記のように、ドレイン電流Id≒1mA、ゲートソース間電圧Vgs≒3.7V、コンデンサC1の電圧≒5.8Vになる。同じように負荷回路RLに0.1mAの電流が安定的に流れれば、ドレイン電流Id≒0.1mA、ゲートソース間電圧Vgs≒3.5V、コンデンサC1の電圧≒6.0Vになる。
以上のように本提案回路は下記のような特徴を有する。
●アイドリング電流≒ゼロの回路である。
●出力電圧≒Bの電圧−Qのしきい値電圧。出力電圧はBの電圧で可変できる。
●負荷何路RLに電流が流れれば入力電源よりRLに電流が流れる。
●負荷回路電流の変動によるコンデンサC1の電圧変動はわずかである。
●電池Bの電流はゼロなので自然消耗と同じ程度の寿命になる。電池Bに代えて、「ツェナーダイオード+抵抗器」でも良い。その時の抵抗器は数百MΩの高抵抗でも動作する。
雑誌「電子技術」日刊工業新聞社、2003年10月号、P.82、図5
FIG. 1 shows an embodiment according to claim 1 of the present invention, in which an AC power source is half-wave rectified. First, FIG. 1 will be described. Connect the anode of the diode D to the black dot side of the AC power supply AC, connect the resistor R1 to the cathode of D, connect the drain of the MOSFET Q to the other terminal of R1, and connect the black dot side of the capacitor C1 to the source of Q. The non-black dot side of C1 is connected to the non-black dot side of the AC power supply AC, and this connection point is set to zero. In order to smooth the half-wave rectified voltage, a capacitor C2 is connected between the zero point and the cathode of the diode D (the capacitor C2 does not necessarily need to be connected). Further, the battery B is connected between the zero point and the gate of the MOSFET Q with the gate side being positive. The load circuit RL is connected to both ends of the capacitor C1.
Next, FIG. 2 will be described. FIG. 2 shows the relationship between the gate-source voltage Vgs and the drain current Id in the low current portion of the transfer characteristic of the 2SK3109 MOSFET. Assume that the AC power supply AC is a voltage that allows a drain current to flow sufficiently. In the graph of FIG. 2, the gate-source voltage Vgs when the drain current Id = 1 mA is 3.7V. For example, if the voltage of the battery B is 9.5 V and the load circuit current is 1 mA in the power supply circuit that is the dotted line portion of FIG. 1, the voltage of the capacitor C1 = 9.5V-3.7V = 5. It must be 8V (see horizontal axis of drain current = 1 mA in FIG. 2). In summary, if the drain current Id = 0.01 to 0.1 to 10 mA, the gate-source voltage Vgs = 3.4 to 3.5 to 3.7 to 4.0 V, and the capacitor C1 Voltage = 6.1 to 6.0 to 5.8 to 5.5V. The voltage of the capacitor C1 when the drain current Id = 0.01 mA or less is estimated to be 6.1 V from the graph. If this relationship is expressed by a general formula, “C1 voltage≈B voltage−Q threshold voltage” (the threshold voltage is the gate-source voltage when the drain current is 1 mA). Consider this by applying this to the dotted line in FIG. Assume that the voltage of the battery B is 9.5 V and no current flows through the load circuit RL. When this circuit is turned on, the voltage of the capacitor C1 is zero, and the MOSFET Q has a gate-source voltage Vgs≈9.5 V. Therefore, C1 is charged with the drain current Id based on the graph of FIG. Gradually increases (FIG. 2 does not show the graph of the gate-source voltage Vgs = 9.5V portion because the drain current Id is only in the low current portion, but from another source, Id≈15A at Vgs = 9.5V, which is actually a resistance. The current suppressed by the vessel R1 flows). If the voltage of C1 is gradually increased by the charging current to the capacitor C1, the gate-source voltage Vgs of the MOSFET Q is gradually decreased and the drain current Id is also gradually decreased. However, when the voltage of C1 is approximately 6.1 V, C1 is completely charged. Therefore, the drain current Id is zero, the gate-source voltage Vgs is about 3.4 V, and the voltage of the capacitor C1 is about 6.1 V. Next, when the current of ImA stably flows through the load circuit RL, the drain current Id≈1 mA, the gate-source voltage Vgs≈3.7V, and the voltage of the capacitor C1≈5.8V as described above. Similarly, if a current of 0.1 mA stably flows in the load circuit RL, the drain current Id≈0.1 mA, the gate-source voltage Vgs≈3.5V, and the voltage of the capacitor C1≈6.0V.
As described above, the proposed circuit has the following characteristics.
● Circuit with idling current ≈ zero.
● Output voltage ≒ B voltage-Q threshold voltage. The output voltage can be varied by the voltage of B.
● If current flows through the load path RL, current flows from the input power source to RL.
● The voltage fluctuation of the capacitor C1 due to the fluctuation of the load circuit current is slight.
● Since battery B has zero current, it has the same life as natural consumption. Instead of the battery B, a “zener diode + resistor” may be used. The resistor at that time operates with a high resistance of several hundred MΩ.
Magazine "Electronic Technology" Nikkan Kogyo Shimbun, October 2003, P.I. 82, FIG.

次に図1の動作を説明する。安定動作状態で交流電源ACの黒点側が正であれば電流は、交流電源AC−ダイオードD)−抵抗器R1−MOSFETQ−コンデンサC1−交流電源ACと流れて「0007」記載のように、「C1の電圧≒Bの電圧−Qのしきい値電圧」になり、C1の電圧が直流出力電源として負荷回路RLに印加される。この時負荷回路電流がゼロであれば入力電流≒ゼロなので、入力電力≒ゼロである。交流電源ACの黒点側が正で負荷回路電流が流れる時は、交流電源AC−ダイオードD−抵抗器R1−MOSFETQ−負荷回路RL−交流電源ACと流れる。交流電源ACの非黒点側が正のときはダイオードDがあるので交流電源ACから負荷回路RLに電流は流れないが、コンデンサC1−負荷回路RL−コンデンサC1と、電流は流れる。即ちこの回路では、トランスを使用せずに簡単な回路で、小型、軽量、安価、損失の小さい、直流出力電源になる。  Next, the operation of FIG. 1 will be described. If the black dot side of the AC power supply AC is positive in a stable operation state, the current flows through the AC power supply AC-diode D) -resistor R1-MOSFET Q-capacitor C1-AC power supply AC, and as described in "0007", "C1 The voltage of C1 is applied to the load circuit RL as a DC output power source. At this time, if the load circuit current is zero, the input current ≈ zero, so the input power ≈ zero. When the black dot side of the AC power source AC is positive and the load circuit current flows, the AC power source AC-diode D-resistor R1-MOSFET Q-load circuit RL-AC power source AC flows. When the non-black dot side of the AC power supply AC is positive, there is a diode D, so that no current flows from the AC power supply AC to the load circuit RL, but current flows through the capacitor C1-load circuit RL-capacitor C1. That is, this circuit is a simple circuit without using a transformer, and becomes a DC output power source that is small, light, inexpensive, and has low loss.

図3は本発明の請求項1にかかわる実施例で交流電源を全波整流している。この回路は、交流電源ACをダイオードブリッジDBの交流端子に接続する。ダイオードブリッジDBの出力正端子に抵抗器R1を接続し、R1の別の端子をMOSFETQのドレインに接続し、QのソースにコンデンサC1を接続し、C1の別の端子は0点であるDBの出力負端子に接続する。0点には別にコンデンサC3とツェナーダイオードZDのアノードを接続し、C3の別の端子とZDのカソードとMOSFETQのゲートと抵抗器R2を接続し、R2の別の端子はダイオードブリッジDBの出力正端子に接続する。負荷回路RLはコンデンサC1の両端子に接続する。
この回路の動作を説明する。抵抗器R2とツェナーダイオードZDの直列回路で発生する電圧はコンデンサC3で直流電圧になり、図1の回路と同じように0点とMOSFETQのゲート間には直流電圧が印加される。他の動作は、実施例1の半波整流回路が全波整流回路になった違いのみなので、詳細の動作説明は割愛する。即ちこの回路も、トランスを使用せずに簡単な回路で、小型、軽量、安価、損失の小さい、直流出力電源になる。
FIG. 3 shows an embodiment according to claim 1 of the present invention, in which an AC power source is full-wave rectified. This circuit connects the AC power supply AC to the AC terminal of the diode bridge DB. The resistor R1 is connected to the output positive terminal of the diode bridge DB, the other terminal of R1 is connected to the drain of the MOSFET Q, the capacitor C1 is connected to the source of Q, and the other terminal of C1 is the zero point of DB. Connect to the negative output terminal. The capacitor C3 and the anode of the Zener diode ZD are separately connected to the zero point, another terminal of C3, the cathode of ZD, the gate of the MOSFET Q, and the resistor R2 are connected, and the other terminal of R2 is the output positive of the diode bridge DB. Connect to the terminal. The load circuit RL is connected to both terminals of the capacitor C1.
The operation of this circuit will be described. The voltage generated in the series circuit of the resistor R2 and the Zener diode ZD becomes a DC voltage by the capacitor C3, and a DC voltage is applied between the zero point and the gate of the MOSFET Q as in the circuit of FIG. The other operation is only a difference in which the half-wave rectifier circuit of the first embodiment is changed to a full-wave rectifier circuit, and thus detailed description of the operation is omitted. That is, this circuit is also a simple circuit without using a transformer, and becomes a DC output power source that is small, lightweight, inexpensive, and has low loss.

本発明の第1の実施例で、交流電源を半波整流した回路の例である。  It is an example of the circuit which carried out the half wave rectification of AC power supply in 1st Example of this invention. MOSFETの、低電流部分の伝達特性のグラフである。  It is a graph of the transfer characteristic of the low current part of MOSFET. 本発明の第2の実施例で、交流電源を全波整流した回路の例である。  It is an example of the circuit which carried out the full wave rectification of AC power supply in 2nd Example of this invention. 従来の回路で、トランスと三端子レギュレータを使用した例である。  This is an example in which a transformer and a three-terminal regulator are used in a conventional circuit.

符号の説明Explanation of symbols

AC 交流電源
RL 負荷回路
Q MOSFET
D ダイオード
DB ダイオードブリッジ
ZD ツェナーダイオード
R1〜R2 抵抗器
C1〜C5 コンデンサ
TR トランス
AC AC power supply RL Load circuit Q MOSFET
D Diode DB Diode Bridge ZD Zener Diode R1-R2 Resistor C1-C5 Capacitor TR Transformer

Claims (1)

次のA群から選択された1つの電源回路のコンデンサの両端を直流出力電源端子とする、電源。
A群
a.交流電源に整流回路を接続し、整流回路の出力正端子をNチャンネルMOSFETのドレインに接続し、前記MOSFETのソースとコンデンサを接続し、前記コンデンサの別の端子と前記整流回路の出力負端子を接続した回路の接続点と前記MOSFETのゲート間に、ゲート側を正にした電圧を印加した、電源回路。
b.交流電源に整流回路を接続し、整流回路の出力負端子をPチャンネルMOSFETのドレインに接続し、前記MOSFETのソースとコンデンサを接続し、前記コンデンサの別の端子と前記整流回路の出力正端子を接続した回路の接続点と前記MOSFETのゲート間に、ゲート側を負にした電圧を印加した、電源回路。
c.交流電源に整流回路を接続し、整流回路の出力正端子をNチャンネルIGBTのコレクタに接続し、前記IGBTのエミッタとコンデンサを接続し、前記コンデンサの別の端子と前記整流回路の出力負端子を接続した回路の接続点と前記IGBTのゲート間に、ゲート側を正にした電圧を印加した、電源回路。
d.交流電源に整流回路を接続し、整流回路の出力負端子をPチャンネルIGBTのコレクタに接続し、前記IGBTのエミッタとコンデンサを接続し、前記コンデンサの別の端子と前記整流回路の出力正端子を接続した回路の接続点と前記IGBTのゲート間に、ゲート側を負にした電圧を印加した、電源回路。
The power supply which makes the both ends of the capacitor | condenser of one power supply circuit selected from the following A group make a DC output power supply terminal.
Group A a. Connect the rectifier circuit to the AC power source, connect the output positive terminal of the rectifier circuit to the drain of the N-channel MOSFET, connect the source of the MOSFET and the capacitor, connect the other terminal of the capacitor and the output negative terminal of the rectifier circuit The power supply circuit which applied the voltage which made the gate side positive between the connection point of the connected circuit, and the gate of said MOSFET.
b. Connect the rectifier circuit to the AC power supply, connect the output negative terminal of the rectifier circuit to the drain of the P-channel MOSFET, connect the source of the MOSFET and the capacitor, connect the other terminal of the capacitor and the output positive terminal of the rectifier circuit A power supply circuit in which a negative voltage is applied between a connection point of a connected circuit and the gate of the MOSFET.
c. Connect the rectifier circuit to the AC power supply, connect the output positive terminal of the rectifier circuit to the collector of the N-channel IGBT, connect the emitter and capacitor of the IGBT, and connect the other terminal of the capacitor and the output negative terminal of the rectifier circuit. The power supply circuit which applied the voltage which made the gate side positive between the connection point of the connected circuit, and the gate of said IGBT.
d. Connect the rectifier circuit to the AC power supply, connect the negative output terminal of the rectifier circuit to the collector of the P-channel IGBT, connect the emitter and capacitor of the IGBT, connect the other terminal of the capacitor and the output positive terminal of the rectifier circuit. The power supply circuit which applied the voltage which made the gate side negative between the connection point of the connected circuit, and the gate of said IGBT.
JP2006221269A 2006-07-19 2006-07-19 Dc output power supply Pending JP2008027407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006221269A JP2008027407A (en) 2006-07-19 2006-07-19 Dc output power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006221269A JP2008027407A (en) 2006-07-19 2006-07-19 Dc output power supply

Publications (1)

Publication Number Publication Date
JP2008027407A true JP2008027407A (en) 2008-02-07

Family

ID=39117940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006221269A Pending JP2008027407A (en) 2006-07-19 2006-07-19 Dc output power supply

Country Status (1)

Country Link
JP (1) JP2008027407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8508194B2 (en) 2010-03-15 2013-08-13 Samsung Electronics Co., Ltd. Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8508194B2 (en) 2010-03-15 2013-08-13 Samsung Electronics Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
US7724219B2 (en) Circuit and method of effectively enhancing drive control of light-emitting diodes
US9252766B2 (en) Load detecting circuits and the method thereof
JP4689377B2 (en) STEP-DOWN SWITCHING REGULATOR, ITS CONTROL CIRCUIT, AND ELECTRONIC DEVICE USING THE SAME
RU2629554C9 (en) Power source and electrical device containing such power source
JP5849488B2 (en) Switching power supply
JP4687958B2 (en) DC-DC converter
US8804389B2 (en) Active bridge rectification
TWI713292B (en) Switching regulator
JP2008072877A (en) Power supply system, and method of output voltage control
TW200701611A (en) Pulse-frequency mode dc-to-dc converter circuit
TW201330478A (en) Bridge rectifier for a PFC power converter
JP2009194791A (en) One-way conduction apparatus
US9071065B2 (en) Electrical power supply apparatus and controlling method thereof
US20160181935A1 (en) Isolated dc/dc converter, power supply, power supply adaptor, electronic device using the same, and primary side controller
JP2013062947A (en) Dc/dc converter, and power-supply device and electronic apparatus using the same
US20180076724A1 (en) Switching power supply
US20070247122A1 (en) Bridgeless power factor corrector circuit and control method thereof
US20160181932A1 (en) Isolated dc/dc converter, power supply device, power supply adaptor, and electronic device using the same, and feedback amplifier integrated circuit
US20210184584A1 (en) Power converters including bias voltage supply circuit and method of supplying bias supply voltage
US9287783B2 (en) Power supply device
US8816592B2 (en) Active damper and driving method thereof
JP2008027407A (en) Dc output power supply
JP2007236175A (en) Power supply, standby electric power circuit using the same, and charging circuit for storage battery
JP2005176534A (en) Charging control circuit for lithium ion battery
KR20150125773A (en) Start up circuit and power converter using the same