JP2008010224A - Manufacturing method of carbon material, negative electrode material for secondary battery, and the secondary battery - Google Patents

Manufacturing method of carbon material, negative electrode material for secondary battery, and the secondary battery Download PDF

Info

Publication number
JP2008010224A
JP2008010224A JP2006177515A JP2006177515A JP2008010224A JP 2008010224 A JP2008010224 A JP 2008010224A JP 2006177515 A JP2006177515 A JP 2006177515A JP 2006177515 A JP2006177515 A JP 2006177515A JP 2008010224 A JP2008010224 A JP 2008010224A
Authority
JP
Japan
Prior art keywords
carbon material
secondary battery
negative electrode
carbon
phenol resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006177515A
Other languages
Japanese (ja)
Inventor
Tetsushi Ono
哲志 小野
Tatsuro Sasaki
龍朗 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2006177515A priority Critical patent/JP2008010224A/en
Publication of JP2008010224A publication Critical patent/JP2008010224A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phenol resin composition for carbon material, capable of obtaining a carbon material with high efficiency and high capacity used for a secondary battery that can be applied for a lithium ion secondary battery negative electrode material and a carbon material made by carbonization treatment of the same, and to provide its manufacturing method. <P>SOLUTION: A resol-type phenol resin 1,000 parts available in the market is heat treated for 3 hours at 80°C in electric furnace and methanol is volatilized; then it is increased in temperature upto 400°C at 100°C/h; and after retaining for 3 hours at 400°C, annealed up to room temperature and thereby, carbon precursor is obtained; thereafter, it is pulverized, until the average grain size becomes about 20 μm and a powder-like carbon precursor is obtained. The powder-like carbon precursor obtained is increased in temperature at 100°C/h, in an atmosphere of hydrogen:nitrogen=3:97 (volume ratio), and after reaching 1,100°C, retained for 3 hours to obtain the carbon material. The obtained carbon material, when used for the lithium ion secondary battery negative electrode material, can provide a secondary battery, having a high charge and discharge efficiency and high charge and discharge capacity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭素材の製造方法、二次電池用負極材料及び二次電池に関するものである。   The present invention relates to a carbon material production method, a negative electrode material for a secondary battery, and a secondary battery.

現在、リチウムイオン二次電池の負極に使用されている材料としては、主として天然グラファイト、及び、人造グラファイトが挙げられる。この材料の特徴は、理論充放電容量が372mAh/gであり、充放電効率が90%以上と高いこと、また、難黒鉛化炭素材と比較して、密度が高いことが挙げられる。
グラファイトに関しては、電極密度を向上させるために様々な検討がなされており、燐片状、ミルド状、球状など、さまざまな形状を付与する検討がなされている。さらに、充放電効率を高めるなどの検討もなされているが、(例えば、特許文献1、非特許文献1参照。)更なる検討が必要とされている、
Currently, materials used for the negative electrode of lithium ion secondary batteries mainly include natural graphite and artificial graphite. The characteristics of this material include a theoretical charge / discharge capacity of 372 mAh / g, a charge / discharge efficiency as high as 90% or higher, and a higher density than a non-graphitizable carbon material.
With respect to graphite, various studies have been made to improve the electrode density, and studies have been made to give various shapes such as flakes, milleds, and spheres. Furthermore, although studies such as increasing the charge / discharge efficiency have been made (for example, see Patent Document 1 and Non-Patent Document 1), further studies are required.

また、黒鉛などの炭素材料の他に、フェノール樹脂などを出発原料とする難黒鉛化材などにも同様な検討がされているが、出発原料により製造方法が異なるため出発原料に対して適切な熱処理を行わないと良質の炭素材を得ることが難しいのが現状である。   In addition to carbon materials such as graphite, non-graphitizing materials using phenolic resin as a starting material have been studied in the same way. However, since the manufacturing method differs depending on the starting material, it is appropriate for the starting material. It is difficult to obtain a good quality carbon material without heat treatment.

特開平10−284061号公報Japanese Patent Laid-Open No. 10-284061 J.Electrochem.Soc.,Wt.142,No.8,1995J. et al. Electrochem. Soc. , Wt. 142, no. 8, 1995

本発明は、難黒鉛化材におけるこのような問題点を解決するためになされたものであって、その目的とするところは、フェノール樹脂組成物を炭化してなる炭素材をリチウムイオン二次電池用負極材に用いた場合、高充放電効率、高充放電容量を実現し得る炭素材の製造方法を提供するものである。   The present invention has been made in order to solve such problems in non-graphitizable materials, and the object of the present invention is to provide a carbon material obtained by carbonizing a phenol resin composition with a lithium ion secondary battery. The present invention provides a method for producing a carbon material that can realize a high charge / discharge efficiency and a high charge / discharge capacity when used in a negative electrode material.

このような目的は、以下の[1]〜[6]に記載の本発明により達成される。
[1] フェノール樹脂組成物を熱処理してなる炭素材の製造方法であって、前記熱処理雰囲気が、水素ガスを1〜5容積%含有することを特徴とする炭素材の製造方法。
[2] フェノール樹脂組成物に対する水素ガス量が1〜5容積%である[1]項記載の炭素材の製造方法。
[3] 前記熱処理温度が900〜1400℃である[1]又は[2]項記載の炭素材の製造方法。
[4] [1]〜[3]項のいずれかに記載の炭素材の製造方法によって得られることを特徴とする炭素材。
[5] [4]項に記載の炭素材を含有することを特徴とする二次電池用負極材料。
[6] [5]項に記載の二次電池用負極材料を用いることを特徴とする二次電池。
Such an object is achieved by the present invention described in the following [1] to [6].
[1] A method for producing a carbon material obtained by heat-treating a phenol resin composition, wherein the heat treatment atmosphere contains 1 to 5% by volume of hydrogen gas.
[2] The method for producing a carbon material according to [1], wherein the amount of hydrogen gas relative to the phenol resin composition is 1 to 5% by volume.
[3] The method for producing a carbon material according to [1] or [2], wherein the heat treatment temperature is 900 to 1400 ° C.
[4] A carbon material obtained by the method for producing a carbon material according to any one of [1] to [3].
[5] A negative electrode material for a secondary battery comprising the carbon material according to the item [4].
[6] A secondary battery using the negative electrode material for a secondary battery as described in the item [5].

本発明によれば、特に、二次電池負極材として用いた場合に、高充放電容量、且つ高充放電効率の良質な炭素材を得ることができる。   According to the present invention, particularly when used as a negative electrode material for a secondary battery, a high-quality carbon material having a high charge / discharge capacity and a high charge / discharge efficiency can be obtained.

まず、本発明の炭素材の製造方法(以下、単に「製造方法」ということがある)について詳細に説明する。   First, a method for producing a carbon material of the present invention (hereinafter sometimes simply referred to as “manufacturing method”) will be described in detail.

本発明の製造方法に用いられるフェノール樹脂組成物は、フェノール類とアルデヒド類とを公知の方法により反応させて得られるものであり、例えば、酸性触媒の存在下で反応させて得られるノボラック型フェノール樹脂、塩基性触媒の存在下で反応させて得られるレゾール型フェノール樹脂などが挙げられ、これらを単独又は併せて用いることができる   The phenol resin composition used in the production method of the present invention is obtained by reacting phenols and aldehydes by a known method, for example, a novolak type phenol obtained by reacting in the presence of an acidic catalyst. Resins, resol type phenol resins obtained by reacting in the presence of a basic catalyst, and the like can be mentioned, and these can be used alone or in combination.

上記フェノール樹脂の合成に用いられるフェノール類としては特に限定されないが、例えば、フェノール、o−クレゾール、m−クレゾール、p−クレゾール等のクレゾール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール等のキシレノール、o−エチルフェノール、m−エチルフェノール、p−エチルフェノール等のエチルフェノール、イソプロピルフェノール、ブチルフェノール、p−tert−ブチルフェノール等のブチルフェノール、p−tert−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール、p−クミルフェノール等のアルキルフェノール、フルオロフェノール、クロロフェノール、ブロモフェノール、ヨードフェノール等のハロゲン化フェノール、p−フェニルフェノール、アミノフェノール、ニトロフェノール、ジニトロフェノール、トリニトロフェノール等の1価フェノール置換体、および1−ナフトール、2−ナフトール等の1価のフェノール類、レゾルシン、アルキルレゾルシン、ピロガロール、カテコール、アルキルカテコール、ハイドロキノン、アルキルハイドロキノン、フロログルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシナフタリン、およびその異性体等の多価フェノール類が挙げられる。これらを単独または2種類以上組み合わせて使用することができる。   Although it does not specifically limit as phenols used for the synthesis | combination of the said phenol resin, For example, cresol, such as a phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2, 5-xylenol, 2,6-xylenol, 3,4-xylenol, xylenol such as 3,5-xylenol, ethylphenol such as o-ethylphenol, m-ethylphenol, p-ethylphenol, isopropylphenol, butylphenol, p -Alkylphenols such as butylphenol such as tert-butylphenol, p-tert-amylphenol, p-octylphenol, p-nonylphenol, p-cumylphenol, fluorophenol, chlorophenol, bromophenol, Halogenated phenols such as dephenol, monovalent phenol substitutes such as p-phenylphenol, aminophenol, nitrophenol, dinitrophenol and trinitrophenol, and monovalent phenols such as 1-naphthol and 2-naphthol, resorcin And polyhydric phenols such as alkylresorcin, pyrogallol, catechol, alkylcatechol, hydroquinone, alkylhydroquinone, phloroglucin, bisphenol A, bisphenol F, bisphenol S, dihydroxynaphthalene, and isomers thereof. These can be used alone or in combination of two or more.

また、上記フェノール樹脂の合成に用いられるアルデヒド類としては特に限定されないが、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n−ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o−トルアルデヒド、サリチルアルデヒド等が挙げられる。これらを単独または2種類以上組み合わせて使用することができる。   The aldehydes used for the synthesis of the phenol resin are not particularly limited. For example, formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyl. Examples include aldehyde, caproaldehyde, allyl aldehyde, benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, phenylacetaldehyde, o-tolualdehyde, salicylaldehyde and the like. These can be used alone or in combination of two or more.

ノボラック型フェノール樹脂を用いる場合は、樹脂とともに硬化剤を使用することができる。硬化剤としては特に限定されないが、例えば、ヘキサメチレンテトラミン、トリオキサン、パラホルムアルデヒド等のアルデヒド源、レゾール樹脂、酸触媒、アミン系硬化剤、イミダゾール系硬化剤、エポキシ樹脂等が挙げられる。   When a novolac type phenol resin is used, a curing agent can be used together with the resin. Although it does not specifically limit as a hardening | curing agent, For example, aldehyde sources, such as a hexamethylenetetramine, a trioxane, and paraformaldehyde, a resole resin, an acid catalyst, an amine type hardening | curing agent, an imidazole type hardening | curing agent, an epoxy resin etc. are mentioned.

硬化剤の使用量は特に限定されないが、通常、フェノール樹脂100重量部に対して、0.1〜20重量部使用することができる。なお、フェノール樹脂類は基本的に熱硬化性樹脂であるため、硬化処理を行うと三次元架橋反応により、第1の熱処理の際には主に固相状態を保持する。具体的には、フェノール樹脂としてノボラック型フェノール樹脂を用いる場合は、まず、ノボラック型フェノール樹脂に硬化剤であるヘキサメチレンテトラミンを添加して硬化反応を行う。本発明の製造方法においては、用いるフェノール樹脂類を完全に硬化させてもいいし、熱処理時にフェノール樹脂類の一部が溶融するように硬化剤を意識的に減らしても良い。また、硬化剤を添加しなくても良い。
また、自硬性のレゾール型フェノール樹脂を用いる場合は、レゾール型フェノール樹脂に対して、酸や硬化促進剤を加えても良いし、硬化度を低下させるためにノボラック型フェノール樹脂を加えても良い。また、それらを組合せて用いることもできる。
Although the usage-amount of a hardening | curing agent is not specifically limited, Usually, 0.1-20 weight part can be used with respect to 100 weight part of phenol resins. Since phenol resins are basically thermosetting resins, a solid state is mainly maintained during the first heat treatment due to a three-dimensional crosslinking reaction when the curing treatment is performed. Specifically, when a novolak type phenol resin is used as the phenol resin, first, a curing reaction is performed by adding hexamethylenetetramine as a curing agent to the novolak type phenol resin. In the production method of the present invention, the phenol resin to be used may be completely cured, or the curing agent may be consciously reduced so that a part of the phenol resin is melted during the heat treatment. Moreover, it is not necessary to add a hardening | curing agent.
Moreover, when using a self-hardening resol type phenol resin, an acid or a hardening accelerator may be added to the resol type phenol resin, or a novolac type phenol resin may be added to reduce the degree of hardening. . Moreover, they can also be used in combination.

本発明の製造方法では、上記フェノール樹脂類、および硬化剤、硬化促進剤などからなる混合物をフェノール樹脂組成物として用いるものとする。   In the production method of the present invention, a mixture comprising the above phenol resins, a curing agent, a curing accelerator and the like is used as the phenol resin composition.

また、本発明の炭素材の製造方法は、フェノール樹脂組成物を、水素ガスを1〜5容積%含有する雰囲気で熱処理を行うものである。
本発明の熱処理を行う雰囲気は、水素ガスが1〜5容積%であればそれ以外は特に限定されないが、残りの95〜99重量%の雰囲気としては、大気、アルゴン、窒素、ヘリウム、ネオン、二酸化炭素などの不活性ガスが挙げられ、これらを2種以上組み合わせた熱処理雰囲気条件でも良い。
Moreover, the manufacturing method of the carbon material of this invention heat-processes the phenol resin composition in the atmosphere which contains 1-5 volume% of hydrogen gas.
The atmosphere for performing the heat treatment of the present invention is not particularly limited as long as the hydrogen gas is 1 to 5% by volume, but the remaining 95 to 99% by weight of the atmosphere is air, argon, nitrogen, helium, neon, An inert gas such as carbon dioxide may be used, and a heat treatment atmosphere condition in which two or more of these are combined may be used.

また、熱処理雰囲気中の水素ガスのフェノール樹脂組成物に対する量は、1〜5容積%であることが好ましい。さらに好ましくは2〜4容積%である。フェノール樹脂組成物に対して雰囲気水素容積が上記範囲内であると、熱処理の際にフェノール樹脂組成物より発生する芳香族、および炭化水素系揮発分が効率よく雰囲気中の水素と反応するため、揮発分の分解が促進され、揮発分を炉系外に除去することが容易となる。揮発分が容易に除去されることにより、フェノール樹脂組成物よりなる炭素材の細孔構造が発達し、得られた炭素材をリチウムイオン二次電池に用いた場合にリチウムイオンがインターカレーションできる細孔の形成が促進されるため、得られた炭素材をリチウムイオン二次電池の負極として用いた場合には高い充放電効率、および放電容量を得ることができる。また、微量の水素雰囲気下で炭化することにより、フェノール樹脂中に含まれる酸素原子の除去が効率的に行われるため、得られる炭素材の炭素含有量を向上させることができる。炭素材中の炭素含有量が向上することにより、得られる炭素材をリチウムイオン二次電池に用いた場合に、電解液の分解反応などを抑制することができるため充放電効率、サイクル性などを向上させることができる。逆に、水素ガスが上記下限値未満の雰囲気で熱処理を行うと、揮発分の分解、除去がスムーズに行われないため、炭素材の細孔構造が未発達になりやすく、得られた炭素材をリチウムイオン二次電池に用いた場合にリチウムイオンがインターカレーションできる細孔が減少するため放電容量が低下してしまう。また、水素ガスが上記上限値を超えた雰囲気で熱処理を行うと、揮発分は完全に分解されるが、フェノール樹脂組成物を前駆体とする炭素材表面炭素が水素と反応してしまい、リチウムイオンのインターカレーションに寄与しない炭素材表面細孔が多く生成してしまう。結果として二次電池の充放電効率の低下、および炭素材収得量の低下などが引き起こされるため好ましくない。 Moreover, it is preferable that the quantity with respect to the phenol resin composition of the hydrogen gas in heat processing atmosphere is 1-5 volume%. More preferably, it is 2-4 volume%. When the atmospheric hydrogen volume with respect to the phenol resin composition is within the above range, aromatics generated from the phenol resin composition during the heat treatment, and hydrocarbon-based volatiles efficiently react with hydrogen in the atmosphere. Decomposition of volatile matter is promoted, and it becomes easy to remove volatile matter outside the furnace system. The volatile matter is easily removed, so that the pore structure of the carbon material made of the phenol resin composition is developed. When the obtained carbon material is used in a lithium ion secondary battery, lithium ions can be intercalated. Since the formation of pores is promoted, high charge / discharge efficiency and discharge capacity can be obtained when the obtained carbon material is used as a negative electrode of a lithium ion secondary battery. Moreover, since carbon atoms contained in the phenol resin are efficiently removed by carbonizing in a small amount of hydrogen atmosphere, the carbon content of the obtained carbon material can be improved. By improving the carbon content in the carbon material, when the obtained carbon material is used in a lithium ion secondary battery, it is possible to suppress the decomposition reaction of the electrolytic solution, etc. Can be improved. Conversely, if heat treatment is performed in an atmosphere where the hydrogen gas is less than the above lower limit value, the decomposition and removal of volatile components will not be performed smoothly, so the pore structure of the carbon material tends to be underdeveloped, and the resulting carbon material Is used for a lithium ion secondary battery, the number of pores through which lithium ions can be intercalated decreases, resulting in a decrease in discharge capacity. In addition, when heat treatment is performed in an atmosphere in which hydrogen gas exceeds the above upper limit value, the volatile matter is completely decomposed, but the carbon material surface carbon having a phenol resin composition as a precursor reacts with hydrogen, and lithium Many carbon material surface pores that do not contribute to ion intercalation are generated. As a result, a decrease in charge / discharge efficiency of the secondary battery and a decrease in the carbon material yield are not preferable.

この熱処理を行う時間としては特に限定されないが、通常、最終熱処理温度まで1〜50時間で行うことが好ましい。また、最終熱処理温度は900℃〜1400℃であることが好ましく、より好ましくは1000℃〜1300℃である。この最終熱処理温度範囲で、熱処理を行う時間としては通常1〜15時間で行うことができるが特に限定されるものではない。   Although it does not specifically limit as time to perform this heat processing, Usually, it is preferable to perform in 1 to 50 hours to the final heat processing temperature. Moreover, it is preferable that the final heat processing temperature is 900 to 1400 degreeC, More preferably, it is 1000 to 1300 degreeC. In this final heat treatment temperature range, the heat treatment time can be usually 1 to 15 hours, but is not particularly limited.

最終熱処理温度を前記の温度範囲とすることにより、得られる炭素材をリチウムイオン二次電池負極材料としたときに好ましい比表面積、細孔構造とすることができる。上記温度以上で熱処理をすると、細孔構造が発達しすぎてしまい、環縮合に伴う細孔径の縮小が起こりリチウムイオンが入れない大きさの細孔が多く生成してしまう。そのため、リチウムイオン二次電池負極とした場合に充電容量が著しく低下してしまい重量エネルギー密度が低下するため好ましくない。   By setting the final heat treatment temperature within the above-described temperature range, a preferable specific surface area and pore structure can be obtained when the obtained carbon material is a lithium ion secondary battery negative electrode material. When the heat treatment is performed at a temperature higher than the above temperature, the pore structure develops too much, the pore diameter is reduced due to ring condensation, and many pores having a size that does not contain lithium ions are generated. Therefore, when it is set as a lithium ion secondary battery negative electrode, since a charge capacity falls remarkably and a weight energy density falls, it is unpreferable.

最終熱処理温度範囲が、上記下限値以下であると、炭素材の細孔径がリチウムイオンに対して大きすぎるため、炭素材中にクラスター状態で収納されるリチウムイオンが増加するため、充電容量は増加するが充放電効率が低下してしまうため好ましくない。また、上記下限値以下で熱処理をすることにより、水素原子や酸素原子が炭素材中に多く残留してしまうためサイクル性が低下してしまう。同様に、細孔容積が大きく細孔径も大きいため、炭素材料の真密度が低下するため、リチウムイオン二次電池の体積エネルギー密度が低下するため好ましくない。
また、出発原料であるフェノール樹脂組成物にあわせ、途中の温度域で処理時間を遅めてもよいし、逆に早めてもよい。揮発成分が多く発生する温度域では、揮発分の除去を完全に行うために処理条件をホールドしてもよい。
If the final heat treatment temperature range is less than or equal to the above lower limit value, the pore size of the carbon material is too large relative to lithium ions, so the lithium ions stored in a cluster state in the carbon material increase, and the charge capacity increases. However, it is not preferable because the charge / discharge efficiency is lowered. In addition, by performing the heat treatment below the lower limit value, a large amount of hydrogen atoms and oxygen atoms remain in the carbon material, resulting in a decrease in cycle performance. Similarly, since the pore volume is large and the pore diameter is large, the true density of the carbon material is lowered, so that the volume energy density of the lithium ion secondary battery is lowered, which is not preferable.
Further, in accordance with the phenol resin composition as a starting material, the treatment time may be delayed in the middle temperature range, or conversely. In a temperature range where many volatile components are generated, the processing conditions may be held in order to completely remove volatile components.

また、熱処理の昇温速度は特に限定されないが、通常、50〜200℃/時で昇温を行うことが好ましい。冷却速度についても特に限定されないが、通常、50〜400℃/時で冷却を行うことが好ましい。   Moreover, although the temperature increase rate of heat processing is not specifically limited, It is preferable to heat up normally at 50-200 degreeC / hour. Although the cooling rate is not particularly limited, it is usually preferable to perform cooling at 50 to 400 ° C./hour.

なお、不活性雰囲気を開放する温度は、室温〜100℃とすることができる。   In addition, the temperature which open | releases an inert atmosphere can be made into room temperature-100 degreeC.

以下、本発明を実施例により説明する。しかし、本発明は実施例に限定されるものではない。また、実施例、比較例で示される「部」及び「%」は、全て「重量部」及び「重量%」とする。
(実施例1)
市販のレゾール型フェノール樹脂(住友ベークライト株式会社製・「PR−50087」)1000部を、電気炉中80℃で3時間、熱処理を行いながらメタノールを揮発除去させた後、400℃まで100℃/時で昇温し、400℃で3時間保持後、室温まで冷却し炭素前駆体を得た後、平均粒径が20μm程度になるまで粉砕を行い、粉末状の炭素前駆体を得た。
得られた粉末状の炭素前駆体を、水素:窒素=3:97(容積比)の雰囲気下、100℃/時で昇温して、1100℃に到達した後、3時間維持して炭素材を得た。
Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to the examples. In the examples and comparative examples, “parts” and “%” are all “parts by weight” and “% by weight”.
(Example 1)
After 1000 parts of commercially available resol type phenolic resin (manufactured by Sumitomo Bakelite Co., Ltd., “PR-50087”) was heat-treated in an electric furnace at 80 ° C. for 3 hours, the methanol was volatilized and removed up to 400 ° C. at 100 ° C. / The temperature was raised with time, held at 400 ° C. for 3 hours, cooled to room temperature to obtain a carbon precursor, and then pulverized until the average particle size became about 20 μm to obtain a powdery carbon precursor.
The obtained powdery carbon precursor was heated at 100 ° C./hour in an atmosphere of hydrogen: nitrogen = 3: 97 (volume ratio), reached 1100 ° C., and maintained for 3 hours to obtain a carbon material. Got.

(実施例2)
市販のレゾール型フェノール樹脂(住友ベークライト株式会社製・「PR−50087」)1000部を、電気炉中80℃で3時間、熱処理を行いながらメタノールを揮発除去させた後、400℃まで100℃/時で昇温し、400℃で3時間保持後、室温まで冷却し炭素前駆体を得た後、平均粒径が20μm程度になるまで粉砕を行い、粉末状の炭素前駆体を得た。
得られた粉末状の炭素前駆体を、水素:窒素=3:97(容積比)の雰囲気下、100℃/時で昇温して、1100℃に到達した後、1時間維持して炭素材を得た。
(Example 2)
After 1000 parts of commercially available resol type phenolic resin (manufactured by Sumitomo Bakelite Co., Ltd., “PR-50087”) was heat-treated in an electric furnace at 80 ° C. for 3 hours, the methanol was volatilized and removed up to 400 ° C. at 100 ° C. / The temperature was raised with time, held at 400 ° C. for 3 hours, cooled to room temperature to obtain a carbon precursor, and then pulverized until the average particle size became about 20 μm to obtain a powdery carbon precursor.
The obtained powdery carbon precursor was heated at 100 ° C./hour in an atmosphere of hydrogen: nitrogen = 3: 97 (volume ratio), reached 1100 ° C., and then maintained for 1 hour. Got.

(実施例3)
市販のレゾール型フェノール樹脂(住友ベークライト株式会社製・「PR−50087」)1000部を、電気炉中80℃で3時間、熱処理を行いながらメタノールを揮発除去させた後、400℃まで100℃/時で昇温し、400℃で3時間保持後、室温まで冷却し炭素前駆体を得た後、平均粒径が20μm程度になるまで粉砕を行い、粉末状の炭素前駆体を得た。
得られた粉末状の炭素前駆体を、水素:アルゴン:窒素=2:1:97(容積比)の雰囲気下、100℃/時で昇温して、1100℃に到達した後、3時間維持して炭素材を得た。
(Example 3)
After 1000 parts of commercially available resol type phenolic resin (manufactured by Sumitomo Bakelite Co., Ltd., “PR-50087”) was heat-treated in an electric furnace at 80 ° C. for 3 hours, the methanol was volatilized and removed up to 400 ° C. at 100 ° C. / The temperature was raised with time, held at 400 ° C. for 3 hours, cooled to room temperature to obtain a carbon precursor, and then pulverized until the average particle size became about 20 μm to obtain a powdery carbon precursor.
The obtained powdery carbon precursor was heated at 100 ° C./hour in an atmosphere of hydrogen: argon: nitrogen = 2: 1: 97 (volume ratio), reached 1100 ° C., and maintained for 3 hours. To obtain a carbon material.

(実施例4)
市販のノボラック型フェノール樹脂住友ベークライト株式会社製・「PR−50731」)900部と、ヘキサメチレンテトラミン100部とを粉砕混合した後、400℃まで100℃/時で昇温し、400℃で3時間保持後、室温まで冷却し炭素前駆体を得た後、平均粒径が20μm程度になるまで粉砕を行い、粉末状の炭素前駆体を得た。
得られた粉末状の炭素前駆体を、水素:窒素=3:97(容積比)の雰囲気下、100℃/時で昇温して、1100℃に到達した後、3時間維持して炭素材を得た。
Example 4
After pulverizing and mixing 900 parts of a commercially available novolac-type phenolic resin Sumitomo Bakelite Co., Ltd. “PR-50731”) and 100 parts of hexamethylenetetramine, the temperature was raised to 400 ° C. at 100 ° C./hour, and 3 times at 400 ° C. After maintaining the time, the mixture was cooled to room temperature to obtain a carbon precursor, and then pulverized until the average particle size became about 20 μm to obtain a powdery carbon precursor.
The obtained powdery carbon precursor was heated at 100 ° C./hour in an atmosphere of hydrogen: nitrogen = 3: 97 (volume ratio), reached 1100 ° C., and maintained for 3 hours to obtain a carbon material. Got.

(比較例1)
市販のレゾール型フェノール樹脂(住友ベークライト株式会社製・「PR−50087」)1000部を、電気炉中80℃で3時間、熱処理を行いながらメタノールを揮発除去させた後、400℃まで100℃/時で昇温し、400℃で3時間保持後、室温まで冷却し炭素前駆体を得た後、平均粒径が20μm程度になるまで粉砕を行い、粉末状の炭素前駆体を得た。
得られた粉末状の炭素前駆体を、水素:窒素=7:93(容積比)の雰囲気下、100℃/時で昇温して、1100℃に到達した後、3時間維持して炭素材を得た。
(Comparative Example 1)
After 1000 parts of commercially available resol type phenolic resin (manufactured by Sumitomo Bakelite Co., Ltd., “PR-50087”) was heat-treated in an electric furnace at 80 ° C. for 3 hours, the methanol was volatilized and removed up to 400 ° C. at 100 ° C. / The temperature was raised with time, held at 400 ° C. for 3 hours, cooled to room temperature to obtain a carbon precursor, and then pulverized until the average particle size became about 20 μm to obtain a powdery carbon precursor.
The obtained powdery carbon precursor was heated at 100 ° C./hour in an atmosphere of hydrogen: nitrogen = 7: 93 (volume ratio), reached 1100 ° C., and maintained for 3 hours to obtain a carbon material. Got.

(比較例2)
市販のノボラック型フェノール樹脂住友ベークライト株式会社製・「PR−50731」)900部と、ヘキサメチレンテトラミン100部とを粉砕混合した後、400℃まで100℃/時で昇温し、400℃で3時間保持後、室温まで冷却し炭素前駆体を得た後、平均粒径が20μm程度になるまで粉砕を行い、粉末状の炭素前駆体を得た。
得られた粉末状の炭素前駆体を、水素:窒素=0.1:99.9(容積比)の雰囲気下、100℃/時で昇温して、1100℃に到達した後、3時間維持して炭素材を得た。
(炭素材の評価)
(Comparative Example 2)
After pulverizing and mixing 900 parts of a commercially available novolac-type phenolic resin Sumitomo Bakelite Co., Ltd. “PR-50731”) and 100 parts of hexamethylenetetramine, the temperature was raised to 400 ° C. at 100 ° C./hour, and 3 times at 400 ° C. After maintaining the time, the mixture was cooled to room temperature to obtain a carbon precursor, and then pulverized until the average particle size became about 20 μm to obtain a powdery carbon precursor.
The obtained powdery carbon precursor was heated at 100 ° C./hour in an atmosphere of hydrogen: nitrogen = 0.1: 99.9 (volume ratio), reached 1100 ° C., and maintained for 3 hours. To obtain a carbon material.
(Evaluation of carbon materials)

電池特性の評価
(1)正極の作製
正極活物質としてコバルト酸リチウム(LiCoO2)を用い、これにアセチレンブラックとポリビニリデンフルオライド(PVDF)とをそれぞれ5%の割合で配合し、さらに、希釈溶媒としてN−メチル−2−ピロリドンを適量加えて混合し、スラリー状の正極混合物を調製した。
この正極スラリー状混合物を25μmのアルミ箔の両面に塗布し、その後、110℃で1時間真空乾燥した。真空乾燥後、ロールプレスによって電極を加圧成形した。これを幅40mmで長さ280mmの大きさに切り出し正極を作製した。この正極の両端10mmの部分はアルミ箔が露出しており、この一方に正極タブを圧着した。
Evaluation of battery characteristics (1) Preparation of positive electrode Lithium cobaltate (LiCoO 2 ) was used as a positive electrode active material, and acetylene black and polyvinylidene fluoride (PVDF) were blended at a ratio of 5%, respectively, and further diluted. An appropriate amount of N-methyl-2-pyrrolidone as a solvent was added and mixed to prepare a slurry-like positive electrode mixture.
This positive electrode slurry-like mixture was applied to both sides of a 25 μm aluminum foil, and then vacuum dried at 110 ° C. for 1 hour. After vacuum drying, the electrode was pressure-formed by a roll press. This was cut into a size of 40 mm in width and 280 mm in length to produce a positive electrode. Aluminum foil was exposed at the 10 mm both ends of the positive electrode, and a positive electrode tab was pressure-bonded to one side.

(2)負極の作製
上記で得られた炭素材を用い、これに対して結合剤としてポリフッ化ビニリデン10%、アセチレンブラック3%の割合でそれぞれ配合し、さらに、希釈溶媒としてN−メチル−2−ピロリドンを適量加え混合し、スラリー状の負極混合物を調製した。
この負極スラリー状混合物を10μmの銅箔の両面に塗布し、その後、110℃で1時間真空乾燥した。真空乾燥後、ロールプレスによって電極を加圧成形した。これを幅40mmで長さ290mmの大きさに切り出し負極を作製した。この負極の両端10mmの部分は銅箔が露出しており、この一方に負極タブを圧着した。
(2) Production of Negative Electrode The carbon material obtained above was used and blended in a proportion of 10% polyvinylidene fluoride and 3% acetylene black as a binder, and N-methyl-2 as a diluent solvent. -An appropriate amount of pyrrolidone was added and mixed to prepare a slurry-like negative electrode mixture.
This negative electrode slurry mixture was applied to both sides of a 10 μm copper foil, and then vacuum dried at 110 ° C. for 1 hour. After vacuum drying, the electrode was pressure-formed by a roll press. This was cut into a size of 40 mm in width and 290 mm in length to produce a negative electrode. The copper foil was exposed at the 10 mm both ends of the negative electrode, and a negative electrode tab was pressure-bonded to this one.

(3)二次電池の作製
上記正極、セパレータ(ポリプロピレン製多孔質フィルム:幅45mm、厚さ25μm)、上記負極、セパレータ、上記正極…の順で上記負極が外側になるよう渦巻き状に捲回して電極を作製した。作製した電極を単三型の電池缶に挿入して、負極タブを缶底と溶接した。さらに、電解液としてエチレンカーボネートとジエチレンカーボネートの混合液(体積比が1:1)に、過塩素酸リチウムを1[モル/リットル]の濃度で溶解させたものを用意し、これを上記電池缶内に注入した後、正極タブを正極蓋に溶接し、正極蓋をしめ付けて二次電池を作製した。
(3) Production of secondary battery The positive electrode, the separator (polypropylene porous film: width 45 mm, thickness 25 μm), the negative electrode, the separator, the positive electrode, and so on are wound in a spiral shape so that the negative electrode is on the outside. Thus, an electrode was produced. The produced electrode was inserted into an AA type battery can, and the negative electrode tab was welded to the bottom of the can. Further, an electrolytic solution prepared by dissolving lithium perchlorate at a concentration of 1 [mol / liter] in a mixed solution of ethylene carbonate and diethylene carbonate (volume ratio is 1: 1) is prepared. Then, the positive electrode tab was welded to the positive electrode cover, and the positive electrode cover was attached to produce a secondary battery.

(4)評価
充電容量については、充電時の電流密度を25mA/gとして定電流充電を行い、電位が0Vに達した時点から、0Vで定電圧充電を行い、電流密度が1.25mA/gになるまでに充電した電気量を充電容量とした。
一方、放電容量については、放電時の電流密度も25mA/gとして定電流放電を行い、電位が2.5Vに達した時点から、2.5Vで定電圧放電を行い、電流密度が1.25mA/gになるまでに放電した電気量を放電容量とした。
上記各々の1サイクル目の充電容量を初期充電容量、放電容量を初期放電容量といい、両者の比率(初期放電容量/初期充電容量)を初期充放電効率とした。
以上の評価結果を表1に示す。
(4) Evaluation Regarding the charging capacity, constant current charging is performed with the current density at the time of charging being 25 mA / g. When the potential reaches 0 V, constant voltage charging is performed at 0 V, and the current density is 1.25 mA / g. The amount of electricity charged up to is the charge capacity.
On the other hand, with respect to the discharge capacity, constant current discharge was performed with a current density at the time of discharge of 25 mA / g, and constant voltage discharge was performed at 2.5 V from the time when the potential reached 2.5 V, and the current density was 1.25 mA. The amount of electricity discharged up to / g was taken as the discharge capacity.
Each of the first cycle charge capacities is referred to as an initial charge capacity, a discharge capacity is referred to as an initial discharge capacity, and a ratio between the two (initial discharge capacity / initial charge capacity) is defined as initial charge / discharge efficiency.
The above evaluation results are shown in Table 1.

Figure 2008010224
Figure 2008010224

表1の結果より、実施例1〜4はいずれも、熱処理雰囲気中の水素ガス量が適切であったため、リチウムイオン二次電池用負極材に用いた場合、比較例1〜2よりも高充放電効率、高充放電容量を有する二次電池を得ることができた。   From the results in Table 1, since Examples 1 to 4 all had an appropriate amount of hydrogen gas in the heat treatment atmosphere, when used as a negative electrode material for a lithium ion secondary battery, they were more highly charged than Comparative Examples 1 and 2. A secondary battery having discharge efficiency and high charge / discharge capacity could be obtained.

本発明で得られた炭素材をリチウムイオン二次電池用負極材として用いた場合、充放電特性に優れるリチウムイオン二次電池を得ることができる。   When the carbon material obtained in the present invention is used as a negative electrode material for a lithium ion secondary battery, a lithium ion secondary battery having excellent charge / discharge characteristics can be obtained.

Claims (6)

フェノール樹脂組成物を熱処理してなる炭素材の製造方法であって、前記熱処理雰囲気が、水素ガスを1〜5容積%含有することを特徴とする炭素材の製造方法。 A method for producing a carbon material obtained by heat-treating a phenol resin composition, wherein the heat treatment atmosphere contains 1 to 5% by volume of hydrogen gas. フェノール樹脂組成物に対する水素ガス量が1〜5容積%である請求項1記載の炭素材の製造方法。 The method for producing a carbon material according to claim 1, wherein the amount of hydrogen gas relative to the phenol resin composition is 1 to 5% by volume. 前記熱処理温度が900〜1400℃である請求項1又は2記載の炭素材の製造方法。 The method for producing a carbon material according to claim 1 or 2, wherein the heat treatment temperature is 900 to 1400 ° C. 請求項1〜3のいずれかに記載の炭素材の製造方法によって得られることを特徴とする炭素材。 A carbon material obtained by the method for producing a carbon material according to claim 1. 請求項4に記載の炭素材を含有することを特徴とする二次電池用負極材料。 A negative electrode material for a secondary battery comprising the carbon material according to claim 4. 請求項5に記載の二次電池用負極材料を用いることを特徴とする二次電池。 A secondary battery comprising the negative electrode material for a secondary battery according to claim 5.
JP2006177515A 2006-06-28 2006-06-28 Manufacturing method of carbon material, negative electrode material for secondary battery, and the secondary battery Pending JP2008010224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177515A JP2008010224A (en) 2006-06-28 2006-06-28 Manufacturing method of carbon material, negative electrode material for secondary battery, and the secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177515A JP2008010224A (en) 2006-06-28 2006-06-28 Manufacturing method of carbon material, negative electrode material for secondary battery, and the secondary battery

Publications (1)

Publication Number Publication Date
JP2008010224A true JP2008010224A (en) 2008-01-17

Family

ID=39068248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177515A Pending JP2008010224A (en) 2006-06-28 2006-06-28 Manufacturing method of carbon material, negative electrode material for secondary battery, and the secondary battery

Country Status (1)

Country Link
JP (1) JP2008010224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064936A1 (en) * 2009-11-25 2011-06-03 住友ベークライト株式会社 Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2012064407A (en) * 2010-09-15 2012-03-29 Sumitomo Bakelite Co Ltd Lithium ion secondary battery carbon material, lithium ion secondary battery anode material, and lithium ion secondary battery
CN114044508A (en) * 2021-12-20 2022-02-15 张家港博威新能源材料研究所有限公司 Hard carbon microsphere and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249307A (en) * 2001-02-22 2002-09-06 Casio Comput Co Ltd Method for reforming active carbon and method for manufacturing electric double layered condenser
JP2006056750A (en) * 2004-08-20 2006-03-02 Shinshu Univ Porous carbonaceous material and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249307A (en) * 2001-02-22 2002-09-06 Casio Comput Co Ltd Method for reforming active carbon and method for manufacturing electric double layered condenser
JP2006056750A (en) * 2004-08-20 2006-03-02 Shinshu Univ Porous carbonaceous material and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064936A1 (en) * 2009-11-25 2011-06-03 住友ベークライト株式会社 Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP5477391B2 (en) * 2009-11-25 2014-04-23 住友ベークライト株式会社 Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
US9236603B2 (en) 2009-11-25 2016-01-12 Sumitomo Bakelite Co., Ltd. Carbon material for lithium ion secondary cell, negative electrode material for lithium ion secondary cell and lithium ion secondary cell
JP2012064407A (en) * 2010-09-15 2012-03-29 Sumitomo Bakelite Co Ltd Lithium ion secondary battery carbon material, lithium ion secondary battery anode material, and lithium ion secondary battery
CN114044508A (en) * 2021-12-20 2022-02-15 张家港博威新能源材料研究所有限公司 Hard carbon microsphere and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2006264993A (en) Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell
WO2013146300A1 (en) Negative electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP2008010224A (en) Manufacturing method of carbon material, negative electrode material for secondary battery, and the secondary battery
JP4899396B2 (en) Carbon material, and negative electrode material and non-aqueous electrolyte secondary battery for secondary battery using the same
JP2017084764A (en) Carbon material for secondary battery negative electrode, active material for secondary battery negative electrode, secondary battery negative electrode and manufacturing method for second battery negative electrode
CN113273004B (en) Method for producing carbonaceous-coated graphite particles
JP4892820B2 (en) Phenol resin composition for carbon material, carbon material and method for producing the same
JP2007266158A (en) Carbon material for electric double-layer capacitor, method of manufacturing same, and electric double-layer capacitor including the material
JP2016164861A (en) Modified phenolic hydroxyl group-containing resin for secondary battery negative electrode, carbon material for secondary battery negative electrode, secondary battery negative electrode active substance, second battery negative electrode, and secondary battery
JP2013182706A (en) Precursor for negative electrode, manufacturing method of precursor for negative electrode, production method of material for negative electrode, electrode and lithium ion secondary battery
JP2006083012A (en) Carbon material, negative-electrode material for secondary battery, and nonaqueous electrolyte secondary battery
JP4951910B2 (en) Carbon material manufacturing method and carbon material
JP5050604B2 (en) Carbon material and manufacturing method thereof, secondary battery negative electrode material and non-aqueous electrolyte secondary battery
JP4897160B2 (en) Manufacturing method of fuel cell separator
JP5315597B2 (en) Carbon material manufacturing method and carbon material
JP2016164862A (en) Carbon material for secondary battery negative electrode, active material for secondary battery negative electrode, secondary battery negative electrode, and secondary battery
JP2006264991A (en) Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell
JP4511811B2 (en) Lithium ion secondary battery negative electrode active material resin composition, negative electrode active material carbon material, method for producing the same, and lithium ion secondary battery
JP4838991B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbon material, secondary battery negative electrode material using the same, and non-aqueous electrolyte secondary battery
JP2006273602A (en) Composition for carbon material and method for manufacturing the same, and carbon material and method for manufacturing the same
JP5031981B2 (en) Carbon material precursor, carbon material, negative electrode material for secondary battery and nonaqueous electrolyte secondary battery using the same
JP2016136452A (en) Carbon material for sodium ion secondary battery, active material for sodium ion secondary battery negative electrode, sodium ion secondary negative electrode, sodium ion secondary battery, resin composition for sodium ion secondary battery negative electrode, and method of manufacturing carbon material for sodium ion secondary battery negative electrode
JP3835713B2 (en) Carbon material
JP4254947B2 (en) Carbon material, method for producing the same, and secondary battery using the carbon material as a negative electrode active material
JP2017091784A (en) Carbon material for secondary battery negative electrode, active material for secondary battery negative electrode, secondary battery negative electrode, and method of manufacturing secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207