JP2007336632A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2007336632A
JP2007336632A JP2006162978A JP2006162978A JP2007336632A JP 2007336632 A JP2007336632 A JP 2007336632A JP 2006162978 A JP2006162978 A JP 2006162978A JP 2006162978 A JP2006162978 A JP 2006162978A JP 2007336632 A JP2007336632 A JP 2007336632A
Authority
JP
Japan
Prior art keywords
voltage
signal
converter
power supply
input current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006162978A
Other languages
Japanese (ja)
Other versions
JP4351688B2 (en
Inventor
Yoshinobu Kouji
芳信 糀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006162978A priority Critical patent/JP4351688B2/en
Publication of JP2007336632A publication Critical patent/JP2007336632A/en
Application granted granted Critical
Publication of JP4351688B2 publication Critical patent/JP4351688B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power converter capable of stable control by solving the following problem: application of a power converter input with a commercial AC power supply to an AC power supply having fluctuations in frequency or voltage of an AC generator for private use or the like would cause loss of control due to difficulty in following the fluctuations. <P>SOLUTION: This power converter includes: a DC voltage variation circuit for outputting a signal for controlling a PWM converter; a power voltage variation signal generation circuit; a PWM converter input current command signal generation circuit; an input current variation compensation circuit; a voltage drop compensation circuit of a reactor; and a converter control circuit for controlling the PWM converter, with a voltage signal of a sum of respective signals of AC power voltage, input current variation compensation and voltage drop compensation taken as a modulated wave. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、例えば自家発電所に設けられた小型発電機である同期発電機等の、周波数や電圧変動の激しい交流発電機を備えた電力変換装置に関するものであり、特にPWMコンバータ方式電源の制御特性向上に係るものである。   The present invention relates to a power conversion device including an AC generator having a large frequency and voltage fluctuation, such as a synchronous generator that is a small generator provided in a private power plant, and in particular, control of a PWM converter system power supply. This relates to the improvement of characteristics.

従来のPWMコンバータを備えた電力変換装置として、交流電源に交流リアクトルを介して接続されたPWMコンバータおよび平滑コンデンサと、この平滑コンデンサを電圧源とする負荷と、平滑コンデンサの直流電圧を検知して基準電圧に対応した値に制御する直流電圧制御回路の出力信号に応じて、交流電源から供給する電流を制御する入力電流制御回路と、交流電源の電圧と交流リアクトルの電圧降下分の補償信号を出力する補償回路と、前記入力電流制御回路の出力信号に補償信号を加えてPWMコンバータの制御入力信号を得る加算器を備え、
入力電流制御の位相遅れ分を補償し、電源からの供給電流を指令値に追従するよう制御する技術が示されている(例えば、特許文献1参照)。
As a power converter equipped with a conventional PWM converter, a PWM converter and a smoothing capacitor connected to an AC power source through an AC reactor, a load using the smoothing capacitor as a voltage source, and a DC voltage of the smoothing capacitor are detected. An input current control circuit that controls the current supplied from the AC power supply according to the output signal of the DC voltage control circuit that controls the value corresponding to the reference voltage, and a compensation signal for the voltage drop of the AC power supply and the AC reactor. A compensation circuit for outputting, and an adder for obtaining a control input signal of the PWM converter by adding a compensation signal to the output signal of the input current control circuit,
A technique for compensating for the phase delay of the input current control and controlling the supply current from the power source to follow the command value is disclosed (for example, see Patent Document 1).

特公平07−048951号公報Japanese Patent Publication No. 07-049551

しかしながら前記特許文献1に示されたものは、商用電源から電力供給される電力変換装置に係るものであり、商用電源の周波数は一般に安定していることから、周波数変動に配慮した技術は示されていない。
このような特許文献1に示された技術を、例えば自家用小型交流発電機等の周波数、電圧変動の大きい交流電源や起動、停止の多い電源を備えた電力変換装置に適用すると、装置によっては追従できず制御不能となり、過電流、過電圧等の保護動作で停止するケースが生じる等の問題点があった。
However, the technique disclosed in Patent Document 1 relates to a power conversion device that is supplied with power from a commercial power source. Since the frequency of the commercial power source is generally stable, a technique that takes frequency fluctuation into account is shown. Not.
When the technology disclosed in Patent Document 1 is applied to a power conversion device having an AC power source having a large frequency fluctuation, such as a personal small AC generator, or a power source having a lot of starting and stopping, for example, it follows depending on the device. There was a problem that control could not be performed, and a case where the operation stopped due to a protection operation such as overcurrent or overvoltage occurred.

この発明は、前記のような課題を解消するためになされたもので、周波数や電圧変動の大きい、または起動/停止の多い交流電源の場合でも安定した制御が可能な電力変換装置を得ることを目的としている。   The present invention has been made to solve the above-described problems, and it is an object of the present invention to obtain a power conversion device capable of stable control even in the case of an AC power source having a large frequency or voltage fluctuation or having many start / stops. It is aimed.

この発明に係る電力変換装置は、交流電源に交流リアクトルを介して接続されたPWMコンバータと、PWMコンバータに接続されて負荷に供給する直流電力を蓄積するフィルタコンデンサと、フィルタコンデンサの直流電圧と予め設定された直流基準電圧との差が小さくなるように、PWMコンバータを制御するための直流電圧変動補償信号を出力する直流電圧変動補償回路と、
交流電源の実効値電圧の逆数と比例し、負荷に供給する直流電流である負荷電流に比例する電源電圧変動信号を出力する電源電圧変動信号生成回路と、
直流電圧変動補償信号と電源電圧変動信号との和により、PWMコンバータの入力電流の指令値であるコンバータ入力電流指令信号を出力するコンバータ入力電流指令信号生成回路と、
コンバータ入力電流指令信号とPWMコンバータの入力電流との差が小さくなるようにPWMコンバータを制御するための入力電流変動補償信号を出力する入力電流変動補償回路と、
交流リアクトルの電圧降下を補償するための電圧降下補償信号を出力する電圧降下補償回路と、交流電源の電圧信号と入力電流変動補償信号と電圧降下補償信号との和の電圧信号を変調波として、PWMコンバータを制御するPWMコンバータ制御回路とを備えたものである。
A power converter according to the present invention includes a PWM converter connected to an AC power source via an AC reactor, a filter capacitor connected to the PWM converter and storing DC power supplied to a load, a DC voltage of the filter capacitor, A DC voltage fluctuation compensation circuit that outputs a DC voltage fluctuation compensation signal for controlling the PWM converter so that a difference from the set DC reference voltage is small;
A power supply voltage fluctuation signal generation circuit that outputs a power supply voltage fluctuation signal that is proportional to the inverse of the effective value voltage of the AC power supply and proportional to the load current that is a DC current supplied to the load;
A converter input current command signal generation circuit that outputs a converter input current command signal that is a command value of the input current of the PWM converter by the sum of the DC voltage fluctuation compensation signal and the power supply voltage fluctuation signal;
An input current fluctuation compensation circuit that outputs an input current fluctuation compensation signal for controlling the PWM converter so that a difference between the converter input current command signal and the input current of the PWM converter is reduced;
A voltage drop compensation circuit that outputs a voltage drop compensation signal for compensating the voltage drop of the AC reactor, and a voltage signal of the sum of the voltage signal of the AC power supply, the input current fluctuation compensation signal, and the voltage drop compensation signal as a modulation wave, And a PWM converter control circuit for controlling the PWM converter.

この発明に係る電力変換装置は、PWMコンバータに接続されて負荷に供給する直流電力を蓄積するフィルタコンデンサの直流電圧と予め設定された直流基準電圧との差が小さくなるように、PWMコンバータを制御するための直流電圧変動補償信号を出力する直流電圧変動補償回路と、
交流電源の実効値電圧の逆数と比例し、負荷に供給する負荷電流に比例する電源電圧変動信号を出力する電源電圧変動信号生成回路と、
直流電圧変動補償信号と電源電圧変動信号との和により、コンバータ入力電流指令信号を出力するコンバータ入力電流指令信号生成回路と、
コンバータ入力電流指令信号とPWMコンバータの入力電流との差が小さくなるようにPWMコンバータを制御する信号を出力する入力電流変動補償回路と、
交流リアクトルの電圧降下を補償するための信号を出力する電圧降下補償回路と、交流電源の電圧信号と入力電流変動補償信号と電圧降下補償信号との和の電圧信号を変調波として、PWMコンバータを制御するPWMコンバータ制御回路とを備えた構成であるので、周波数や電圧変動の大きい、または起動/停止の多い交流電源の場合にでも、電力変換装置の安定した制御が可能となる。
The power converter according to the present invention controls the PWM converter so that the difference between the DC voltage of the filter capacitor connected to the PWM converter and storing the DC power supplied to the load and the preset DC reference voltage becomes small. A DC voltage fluctuation compensation circuit that outputs a DC voltage fluctuation compensation signal for
A power supply voltage fluctuation signal generation circuit that outputs a power supply voltage fluctuation signal that is proportional to the inverse of the effective value voltage of the AC power supply and proportional to the load current supplied to the load;
A converter input current command signal generation circuit that outputs a converter input current command signal by the sum of the DC voltage fluctuation compensation signal and the power supply voltage fluctuation signal;
An input current fluctuation compensation circuit that outputs a signal for controlling the PWM converter so that the difference between the converter input current command signal and the input current of the PWM converter is reduced;
A voltage drop compensation circuit that outputs a signal for compensating for the voltage drop of the AC reactor, and a PWM converter using a voltage signal of the sum of the voltage signal of the AC power supply, the input current fluctuation compensation signal, and the voltage drop compensation signal as a modulation wave. Since the configuration includes a PWM converter control circuit that controls the power converter, stable control of the power conversion device is possible even in the case of an AC power source with large frequency and voltage fluctuations or frequent start / stop.

実施の形態1.
以下、この発明の実施の形態1を図1に基づいて説明する。
電力変換装置100は交流電源である、例えば自家発電設備の同期発電機である交流発電機1と、この交流発電機1に接続された交流リアクトル2と、交流電流Isを検出する第1の電流センサ3と、入力した交流を直流に変換するPWMコンバータ4と、PWMコンバータ4の直流出力電力を蓄積するフィルタコンデンサ5と、この直流電圧源であるフィルタコンデンサ5に接続された負荷6と、直流出力電流Idを検出する第2の電流センサ7と、以下に述べる各要素より構成されている。
すなわち、交流発電機1の出力電圧を検知する電圧センサ8、PWMコンバータ4の変調波を作成するために使用する、電源電圧Vsに同期した正弦波(sin波)と、sin波よりも90度進んだ位相を持つ同じ振幅の正弦波cos波とを生成するsin/cos(サイン/コサイン)発生器9、コンデンサ電圧指令Vdと符号を反転させたコンデンサ電圧Vdとを加算する第1の加算器10、この加算器10の出力を増幅する電圧コントローラ11、電圧コントローラ11の出力と後述するフィードフォワード信号Isを加算する第2の加算器12、sin/cos発生器9の出力するsin信号と第2の加算器12の出力とを乗算する第1の乗算器13、交流電流Isと符号を反転させた第1の乗算器13の出力とを加算する第3の加算器14、この第3の加算器14の出力する差分を増幅する電流コントローラ15、電圧センサ8の出力と電流コントローラ15の出力とを加算する第4の加算器16、PWMコンバータ4のスイッチングパターンを決定する信号を出力するPWM信号発生器18、cos信号と第2の加算器12の出力を第2の乗算器19で乗算し、電圧センサ8が検知する交流発電機1の実効値電圧をf/V(周波数/電圧)変換器21で変換された周波数fと交流リアクトル2のインピーダンス分2πLsとを乗算する第5の乗算器24の出力とを乗算する第3の乗算器20、第4の加算器16と第3の乗算器20の出力を加算してPWM信号発生器18に出力する第5の加算器17、所定の係数を前記周波数fで割った値を求める割算器22、直流電流Idと割算器22の出力とを乗算してフィードフォワード信号Isを出力する第4の乗算器23とが設けられている。
Embodiment 1 FIG.
A first embodiment of the present invention will be described below with reference to FIG.
The power converter 100 is an AC power source, for example, an AC generator 1 that is a synchronous generator of a private power generation facility, an AC reactor 2 connected to the AC generator 1, and a first current that detects an AC current Is. A sensor 3; a PWM converter 4 that converts input AC to DC; a filter capacitor 5 that stores DC output power of the PWM converter 4; a load 6 that is connected to the filter capacitor 5 that is this DC voltage source; The second current sensor 7 detects the output current Id and each element described below.
That is, the voltage sensor 8 that detects the output voltage of the AC generator 1 and the sine wave (sin wave) synchronized with the power supply voltage Vs used to create the modulation wave of the PWM converter 4 and 90 degrees from the sine wave. A sin / cos (sine / cosine) generator 9 for generating a sinusoidal cosine wave having the same amplitude with an advanced phase, and a first addition for adding a capacitor voltage command Vd * and a capacitor voltage Vd whose sign is inverted. 10, a voltage controller 11 that amplifies the output of the adder 10, a second adder 12 that adds an output of the voltage controller 11 and a feedforward signal Is * described later, and a sin signal output from the sin / cos generator 9. The first multiplier 13 that multiplies the output of the second adder 12 and the output of the first multiplier 13 whose sign is inverted with the alternating current Is. Adder 14, current controller 15 that amplifies the difference output from third adder 14, fourth adder 16 that adds the output of voltage sensor 8 and the output of current controller 15, and switching of PWM converter 4 The PWM signal generator 18 that outputs a signal for determining a pattern, the cos signal and the output of the second adder 12 are multiplied by the second multiplier 19, and the RMS voltage of the AC generator 1 detected by the voltage sensor 8. A third multiplier 20 that multiplies the frequency f converted by the f / V (frequency / voltage) converter 21 and the output of the fifth multiplier 24 that multiplies the impedance component 2πLs of the AC reactor 2, A fifth adder 17 that adds the outputs of the four adders 16 and the third multiplier 20 and outputs the result to the PWM signal generator 18, and a divider 22 that obtains a value obtained by dividing a predetermined coefficient by the frequency f. ,straight A fourth multiplier 23 for outputting a feedforward signal Is * is provided by multiplying the output current Id and the divider 22.

ここで、前記第1の加算器10、電圧コントローラ11とでPWMコンバータ4を制御するための直流電圧変動補償信号を出力する直流電圧変動補償回路を構成し、f/V変換器21で交流発電機1の周波数である電源周波数信号を出力する電源周波数信号生成回路を、f/V変換器21と割算器22と第4の乗算器23とで電源電圧変動信号生成回路を、第2の加算器12でPWMコンバータ4の入力電流指令値信号を出力するコンバータ入力電流指令信号生成回路を、第3の加算器14と電流コントローラ15で前記コンバータ入力電流指令信号とPWMコンバータ4の入力電流との差が小さくなるようにPWMコンバータ4を制御する入力電流変動補償信号を出力する入力電流変動補償回路を、第2の乗算器19、第3の乗算器20で交流リアクトル2の電圧降下を補償する電圧降下補償信号を出力する電圧降下補償回路を、第4の加算器16、第5の加算器17、PWM信号発生器18とで電源の電圧信号Vsと前記入力電流変動補償信号と前記電圧降下補償信号との和の電圧信号を変調波としてPWMコンバータ4を制御するPWMコンバータ制御回路を構成する。   Here, the first adder 10 and the voltage controller 11 constitute a DC voltage fluctuation compensation circuit that outputs a DC voltage fluctuation compensation signal for controlling the PWM converter 4, and the f / V converter 21 generates AC power. A power supply frequency signal generation circuit that outputs a power supply frequency signal that is the frequency of the machine 1, a power supply voltage fluctuation signal generation circuit using the f / V converter 21, the divider 22, and the fourth multiplier 23, The adder 12 outputs a converter input current command signal generation circuit that outputs the input current command value signal of the PWM converter 4. The third adder 14 and the current controller 15 use the converter input current command signal and the input current of the PWM converter 4. An input current fluctuation compensation circuit that outputs an input current fluctuation compensation signal for controlling the PWM converter 4 so as to reduce the difference between the second multiplier 19 and the third multiplier 20. A voltage drop compensation circuit that outputs a voltage drop compensation signal that compensates for a voltage drop in the flow reactor 2 includes a fourth adder 16, a fifth adder 17, and a PWM signal generator 18. A PWM converter control circuit that controls the PWM converter 4 using the voltage signal of the sum of the input current fluctuation compensation signal and the voltage drop compensation signal as a modulation wave is configured.

以上のような構成の電力変換装置100の動作について説明する前に、本実施の形態1の特徴である周波数fが変動した場合に、安定した制御を行う上での交流電流のフィードフォワード信号を得ることの重要性を以下に述べる。
交流電源である自家発電等で使用される発電機として、例えば同期発電機等が使用されるが、このような交流発電機の特徴としては通常磁束(回転磁界)φ=一定で運転される。即ち交流発電機の回転により発生する交流電圧Vsと周波数fの間には磁束をφとして、
φ=K×Vs/f=一定 Vs=φ/K×fが成り立つ。
ここでKは一定の定数である。この特性を(図2)に示す。
一方、交流電源から供給される交流電力Pac=Vs×Isと出力直流電力Pdc=Vd×Idは損失を無視し、交流電源から見て、力率=1と仮定すると等しくなるので、
Vs×Is=Vd×Idが成り立つ。
従ってIs=Pdc/Vsとなり、φ=K×Vs/f=一定の条件と組み合わせると、Vd=一定として
Is=Pdc/Vs=K×Vd×Id/φ×f=K´/f×Id
ここでK´=K×Vd/φ
となり、周波数fが変化した場合に交流入力電流は直流電流IdにK´/fをかけたものに比例することになる。
そこで、交流電圧Vsをf/V(周波数/電圧)変換器21で周波数fに変換し、割算器22で定数K´を割り、K´/fを求めて、直流電流Idに第4の乗算器23で乗算してやることにより、周波数fが変動した場合の交流電流のフィードフォワード信号Isを得ることができる。
このフィードフォワード信号Isは直流電流Idの変動に対するフィードフォワードとして働くとともに、周波数fの項を持っているため周波数変動に対するフィードフォワード信号としても働く。
この発明は前述のようなフィードフォワード信号を得るような構成を備える。
Before describing the operation of the power conversion apparatus 100 configured as described above, when the frequency f, which is a feature of the first embodiment, fluctuates, a feedforward signal of an alternating current for performing stable control is obtained. The importance of obtaining is described below.
For example, a synchronous generator or the like is used as a generator used for private power generation or the like that is an AC power source. As a feature of such an AC generator, a normal magnetic flux (rotating magnetic field) φ is constantly operated. That is, the magnetic flux is φ between the AC voltage Vs generated by the rotation of the AC generator and the frequency f,
φ = K × Vs / f = constant Vs = φ / K × f holds.
Here, K is a constant. This characteristic is shown in FIG.
On the other hand, the AC power Pac = Vs × Is and the output DC power Pdc = Vd × Id supplied from the AC power source ignore the loss, and are equal when viewed from the AC power source and assuming that the power factor = 1.
Vs × Is = Vd × Id holds.
Therefore, Is = Pdc / Vs, and when combined with φ = K × Vs / f = constant conditions, Vd = constant. Is = Pdc / Vs = K × Vd × Id / φ × f = K ′ / f × Id
Where K ′ = K × Vd / φ
Thus, when the frequency f changes, the AC input current is proportional to the DC current Id multiplied by K ′ / f.
Therefore, the AC voltage Vs is converted to the frequency f by the f / V (frequency / voltage) converter 21, the constant K ′ is divided by the divider 22, K ′ / f is obtained, and the DC current Id is calculated as the fourth value. By multiplying by the multiplier 23, it is possible to obtain an AC current feedforward signal Is * when the frequency f fluctuates.
This feedforward signal Is * functions as a feedforward with respect to fluctuations in the DC current Id, and also has a term of frequency f, so that it also functions as a feedforward signal with respect to frequency fluctuations.
The present invention has a configuration for obtaining the feedforward signal as described above.

次に、この構成の電力変換装置100の動作について述べる。
まず交流発電機1の出力は、交流リアクトル2、PWMコンバータ4、フィルタコンデンサ5で構成されるAC/DC変換器はたとえば三相AC400V電圧を直流例えばDC750Vに変換し、その後直流は負荷6へ給電される。
まず電圧センサ8で検出した交流電源電圧をベースにsin/cos発生器9により入力交流に同期したsin/cos信号を発生させる。ここでsin信号は入力と同相、cos信号は90°位相差の正弦波信号である。このsin/cos信号はPWMコンバータ4が出力する入力交流電流指令の基準となる。
PWMコンバータ4の制御対象はフィルタコンデンサ5の電圧であり、フィルタコンデンサ5の電圧Vdと図示省略した直流電圧設定器の出力するコンデンサ電圧指令Vdとは、第1の加算器10で偏差を得た後、電圧コントローラ11で増幅され、電圧差がある場合は有効電流を流して電圧を維持するための入力交流電流指令となる。
Next, operation | movement of the power converter device 100 of this structure is described.
First, the output of the AC generator 1 is an AC / DC converter composed of an AC reactor 2, a PWM converter 4, and a filter capacitor 5. Is done.
First, based on the AC power supply voltage detected by the voltage sensor 8, a sin / cos generator 9 generates a sin / cos signal synchronized with the input AC. Here, the sin signal is a sine wave signal having the same phase as the input, and the cos signal is a 90 ° phase difference. The sin / cos signal is a reference for the input AC current command output from the PWM converter 4.
The controlled object of the PWM converter 4 is the voltage of the filter capacitor 5, and the first adder 10 obtains a deviation between the voltage Vd of the filter capacitor 5 and the capacitor voltage command Vd * output from a DC voltage setter (not shown). After that, the voltage controller 11 amplifies the voltage, and when there is a voltage difference, it becomes an input AC current command for supplying an effective current and maintaining the voltage.

一方、交流発電機1の出力する電圧Vsを電圧センサ8で検知し、この値を前述したようにf/V(周波数/電圧)変換器21によって周波数fに変換し、割算器22でK´/fを求めて、この値を第2の電流センサ7の検知するPWMコンバータの直流出力電流Idに、第4の乗算器23で乗算することによりフィードフォワード信号Isを得る。このフィードフォワード信号Isは、前述した電圧コントローラ11で増幅された電圧指令と第2の加算器12で加算された後、第1の乗算器13でsin/cos発生器9の出力するsin信号と乗算され最終的なPWMコンバータ4が出すべき入力電流の指令となる。 On the other hand, the voltage Vs output from the AC generator 1 is detected by the voltage sensor 8, and this value is converted to the frequency f by the f / V (frequency / voltage) converter 21 as described above, and the divider 22 outputs K. ′ / F is obtained, and this value is multiplied by the DC output current Id of the PWM converter detected by the second current sensor 7 by the fourth multiplier 23 to obtain the feedforward signal Is * . The feedforward signal Is * is added by the second adder 12 with the voltage command amplified by the voltage controller 11 described above, and then the sin signal output from the sin / cos generator 9 by the first multiplier 13. Is the command of the input current that the final PWM converter 4 should output.

その後、前記入力電流指令と第1の電流センサ3で検出されたPWMコンバータ4の入力交流電流について第3の加算器14で差分を取った後、電流コントローラ15で増幅され、電流差がある場合は有効電流を流して電圧を維持するための入力交流電流指令となる。
この電流コントローラ15で増幅された出力と入力電圧の電圧センサ8の出力を第4の加算器16で加算することよりPWMコンバータ4が出力すべき交流電圧Vcが決定する。
さらに交流リアクトル2による交流側の電圧降下を補償するためsin/cos発生器9の出力するcos信号と、前記第2の加算器12の出力する電流指令を第2の乗算器19で乗算し、また交流リアクトル2のインピーダンス分の2πLsとf/V変換器21の出力する周波数fとを第5の乗算器24で乗算し、その出力と前記第2の乗算器19の出力とを第3の乗算器20で乗算し、その出力をフィードフォワード信号として第5の加算器17により前記第4の加算器16の出力する交流電圧Vcに加算し、その結果をPWM信号発生器18へ与え、PWMコンバータ4のスイッチングパターンを決定する。交流発電機電圧Vs、入力電流Is、PWMコンバータ電圧Vc、交流リアクトル電圧VLの関係を図3に示す。
このように、この実施の形態1の電力変換装置100は、入力する交流周波数に応じてフィードフォワード制御を行うので、より高速で安定制御の可能な装置となる。
After that, the difference between the input current command and the input AC current of the PWM converter 4 detected by the first current sensor 3 is obtained by the third adder 14 and then amplified by the current controller 15 and there is a current difference. Becomes an input AC current command for maintaining the voltage by flowing an effective current.
By adding the output amplified by the current controller 15 and the output of the voltage sensor 8 of the input voltage by the fourth adder 16, the AC voltage Vc * to be output by the PWM converter 4 is determined.
Further, the second multiplier 19 multiplies the cosine signal output from the sin / cos generator 9 and the current command output from the second adder 12 in order to compensate for the voltage drop on the AC side due to the AC reactor 2. Further, 2πLs corresponding to the impedance of the AC reactor 2 and the frequency f output from the f / V converter 21 are multiplied by the fifth multiplier 24, and the output and the output of the second multiplier 19 are multiplied by the third multiplier 24. Multiplying by the multiplier 20, the output is added to the AC voltage Vc * output from the fourth adder 16 by the fifth adder 17 as a feedforward signal, and the result is given to the PWM signal generator 18. The switching pattern of the PWM converter 4 is determined. FIG. 3 shows the relationship among the AC generator voltage Vs * , the input current Is * , the PWM converter voltage Vc * , and the AC reactor voltage VL.
As described above, the power conversion device 100 according to the first embodiment performs feedforward control according to the input AC frequency, and thus can be a device capable of stable control at higher speed.

また、この実施の形態1では、交流リアクトル2での電圧降下を補償する際に、電源周波数の変動を考慮したが、電源周波数の変動を考慮しない場合でも同様の効果が得られる。電圧降下補償で電源周波数の変動を考慮しない場合には、第4の乗算器23が無く、定格周波数をf0とすると、定数2πf0Lsが第3の乗算器20に入力される。
さらに、この実施の形態1は、交流発電機の端子電圧が計測可能であり、交流発電機の端子電圧を用いて電力変換装置のフィードフォワード制御を行った場合であるが、交流発電機が電力変換装置と離れている場所にある場合でも、電力変換装置の入力の交流電圧を用いて、電力変換装置のフィードフォワード制御を行っても同様の効果がある。
Further, in the first embodiment, when the voltage drop in the AC reactor 2 is compensated, the fluctuation of the power supply frequency is considered. However, the same effect can be obtained even when the fluctuation of the power supply frequency is not taken into consideration. When voltage drop compensation does not take into account fluctuations in the power supply frequency, there is no fourth multiplier 23, and the constant 2πf0Ls is input to the third multiplier 20 when the rated frequency is f0.
Furthermore, this Embodiment 1 is a case where the terminal voltage of an alternator can be measured and the feedforward control of the power converter is performed using the terminal voltage of the alternator. Even when the power converter is located away from the converter, the same effect can be obtained by performing feedforward control of the power converter using the AC voltage input to the power converter.

実施の形態2.
この実施の形態2は、フィードフォワード信号Isを、直流電流のフィードフォワード信号にするように、実施の形態1を変更した場合である。実施の形態2における電力変換装置100の構成図を図4に示す。図1と異なる点のみを説明する。図1に記載されていた割算器22と、第4の乗算器23を図4では削除している。
図4において、第5の乗算器24にてf/V(周波数/電圧)変換器21の出力fと、交流リアクトル2のインピーダンス分の2πLsとを乗算して2πfLsとし、sin/cos発生器9の出力するcos信号と、第2の加算器12が出力する電圧コントローラ11の出力と第2の電流センサ7の検知電流との偏差からの電流指令とを第2の乗算器19で乗算し、その出力と前記第5の乗算器24の出力値2πfLsとを第3の乗算器20に出力する回路としたものである。このような回路を採用することにより、例えば周波数変動の大きい電源の場合に、従来の電力変換装置に比較してより高速で安定した制御が可能となる。
Embodiment 2. FIG.
In the second embodiment, the first embodiment is changed so that the feedforward signal Is * is a DC current feedforward signal. FIG. 4 shows a configuration diagram of power conversion apparatus 100 in the second embodiment. Only differences from FIG. 1 will be described. The divider 22 and the fourth multiplier 23 described in FIG. 1 are omitted in FIG.
In FIG. 4, the fifth multiplier 24 multiplies the output f of the f / V (frequency / voltage) converter 21 by 2πLs corresponding to the impedance of the AC reactor 2 to obtain 2πfLs, and the sin / cos generator 9 The second multiplier 19 multiplies the cos signal output from the current command from the deviation between the output of the voltage controller 11 output from the second adder 12 and the detected current of the second current sensor 7, The output and the output value 2πfLs of the fifth multiplier 24 are outputted to the third multiplier 20. By adopting such a circuit, for example, in the case of a power supply having a large frequency fluctuation, it becomes possible to perform stable control at a higher speed than in a conventional power converter.

実施の形態1、2の電力変換装置による制御応答性を図5によって説明する。
図5は、交流発電機の加速/減速パターンの1例を示している。図において加速/減速パターンの曲線51に対し、実施の形態1、2は応答曲線52に示すように、特許文献1による従来の電力変換装置による応答曲線53に比較して、より速い応答性を有する。その理由は特許文献1では平滑コンデンサの直流電圧を検知して制御するのであるのに対し、本発明は交流電圧をf/V変換器によって周波数に変換、処理したフィードフォワード信号を用いてPWMコンバータを制御するので、周波数や電圧変動の大きいまたは起動/停止の多い交流電源でも速い応答により安定した制御が可能となる。
Control responsiveness by the power converters of the first and second embodiments will be described with reference to FIG.
FIG. 5 shows an example of the acceleration / deceleration pattern of the AC generator. As shown in the response curve 52 in the first and second embodiments, the acceleration / deceleration pattern curve 51 is faster than the response curve 53 of the conventional power conversion device according to Patent Document 1, as shown in the response curve 52. Have. The reason is that, in Patent Document 1, the DC voltage of the smoothing capacitor is detected and controlled, whereas the present invention converts the AC voltage into a frequency by an f / V converter and uses a feedforward signal that is processed and processed by a PWM converter. Therefore, stable control can be performed with a fast response even with an AC power supply with a large frequency and voltage fluctuation or with many start / stop operations.

この発明の実施の形態1は、自家用発電機や、一般産業用、さらには新幹線電車等で採用されている交流発電機の出力する交流を入力する電力変換装置に利用できる。   Embodiment 1 of the present invention can be used for a power converter that inputs an alternating current output from an alternator employed in a private generator, a general industrial, or a Shinkansen train.

この発明の実施の形態1の電力変換装置の構成図である。It is a block diagram of the power converter device of Embodiment 1 of this invention. 交流発電機の一般的な電圧/周波数特性を示す図である。It is a figure which shows the general voltage / frequency characteristic of an AC generator. PWMコンバータの一般的な電圧、電流ベクトルの関係を示す図である。It is a figure which shows the general voltage of a PWM converter, and the relationship of an electric current vector. この発明の実施の形態2の電力変換装置の構成図である。It is a block diagram of the power converter device of Embodiment 2 of this invention. 発電機の一般的な加速/減速パターンに対する応答性を示す図である。It is a figure which shows the response with respect to the general acceleration / deceleration pattern of a generator.

符号の説明Explanation of symbols

1 交流発電機、2 交流リアクトル、4 PWMコンバータ、
5 フィルタコンデンサ、6 負荷、18 PWM信号発生器、
21 f/V(周波数/電圧)変換器、22 割算器、100 電力変換装置。
1 AC generator, 2 AC reactor, 4 PWM converter,
5 Filter capacitor, 6 load, 18 PWM signal generator,
21 f / V (frequency / voltage) converter, 22 divider, 100 power converter.

Claims (3)

交流電源に交流リアクトルを介して接続されたPWMコンバータと、
該PWMコンバータに接続されて負荷に供給する直流電力を蓄積するフィルタコンデンサと、
該フィルタコンデンサの直流電圧と予め設定された直流基準電圧との差が小さくなるように、前記PWMコンバータを制御するための直流電圧変動補償信号を出力する直流電圧変動補償回路と、
前記交流電源の実効値電圧の逆数と比例し、負荷に供給する直流電流である負荷電流に比例する電源電圧変動信号を出力する電源電圧変動信号生成回路と、
前記直流電圧変動補償信号と前記電源電圧変動信号との和により、前記PWMコンバータの入力電流の指令値であるコンバータ入力電流指令信号を出力するコンバータ入力電流指令信号生成回路と、
前記コンバータ入力電流指令信号と前記PWMコンバータの入力電流との差が小さくなるように前記PWMコンバータを制御するための入力電流変動補償信号を出力する入力電流変動補償回路と、
前記交流リアクトルの電圧降下を補償するための電圧降下補償信号を出力する電圧降下補償回路と、
交流電源の電圧信号と前記入力電流変動補償信号と前記電圧降下補償信号との和の電圧信号を変調波として、前記PWMコンバータを制御するPWMコンバータ制御回路とを備えた電力変換装置。
A PWM converter connected to an AC power source via an AC reactor;
A filter capacitor that is connected to the PWM converter and stores DC power supplied to a load;
A DC voltage fluctuation compensation circuit that outputs a DC voltage fluctuation compensation signal for controlling the PWM converter so that a difference between a DC voltage of the filter capacitor and a preset DC reference voltage is reduced;
A power supply voltage fluctuation signal generation circuit that outputs a power supply voltage fluctuation signal that is proportional to the reciprocal of the effective value voltage of the AC power supply and that is proportional to the load current that is a DC current supplied to the load;
A converter input current command signal generation circuit that outputs a converter input current command signal that is a command value of an input current of the PWM converter by the sum of the DC voltage fluctuation compensation signal and the power supply voltage fluctuation signal;
An input current fluctuation compensation circuit that outputs an input current fluctuation compensation signal for controlling the PWM converter so that a difference between the converter input current command signal and an input current of the PWM converter is reduced;
A voltage drop compensation circuit for outputting a voltage drop compensation signal for compensating the voltage drop of the AC reactor;
A power converter comprising: a PWM converter control circuit that controls the PWM converter using a voltage signal of a sum of a voltage signal of an AC power supply, the input current fluctuation compensation signal, and the voltage drop compensation signal as a modulation wave.
前記交流電源の電圧信号から前記交流電源の周波数である電源周波数信号を出力する電源周波数信号生成回路とを備え、
前記電圧降下補償回路が前記電源周波数信号に応じた電圧降下補償信号を出力することを特徴とする請求項1に記載の電力変換装置。
A power supply frequency signal generation circuit that outputs a power supply frequency signal that is a frequency of the AC power supply from a voltage signal of the AC power supply,
The power converter according to claim 1, wherein the voltage drop compensation circuit outputs a voltage drop compensation signal corresponding to the power supply frequency signal.
交流電源に交流リアクトルを介して接続されたPWMコンバータと、
該PWMコンバータに接続されて負荷に供給する直流電力を蓄積するフィルタコンデンサと、
該フィルタコンデンサの直流電圧と予め設定された直流基準電圧との差が小さくなるように、前記PWMコンバータを制御するための直流電圧変動補償信号を出力する直流電圧変動補償回路と、
負荷に供給する直流電流である負荷電流信号を出力する負荷電流信号生成回路と、
前記直流電圧変動補償信号と前記負荷電流信号との和により、前記PWMコンバータの入力電流の指令値であるコンバータ入力電流指令信号を出力するコンバータ入力電流指令信号生成回路と、
前記コンバータ入力電流指令信号と前記PWMコンバータの入力電流との差が小さくなるように、前記PWMコンバータを制御するための入力電流変動補償信号を出力する入力電流変動補償回路と、
前記交流電源の電圧信号から前記交流電源の周波数である電源周波数信号を出力する電源周波数信号生成回路と、
前記電源周波数信号を入力として前記交流リアクトルの電圧降下を補償するための電圧降下補償信号を出力する電圧降下補償回路と、
交流電源の電圧信号と前記入力電流変動補償信号と前記電圧降下補償信号との和の電圧信号を変調波として前記PWMコンバータを制御するPWMコンバータ制御回路とを備えた電力変換装置。
A PWM converter connected to an AC power source via an AC reactor;
A filter capacitor that is connected to the PWM converter and stores DC power supplied to a load;
A DC voltage fluctuation compensation circuit that outputs a DC voltage fluctuation compensation signal for controlling the PWM converter so that a difference between a DC voltage of the filter capacitor and a preset DC reference voltage is reduced;
A load current signal generation circuit that outputs a load current signal that is a direct current supplied to the load;
A converter input current command signal generation circuit that outputs a converter input current command signal that is a command value of an input current of the PWM converter by the sum of the DC voltage fluctuation compensation signal and the load current signal;
An input current fluctuation compensation circuit that outputs an input current fluctuation compensation signal for controlling the PWM converter so that a difference between the converter input current command signal and the input current of the PWM converter is reduced;
A power supply frequency signal generation circuit that outputs a power supply frequency signal that is a frequency of the AC power supply from a voltage signal of the AC power supply;
A voltage drop compensation circuit that outputs a voltage drop compensation signal for compensating for the voltage drop of the AC reactor with the power supply frequency signal as an input;
A power converter comprising: a PWM converter control circuit that controls the PWM converter using a voltage signal of an AC power supply, a sum of the input current fluctuation compensation signal and the voltage drop compensation signal as a modulation wave.
JP2006162978A 2006-06-13 2006-06-13 Power converter Expired - Fee Related JP4351688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162978A JP4351688B2 (en) 2006-06-13 2006-06-13 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162978A JP4351688B2 (en) 2006-06-13 2006-06-13 Power converter

Publications (2)

Publication Number Publication Date
JP2007336632A true JP2007336632A (en) 2007-12-27
JP4351688B2 JP4351688B2 (en) 2009-10-28

Family

ID=38935567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162978A Expired - Fee Related JP4351688B2 (en) 2006-06-13 2006-06-13 Power converter

Country Status (1)

Country Link
JP (1) JP4351688B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4381467B1 (en) * 2008-07-31 2009-12-09 三菱電機株式会社 AC electric vehicle control device
JP2012039834A (en) * 2010-08-11 2012-02-23 Central Res Inst Of Electric Power Ind Voltage drop compensation system for distribution line
RU2467461C2 (en) * 2008-07-31 2012-11-20 Мицубиси Электрик Корпорейшн Controller for electric vehicle operating from ac
WO2023185086A1 (en) * 2022-04-01 2023-10-05 Oppo广东移动通信有限公司 Current control circuit, electric energy provision apparatus, device, and current control method and apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4381467B1 (en) * 2008-07-31 2009-12-09 三菱電機株式会社 AC electric vehicle control device
WO2010013343A1 (en) * 2008-07-31 2010-02-04 三菱電機株式会社 Controller for ac electric vehicle
CN102106071A (en) * 2008-07-31 2011-06-22 三菱电机株式会社 Controller for AC electric vehicle
RU2467461C2 (en) * 2008-07-31 2012-11-20 Мицубиси Электрик Корпорейшн Controller for electric vehicle operating from ac
US8565951B2 (en) 2008-07-31 2013-10-22 Mitsubishi Electric Corporation Controller for AC electric vehicle
JP2012039834A (en) * 2010-08-11 2012-02-23 Central Res Inst Of Electric Power Ind Voltage drop compensation system for distribution line
WO2023185086A1 (en) * 2022-04-01 2023-10-05 Oppo广东移动通信有限公司 Current control circuit, electric energy provision apparatus, device, and current control method and apparatus

Also Published As

Publication number Publication date
JP4351688B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP4585774B2 (en) Power conversion device and power supply device
US20050281067A1 (en) System and method for unbalanced independent AC phase voltage control of a 3-phase, 4-wire output DC/AC inverter
JP5658224B2 (en) Regenerative type high-voltage inverter controller
JPH08163782A (en) Power system stabilizer
JP2015082881A (en) Imbalance compensation device
JP4351688B2 (en) Power converter
JP2009106017A (en) Active filter function device
KR20140039389A (en) Apparatus and method for controlling diminishing power fluctuation of small wind turbine system
JPH09215398A (en) Inverter controller
JP2009291061A (en) Voltage regulator
WO2017064820A1 (en) Electric power generation system and its control system
JPH0251360A (en) Controller for pwm step-up converter
KR101704377B1 (en) The each phase output voltage controller for 3 phase space vector pulse width modulation inverter
JP5115730B2 (en) PWM converter device
JP4996131B2 (en) Single-phase inverter control method
JP2008092734A (en) Ac power supply unit
JPH09154280A (en) Pwm converter controller
JP3296065B2 (en) Control circuit of PWM converter
JP2009284598A (en) Controller for alternating-current motors
JP4842179B2 (en) Power conversion apparatus and control method thereof
JP2007300710A (en) Ac-ac direct converter
JP5399955B2 (en) Power converter and control method of power converter
JP4271090B2 (en) Three-phase inverter for parallel generator operation
JP2007089323A (en) Power conversion device
JPS6242472B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4351688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees