JP2007313891A - Inorganic compound film and its production method - Google Patents

Inorganic compound film and its production method Download PDF

Info

Publication number
JP2007313891A
JP2007313891A JP2007116608A JP2007116608A JP2007313891A JP 2007313891 A JP2007313891 A JP 2007313891A JP 2007116608 A JP2007116608 A JP 2007116608A JP 2007116608 A JP2007116608 A JP 2007116608A JP 2007313891 A JP2007313891 A JP 2007313891A
Authority
JP
Japan
Prior art keywords
inorganic compound
layered inorganic
layer
film
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007116608A
Other languages
Japanese (ja)
Other versions
JP4873566B2 (en
Inventor
Hideyasu Tanaka
秀康 田中
Takeo Ebina
武雄 蛯名
Fujio Mizukami
富士夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Asahi Kasei Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Asahi Kasei Corp
Priority to JP2007116608A priority Critical patent/JP4873566B2/en
Publication of JP2007313891A publication Critical patent/JP2007313891A/en
Application granted granted Critical
Publication of JP4873566B2 publication Critical patent/JP4873566B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an inorganic compound film having excellent water resistance and also high gas barrier property and transparency. <P>SOLUTION: The method for obtaining the inorganic compound film comprises: applying on the surface of a base, the liquid containing a hydrophobic inorganic layered compound in which such a compound is dispersed in an organic solvent, and drying to form a hydrophobic inorganic layered compound layer 1; applying the liquid containing a hydrophilic inorganic layered compound dispersed in water onto the surface of the above layer 1, and drying to form a hydrophilic inorganic layered compound layer 2; further applying the above hydrophobic compound-containing liquid onto the surface of the layer 2; drying to form one more layer 1; and peeling the whole layered film from the base. Thereby, it is possible to prepare a three-layered inorganic compound film having the hydrophobic inorganic layered compound layers 1, 1 on both sides of the layer 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、層状無機化合物を含有する無機化合物膜及びその製造方法に関する。また、前記無機化合物膜で少なくとも一部分が構成された電子ペーパー,基板,及びガスバリア膜に関する。   The present invention relates to an inorganic compound film containing a layered inorganic compound and a method for producing the same. The present invention also relates to an electronic paper, a substrate, and a gas barrier film that are at least partially composed of the inorganic compound film.

近年、液晶ディスプレイをはじめとするフラットパネルディスプレイ(以降はFPDと記す)の製造技術が飛躍的に進歩し、従来のブラウン管では到底なし得ない薄型のディスプレイが現実のものとなった。現在のFPDはほぼ全てガラス基板上にデバイスが形成されており、ガラス基板以外の基板を用いた実用的なFPDは存在しない。その理由としては、ガラス基板が高耐熱性であり、高温形成が必要なディスプレイの駆動回路や部材を形成するのに適していること、線膨張係数が小さく、それら駆動回路や部材に与える応力を抑制でき、配線の破断や部品の特性変動が少ないこと、可視光域で透明なため光を取り出すことが容易であること、さらにガスバリア性が高く、外部からの酸素や水蒸気の進入を阻止するガスバリア材として用いることができ、必要により高真空を保持できること等があげられる。   In recent years, the manufacturing technology of flat panel displays including liquid crystal displays (hereinafter referred to as FPD) has dramatically advanced, and thin displays that cannot be achieved with conventional cathode ray tubes have become a reality. Almost all current FPDs have devices formed on glass substrates, and there are no practical FPDs using substrates other than glass substrates. The reason for this is that the glass substrate has high heat resistance and is suitable for forming a display drive circuit or member that requires high-temperature formation, a low linear expansion coefficient, and stress applied to the drive circuit or member. Gas barrier that can be suppressed, that there is little breakage of wiring and characteristic fluctuation of parts, that it is easy to extract light because it is transparent in the visible light range, and that has high gas barrier properties and prevents entry of oxygen and water vapor from the outside It can be used as a material, and can maintain a high vacuum if necessary.

しかし、ガラス基板は柔軟性がなく、割れやすい。また重量が重く、基板の変形や取り扱いの困難さが問題となっている。また、ガラス基板は、曲げて持ち運ぶ等の用途を想定した、曲げられる電子ペーパーのようなフレキシブルディスプレイには使えず、衝撃に対して割れやすく、落下させた場合にデバイスが損傷しやすいという欠点も持つことから、モバイル用途にはあまり適していない。このような観点から、ガラスと同等の耐熱性、線膨張係数、透明性、ガスバリア性等を有するディスプレイ用の基板やガスバリア膜の実用化が望まれている。   However, the glass substrate is not flexible and easily broken. In addition, the weight is heavy, and the deformation of the substrate and the difficulty in handling are problematic. In addition, glass substrates cannot be used for flexible displays such as electronic paper that can be bent, assuming applications such as bending and carrying. Because it has, it is not very suitable for mobile use. From such a point of view, it is desired to put a display substrate and a gas barrier film into practical use having heat resistance, linear expansion coefficient, transparency, gas barrier properties and the like equivalent to glass.

一方、粘土鉱物に代表される層状無機化合物は、自然界に多数の種類が存在し、その多くは安価で、人体に無害、燃えない等の特徴を有する無機化合物である。層状無機化合物は、その名の通り層状(板状)の結晶を形成する化合物であり、代表的なものとしては、スメクタイト族粘土や雲母に代表される粘土鉱物、マガディアイトやケニヤイト等の層状ケイ酸塩、ハイドロタルサイト等の層状複水酸化物がある。また、チタン・ニオブ酸塩,六ニオブ酸塩,モリブデン酸塩等の層状遷移金属酸素酸塩や、層状リン酸塩、層状マンガン酸化物、層状コバルト酸化物等も代表的な層状無機化合物である。このように、組成の異なる多種の層状無機化合物が存在する。   On the other hand, there are many kinds of layered inorganic compounds represented by clay minerals, many of which are inexpensive, and are inexpensive, harmless to the human body, and have the characteristics of not burning. As the name suggests, layered inorganic compounds are compounds that form layered (plate-like) crystals. Typical examples include layered silica such as smectite group clay and clay minerals typified by mica, magadiite and kenyanite. There are layered double hydroxides such as acid salts and hydrotalcite. In addition, layered transition metal oxyacid salts such as titanium / niobate, hexaniobate, and molybdate, layered phosphate, layered manganese oxide, layered cobalt oxide, and the like are also representative layered inorganic compounds. . Thus, there are various types of layered inorganic compounds having different compositions.

層状無機化合物の中でも、特に粘土鉱物は自然界に大量に存在し、安価で且つ分散性に優れる等の点で様々な用途に好適に用いられている(例えば非特許文献1を参照)。このような粘土鉱物をはじめとする層状無機化合物の利用方法の1つとして、樹脂に層状無機化合物を少量(一般的には約5質量%以下)添加したナノコンポジット材料があり、これについて幅広い研究がなされ、一部実用化されている(例えば非特許文献2を参照)。このようなナノコンポジット材料においては、層状無機化合物の添加により、強度,難燃性,ガスバリア性の向上効果が認められている。   Among layered inorganic compounds, especially clay minerals are present in large quantities in nature, and are suitably used for various applications in view of being inexpensive and excellent in dispersibility (see, for example, Non-Patent Document 1). One of the methods of using layered inorganic compounds such as clay minerals is a nanocomposite material in which a small amount of layered inorganic compound (generally about 5% by mass or less) is added to a resin. Have been put into practical use (see, for example, Non-Patent Document 2). In such a nanocomposite material, the effect of improving strength, flame retardancy, and gas barrier properties is recognized by the addition of a layered inorganic compound.

しかしながら、このようなナノコンポジット材料においては層状無機化合物の割合が少量で、且つそれらの配向が揃っていない、若しくは延伸等によって多少配向を揃えた程度であったため、本質的に樹脂の特性を飛躍的に向上させるものではなかった。特に、層状無機化合物を加えることによって奏される大きな効果の1つであるガスバリア性をとってみると、層状無機化合物の添加によってガスの透過に際した移動距離が長くなるためガスの透過率が数分の一程度になる事例もあるが、一桁以上ガスバリア性が向上する事例はほとんどない。   However, in such a nanocomposite material, the ratio of the layered inorganic compound is small and the orientation is not uniform, or the orientation is somewhat uniform by stretching, etc. It was not an improvement. In particular, taking the gas barrier property, which is one of the great effects achieved by adding the layered inorganic compound, the gas transmission rate is several because the movement distance for gas permeation is increased by the addition of the layered inorganic compound. Although there are cases where it is only a fraction, there are almost no cases where the gas barrier property is improved by an order of magnitude or more.

また、ガスが透過する際の気体の移動距離を長くしてガスバリア性を向上させる目的から、結晶サイズの大きな天然モンモリロナイトや合成雲母といった層状無機化合物を用いる場合が多いが、この場合は、天然モンモリロナイト由来の黄色い着色や、合成雲母の大きな結晶サイズ由来の光の散乱等の要因により、ディスプレイ等にも使えるようなヘイズ(曇度)が小さく無色で透明性の高い膜を得ることは困難であった。同様に、層状無機化合物の添加量が少ない場合には、ガスバリア性以外の他の物性、例えば耐熱性や温度変化時の寸法安定性を大幅に向上させることは難しく、高耐熱性で寸法安定性に優れる層状無機化合物の本質的な特性が十分生かされているとは言い難いものであった。
スメクタイト族の粘土鉱物は、層状無機化合物の構成単位であるナノシートの近くまで水中に分散し得るので、その分散液をガラス板の上に広げ、静置、乾燥することにより、ナノシートの配向が揃った膜が形成することが知られており、この膜形成により、X線回折法の定方位試料が調整されてきた(非特許文献3を参照)。
In addition, for the purpose of improving gas barrier properties by increasing the gas travel distance when gas permeates, layered inorganic compounds such as natural montmorillonite and synthetic mica having a large crystal size are often used. In this case, natural montmorillonite is used. It is difficult to obtain a colorless, highly transparent film with a small haze (cloudiness) that can be used for displays, etc., due to the yellow coloring derived from the light and the scattering of light derived from the large crystal size of the synthetic mica. It was. Similarly, when the amount of layered inorganic compound added is small, it is difficult to significantly improve other physical properties other than gas barrier properties, such as heat resistance and dimensional stability during temperature changes, and high heat resistance and dimensional stability. It was difficult to say that the essential characteristics of the layered inorganic compound excellent in the above are fully utilized.
Smectite clay minerals can be dispersed in water close to the nanosheets, which are the structural units of layered inorganic compounds, so that the nanosheets are aligned by spreading the dispersion on a glass plate, allowing to stand, and drying. In this film formation, a fixed orientation sample of the X-ray diffraction method has been adjusted (see Non-Patent Document 3).

また、従来、例えば機能性粘土薄膜等を調整する方法が、種々報告されている。例えば、ハイドロタルサイト系層間化合物の水分散液を膜状化して乾燥することによる粘土膜の製造方法(特許文献1を参照)、層状粘土鉱物と燐酸又は燐酸基との反応を利用し、その反応を促進させる熱処理を施すことにより層状粘土鉱物が持つ結合構造を配向固定した層状粘土鉱物薄膜の製造方法(特許文献2を参照)、スメクタイト系粘土鉱物と2価以上の金属の錯化合物を含有する皮膜処理用水性組成物(特許文献3を参照)などをはじめ、多くの事例が存在する。しかしながら、これらの特許文献における膜状の形態物は、全て何らかの支持体の上に形成されたものであり、自立膜として利用可能な機械的強度を有し、ナノシートを高度に配向させた積層した層状無機化合物の配向膜ではなかった。   Conventionally, various methods for adjusting, for example, a functional clay thin film have been reported. For example, a method for producing a clay film by forming an aqueous dispersion of a hydrotalcite-based intercalation compound into a film and drying it (see Patent Document 1), a reaction between a layered clay mineral and phosphoric acid or a phosphate group, A method for producing a layered clay mineral thin film in which the bond structure of the layered clay mineral is oriented and fixed by applying a heat treatment that promotes the reaction (see Patent Document 2), containing a complex compound of a smectite clay mineral and a bivalent or higher metal There are many cases including an aqueous composition for film treatment (see Patent Document 3). However, the film-like forms in these patent documents are all formed on some kind of support, have a mechanical strength that can be used as a self-supporting film, and are laminated with highly oriented nanosheets. It was not a layered inorganic compound alignment film.

さらに、層状無機化合物の配向を揃え、且つ、自立強度と耐水性を有する透明な膜の報告がある。例えば、水に分散する層状無機化合物が備える無機イオンを有機アンモニウム塩等の有機イオンに交換して有機溶媒への分散性を向上させた疎水性層状無機化合物と、透明なポリイミドとからなる、高強度で耐水性を有する透明膜の報告(特許文献4を参照)などの多くの報告がある。しかしながら、それらは層状無機化合物の割合が少ないため、高いガスバリア性が得られるものではなかった。   Furthermore, there is a report of a transparent film in which the orientation of the layered inorganic compound is uniform and has a self-supporting strength and water resistance. For example, a hydrophobic layered inorganic compound in which inorganic ions of a layered inorganic compound dispersed in water are replaced with organic ions such as organic ammonium salts to improve dispersibility in an organic solvent, and transparent polyimide, There are many reports such as a report on a transparent film having strength and water resistance (see Patent Document 4). However, since the ratio of the layered inorganic compound is small, high gas barrier properties cannot be obtained.

そのような状況の中、本発明者らは、粘土配向膜の作製を種々試み、その過程で、ナノシートが配向した、自立膜として使用できる強度を有する膜が、下記のような方法により得られることを見出した(特許文献5を参照)。すなわち、均一な粘土分散液を水平に静置してナノシートを沈積させるとともに、分散媒である液体を種々の固液分離方法(例えば遠心分離、ろ過、真空乾燥、凍結真空乾燥、又は加熱蒸発法)で分離し、膜状に形成した後に、これを支持体から剥離する方法である。   Under such circumstances, the present inventors made various attempts to produce a clay oriented film, and in the process, a film having a strength that can be used as a self-supporting film in which nanosheets are oriented is obtained by the following method. (See Patent Document 5). That is, the uniform clay dispersion is left to stand horizontally to deposit the nanosheets, and the liquid as the dispersion medium is separated into various solid-liquid separation methods (for example, centrifugation, filtration, vacuum drying, freeze vacuum drying, or heat evaporation method). ), And after forming into a film shape, this is peeled off from the support.

また、粘土のみではなく、少量の添加剤を粘土分散液に加えることによって、膜の柔軟性や強度を高めることができること、粘土分散液の固形比を高めた粘土ペーストを用いることにより、膜を短時間で製造することができること(特許文献6を参照)、さらに不純物の少ない合成粘土を用いること等により、着色のない可視光領域で透明な膜を作製できること(特許文献7を参照)を見出した。   Moreover, not only clay but also a small amount of additives can be added to the clay dispersion to increase the flexibility and strength of the film, and by using a clay paste with an increased solid ratio of the clay dispersion, It has been found that it can be produced in a short time (see Patent Document 6), and that a transparent film can be produced in the visible light region without coloring by using synthetic clay with less impurities (see Patent Document 7). It was.

そして、これらの膜が、(1)高耐熱性を有する、(2)酸素や水素等の無機ガスに対して高いガスバリア性を有する、(3)膜にピンホールがない、(4)柔軟性を有する、(5)耐薬品性を有する、(6)線膨張係数が低い、(7)難燃性を有する、(8)絶縁性を有する、といった特徴を共通して保有することを確認し、前述したディスプレイ用部材等の電子材料用途に好適であることを見出した。   These films have (1) high heat resistance, (2) high gas barrier properties against inorganic gases such as oxygen and hydrogen, (3) no pinholes in the film, and (4) flexibility. (5) Chemical resistance, (6) Low coefficient of linear expansion, (7) Flame retardant, (8) Insulating properties, etc. The present invention has been found to be suitable for use in electronic materials such as the aforementioned display member.

特に、これらの膜のガスバリア性の高さは際立っており、従来のガスが透過する際の気体の移動距離の延長では説明がつかないような、極めて高いガスバリア性が発現することを見出した。そして、詳細な研究の結果、その高いガスバリア性は、ナノシートが極めて緻密に積層し、且つ、少量加えた添加剤によって膜内部の欠陥の発生が抑制されていることによって発現していることが分かった。同様な現象は、近年他の研究者によっても報告されている(特許文献8を参照)。   In particular, the high gas barrier properties of these films are conspicuous, and it has been found that extremely high gas barrier properties that cannot be explained by the extension of the gas moving distance when the conventional gas permeates are found. As a result of detailed research, it was found that the high gas barrier property is manifested by the fact that nanosheets are stacked very densely, and the occurrence of defects inside the film is suppressed by an additive added in a small amount. It was. A similar phenomenon has been reported by other researchers in recent years (see Patent Document 8).

特開平6−95290号公報JP-A-6-95290 特開平5−254824号公報JP-A-5-254824 特開2002−30255号公報JP 2002-30255 A 特開2006−37079号公報JP 2006-37079 A 特開2005−104133号公報JP 2005-104133 A 特開2006−265088号公報JP 2006-265088 A 特開2007−63118号公報JP 2007-63118 A 特開2006−167679号公報JP 2006-167679 A 須藤談話会編,「粘土科学への招待−粘土の素顔と魅力−」,三共出版,p.6(2000)Edited by Sudo Kodankai, “Invitation to Clay Science: Clay's Face and Charm”, Sankyo Publishing, p. 6 (2000) 中條澄編,「ポリマー系ナノコンポジットの製品開発」,フロンティア出版,p.25〜90(2004)Nakasumi, edited by “Development of Polymer Nanocomposites”, Frontier Publishing, p. 25-90 (2004) 白水晴雄,「粘土鉱物学−粘土科学の基礎−」,朝倉書店,p.57(1988)Haruo Shiramizu, “Clay Mineralogy-Basics of Clay Science”, Asakura Shoten, p. 57 (1988)

しかしながら、合成粘土を用いた従来の層状無機化合物と少量の添加剤とからなる透明な膜は、前述のような高いガスバリア性を示すものの、空気中に放置しておくとヘイズが増大し、膜が曇って透明性が低下していく場合があった。また、水に対する親和性が高く水に分散しやすい親水性のスメクタイト族粘土及び水可溶性樹脂を用いていたため、膜の耐水性が不十分で、水が少し付着しただけでも膜が膨潤してしまい、膜を構成する層状無機化合物が時間とともに水中に分散して、膜に欠陥が生じるおそれがあった。すなわち、高いガスバリア性、耐水性、及び寸法安定性を備え、さらに自立強度を有する透明な無機化合物膜の報告は未だない。
そこで、本発明は、前述のような従来の無機化合物膜が有する問題点を解決し、耐水性に優れ且つ高いガスバリア性と透明性を有する無機化合物膜及びその製造方法を提供することを課題とする。また、このような無機化合物膜を備えた電子ペーパー,基板,及びガスバリア膜を提供することを併せて課題とする。
However, a transparent film composed of a conventional layered inorganic compound using a synthetic clay and a small amount of additive exhibits high gas barrier properties as described above, but haze increases when left in the air, and the film In some cases, the transparency was reduced due to cloudiness. In addition, hydrophilic smectite clay and water-soluble resin, which have a high affinity for water and are easy to disperse in water, were used, so the water resistance of the film was insufficient, and the film swelled even with a little water adhering to it. In addition, the layered inorganic compound constituting the film may be dispersed in water with time to cause defects in the film. That is, there has not yet been reported a transparent inorganic compound film having high gas barrier properties, water resistance, and dimensional stability, and having a self-supporting strength.
Therefore, the present invention aims to solve the problems of the conventional inorganic compound film as described above, and to provide an inorganic compound film having excellent water resistance and high gas barrier properties and transparency, and a method for producing the same. To do. Another object is to provide an electronic paper, a substrate, and a gas barrier film provided with such an inorganic compound film.

前記課題を解決するため、本発明は次のような構成からなる。すなわち、本発明に係る請求項1の無機化合物膜は、多数の層状無機化合物の粒子が配向して積層した構造を有する層状無機化合物層が2層以上積層されてなる無機化合物膜において、有機溶媒に対する親和性が高く有機溶媒に分散しやすい疎水性層状無機化合物のみ又は前記疎水性層状無機化合物と添加剤とで構成される疎水性層状無機化合物層と、水に対する親和性が高く水に分散しやすい親水性層状無機化合物のみ又は前記親水性層状無機化合物と添加剤とで構成される親水性層状無機化合物層と、が積層されてなり、自立膜として利用可能な機械的強度を有し且つ80%以上の全光線透過率を有することを特徴とする。   In order to solve the above problems, the present invention has the following configuration. That is, the inorganic compound film according to the first aspect of the present invention is an inorganic compound film in which two or more layered inorganic compound layers having a structure in which a large number of layered inorganic compound particles are oriented and laminated are laminated. A hydrophobic layered inorganic compound layer composed of only the hydrophobic layered inorganic compound or the hydrophobic layered inorganic compound and an additive, which has a high affinity for water and is easily dispersed in an organic solvent, and has a high affinity for water and is dispersed in water. The hydrophilic layered inorganic compound layer composed of only the hydrophilic layered inorganic compound or the hydrophilic layered inorganic compound and an additive is easily laminated and has mechanical strength that can be used as a self-supporting film and 80 % Total light transmittance.

また、本発明に係る請求項2の無機化合物膜は、請求項1に記載の無機化合物膜において、前記疎水性層状無機化合物及び前記親水性層状無機化合物は、合成により得られた粘土鉱物よりなることを特徴とする。
さらに、本発明に係る請求項3の無機化合物膜は、請求項1又は請求項2に記載の無機化合物膜において、ガスバリア性を有することを特徴とする。
さらに、本発明に係る請求項4の無機化合物膜は、請求項1〜3のいずれか一項に記載の無機化合物膜において、前記親水性層状無機化合物層の上下両面側に前記疎水性層状無機化合物層が配された3層構造であることを特徴とする。
The inorganic compound film according to claim 2 of the present invention is the inorganic compound film according to claim 1, wherein the hydrophobic layered inorganic compound and the hydrophilic layered inorganic compound are composed of a clay mineral obtained by synthesis. It is characterized by that.
Furthermore, an inorganic compound film according to a third aspect of the present invention is characterized in that the inorganic compound film according to the first or second aspect has a gas barrier property.
Furthermore, the inorganic compound film of Claim 4 which concerns on this invention is an inorganic compound film | membrane as described in any one of Claims 1-3, The said hydrophobic layered inorganic on the both upper and lower surfaces of the said hydrophilic layered inorganic compound layer. It has a three-layer structure in which compound layers are arranged.

さらに、本発明に係る請求項5の無機化合物膜は、請求項1〜3のいずれか一項に記載の無機化合物膜において、前記親水性層状無機化合物層の全体が前記疎水性層状無機化合物層で包まれた構造を有することを特徴とする。
さらに、本発明に係る請求項6の無機化合物膜は、請求項1〜5のいずれか一項に記載の無機化合物膜において、ヘイズが5%以下であることを特徴とする。
さらに、本発明に係る請求項7の無機化合物膜は、請求項1〜6のいずれか一項に記載の無機化合物膜において、400nm以上800nm以下の波長範囲における光線透過率が80%以上95%以下であることを特徴とする。
Furthermore, the inorganic compound film of Claim 5 which concerns on this invention is an inorganic compound film as described in any one of Claims 1-3. WHEREIN: The said whole hydrophilic layered inorganic compound layer is the said hydrophobic layered inorganic compound layer. It is characterized by having a structure wrapped in.
Furthermore, the inorganic compound film of Claim 6 which concerns on this invention is a inorganic compound film as described in any one of Claims 1-5, A haze is 5% or less, It is characterized by the above-mentioned.
Furthermore, the inorganic compound film according to claim 7 of the present invention is the inorganic compound film according to any one of claims 1 to 6, wherein the light transmittance in a wavelength range of 400 nm to 800 nm is 80% to 95%. It is characterized by the following.

さらに、本発明に係る請求項8の無機化合物膜の製造方法は、請求項1〜7のいずれか一項に記載の無機化合物膜を、前記疎水性層状無機化合物層と前記親水性層状無機化合物層とを交互に形成して積層することにより製造する方法であって、前記疎水性層状無機化合物を含有する疎水性層状無機化合物含有液又は前記親水性層状無機化合物を含有する親水性層状無機化合物含有液をベース上に配して乾燥し、前記疎水性層状無機化合物層又は前記親水性層状無機化合物層を前記ベース上に形成する第一工程を行った後に、前記疎水性層状無機化合物含有液又は前記親水性層状無機化合物含有液を下層の層状無機化合物層上に配して乾燥することにより前記下層の層状無機化合物層とは異なる種類の層状無機化合物層を前記下層の層状無機化合物層上に形成する第二工程を少なくとも1回行うことを特徴とする。   Furthermore, the manufacturing method of the inorganic compound film | membrane of Claim 8 which concerns on this invention is an inorganic compound film | membrane as described in any one of Claims 1-7, The said hydrophobic layered inorganic compound layer and the said hydrophilic layered inorganic compound A method for producing by alternately forming layers and laminating, wherein the hydrophobic layered inorganic compound-containing liquid containing the hydrophobic layered inorganic compound or the hydrophilic layered inorganic compound containing the hydrophilic layered inorganic compound After the first step of forming the hydrophobic layered inorganic compound layer or the hydrophilic layered inorganic compound layer on the base is performed by placing the liquid on the base and drying, the hydrophobic layered inorganic compound-containing liquid Alternatively, the hydrophilic layered inorganic compound-containing liquid is disposed on the lower layered inorganic compound layer and dried, whereby a layered inorganic compound layer of a type different from the lower layered inorganic compound layer is converted into the lower layered layered inorganic compound layer And carrying out at least once a second step of forming on the object layer.

さらに、本発明に係る請求項9の無機化合物膜の製造方法は、請求項8に記載の無機化合物膜の製造方法において、前記第二工程を行う前に、前記第一工程により前記ベース上に形成された層状無機化合物層を前記ベースから剥離し、その剥離した層状無機化合物層の上下両面又は片面に対して、前記第二工程を少なくとも1回行うことを特徴とする。
さらに、本発明に係る請求項10の無機化合物膜の製造方法は、請求項8又は請求項9に記載の無機化合物膜の製造方法において、前記第二工程において使用する前記疎水性層状無機化合物含有液又は前記親水性層状無機化合物含有液は、前記下層の層状無機化合物層を構成する層状無機化合物が分散しないような組成であることを特徴とする。
Furthermore, the manufacturing method of the inorganic compound film of Claim 9 which concerns on this invention is a manufacturing method of the inorganic compound film of Claim 8, Before performing said 2nd process, on said base by said 1st process. The formed layered inorganic compound layer is peeled from the base, and the second step is performed at least once on the upper and lower surfaces or one surface of the separated layered inorganic compound layer.
Furthermore, the manufacturing method of the inorganic compound film | membrane of Claim 10 which concerns on this invention is the manufacturing method of the inorganic compound film | membrane of Claim 8 or Claim 9, The said hydrophobic layered inorganic compound containing used in said 2nd process The liquid or the hydrophilic layered inorganic compound-containing liquid is characterized in that the layered inorganic compound constituting the lower layered inorganic compound layer does not disperse.

さらに、本発明に係る請求項11の無機化合物膜の製造方法は、請求項1,2,3,5のいずれか一項に記載の無機化合物膜を製造する方法であって、前記疎水性層状無機化合物を含有する疎水性層状無機化合物含有液又は前記親水性層状無機化合物を含有する親水性層状無機化合物含有液をベース上に配して乾燥し、前記疎水性層状無機化合物層又は前記親水性層状無機化合物層を前記ベース上に形成し、形成された層状無機化合物層を前記ベースから剥離する第一工程を行った後に、前記疎水性層状無機化合物含有液又は前記親水性層状無機化合物含有液の中に浸漬し、浸漬した層状無機化合物層の周囲全体に前記疎水性層状無機化合物含有液又は前記親水性層状無機化合物含有液を配して乾燥することにより、前記浸漬した層状無機化合物層とは異なる種類の層状無機化合物層を前記浸漬した層状無機化合物層の周囲全体に形成する第二工程を少なくとも1回行うことを特徴とする。   Furthermore, the manufacturing method of the inorganic compound film | membrane of Claim 11 which concerns on this invention is a method of manufacturing the inorganic compound film | membrane as described in any one of Claim 1,2,3,5, Comprising: Said hydrophobic layer shape A hydrophobic layered inorganic compound-containing liquid containing an inorganic compound or a hydrophilic layered inorganic compound-containing liquid containing the hydrophilic layered inorganic compound is placed on a base and dried, and the hydrophobic layered inorganic compound layer or the hydrophilic The hydrophobic layered inorganic compound-containing liquid or the hydrophilic layered inorganic compound-containing liquid is formed after the first step of forming a layered inorganic compound layer on the base and peeling the formed layered inorganic compound layer from the base. The soaked layered inorganic compound is dried by placing the hydrophobic layered inorganic compound-containing liquid or the hydrophilic layered inorganic compound-containing liquid on the entire periphery of the soaked layered inorganic compound layer and drying it. Object layer and performing at least once a second step of forming on the entire circumference of the different types of layered inorganic compound layer the soaked layered inorganic compound layer and.

さらに、本発明に係る請求項12の無機化合物膜の製造方法は、請求項11に記載の無機化合物膜の製造方法において、前記第二工程において使用する前記疎水性層状無機化合物含有液又は前記親水性層状無機化合物含有液は、前記浸漬した層状無機化合物層を構成する層状無機化合物が分散しないような組成であることを特徴とする。
さらに、本発明に係る請求項13の電子ペーパーは、請求項1〜7のいずれか一項に記載の無機化合物膜、又は、請求項8〜12のいずれか一項に記載の無機化合物膜の製造方法により得られた無機化合物膜で、少なくとも一部分が構成されたことを特徴とする。
Furthermore, the manufacturing method of the inorganic compound film | membrane of Claim 12 which concerns on this invention is a manufacturing method of the inorganic compound film | membrane of Claim 11, Said hydrophobic layered inorganic compound containing liquid or said hydrophilic property used in said 2nd process. The layered inorganic compound-containing liquid is characterized in that the layered inorganic compound constituting the immersed layered inorganic compound layer does not disperse.
Furthermore, the electronic paper of Claim 13 which concerns on this invention is an inorganic compound film | membrane as described in any one of Claims 1-7, or the inorganic compound film | membrane as described in any one of Claims 8-12. The inorganic compound film obtained by the manufacturing method is characterized in that at least a part thereof is formed.

さらに、本発明に係る請求項14のフレキシブル基板は、請求項1〜7のいずれか一項に記載の無機化合物膜、又は、請求項8〜12のいずれか一項に記載の無機化合物膜の製造方法により得られた無機化合物膜で、少なくとも一部分が構成されたことを特徴とする。
さらに、本発明に係る請求項15のフレキシブルプリント基板は、請求項1〜7のいずれか一項に記載の無機化合物膜、又は、請求項8〜12のいずれか一項に記載の無機化合物膜の製造方法により得られた無機化合物膜で、少なくとも一部分が構成されたことを特徴とする。
Furthermore, the flexible substrate of Claim 14 which concerns on this invention is an inorganic compound film as described in any one of Claims 1-7, or the inorganic compound film as described in any one of Claims 8-12. The inorganic compound film obtained by the manufacturing method is characterized in that at least a part thereof is formed.
Furthermore, the flexible printed circuit board of Claim 15 which concerns on this invention is an inorganic compound film as described in any one of Claims 1-7, or the inorganic compound film as described in any one of Claims 8-12. The inorganic compound film obtained by the manufacturing method is characterized in that at least a part thereof is constituted.

さらに、本発明に係る請求項16の基板は、非発光有機半導体又はアモルファス無機半導体を備える電子デバイスが実装され、ガスバリア性を有する基板であって、請求項1〜7のいずれか一項に記載の無機化合物膜、又は、請求項8〜12のいずれか一項に記載の無機化合物膜の製造方法により得られた無機化合物膜で、少なくとも一部分が構成されたことを特徴とする。
さらに、本発明に係る請求項17のガスバリア膜は、非発光有機半導体又はアモルファス無機半導体を備える電子デバイスをガスから保護するガスバリア膜であって、請求項1〜7のいずれか一項に記載の無機化合物膜、又は、請求項8〜12のいずれか一項に記載の無機化合物膜の製造方法により得られた無機化合物膜で、少なくとも一部分が構成されたことを特徴とする。
Furthermore, the board | substrate of Claim 16 which concerns on this invention is a board | substrate which has an electronic device provided with a non-light-emitting organic semiconductor or an amorphous inorganic semiconductor, and has gas barrier property, Comprising: As described in any one of Claims 1-7. Or an inorganic compound film obtained by the method for producing an inorganic compound film according to any one of claims 8 to 12, wherein at least a part of the inorganic compound film is formed.
Furthermore, the gas barrier film of Claim 17 which concerns on this invention is a gas barrier film which protects the electronic device provided with a nonluminous organic semiconductor or an amorphous inorganic semiconductor from gas, Comprising: As described in any one of Claims 1-7 An inorganic compound film or an inorganic compound film obtained by the method for producing an inorganic compound film according to any one of claims 8 to 12 is at least partially configured.

本発明の無機化合物膜は、耐水性に優れるとともに、高いガスバリア性及び透明性を有する。また、本発明の無機化合物膜の製造方法は、耐水性に優れ高いガスバリア性及び透明性を有する無機化合物膜を製造することができる。   The inorganic compound film of the present invention is excellent in water resistance and has high gas barrier properties and transparency. Moreover, the manufacturing method of the inorganic compound film | membrane of this invention can manufacture the inorganic compound film | membrane which is excellent in water resistance and has high gas barrier property and transparency.

従来の層状無機化合物を含有する透明な膜は、高いガスバリア性,柔軟性,及び自立強度を有するものの、大気中に放置しておくとヘイズが増大し、膜が曇って透明性が低下する場合があった。また、水が少し付着しただけで膜が膨潤し層状無機化合物が水に分散して膜としての形態が崩れていくため、水を使ったプロセスで膜を使用することができない等の問題があった。そのため、例えばディスプレイの基板に該膜を用いようとした場合に、基板の表面に付着した異物等を水によって洗い流すことができない。このことは、たとえガスバリア性が高くとも、耐水性のない膜では適用できる用途が非常に限られてしまうことを意味する。   A conventional transparent film containing a layered inorganic compound has high gas barrier properties, flexibility, and self-supporting strength, but when left in the air, the haze increases and the film becomes cloudy and the transparency decreases. was there. In addition, since the film swells and the layered inorganic compound disperses in water and the form of the film collapses due to a small amount of water adhering, there is a problem that the film cannot be used in a process using water. It was. For this reason, for example, when an attempt is made to use the film on the substrate of the display, foreign matter or the like attached to the surface of the substrate cannot be washed away with water. This means that even if the gas barrier property is high, the application that can be applied to a film without water resistance is very limited.

ヘイズの増大を抑制し透明性を保ち、且つ耐水性を向上させするために、透明樹脂のような粘土とは異なる組成の層を付与して膜を形成する等の検討も行われたが、それら付与層の耐熱温度が低いため膜の耐熱性が大きく低下したり、温度変化に対する線膨張係数が層状無機化合物層のそれと異なり大きいため、膜が反ったり、応力で膜に欠陥が発生する等の問題が発生する場合があった。   In order to suppress the increase in haze, maintain transparency, and improve water resistance, studies such as forming a film by applying a layer having a composition different from clay such as a transparent resin were also conducted. The heat resistance of these application layers is low, so the heat resistance of the film is greatly reduced, or the coefficient of linear expansion with respect to temperature change is large, unlike that of the layered inorganic compound layer, so the film is warped or a defect occurs in the film due to stress There may have been problems.

そこで、本発明者らは、上記のような問題点を解決するために鋭意検討した結果、水に対する親和性が高く水に分散しやすい親水性層状無機化合物を主要成分とする親水性層状無機化合物層に、有機溶媒に対する親和性が高く有機溶媒に分散しやすい疎水性層状無機化合物を主要成分とし水に対する親和性が低い疎水性層状無機化合物層を積層することにより、高いガスバリア性を有しつつも耐水性に優れ且つ大気中における経時的なヘイズの増大が生じにくい、透明で十分な自立強度を有する無機化合物膜が得られることを見出した。   Accordingly, as a result of intensive studies to solve the above problems, the present inventors have determined that a hydrophilic layered inorganic compound having a hydrophilic layered inorganic compound having a high affinity for water and being easily dispersible in water as a main component. By laminating a hydrophobic layered inorganic compound layer, which has a hydrophobic layered inorganic compound that has a high affinity for an organic solvent and is easily dispersed in an organic solvent as a main component, and a low affinity for water, it has high gas barrier properties. In addition, the present inventors have found that an inorganic compound film having excellent water resistance and having a transparent and sufficient self-supporting strength that hardly causes an increase in haze over time in the atmosphere can be obtained.

すなわち、本発明の無機化合物膜は、多数の層状無機化合物の粒子が配向して積層した構造を有する層状無機化合物層が2層以上積層されてなる透明な膜であって、有機溶媒に対する親和性が高く有機溶媒に分散しやすい疎水性層状無機化合物のみ又は前記疎水性層状無機化合物と添加剤とで構成される疎水性層状無機化合物層と、水に対する親和性が高く水に分散しやすい親水性層状無機化合物のみ又は前記親水性層状無機化合物と添加剤とで構成される親水性層状無機化合物層と、が積層されてなり、自立膜として利用可能な機械的強度を有し且つ80%以上の全光線透過率を有する。そして、前記親水性層状無機化合物層の上下両面側に前記疎水性層状無機化合物層が配された3層構造であることが好ましい。また、前記親水性層状無機化合物層の全体が前記疎水性層状無機化合物層で包まれた構造を有することが好ましい。   That is, the inorganic compound film of the present invention is a transparent film formed by laminating two or more layered inorganic compound layers having a structure in which a large number of layered inorganic compound particles are oriented and laminated, and has an affinity for an organic solvent. Hydrophobic layered inorganic compound layer composed of only the hydrophobic layered inorganic compound which is high and easily dispersible in organic solvents or composed of the hydrophobic layered inorganic compound and an additive, and has a high affinity for water and is easily dispersible in water A layered inorganic compound alone or a hydrophilic layered inorganic compound layer composed of the hydrophilic layered inorganic compound and an additive is laminated, has mechanical strength that can be used as a self-supporting film, and is 80% or more Has total light transmittance. And it is preferable that it is a 3 layer structure by which the said hydrophobic layered inorganic compound layer was distribute | arranged on the upper and lower surfaces of the said hydrophilic layered inorganic compound layer. Moreover, it is preferable that the whole of the hydrophilic layered inorganic compound layer has a structure wrapped with the hydrophobic layered inorganic compound layer.

上記のような無機化合物膜は、疎水性層状無機化合物層を備えているため、親水性層状無機化合物(例えば、層間にナトリウムやカルシウムといった水和力の強い交換性の無機イオンを有するスメクタイト族の粘土や雲母族の粘土)のみからなる無機化合物膜又は前記親水性層状無機化合物と水溶性樹脂とからなる膜と比較して、耐水性が高い。よって、水が付着しても直ちに無機化合物膜が膨潤して形態が崩れることがなく、水を使ったプロセスでも使用可能である。   Since the inorganic compound film as described above includes a hydrophobic layered inorganic compound layer, a hydrophilic layered inorganic compound (for example, a smectite group having a hydratable exchangeable inorganic ion such as sodium or calcium between the layers). Compared with an inorganic compound film made of only clay or mica group clay or a film made of the hydrophilic layered inorganic compound and a water-soluble resin, the water resistance is high. Therefore, even if water adheres, the inorganic compound film does not swell immediately and the form does not collapse, and it can be used in a process using water.

また、上記のような無機化合物膜は、全光線透過率が80%以上であり、組成やプロセスの最適化により90%以上にすることもでき、透明性が高い。このように、本発明の無機化合物膜は高い光線透過率を有しており透明であるが、さらに、400nm以上800nm以下の波長範囲における光線透過率が80%以上であり、場合によっては85%以上であるため、可視光域全体に渡って肉眼で着色が認められない透明性を有している。   In addition, the inorganic compound film as described above has a total light transmittance of 80% or more, and can be 90% or more by optimizing the composition and process, and has high transparency. As described above, the inorganic compound film of the present invention has a high light transmittance and is transparent, but further has a light transmittance of 80% or more in a wavelength range of 400 nm or more and 800 nm or less, and in some cases 85%. Since it is above, it has transparency which coloring is not recognized with the naked eye over the whole visible light region.

また、膜の濁度を示すヘイズ(曇度)の値が5%以下であるため、光の散乱が少なく濁り感のない透明性を有している。なお、ヘイズの値は3%以下であることがより好ましく、2%以下であることがさらに好ましく、1%未満であることが最も好ましいが、本発明によればこのような無機化合物膜を得ることもできる。さらに、従来の膜の課題であった経時的なヘイズの増大が生じにくいという優れた性質も有している。   Further, since the haze value indicating the turbidity of the film is 5% or less, the film has transparency with little light scattering and no turbidity. The haze value is more preferably 3% or less, further preferably 2% or less, and most preferably less than 1%. According to the present invention, such an inorganic compound film is obtained. You can also. Furthermore, it has an excellent property that haze increase with time, which is a problem of conventional films, hardly occurs.

そして、全光線透過率が80%以上、400nm以上800nm以下の波長範囲における光線透過率が80%以上、及びヘイズが5%以下という優れた性質を全て備えた、極めて高い透明性を有する無機化合物膜である。さらに、ナノシートが極めて緻密に積層した構造の層状無機化合物層を有していて、膜内部の欠陥の発生が抑制されているため、高いガスバリア性を保持している。
なお、本発明における層状無機化合物の粒子が配向して積層した構造とは、層状無機化合物の層面の向きをなるべく膜面と平行になるようにして積み重ねられた状態をいう。
And the inorganic compound which has all the outstanding properties that the total light transmittance is 80% or more, the light transmittance in the wavelength range of 400 nm or more and 800 nm or less is 80% or more, and the haze is 5% or less. It is a membrane. Furthermore, since the nanosheet has a layered inorganic compound layer having a structure in which the nanosheets are extremely densely stacked and the occurrence of defects inside the film is suppressed, high gas barrier properties are maintained.
In addition, the structure in which the particles of the layered inorganic compound are oriented and stacked in the present invention refers to a state in which the layers of the layered inorganic compound are stacked so that the direction of the layer surface is as parallel as possible to the film surface.

以下に、本発明の無機化合物膜についてさらに詳細に説明する。
本発明において用いる層状無機化合物の種類は特に限定されるものではなく、粘土鉱物,層状ポリケイ酸,層状ケイ酸塩,層状複水酸化物,層状リン酸塩,層状遷移金属酸素酸塩(例えば、チタン・ニオブ酸塩,六ニオブ酸塩,モリブデン酸塩),層状マンガン酸化物,層状コバルト酸化物があげられる。ただし、透明な膜とするためには、層状無機化合物に着色がないこと、若しくは着色の程度が軽微であることが必要である。さらに、溶媒中に分散させた場合に、できる限り単位層であるナノシートまでへき開して分散することが重要である。上記の層状無機化合物として特に好適なものは、粘土鉱物である。
Hereinafter, the inorganic compound film of the present invention will be described in more detail.
The kind of the layered inorganic compound used in the present invention is not particularly limited, and clay mineral, layered polysilicic acid, layered silicate, layered double hydroxide, layered phosphate, layered transition metal oxyacid salt (for example, Titanium / niobate, hexaniobate, molybdate), layered manganese oxide, and layered cobalt oxide. However, in order to obtain a transparent film, it is necessary that the layered inorganic compound is not colored or the degree of coloring is slight. Furthermore, when dispersed in a solvent, it is important to cleave and disperse the nanosheet as a unit layer as much as possible. Particularly suitable as the layered inorganic compound is a clay mineral.

粘土鉱物は結晶質鉱物と非晶質鉱物とに大別され、結晶質部分は全て「葉状」を意味するフィロケイ酸塩であり、その葉状たる形状ゆえに、基本的に層状無機化合物を特徴づける層状構造を有している。多くの粘土鉱物の粒子は、主に酸素(O),ケイ素(Si),アルミニウム(Al),マグネシウム(Mg)等で構成される厚さが約0.2nmから約0.5nmの四面体シートや八面体シートが1〜3層積層された層状(板状)の形状を有しており、この粘土鉱物の粒子は、長軸方向の大きさが数十nm〜5μm程度でアスペクト比が大きい。   Clay minerals are roughly classified into crystalline minerals and amorphous minerals, and all crystalline parts are phyllosilicates, meaning `` leafy '', and because of their leafy shape, they are basically layered that characterizes layered inorganic compounds. It has a structure. Many clay mineral particles are mainly tetrahedral sheets with a thickness of about 0.2 nm to about 0.5 nm composed mainly of oxygen (O), silicon (Si), aluminum (Al), magnesium (Mg), etc. In addition, the clay mineral particles have a large aspect ratio with a size in the major axis direction of about several tens nm to 5 μm. .

前述の四面体シートや八面体シートについて、さらに詳細に説明する。四面体シートは、多くの場合、Siに4つのOが配位して形成されたSiO4 の四面体がその3つのOを共有しつつ六角の網状につながることで形成される。場合によっては、SiがAlに代わりAlO4 の四面体を形成することもある。それ以外にも、鉄(Fe)等も四面体を作ることがある。 The tetrahedron sheet and the octahedron sheet will be described in more detail. In many cases, the tetrahedral sheet is formed by connecting SiO 4 tetrahedrons formed by coordinating four Os to Si and connecting the three Os in a hexagonal network. In some cases, Si may form an AlO 4 tetrahedron instead of Al. In addition, iron (Fe) or the like may form a tetrahedron.

これに対して八面体シートは、多くの場合、Alに6つの水酸基(OH)又はOが配位して形成されており、Alの代わりにマグネシウム(Mg)やFeなどでも形成されることがある。また、四面体シートにおいてSiがAl等に置き換わったり、八面体シートにおいてAlがMg等に置き換わること等により、シートの電荷に過不足が発生し、シートが永久電荷を帯びる場合が多い。人工的には、四面体シートや八面体シートに上記以外の元素を制御しつつ導入することも可能であり、磁気特性や光学特性など、様々な物性を変化させる試みも行われている。   On the other hand, the octahedral sheet is often formed by coordination of six hydroxyl groups (OH) or O to Al, and may be formed of magnesium (Mg) or Fe instead of Al. is there. Further, due to the fact that Si is replaced with Al or the like in the tetrahedral sheet, or Al is replaced with Mg or the like in the octahedral sheet, the sheet charge is often excessive or insufficient, and the sheet is often charged with a permanent charge. Artificially, elements other than those described above can be introduced into the tetrahedron sheet or octahedron sheet while being controlled, and attempts have been made to change various physical properties such as magnetic characteristics and optical characteristics.

このような四面体シート又は八面体シートによって、あるいは、これらシートが積層して結合することによって、様々な層状無機化合物が生成する。本発明では、これらのシートが結合した単位層をナノシートと定義する。例えば、四面体シートのみを単位層とするナノシートからなるものとしては、一般に層状ポリケイ酸と呼ばれる一連の鉱物(例えばマガディアイト)をあげることができる。これに対して、正の電荷を帯びた八面体シートと八面体シートとの間に炭酸イオン等の負イオンを有することにより、ハイドロタルサイト類と呼ばれる粘土鉱物の一種が形成されることが知られている。   Various layered inorganic compounds are produced by such a tetrahedral sheet or octahedral sheet, or by laminating and bonding these sheets. In the present invention, a unit layer in which these sheets are bonded is defined as a nanosheet. For example, as a material composed of a nanosheet having only a tetrahedral sheet as a unit layer, a series of minerals (for example, magadiite) generally called layered polysilicic acid can be used. On the other hand, it is known that by having negative ions such as carbonate ions between the octahedral sheet having a positive charge and the octahedral sheet, a kind of clay mineral called hydrotalcite is formed. It has been.

粘土鉱物の多くは、四面体シートと八面体シートとの結合によりナノシートが形成されている。四面体シートと八面体シートとが1:1の割合で結合し積層することによって鉱物としての単位層であるナノシートが形成されている粘土鉱物は、一般にカリオン鉱物と呼ばれており、カリオナイト,ハロイサイト等が有名である。これに対して、四面体シートと八面体シートとが2:1の割合で結合し積層して(すなわち四面体シート−八面体シート−四面体シートなる構成)単位層であるナノシートが形成されている粘土鉱物には、パイロフィライト,タルク,スメクタイト族粘土,バーミキュライト,雲母粘土鉱物等がある。   In many clay minerals, nanosheets are formed by bonding tetrahedral sheets and octahedral sheets. Clay minerals, in which nanosheets, which are unit layers of minerals, are formed by combining tetrahedron sheets and octahedron sheets in a ratio of 1: 1 and laminating, are generally called carionite minerals, and caryonite, halloysite Etc. are famous. On the other hand, a tetrahedron sheet and an octahedron sheet are bonded and laminated at a ratio of 2: 1 (that is, a tetrahedron sheet-octahedron sheet-tetrahedron sheet), and a nanosheet which is a unit layer is formed. Examples of clay minerals include pyrophyllite, talc, smectite group clay, vermiculite, and mica clay mineral.

特に、スメクタイト族に属する粘土(例えばモンモリロナイト,サポナイト,ヘクトライト,スチーブンサイト等)は、層間に無機陽イオンを有する一般的なものの場合は、水やアルコールのような高極性溶媒(特に水)に対して均一に分散させることが可能であり、高極性溶媒中で単位層1枚1枚にまでばらばらに分散させることが可能であると言われている。また、雲母族に属する粘土の多くはナノシートの面方向のサイズが大きく、単位層1枚1枚にまでばらばらに分散させることは困難であるものの、ナノコンポジット化によって高いガスバリア性が期待できる。   In particular, clays belonging to the smectite group (for example, montmorillonite, saponite, hectorite, stevensite, etc.) are generally used in highly polar solvents such as water and alcohol (especially water) in the case of general ones having inorganic cations between layers. On the other hand, it can be dispersed uniformly, and it is said that it can be dispersed in units of one unit layer in a highly polar solvent. In addition, most of the clays belonging to the mica group have a large size in the surface direction of the nanosheet, and although it is difficult to disperse the unit layers one by one, it is possible to expect a high gas barrier property by forming a nanocomposite.

本発明において好適に用いることのできる粘土鉱物の種類は特に限定されるものではなく、天然粘土でも合成粘土でもよい。ただし、一般に天然粘土は不純物の影響等で高い透明性を得にくいため、不純物が少なく透明性の高い無機化合物膜が得られる合成粘土を用いることが好ましい。そのような粘土としては、例えば、雲母、バーミキュライト、モンモリロナイト、鉄モンモリロナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト、及びノントロナイトのうちの1種以上が好ましく、合成サポナイト、合成ヘクトライト、合成スチーブンサイト、合成雲母、合成ハイドロタルサイト、合成カリオナイト等が好ましいが、溶媒に対する分散性等の点で、スメクタイト族に属する粘土がさらに好ましい。ガスバリア性の観点からは、粘土結晶の層のアスペクト比が大きな天然モンモリロナイトや雲母族に属する粘土、若しくは高アスペクト比のスメクタイト族の粘土等が好ましい。   The kind of clay mineral that can be suitably used in the present invention is not particularly limited, and may be natural clay or synthetic clay. However, since natural clay is generally difficult to obtain high transparency due to the influence of impurities, it is preferable to use synthetic clay that has few impurities and can provide a highly transparent inorganic compound film. As such clay, for example, one or more of mica, vermiculite, montmorillonite, iron montmorillonite, beidellite, saponite, hectorite, stevensite, and nontronite are preferable, and synthetic saponite, synthetic hectorite, synthetic steven. Site, synthetic mica, synthetic hydrotalcite, synthetic caryonite and the like are preferable, but clay belonging to the smectite group is more preferable from the viewpoint of dispersibility in a solvent. From the viewpoint of gas barrier properties, natural montmorillonite having a large aspect ratio of the clay crystal layer, clay belonging to the mica group, smectite clay having a high aspect ratio, and the like are preferable.

前記層状無機化合物、特にナノシートが電荷を有する粘土鉱物の多くは、水若しくは水と高極性溶媒との混合溶媒に分散する性質を有している親水性層状無機化合物である。したがって、親水性層状無機化合物層を形成する際には、そのような層状無機化合物を用いることが好適であり、分散媒としては水若しくは水を含有する溶媒が一般的である。
なお、層状無機化合物の多くはナノシートが有する電荷の補償としてアルカリ金属イオン,アルカリ土類金属イオン,炭酸イオンといった無機イオンを有しているが、溶媒への分散性が著しく低下しない範囲であれば、それら無機イオンを別のイオンに交換して用いてもよい。
Most of the layered inorganic compounds, particularly clay minerals in which the nanosheet is charged, are hydrophilic layered inorganic compounds having the property of being dispersed in water or a mixed solvent of water and a highly polar solvent. Therefore, when forming a hydrophilic layered inorganic compound layer, it is preferable to use such a layered inorganic compound, and water or a solvent containing water is generally used as a dispersion medium.
Many of the layered inorganic compounds have inorganic ions such as alkali metal ions, alkaline earth metal ions, and carbonate ions as compensation for the charge of the nanosheet, but as long as the dispersibility in the solvent is not significantly reduced. These inorganic ions may be exchanged for other ions.

例えば、塩化リチウム,硝酸リチウム等の水溶液によってそれら無機イオンをリチウムイオンに交換して用いてもよい。この場合、リチウムイオンに交換した後に高温(例えば300℃以上、好ましくは350℃以上)に加熱することにより、リチウムがナノシートの内部にもぐり込み、ナノシートの負電荷を減少させるので、耐水性を向上させることができる場合がある。   For example, these inorganic ions may be exchanged for lithium ions with an aqueous solution of lithium chloride, lithium nitrate or the like. In this case, lithium ion penetrates into the nanosheet by heating to a high temperature (for example, 300 ° C or higher, preferably 350 ° C or higher) after exchanging with lithium ion, and the negative charge of the nanosheet is reduced, thereby improving water resistance. There is a case that can be made.

あるいは、ナノシートの端部に存在する水酸基を、例えばシランカップリング剤等で化学修飾することにより、ナノシートと添加剤との相互作用又はナノシート同士の相互作用を強めることができるので、これにより耐水性を向上させてもよい。また、水と親和性の高い水酸基を変性させることにより、耐水性を向上させてもよい。
このように、親水性層状無機化合物層としては、水若しくは水を含有する溶媒に分散しうる層状無機化合物を分散した任意の分散液から形成される層のことを示すのであって、その層自体が親水性であるかどうかは問わない。従って、本発明における親水性層状無機化合物層は上記のような何らかの手法によって疎水化されていても良い。
Alternatively, by chemically modifying the hydroxyl group present at the end of the nanosheet with, for example, a silane coupling agent or the like, the interaction between the nanosheet and the additive or the interaction between the nanosheets can be increased. May be improved. Further, the water resistance may be improved by modifying a hydroxyl group having a high affinity with water.
As described above, the hydrophilic layered inorganic compound layer refers to a layer formed from any dispersion liquid in which a layered inorganic compound that can be dispersed in water or a solvent containing water is dispersed, and the layer itself It does not matter whether or not is hydrophilic. Therefore, the hydrophilic layered inorganic compound layer in the present invention may be hydrophobized by any method as described above.

これに対して、親水性層状無機化合物は、通常は有機溶媒には分散不可能であり、極性の大きな有機溶媒(例えばN−メチルホルムアミド、ホルムアミド等)でも膨潤するのみに留まる物が多く、層状無機化合物の構成要素である単層のナノシートまでへき開して分散させることは困難である。
層状無機化合物を有機溶媒に分散させるためには、層状無機化合物が電荷を有しているものであれば、アンモニウム塩、フォスフォニウム塩、イミダゾリウム塩、ピリジニウム塩、カルボン酸、アミノ酸、スルフォン酸等の有機イオンを用いて、ナノシートが層間に有する交換性の無機イオンを交換し、ナノシート表面に有機官能基を付与する親有機化処理を施して、有機溶媒への分散性を向上させた疎水性層状無機化合物とすればよい。
On the other hand, hydrophilic layered inorganic compounds are usually not dispersible in organic solvents, and many of them only swell even in polar organic solvents (for example, N-methylformamide, formamide, etc.). It is difficult to cleave and disperse even single-layer nanosheets that are constituents of inorganic compounds.
In order to disperse the layered inorganic compound in the organic solvent, if the layered inorganic compound has a charge, ammonium salt, phosphonium salt, imidazolium salt, pyridinium salt, carboxylic acid, amino acid, sulfonic acid Hydrophobic with improved dispersibility in organic solvents by exchanging exchangeable inorganic ions that the nanosheets have between layers using organic ions such as, and applying an organophilic treatment to give organic functional groups to the nanosheet surface The layered inorganic compound may be used.

アンモニウム塩としては、アルキル基、アルコキシ基、ベンジル基、ポリオキシエチレン基、オキシエチレン基、オキシプロピレン基等を有するアンモニウム塩や、ジメチルジステアリルアンモニウム塩、トリメチルステアリルアンモニウム塩等の第4級アンモニウム塩があげられる。また、フォスフォニウム塩やイミダゾリウム塩等は、第4級アンモニウム塩に比べ分解脱離温度が高いため、フォスフォニウム塩やイミダゾリウム塩で親有機化処理した疎水性層状無機化合物自体の耐熱性も高く、無機化合物膜の耐熱性を総合的に向上させるのに好適である。   Examples of ammonium salts include ammonium salts having alkyl groups, alkoxy groups, benzyl groups, polyoxyethylene groups, oxyethylene groups, oxypropylene groups, and the like, and quaternary ammonium salts such as dimethyl distearyl ammonium salts and trimethyl stearyl ammonium salts. Can be given. In addition, phosphonium salts and imidazolium salts have higher decomposition and desorption temperatures than quaternary ammonium salts. Therefore, the heat resistance of hydrophobic layered inorganic compounds themselves that have been subjected to organophilic treatment with phosphonium salts or imidazolium salts. It is also suitable for improving the heat resistance of the inorganic compound film comprehensively.

また、カリオナイトのようなナノシートの面に水酸基が露出している層状無機化合物においては、それらナノシートの面に露出した水酸基と有機物とを脱水結合等の化学的処理によって結合させ、表面を有機物で修飾した疎水性層状無機化合物とすることもできる。このようにして疎水性に変性すれば、層状無機化合物を有機溶媒に分散させることができるが、有機溶媒に分散又は溶解する疎水性の添加剤(例えばポリマー)を層状無機化合物が分散した分散液に均一に混合できるため、選択できる添加剤の種類が飛躍的に増大する。そのため、耐水性を有する無機化合物膜が得られるばかりでなく、強度及び寸法安定性等の膜物性を幅広く制御することが可能となり、好適な疎水性層状無機化合物層を得ることができる。なお、本発明においては、1つの層状無機化合物層を1種類の層状無機化合物を用いて形成してもよいし、2種類以上の異なる層状無機化合物を用いて形成してもよい。   In addition, in layered inorganic compounds such as kaolinite where the hydroxyl group is exposed on the surface of the nanosheet, the hydroxyl group exposed on the surface of the nanosheet and the organic substance are bonded by chemical treatment such as dehydration, and the surface is modified with the organic substance. It is also possible to obtain a hydrophobic layered inorganic compound. If it is modified to be hydrophobic in this way, the layered inorganic compound can be dispersed in the organic solvent, but a dispersion in which the layered inorganic compound is dispersed in a hydrophobic additive (for example, a polymer) that is dispersed or dissolved in the organic solvent. Therefore, the types of additives that can be selected are dramatically increased. Therefore, not only an inorganic compound film having water resistance can be obtained, but also film properties such as strength and dimensional stability can be controlled widely, and a suitable hydrophobic layered inorganic compound layer can be obtained. In the present invention, one layered inorganic compound layer may be formed using one type of layered inorganic compound or two or more different layered inorganic compounds.

特に、層状無機化合物の含有量が多い親水性層状無機化合物層はその熱膨張率が低く、一般にその線膨張係数は20ppm/℃以下、好適には10ppm/℃以下であることが多い。そのため、加熱による膜の反りや親水性層状無機化合物層に負荷される応力によるクラックの発生等を抑制するためにも、疎水性層状無機化合物層の線膨張係数を低く抑えることが重要である。そのためには、疎水性層状無機化合物層における層状無機化合物の割合を20質量%以上、好ましくは30質量%以上、より好ましくは40質量%以上、さらに好ましくは50質量%以上とすることが重要であり、且つ、疎水性層状無機化合物層は、層状無機化合物を構成するナノシートが配向して積層した構造になっていることが重要である。   In particular, a hydrophilic layered inorganic compound layer containing a large amount of the layered inorganic compound has a low coefficient of thermal expansion, and generally has a coefficient of linear expansion of 20 ppm / ° C. or less, preferably 10 ppm / ° C. or less. Therefore, it is important to keep the coefficient of linear expansion of the hydrophobic layered inorganic compound layer low in order to suppress the warpage of the film due to heating and the generation of cracks due to stress applied to the hydrophilic layered inorganic compound layer. For that purpose, it is important that the ratio of the layered inorganic compound in the hydrophobic layered inorganic compound layer is 20% by mass or more, preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more. In addition, it is important that the hydrophobic layered inorganic compound layer has a structure in which nanosheets constituting the layered inorganic compound are oriented and laminated.

通常、疎水性層状無機化合物における有機イオンの存在は、ナノシートの層間距離を増大させる。このため、ナノシートを積層した際の緻密さは、親水性層状無機化合物の場合よりも低下する。このため、層間を気体分子が通過しやすくなり、その結果ガスバリア性の低下というデメリットを生じさせる。よって、高いガスバリア性を疎水性層状無機化合物層が担うのは困難であり、高いガスバリア性はナノシートがより緻密に積層した層、本発明であれば親水性層状無機化合物層が担うことで、無機化合物膜全体として高いガスバリア性を有することができる。   Usually, the presence of organic ions in the hydrophobic layered inorganic compound increases the interlayer distance of the nanosheet. For this reason, the density at the time of laminating | stacking a nanosheet falls rather than the case of a hydrophilic layered inorganic compound. For this reason, it becomes easy for gas molecules to pass between layers, and as a result, the demerit that a gas barrier property falls arises. Therefore, it is difficult for the hydrophobic layered inorganic compound layer to have a high gas barrier property, and the high gas barrier property is a layer in which nanosheets are more densely stacked. The entire compound film can have high gas barrier properties.

本発明において用いる添加剤の種類は特に限定されるものではないが、親水性層状無機化合物層に高いガスバリア性を付与するためには、親水性層状無機化合物層中における添加剤の割合は30質量%未満であることが好ましい。すなわち、70質量%以上の層状無機化合物を含有していることが好ましい。なお、添加剤の割合は20質量%以下であることがより好ましく、15質量%以下であることがさらに好ましく、10質量%以下であることが特に好ましく、5質量%以下であることが最も好ましい。   Although the kind of additive used in the present invention is not particularly limited, in order to impart a high gas barrier property to the hydrophilic layered inorganic compound layer, the ratio of the additive in the hydrophilic layered inorganic compound layer is 30 mass. It is preferable that it is less than%. That is, it is preferable to contain 70% by mass or more of a layered inorganic compound. The ratio of the additive is more preferably 20% by mass or less, further preferably 15% by mass or less, particularly preferably 10% by mass or less, and most preferably 5% by mass or less. .

親水性層状無機化合物層を形成する際の親水性層状無機化合物含有液の溶媒が水又は水を含有する溶媒である場合には、添加剤は親水性を有し水への分散性又は溶解性が高いものが好ましい。例えば、イプシロンカプロラクタム、デキストリン、澱粉、セルロース系樹脂、セルロース繊維、ゼラチン、寒天、小麦粉、グルテン、アルキド樹脂、ポリウレタン樹脂、エポキシ樹脂、フッ素樹脂、アクリル樹脂、メタクリル樹脂、フェノール樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリビニル樹脂、ポリエチレングリコール、ポリアクリルアマイド、ポリエチレンオキサイド、タンパク質、デオキシリボヌクレイン酸、リボヌクレイン酸、ポリアミノ酸、多価フェノール、安息香酸類化合物が好適である。   If the solvent of the hydrophilic layered inorganic compound-containing liquid in forming the hydrophilic layered inorganic compound layer is water or a solvent containing water, the additive has hydrophilicity and is dispersible or soluble in water. High is preferred. For example, epsilon caprolactam, dextrin, starch, cellulosic resin, cellulose fiber, gelatin, agar, flour, gluten, alkyd resin, polyurethane resin, epoxy resin, fluororesin, acrylic resin, methacrylic resin, phenolic resin, polyamide resin, polyester resin Polyimide resin, polyvinyl resin, polyethylene glycol, polyacrylamide, polyethylene oxide, protein, deoxyribonucleic acid, ribonucleic acid, polyamino acid, polyhydric phenol, and benzoic acid compounds are preferred.

あるいは、ラテックスやエマルジョンといった、水分散系の材料を用いてもよい。ただし、これらは水への分散性又は溶解性が高いため、無機化合物膜の耐水性は低いものとなる場合が多い。そこで、塩,他の反応性モノマー,ポリマー,オリゴマー等を加え、例えば光や熱等によってそれらを重合させて、添加剤そのものの耐水性を向上させてもよい。このような方法によって親水性層状無機化合物層を水に対して不溶化させることで、親水性層状無機化合物層を両面側から疎水性層状無機化合物層で挟まなくとも、耐水性のある無機化合物膜とすることもできる。   Alternatively, an aqueous dispersion material such as latex or emulsion may be used. However, since these are highly dispersible or soluble in water, the water resistance of the inorganic compound film is often low. Therefore, salts, other reactive monomers, polymers, oligomers, and the like may be added, and polymerized by, for example, light or heat to improve the water resistance of the additive itself. By insolubilizing the hydrophilic layered inorganic compound layer with water by such a method, the hydrophilic layered inorganic compound layer and the hydrophobic layered inorganic compound layer do not need to be sandwiched between the hydrophobic layered inorganic compound layers from both sides. You can also

なお、親水性層状無機化合物層の1層の厚さは、十分なガスバリア性を有するために、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、1μm以上であることがさらに好ましく、3μm以上であることがさらにまた好ましく、6μm以上であることが特に好ましく、10μm以上であることが最も好ましい。ただし、あまり厚くしすぎると、透明性を低下させる原因や表面の凸凹を増大させる原因にもなり得るため、1000μm以下であることが好ましく、200μm以下であることがより好ましく、100μm未満であることがさらに好ましい。   The thickness of one layer of the hydrophilic layered inorganic compound layer is preferably 0.1 μm or more, more preferably 0.5 μm or more, and more preferably 1 μm or more in order to have sufficient gas barrier properties. Is more preferably 3 μm or more, particularly preferably 6 μm or more, and most preferably 10 μm or more. However, if it is too thick, it may cause a decrease in transparency and increase unevenness on the surface. Therefore, it is preferably 1000 μm or less, more preferably 200 μm or less, and less than 100 μm. Is more preferable.

一方、疎水性層状無機化合物層を形成する際の疎水性層状無機化合物含有液の溶媒は有機溶媒であるため、添加剤も疎水性を有し有機溶媒への分散性又は溶解性が高いものが好ましい。前述した通り、疎水性層状無機化合物層のガスバリア性は親水性層状無機化合物層のそれよりもどうしても低い傾向があるが、ある程度のガスバリア性を疎水性層状無機化合物層にも付与し、且つ、無機化合物膜に寸法安定性,耐熱強度,柔軟性,引張り強度,及び曲げ強度を付与するためには、疎水性層状無機化合物層中の添加剤の割合は45質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましく、20質量%以下であることがさらにまた好ましく、15質量%以下であることが特に好ましく、10質量%以下であることが最も好ましい。   On the other hand, since the solvent of the hydrophobic layered inorganic compound-containing liquid when forming the hydrophobic layered inorganic compound layer is an organic solvent, the additive is also hydrophobic and has a high dispersibility or solubility in the organic solvent. preferable. As described above, the gas barrier property of the hydrophobic layered inorganic compound layer tends to be lower than that of the hydrophilic layered inorganic compound layer. However, a certain amount of gas barrier property is imparted to the hydrophobic layered inorganic compound layer, and In order to impart dimensional stability, heat resistance, flexibility, tensile strength, and bending strength to the compound film, the proportion of the additive in the hydrophobic layered inorganic compound layer is preferably 45% by mass or less. More preferably, it is more preferably 30% by weight or less, still more preferably 20% by weight or less, particularly preferably 15% by weight or less, and more preferably 10% by weight or less. Most preferred.

このような添加剤としては、例えば、スチレン系樹脂、アクリル系樹脂、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート樹脂、芳香族ポリエステル系樹脂、脂肪族ポリエステル系樹脂、脂肪族ポリオレフィン系樹脂、環状オレフィン系樹脂、ポリアミド系樹脂、ポリフェニレンエーテル系樹脂、熱可塑性ポリイミド系樹脂、ポリアセタール系樹脂、変性ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、非晶性フッ素系樹脂等の熱可塑性樹脂や、エチレン−ビニルアルコール共重合体(例えば株式会社クラレ製のエバール)を用いることができる。   Examples of such additives include styrene resins, acrylic resins, aromatic polycarbonate resins, aliphatic polycarbonate resins, aromatic polyester resins, aliphatic polyester resins, aliphatic polyolefin resins, and cyclic olefin resins. Thermoplastics such as resin, polyamide resin, polyphenylene ether resin, thermoplastic polyimide resin, polyacetal resin, modified polyvinyl alcohol resin, polyvinyl acetal resin, polysulfone resin, polyethersulfone resin, amorphous fluorine resin Resin and ethylene-vinyl alcohol copolymer (for example, Eval manufactured by Kuraray Co., Ltd.) can be used.

また、エポキシ樹脂、熱硬化型変性ポリフェニレンエーテル樹脂、熱硬化型ポリイミド樹脂、ユリア樹脂、アリル樹脂、ケイ素樹脂、ベンゾオキサジン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビスマレイミドトリアジン樹脂、アルキド樹脂、フラン樹脂、メラミン樹脂、ポリウレタン樹脂、アニリン樹脂等の熱硬化性樹脂を用いることもできる。   Also, epoxy resin, thermosetting modified polyphenylene ether resin, thermosetting polyimide resin, urea resin, allyl resin, silicon resin, benzoxazine resin, phenol resin, unsaturated polyester resin, bismaleimide triazine resin, alkyd resin, furan resin Thermosetting resins such as melamine resin, polyurethane resin, and aniline resin can also be used.

その他では、光硬化性樹脂を用いることもでき、例えば、潜在性光カチオン重合開始剤を含むエポキシ樹脂等があげられる。なお、光硬化性樹脂を硬化させる場合には、光照射と同時に熱を加えてもよい。また、熱硬化性樹脂及び光硬化性樹脂には硬化剤、硬化触媒等を併用してもよいが、それらの種類は熱硬化性樹脂及び光硬化性樹脂の硬化に一般的に用いられるものであれば特に限定されない。硬化剤の具体例としては、多官能アミン、ポリアミド、酸無水物、フェノール樹脂があげられる。また、硬化触媒の具体例としては、イミダゾール等があげられる。これらの硬化剤、硬化触媒は単独又は2種以上混合して使用することができる。さらに、上記の樹脂は、単独で用いてもよいし、2種以上を併用してもよい。無機化合物膜を透明とする必要性があることから、上記の添加剤も透明又は着色が少ないことが好ましい。   In addition, a photocurable resin can also be used, for example, an epoxy resin containing a latent photocationic polymerization initiator. In addition, when hardening a photocurable resin, you may apply heat simultaneously with light irradiation. Further, a curing agent, a curing catalyst, etc. may be used in combination with the thermosetting resin and the photocurable resin, but these types are generally used for curing the thermosetting resin and the photocurable resin. If there is no particular limitation. Specific examples of the curing agent include polyfunctional amines, polyamides, acid anhydrides, and phenol resins. Specific examples of the curing catalyst include imidazole. These curing agents and curing catalysts can be used alone or in combination. Furthermore, said resin may be used independently and may use 2 or more types together. Since the inorganic compound film needs to be transparent, it is preferable that the additive is also transparent or less colored.

なお、親水性層状無機化合物層及び疎水性層状無機化合物層に添加する添加剤としては、前述のようなポリマー系のものばかりでなく、必要に応じて、様々なものを選択して用いることができる。例えば、難燃性を付与したい場合には三酸化アンチモンのような無機系難燃剤を、可塑性を付与したい場合にはフタル酸ジメチルのような可塑剤を、加熱時の酸化劣化を抑制したい場合にはヒンダードフェノール、ヒンダードアミンやリン系若しくはイオウ系の酸化防止剤等を添加してもよい。これらの添加剤は単独で用いてもよいし、2種類以上を併用して用いてもよい。   In addition, as an additive added to the hydrophilic layered inorganic compound layer and the hydrophobic layered inorganic compound layer, not only the above-mentioned polymer type but also various ones can be selected and used as necessary. it can. For example, an inorganic flame retardant such as antimony trioxide is used to impart flame retardancy, a plasticizer such as dimethyl phthalate is used to impart plasticity, and oxidative degradation during heating is suppressed. May add hindered phenol, hindered amine, phosphorus-based or sulfur-based antioxidant, and the like. These additives may be used alone or in combination of two or more.

疎水性層状無機化合物層の1層の厚さは、十分な膜強度及び耐水性を付与するために、5μm以上であることが好ましく、15μm以上であることがより好ましく、30μm以上であることがさらに好ましく、50μm以上であることがさらにまた好ましく、100μm以上であることが特に好ましく、150μm以上であることが最も好ましい。ただし、あまり厚くしすぎると、透明性を低下させる原因や表面の凸凹を増大させる原因にもなり得るため、10000μm以下であることが好ましく、1000μm以下であることがより好ましく、300μm以下であることがさらに好ましい。   The thickness of one layer of the hydrophobic layered inorganic compound layer is preferably 5 μm or more, more preferably 15 μm or more, and more preferably 30 μm or more in order to provide sufficient film strength and water resistance. More preferably, it is more preferably 50 μm or more, particularly preferably 100 μm or more, and most preferably 150 μm or more. However, if it is too thick, it may cause a decrease in transparency and increase unevenness on the surface, so it is preferably 10000 μm or less, more preferably 1000 μm or less, and 300 μm or less. Is more preferable.

親水性層状無機化合物及び親水性を有する添加剤を分散又は溶解させる溶媒としては、水が好ましいが、それ以外では、アセトアミド、N,N−ジメチルホルムアミド、N−メチルピロリドン、エタノール等の有機物や塩などを混合した水を用いることもできる。有機物,塩などを添加する目的は、層状無機化合物が分散した分散液における層状無機化合物の分散性を変化させる、前記分散液の粘性を変化させる、無機化合物膜の乾燥のしやすさを変化させる、無機化合物膜の均一性を向上させる等である。   As the solvent for dispersing or dissolving the hydrophilic layered inorganic compound and the hydrophilic additive, water is preferable, but otherwise, organic substances and salts such as acetamide, N, N-dimethylformamide, N-methylpyrrolidone, ethanol and the like. The water which mixed etc. can also be used. The purpose of adding organic matter, salt, etc. is to change the dispersibility of the layered inorganic compound in the dispersion in which the layered inorganic compound is dispersed, to change the viscosity of the dispersion, or to change the ease of drying of the inorganic compound film. Improving the uniformity of the inorganic compound film.

また、疎水性層状無機化合物及び疎水性を有する添加剤を分散又は溶解させる溶媒としては、トルエン、キシレン等の芳香族炭化水素、エチルエーテル、テトラヒドロフラン等のエーテル類、アセトン、メチルエチルケトン等のケトン類、n−オクタン等の脂肪族炭化水素、メタノール、エタノール、イソプロパノール等のアルコール類、クロロホルム、ジクロロメタン、1,2−ジクロロエタン等のハロゲン化炭化水素等を用いることができる。また、その他には、N,N−ジメチルホルムアミド、N−メチルピロリドン、フタル酸ジオクチル、ジメチルスルホキシド、メチルセルソルブ等を用いることができる。疎水性層状無機化合物が分散可能な有機溶媒の種類は、疎水性を発現させるナノシート表面の有機官能基の種類に大きく依存するため、適切なものを選択する必要がある。   In addition, as a solvent for dispersing or dissolving the hydrophobic layered inorganic compound and the hydrophobic additive, aromatic hydrocarbons such as toluene and xylene, ethers such as ethyl ether and tetrahydrofuran, ketones such as acetone and methyl ethyl ketone, Aliphatic hydrocarbons such as n-octane, alcohols such as methanol, ethanol and isopropanol, halogenated hydrocarbons such as chloroform, dichloromethane and 1,2-dichloroethane can be used. In addition, N, N-dimethylformamide, N-methylpyrrolidone, dioctyl phthalate, dimethyl sulfoxide, methyl cellosolve, and the like can be used. The type of the organic solvent in which the hydrophobic layered inorganic compound can be dispersed greatly depends on the type of the organic functional group on the surface of the nanosheet that develops the hydrophobic property, and therefore it is necessary to select an appropriate one.

このような本発明の無機化合物膜は、以下のようにして製造することができる。すなわち、本発明の無機化合物膜は、疎水性層状無機化合物層と親水性層状無機化合物層とを交互に形成して積層することにより製造することができる。詳述すると、疎水性層状無機化合物を含有する疎水性層状無機化合物含有液又は親水性層状無機化合物を含有する親水性層状無機化合物含有液をベース上に配して乾燥し、疎水性層状無機化合物層又は親水性層状無機化合物層をベース上に形成する第一工程を行った後に、疎水性層状無機化合物含有液又は親水性層状無機化合物含有液を下層の層状無機化合物層上に配して乾燥することにより前記下層の層状無機化合物層とは異なる種類の層状無機化合物層を前記下層の層状無機化合物層上に形成する第二工程を少なくとも1回行うことによって製造することができる。   Such an inorganic compound film of the present invention can be manufactured as follows. That is, the inorganic compound film of the present invention can be produced by alternately forming and laminating hydrophobic layered inorganic compound layers and hydrophilic layered inorganic compound layers. More specifically, a hydrophobic layered inorganic compound-containing liquid containing a hydrophobic layered inorganic compound or a hydrophilic layered inorganic compound-containing liquid containing a hydrophilic layered inorganic compound is placed on a base and dried, and then the hydrophobic layered inorganic compound is dried. After the first step of forming the layer or the hydrophilic layered inorganic compound layer on the base, the hydrophobic layered inorganic compound-containing liquid or the hydrophilic layered inorganic compound-containing liquid is disposed on the lower layered inorganic compound layer and dried. By doing so, it can be produced by performing at least once the second step of forming a layered inorganic compound layer of a type different from the layered inorganic compound layer of the lower layer on the layered inorganic compound layer of the lower layer.

例えば、疎水性層状無機化合物が有機溶媒に分散した疎水性層状無機化合物含有液をベースの表面に配し乾燥させて疎水性層状無機化合物層を形成した後に、親水性層状無機化合物が水に分散した親水性層状無機化合物含有液を疎水性層状無機化合物層の表面に配し乾燥させて親水性層状無機化合物層を形成し、再度、疎水性層状無機化合物含有液を親水性層状無機化合物層の表面に配し乾燥させて疎水性層状無機化合物層を形成してベースから剥離すると、3層構造の無機化合物膜を得ることができる。親水性層状無機化合物層と疎水性層状無機化合物層とが交互に積層されていれば、無機化合物膜を構成する層状無機化合物層の数は特に限定されるものではない。すなわち、第二工程は1回以上であれば何回行ってもよい。   For example, after a hydrophobic layered inorganic compound-containing liquid in which a hydrophobic layered inorganic compound is dispersed in an organic solvent is placed on the surface of the base and dried to form a hydrophobic layered inorganic compound layer, the hydrophilic layered inorganic compound is dispersed in water. The hydrophilic layered inorganic compound-containing liquid is disposed on the surface of the hydrophobic layered inorganic compound layer and dried to form a hydrophilic layered inorganic compound layer, and the hydrophobic layered inorganic compound-containing liquid is again added to the hydrophilic layered inorganic compound layer. When a hydrophobic layered inorganic compound layer is formed on the surface and dried to peel from the base, a three-layered inorganic compound film can be obtained. The number of the layered inorganic compound layers constituting the inorganic compound film is not particularly limited as long as the hydrophilic layered inorganic compound layer and the hydrophobic layered inorganic compound layer are alternately laminated. That is, the second step may be performed any number of times as long as it is performed once or more.

よって、本発明の無機化合物膜において最小のものは、前述のように親水性層状無機化合物層と疎水性層状無機化合物層とが1層ずつ積層されたものである。この場合は、疎水性層状無機化合物層側の耐水性は問題なく、且つ、疎水性層状無機化合物層が一般に有する高い強度や寸法安定性によって無機化合物膜の性能が高められている。ただし、このような2層構造では、親水性層状無機化合物層に耐水性がないと膜全体としての耐水性は不十分となる。   Therefore, the minimum thing in the inorganic compound film | membrane of this invention is a thing which laminated | stacked the hydrophilic layered inorganic compound layer and the hydrophobic layered inorganic compound layer one layer each as mentioned above. In this case, there is no problem in water resistance on the hydrophobic layered inorganic compound layer side, and the performance of the inorganic compound film is enhanced by the high strength and dimensional stability generally possessed by the hydrophobic layered inorganic compound layer. However, in such a two-layer structure, if the hydrophilic layered inorganic compound layer does not have water resistance, the water resistance of the entire film will be insufficient.

よって、図1に示すような、親水性層状無機化合物層2の上下両面側に疎水性層状無機化合物層1,1が配された3層構造の無機化合物膜が特に好ましい。このような無機化合物膜は、親水性層状無機化合物層2の上下両面が疎水性層状無機化合物層1,1で覆われた構造となっているので、耐水性に優れ、水分が侵入しにくい。その結果、経時的なヘイズの増大が生じにくく、親水性層状無機化合物層2の高いガスバリア性能が長期間にわたって保持される。また、最小限の数の層でこのような効果を発現させることができるため、膜厚の増大や多層化に伴う透明性の低下が最小限で抑えられるとともに、少ない工程数で無機化合物膜を製造することができるため、量産に適している。   Therefore, an inorganic compound film having a three-layer structure in which the hydrophobic layered inorganic compound layers 1 and 1 are arranged on both upper and lower surfaces of the hydrophilic layered inorganic compound layer 2 as shown in FIG. 1 is particularly preferable. Since such an inorganic compound film has a structure in which the upper and lower surfaces of the hydrophilic layered inorganic compound layer 2 are covered with the hydrophobic layered inorganic compound layers 1 and 1, it is excellent in water resistance and hardly invades moisture. As a result, increase in haze over time is unlikely to occur, and the high gas barrier performance of the hydrophilic layered inorganic compound layer 2 is maintained over a long period of time. In addition, since such an effect can be expressed with a minimum number of layers, a decrease in transparency due to an increase in film thickness and multilayering can be minimized, and an inorganic compound film can be formed with a small number of steps. Since it can be manufactured, it is suitable for mass production.

ただし、親水性層状無機化合物層と疎水性層状無機化合物層とが1層ずつ積層されたもの(2層構造)であっても、何らかの方法により親水性層状無機化合物層の耐水性を十分に向上できれば、耐水性に優れ、柔軟性及びガスバリア性を有し、寸法安定性も優れた透明な無機化合物膜を得ることが可能である。すなわち、親水性層状無機化合物層を形成した後に、熱や光といった外部刺激により親水性を発現している要素を除去する方法(例えば、前述のリチウムによる電荷の減少といった方法や、前記外部刺激等により重合して疎水化する添加剤を用いる方法)等の公知の技術を用いた方法により、親水性層状無機化合物層の耐水性を向上すればよい。   However, even if the hydrophilic layered inorganic compound layer and the hydrophobic layered inorganic compound layer are laminated one by one (two-layer structure), the water resistance of the hydrophilic layered inorganic compound layer is sufficiently improved by some method. If possible, it is possible to obtain a transparent inorganic compound film having excellent water resistance, flexibility and gas barrier properties, and excellent dimensional stability. That is, after the formation of the hydrophilic layered inorganic compound layer, a method of removing an element that exhibits hydrophilicity by external stimulus such as heat or light (for example, the method of reducing charge by lithium as described above, the external stimulus, etc. The water resistance of the hydrophilic layered inorganic compound layer may be improved by a method using a known technique such as a method of using an additive that is polymerized and hydrophobized by the above.

よって、仮に親水性層状無機化合物層の耐水性を十分向上できるならば、図1に示したものとは反対に、疎水性層状無機化合物層の上下両面側に親水性層状無機化合物層が配された3層構造の無機化合物膜でもよい。この場合は、ガスバリア性の高い親水性層状無機化合物層を2層備えているため、非常に高いガスバリア性が発現する。
なお、前述の製造方法においては、第一工程における乾燥は、層状無機化合物層が完全な乾燥状態に至るまで行わなくてもよく、第二工程において層状無機化合物含有液を配した際に、その含有液と下層の層状無機化合物層との混合が起きず、実質的に多層構造が形成できる程度に乾燥してあればよい。例えば、チクソトロピー性が高く下層の層状無機化合物層上に配した後に短時間でゲル状に凝固するような層状無機化合物含有液を用いるのであれば、下層の層状無機化合物層が完全に乾燥する前であっても第二工程に供することが可能である。
Therefore, if the water resistance of the hydrophilic layered inorganic compound layer can be sufficiently improved, the hydrophilic layered inorganic compound layer is disposed on both the upper and lower surfaces of the hydrophobic layered inorganic compound layer, contrary to that shown in FIG. Alternatively, an inorganic compound film having a three-layer structure may be used. In this case, since two hydrophilic layered inorganic compound layers having high gas barrier properties are provided, very high gas barrier properties are exhibited.
In the above-described production method, the drying in the first step may not be performed until the layered inorganic compound layer reaches a completely dry state, and when the layered inorganic compound-containing liquid is disposed in the second step, It is sufficient that the mixed liquid and the lower layered inorganic compound layer are not mixed and dried to such an extent that a multilayer structure can be formed substantially. For example, if a layered inorganic compound-containing liquid that has a high thixotropic property and is solidified in a gel state in a short time after being placed on the lower layered inorganic compound layer is used, the layered inorganic compound layer before the lower layer is completely dried. Even so, it can be used in the second step.

また、前述の製造方法において、第二工程を行う前に、第一工程によりベース上に形成された層状無機化合物層をベースから剥離し、その剥離した層状無機化合物層の上下両面又は片面に対して、前記第二工程を少なくとも1回行ってもよい。層状無機化合物含有液を下層の層状無機化合物層上に配する際には、バーコーティング等で層状無機化合物含有液を塗布する方法を用いるとよい。   Further, in the above-described manufacturing method, before performing the second step, the layered inorganic compound layer formed on the base in the first step is peeled off from the base, and the upper and lower surfaces or one surface of the separated layered inorganic compound layer is removed. The second step may be performed at least once. When the layered inorganic compound-containing liquid is disposed on the lower layered inorganic compound layer, a method of applying the layered inorganic compound-containing liquid by bar coating or the like may be used.

さらに、前記第二工程において使用する疎水性層状無機化合物含有液又は親水性層状無機化合物含有液は、前記下層の層状無機化合物層を構成する層状無機化合物が分散しないような組成であることが好ましい。ここで、下層の層状無機化合物層を構成する層状無機化合物が分散しないような層状無機化合物含有液の組成について説明する。下層が疎水性層状無機化合物層である場合には、前記第二工程において親水性層状無機化合物含有液を使用するが、親水性層状無機化合物及び親水性を有する添加剤を分散又は溶解させる溶媒が、親水性層状無機化合物含有液中の液体の主成分であるような組成を意味する。一方、下層が親水性層状無機化合物層である場合には、前記第二工程において疎水性層状無機化合物含有液を使用するが、疎水性層状無機化合物及び疎水性を有する添加剤を分散又は溶解させる溶媒が、疎水性層状無機化合物含有液中の液体の主成分であるような組成を意味する。   Furthermore, the hydrophobic layered inorganic compound-containing liquid or hydrophilic layered inorganic compound-containing liquid used in the second step is preferably a composition that does not disperse the layered inorganic compound constituting the lower layered inorganic compound layer. . Here, the composition of the layered inorganic compound-containing liquid that does not disperse the layered inorganic compound constituting the lower layered inorganic compound layer will be described. When the lower layer is a hydrophobic layered inorganic compound layer, a hydrophilic layered inorganic compound-containing liquid is used in the second step, but the solvent for dispersing or dissolving the hydrophilic layered inorganic compound and hydrophilic additive is used. The composition which is the main component of the liquid in the hydrophilic layered inorganic compound-containing liquid is meant. On the other hand, when the lower layer is a hydrophilic layered inorganic compound layer, the hydrophobic layered inorganic compound-containing liquid is used in the second step, but the hydrophobic layered inorganic compound and the hydrophobic additive are dispersed or dissolved. It means a composition in which the solvent is the main component of the liquid in the hydrophobic layered inorganic compound-containing liquid.

さらに、本発明の無機化合物膜は、以下のような浸漬法によっても製造することができる。すなわち、本発明の無機化合物膜は、疎水性層状無機化合物を含有する疎水性層状無機化合物含有液又は親水性層状無機化合物を含有する親水性層状無機化合物含有液をベース上に配して乾燥し、疎水性層状無機化合物層又は親水性層状無機化合物層をベース上に形成し、形成された層状無機化合物層をベースから剥離する第一工程を行った後に、疎水性層状無機化合物含有液又は親水性層状無機化合物含有液の中に浸漬し、浸漬した層状無機化合物層の周囲全体に疎水性層状無機化合物含有液又は親水性層状無機化合物含有液を配して乾燥することにより、前記浸漬した層状無機化合物層とは異なる種類の層状無機化合物層を前記浸漬した層状無機化合物層の周囲全体に形成する第二工程を少なくとも1回行うことによって製造することができる。   Furthermore, the inorganic compound film of the present invention can also be produced by the following immersion method. That is, the inorganic compound film of the present invention is dried by disposing a hydrophobic layered inorganic compound-containing liquid containing a hydrophobic layered inorganic compound or a hydrophilic layered inorganic compound-containing liquid containing a hydrophilic layered inorganic compound on a base. After forming the hydrophobic layered inorganic compound layer or the hydrophilic layered inorganic compound layer on the base and performing the first step of peeling the formed layered inorganic compound layer from the base, the hydrophobic layered inorganic compound-containing liquid or hydrophilic The immersed layered material is immersed in the layered inorganic compound-containing solution, and the hydrophobic layered inorganic compound-containing solution or the hydrophilic layered inorganic compound-containing solution is disposed around the entire periphery of the immersed layered inorganic compound layer and dried. It can be produced by performing at least one second step of forming a layered inorganic compound layer of a type different from the inorganic compound layer on the entire periphery of the immersed layered inorganic compound layer. Kill.

なお、この第二工程において使用する疎水性層状無機化合物含有液又は親水性層状無機化合物含有液は、前記浸漬した層状無機化合物層を構成する層状無機化合物が分散しないような組成であることが好ましい。ここで、浸漬した層状無機化合物層を構成する層状無機化合物が分散しないような層状無機化合物含有液の組成について説明する。浸漬した層状無機化合物層が疎水性層状無機化合物層である場合には、前記第二工程において親水性層状無機化合物含有液を使用するが、親水性層状無機化合物及び親水性を有する添加剤を分散又は溶解させる溶媒が、親水性層状無機化合物含有液中の液体の主成分であるような組成を意味する。一方、浸漬した層状無機化合物層が親水性層状無機化合物層である場合には、前記第二工程において疎水性層状無機化合物含有液を使用するが、疎水性層状無機化合物及び疎水性を有する添加剤を分散又は溶解させる溶媒が、疎水性層状無機化合物含有液中の液体の主成分であるような組成を意味する。   In addition, it is preferable that the hydrophobic layered inorganic compound-containing liquid or the hydrophilic layered inorganic compound-containing liquid used in the second step has a composition in which the layered inorganic compound constituting the immersed layered inorganic compound layer is not dispersed. . Here, the composition of the layered inorganic compound-containing liquid that does not disperse the layered inorganic compound constituting the immersed layered inorganic compound layer will be described. In the case where the immersed layered inorganic compound layer is a hydrophobic layered inorganic compound layer, a hydrophilic layered inorganic compound-containing liquid is used in the second step, but the hydrophilic layered inorganic compound and hydrophilic additive are dispersed. Alternatively, it means a composition in which the solvent to be dissolved is the main component of the liquid in the hydrophilic layered inorganic compound-containing liquid. On the other hand, when the immersed layered inorganic compound layer is a hydrophilic layered inorganic compound layer, the hydrophobic layered inorganic compound-containing liquid is used in the second step, but the hydrophobic layered inorganic compound and the hydrophobic additive are used. Means a composition in which the solvent for dispersing or dissolving is the main component of the liquid in the hydrophobic layered inorganic compound-containing liquid.

層状無機化合物含有液は、例えば層状無機化合物を溶媒に加えて激しく振とうし、層状無機化合物が溶媒に均一に分散した分散液を得た後に、必要に応じて適当な添加剤又は添加剤を分散若しくは溶解させた溶液を加え、さらに激しく振とうすることにより調製することができる。このとき、常温よりも高い温度で振とうすることによって、層状無機化合物の分散を促進することができ、また添加剤をより均一に混合することができる。さらに、必要に応じて、ホモジナイザーや超音波等の層状無機化合物の分散に好適な公知の手法を用いて、層状無機化合物及び添加剤をより分散させてもよい。   For example, the layered inorganic compound-containing liquid is vigorously shaken by adding the layered inorganic compound to the solvent, and after obtaining a dispersion in which the layered inorganic compound is uniformly dispersed in the solvent, an appropriate additive or additive is added as necessary. It can be prepared by adding a dispersed or dissolved solution and shaking vigorously. At this time, by shaking at a temperature higher than room temperature, the dispersion of the layered inorganic compound can be promoted, and the additive can be mixed more uniformly. Furthermore, if necessary, the layered inorganic compound and the additive may be further dispersed using a known method suitable for dispersing the layered inorganic compound such as a homogenizer or an ultrasonic wave.

層状無機化合物含有液の粘性は低くても差し支えないが、粘性が高く流動性の低いペースト状の層状無機化合物含有液を用いることが好ましい。ペースト状の層状無機化合物含有液は、溶媒を揮発させて濃縮するなどして固形比をより高くする方法や、増粘剤などを加える方法により調製することができる。固形分濃度を高くしてペースト状とした層状無機化合物含有液を用いることにより、短時間で乾燥を完了することができる。また、同様の層状無機化合物含有液を用いることにより、ベースに塗布した層状無機化合物含有液が低い流動性ゆえに流れ出さないなどの利点が得られる。層状無機化合物含有液が流れ出す心配がないため、仕切られた容器等のような流れ出し防止構造を有するベースを用いる必要はない。   The viscosity of the layered inorganic compound-containing liquid may be low, but it is preferable to use a paste-like layered inorganic compound-containing liquid having high viscosity and low fluidity. The paste-like layered inorganic compound-containing liquid can be prepared by a method of increasing the solid ratio by evaporating and concentrating the solvent, or a method of adding a thickener or the like. Drying can be completed in a short time by using a layered inorganic compound-containing liquid that has a solid content concentration and is in the form of a paste. Further, by using the same layered inorganic compound-containing liquid, advantages such as that the layered inorganic compound-containing liquid applied to the base does not flow out due to low fluidity can be obtained. Since there is no fear that the layered inorganic compound-containing liquid flows out, it is not necessary to use a base having a flow-out prevention structure such as a partitioned container.

塗布等によりベース上に配した層状無機化合物含有液に気泡が混入していると、加熱乾燥時に気泡が膨張するために無機化合物膜の表面に円形の膨れ上がりが発生したり、透明性の低い無機化合物膜が得られる等の問題が生じるおそれがある。よって、ベース上に配する前の層状無機化合物含有液に、真空脱泡等の脱気処理を施すことが好ましい。真空脱泡は層状無機化合物含有液の粘度を低下させた状態で行うことが望ましく、そのために常温よりも高い温度で、且つ、層状無機化合物含有液を攪拌しながら行うことがより好ましい。   If air bubbles are mixed in the layered inorganic compound-containing liquid disposed on the base by coating or the like, the air bubbles expand during heating and drying, and the surface of the inorganic compound film may bulge up or have low transparency. There is a possibility that problems such as obtaining an inorganic compound film may occur. Therefore, it is preferable to subject the layered inorganic compound-containing liquid before being disposed on the base to a degassing treatment such as vacuum defoaming. The vacuum defoaming is desirably performed in a state where the viscosity of the layered inorganic compound-containing liquid is lowered, and therefore, it is more preferably performed at a temperature higher than normal temperature and while stirring the layered inorganic compound-containing liquid.

このようにして得られた層状無機化合物含有液をベースの表面に一定の厚さで塗布した後に、溶媒をゆっくりと除去して無機化合物膜を形成する。溶媒を除去する方法は特に限定されるものではないが、例えば、遠心分離、ろ過、真空乾燥、凍結真空乾燥、不活性ガス雰囲気下放置、及び加熱蒸発法が好ましい。あるいは、これらの方法のうちの複数を組み合わせてもよい。   After applying the layered inorganic compound-containing liquid thus obtained to the base surface with a certain thickness, the solvent is slowly removed to form an inorganic compound film. The method for removing the solvent is not particularly limited, and for example, centrifugation, filtration, vacuum drying, freeze vacuum drying, standing in an inert gas atmosphere, and heat evaporation are preferable. Alternatively, a plurality of these methods may be combined.

これらの方法のうち例えば加熱蒸発法を用いる場合は、平坦なトレイをベースとして用い、これに層状無機化合物含有液を塗布するとよい。トレイの材質としては真鍮等の平滑な材料であれば特に限定されるものではないが、乾燥後にベースに無機化合物膜が貼り付かず容易に無機化合物膜が剥離するようにするためには、撥水性の強いポリプロピレン、ポリテトラフルオロエチレン等の材料を用いることが好ましい。あるいは、ベースのうち層状無機化合物含有液を塗布する部分に、フッ素樹脂コーティングやチタニアコーティング等の撥水処理を行うことも好ましい。   Of these methods, for example, when the heating evaporation method is used, it is preferable to use a flat tray as a base and apply a layered inorganic compound-containing liquid thereto. The tray material is not particularly limited as long as it is a smooth material such as brass. However, in order to prevent the inorganic compound film from being attached to the base after drying, the inorganic compound film can be easily peeled off. It is preferable to use materials such as strong aqueous polypropylene and polytetrafluoroethylene. Or it is also preferable to perform water-repellent treatment such as fluororesin coating or titania coating on the portion of the base to which the layered inorganic compound-containing liquid is applied.

なお、ベースの表面はできる限り平滑であることが好ましい。平滑でない場合には、無機化合物膜の表面にベースの表面の荒れが転写されるため無機化合物膜表面の平坦性を低下させ、光が乱反射し、ヘイズを増大させる原因となる。
層状無機化合物含有液をベースの表面に塗布したら、強制送風式オーブン中若しくはホットプレート上において、30℃以上90℃以下(好ましくは50℃以上70℃以下)の温度条件下で、10分以上7時間以下(好ましくは20分以上3時間以下)乾燥すれば無機化合物膜が得られる。
The surface of the base is preferably as smooth as possible. When the surface is not smooth, the roughness of the base surface is transferred to the surface of the inorganic compound film, so that the flatness of the surface of the inorganic compound film is lowered, and light is diffusely reflected, thereby increasing haze.
When the layered inorganic compound-containing liquid is applied to the surface of the base, it is 10 minutes or longer under a temperature condition of 30 ° C. or higher and 90 ° C. or lower (preferably 50 ° C. or higher and 70 ° C. or lower) in a forced air oven or on a hot plate. An inorganic compound film can be obtained by drying for a time or less (preferably 20 minutes to 3 hours).

このような製造方法によれば、耐水性に優れ、空気中における経時的なヘイズの増大が生じにくい透明な無機化合物膜を製造することができる。よって、例えばディスプレイに使用される透明フィルム材料のような、高い透明性が必要とされるとともに製造プロセスにおいて水を用いる工程があるために耐水性が求められる透明フィルム材料を提供することができる。   According to such a production method, it is possible to produce a transparent inorganic compound film that is excellent in water resistance and hardly causes increase in haze with time in the air. Therefore, for example, a transparent film material such as a transparent film material used for a display, which requires high transparency and requires water resistance due to the use of water in the production process, can be provided.

得られた無機化合物膜は、例えば電気泳動駆動式、電子粉流体方式等のフレキシブル電子ペーパーの基板又はガスバリア膜として用いることができる。その他には、透明でフレキシブルである特長を生かすとともに、無機物である層状無機化合物の紫外線に対する高い耐久性を生かして、太陽電池の基板にも好適に使用可能である。さらに、絶縁性である特徴を生かして、電気回路のフレキシブル基板、及び、基板上の導体部分を導電性インクの塗布又は印刷で形成したフレキシブルプリント基板にも好適に使用可能である。フレキシブル基板又はフレキシブルプリント基板の用途に用いた場合には、透明であるため電子部品を実装する際にカメラによる位置合わせが容易であるという利点も有する。このようなフレキシブル基板及びフレキシブルプリント基板の好適な用途としては、RFIDタグの基板、銅張積層板等があげられる。   The obtained inorganic compound film can be used, for example, as a substrate or a gas barrier film of flexible electronic paper such as an electrophoretic drive type or an electronic powder fluid type. In addition to the advantages of being transparent and flexible, the layered inorganic compound, which is an inorganic substance, can be used suitably for solar cell substrates by taking advantage of the high durability against ultraviolet rays. Furthermore, it can be suitably used for a flexible printed circuit board of an electric circuit and a flexible printed circuit board in which a conductive portion on the circuit board is formed by applying or printing a conductive ink by taking advantage of the insulating property. When used for a flexible substrate or a flexible printed circuit board, since it is transparent, it also has an advantage that alignment by a camera is easy when an electronic component is mounted. Suitable applications of such flexible substrates and flexible printed substrates include RFID tag substrates and copper clad laminates.

また、ペンタセンやチオフェン類に代表される有機半導体は、一般に酸素や水分によって劣化しやすく、またアモルファス無機半導体も、有機半導体ほどではないが酸素や水分の影響を受けやすい。そのため、それらを用いたディスプレイ等のデバイスでは、酸素や水蒸気の侵入を十分に阻止する必要がある。本発明の無機化合物膜は高いガスバリア性を有しているため、酸素や水分等により劣化しやすい有機半導体やアモルファス無機半導体を有する電子デバイス用のフレキシブル基板や、有機半導体やアモルファス無機半導体を酸素や水蒸気等のガスから保護するガスバリア膜としても好適に使用可能である。   In addition, organic semiconductors typified by pentacene and thiophenes are generally easily deteriorated by oxygen and moisture, and amorphous inorganic semiconductors are not easily affected by oxygen and moisture, although not as much as organic semiconductors. For this reason, in devices such as displays using these, it is necessary to sufficiently prevent oxygen and water vapor from entering. Since the inorganic compound film of the present invention has a high gas barrier property, a flexible substrate for an electronic device having an organic semiconductor or an amorphous inorganic semiconductor that is easily deteriorated by oxygen, moisture, or the like, an organic semiconductor or an amorphous inorganic semiconductor with oxygen or It can also be suitably used as a gas barrier film that protects from gas such as water vapor.

なお、前述した電子ペーパー,フレキシブル基板,フレキシブルプリント基板,有機半導体,又はアモルファス無機半導体を有する電子デバイス等に対して、本発明の無機化合物膜を適用する際には、無機化合物膜をそのまま適用してもよいし、必要に応じて無機化合物膜に別の機能を有する膜(例えば、主として無機材料からなる水蒸気バリア膜、樹脂材料等からなる補強材、傷等を防ぐ保護層、表面を平滑化する平滑化層)等を付与して用いてもよい。   When applying the inorganic compound film of the present invention to the electronic paper, flexible substrate, flexible printed circuit board, organic semiconductor, or electronic device having an amorphous inorganic semiconductor described above, the inorganic compound film is applied as it is. If necessary, a film having another function on the inorganic compound film (for example, a water vapor barrier film made mainly of an inorganic material, a reinforcing material made of a resin material, a protective layer for preventing scratches, etc., and smoothing the surface) Or the like) may be used.

以下に、実施例を示して、本発明をさらに具体的に説明する。
〔実施例1〕
親水性層状無機化合物として合成サポナイト(クニミネ工業株式会社製のスメクトンSA)を、疎水性層状無機化合物として親有機化処理した合成ヘクトライト(コープケミカル株式会社製のルーセントタイトSEN)を、水を溶媒として用いた親水性層状無機化合物含有液への添加剤としてポリアクリル酸ナトリウム(和光純薬工業株式会社製)を、それぞれ使用した。
親水性層状無機化合物10.2gと純水594mlとを回転子とともにプラスチック製密封容器に入れ、25℃で2時間激しく振とうして親水性層状無機化合物分散液を得た。また、ポリアクリル酸ナトリウム1.8gと純水594mlとを回転子とともにプラスチック製密封容器に入れ、25℃で2時間激しく振とうした後に、さらにホモジナイザーで7分間撹拌して、添加剤分散液を得た。
Hereinafter, the present invention will be described more specifically with reference to examples.
[Example 1]
Synthetic saponite (Smecton SA manufactured by Kunimine Kogyo Co., Ltd.) is used as a hydrophilic layered inorganic compound, synthetic hectorite (Lucent Tight SEN manufactured by Corp Chemical Co., Ltd.) is used as a hydrophobic layered inorganic compound, and water is used as a solvent. Sodium acrylate (manufactured by Wako Pure Chemical Industries, Ltd.) was used as an additive to the hydrophilic layered inorganic compound-containing liquid used.
10.2 g of the hydrophilic layered inorganic compound and 594 ml of pure water were placed in a plastic sealed container together with a rotor, and shaken vigorously at 25 ° C. for 2 hours to obtain a hydrophilic layered inorganic compound dispersion. In addition, 1.8 g of sodium polyacrylate and 594 ml of pure water were placed in a plastic sealed container together with a rotor, shaken vigorously at 25 ° C. for 2 hours, and further stirred for 7 minutes with a homogenizer to obtain an additive dispersion. Obtained.

次に、この親水性層状無機化合物分散液と添加剤分散液とを回転子とともにプラスチック製密封容器に入れ、25℃で2時間激しく振とうした後に、さらにホモジナイザーで20分間撹拌して、水を溶媒とする親水性層状無機化合物含有液を得た。そして、この親水性層状無機化合物含有液を真空脱泡装置に入れ、脱気を行った。
B4サイズの真鍮製トレイ内に、剥離性付与剤としてシリコーン樹脂を表面に塗布した厚さ50μmのPETフィルム(大成ラミネーター株式会社製)を入れ、PETフィルムのシリコーン樹脂が塗布された面に親水性層状無機化合物含有液を塗布した。親水性層状無機化合物含有液の塗布にはステンレス製地べらを用い、スペーサーをガイドとして利用することにより、均一な厚さの親水性層状無機化合物含有液膜を形成した。
Next, the hydrophilic layered inorganic compound dispersion liquid and the additive dispersion liquid are placed in a plastic sealed container together with a rotor, shaken vigorously at 25 ° C. for 2 hours, and further stirred with a homogenizer for 20 minutes to remove water. A hydrophilic layered inorganic compound-containing liquid was obtained as a solvent. And this hydrophilic layered inorganic compound containing liquid was put into the vacuum degassing apparatus, and deaerated.
In a B4 size brass tray, a PET film (made by Taisei Laminator Co., Ltd.) having a thickness of 50 μm coated with a silicone resin as a release agent is placed, and the surface of the PET film coated with the silicone resin is hydrophilic. A layered inorganic compound-containing liquid was applied. A hydrophilic lamellar inorganic compound-containing liquid film having a uniform thickness was formed by applying a hydrophilic stratified inorganic compound-containing liquid using a stainless steel ground plate and using a spacer as a guide.

このトレイを強制送風式オーブン内に入れ、60℃の温度条件下で約6時間加熱して乾燥させた。乾燥後、形成された親水性層状無機化合物層をPETフィルムから剥離し、厚さ約26μmの均一な親水性層状無機化合物膜を得た。
この親水性層状無機化合物膜のガスバリア性を確認するために、日本分光株式会社製のガス透過量測定装置「Gasperm−100」で酸素の透過係数を測定した。その結果、室温における酸素の透過係数が、3.2×10-11cm2-1cmHg-1未満であることが確認され、高いガスバリア性を有することが分かった。
The tray was placed in a forced air oven and heated to dry for about 6 hours at a temperature of 60 ° C. After drying, the formed hydrophilic layered inorganic compound layer was peeled from the PET film to obtain a uniform hydrophilic layered inorganic compound film having a thickness of about 26 μm.
In order to confirm the gas barrier properties of this hydrophilic layered inorganic compound film, the oxygen transmission coefficient was measured with a gas transmission amount measuring device “Gasperm-100” manufactured by JASCO Corporation. As a result, it was confirmed that the oxygen permeability coefficient at room temperature was less than 3.2 × 10 −11 cm 2 s −1 cmHg −1 , and it had high gas barrier properties.

次に、疎水性層状無機化合物1gとN−メチルピロリドン99gとを回転子とともにプラスチック製密封容器に入れ、2日放置した後に、25℃で1時間激しく振とうして疎水性層状無機化合物含有液を得た。
このN−メチルピロリドンを溶媒とする疎水性層状無機化合物含有液を金属製のトレイに入れ、そこに前述のように製造した親水性層状無機化合物層(透明膜)を浸漬した。そして、トレイをホットプレートの上に載置し、80℃にて約4時間加熱してN−メチルピロリドンを揮発させ、疎水性層状無機化合物含有液の固形分濃度を上げた。その後、周囲全体に疎水性層状無機化合物含有液が配された状態の親水性層状無機化合物層を金属製トレイから引き上げ、シリコーン樹脂を表面に塗布したPETフィルムの上に広げ、ホットプレートの上で80℃にて約4時間加熱して乾燥させた。その結果、厚さ約28μmで、親水性層状無機化合物層の全体が疎水性層状無機化合物層で包まれた構造の透明な無機化合物膜を得た。
Next, 1 g of the hydrophobic layered inorganic compound and 99 g of N-methylpyrrolidone are placed in a plastic sealed container together with a rotor, left for 2 days, and then shaken vigorously at 25 ° C. for 1 hour to contain the hydrophobic layered inorganic compound-containing liquid. Got.
The hydrophobic layered inorganic compound-containing liquid using N-methylpyrrolidone as a solvent was placed in a metal tray, and the hydrophilic layered inorganic compound layer (transparent film) produced as described above was immersed therein. Then, the tray was placed on a hot plate and heated at 80 ° C. for about 4 hours to volatilize N-methylpyrrolidone to increase the solid content concentration of the hydrophobic layered inorganic compound-containing liquid. Thereafter, the hydrophilic layered inorganic compound layer with the hydrophobic layered inorganic compound-containing liquid disposed on the entire periphery is pulled up from the metal tray, spread on the PET film coated with silicone resin on the surface, It was dried by heating at 80 ° C. for about 4 hours. As a result, a transparent inorganic compound film having a thickness of about 28 μm and a structure in which the entire hydrophilic layered inorganic compound layer was wrapped with the hydrophobic layered inorganic compound layer was obtained.

得られた無機化合物膜の引張強度は34MPaであり、自立膜として使用可能な機械的強度を有していた。また、透明度が高く、フレキシビリティーに優れていた。
無機化合物膜の柔軟性を確認するため、半径6mmの円筒状に湾曲させたが、クラックなどは発生せず、何の欠陥も生じなかった。また、無機化合物膜の透明性を可視紫外分光光度計で測定したところ、344nmから800nmまでの範囲で80%以上の透過率を有し、着色は認められなかった。さらに、日本電色工業株式会社製の濁度計「NDH2000」で測定した無機化合物膜の全光線透過率は91.3%であり、ヘイズ(曇度)は3.4%であった。
この無機化合物膜を、温度24℃、湿度45%に保持された空気中で1週間放置した後に、前述と同様にして全光線透過率とヘイズ(曇度)とを測定したところ、全光線透過率は91.9%で、ヘイズ(曇度)は4.6%であった。
また、この無機化合物膜に水を滴下すると、水は無機化合物膜の表面で撥水状態となって流れ落ち、無機化合物膜に変化は認められなかった。
The obtained inorganic compound film had a tensile strength of 34 MPa and had mechanical strength that could be used as a self-supporting film. Moreover, the transparency was high and the flexibility was excellent.
In order to confirm the flexibility of the inorganic compound film, it was bent into a cylindrical shape with a radius of 6 mm, but no cracks were generated and no defects were generated. Further, when the transparency of the inorganic compound film was measured with a visible ultraviolet spectrophotometer, it had a transmittance of 80% or more in the range from 344 nm to 800 nm, and no coloring was observed. Furthermore, the total light transmittance of the inorganic compound film measured with a turbidimeter “NDH2000” manufactured by Nippon Denshoku Industries Co., Ltd. was 91.3%, and the haze (haze) was 3.4%.
The inorganic compound film was allowed to stand in air kept at a temperature of 24 ° C. and a humidity of 45% for 1 week, and then the total light transmittance and haze (haze) were measured in the same manner as described above. The rate was 91.9% and the haze (cloudiness) was 4.6%.
Further, when water was dropped on the inorganic compound film, the water flowed down in a water repellent state on the surface of the inorganic compound film, and no change was observed in the inorganic compound film.

〔実施例2〕
親水性層状無機化合物として合成サポナイト(クニミネ工業株式会社製のスメクトンSA)を、疎水性層状無機化合物として親有機化処理した合成ヘクトライト(コープケミカル株式会社製のルーセントタイトSAN)を、水を溶媒として用いた親水性層状無機化合物含有液への添加剤としてポリアクリル酸ナトリウム(和光純薬工業株式会社製)を、疎水性層状無機化合物含有液への添加剤としてポリビニルブチラール樹脂(積水化学工業株式会社製のエスレックBX−1)を、それぞれ使用した。
疎水性層状無機化合物8gとメタノール19.2g及びトルエン172.8gとを回転子とともに容量300mlの三角フラスコに入れ、25℃で2時間攪拌して均一な疎水性層状無機化合物分散液を得た。また、ポリビニルブチラール2gとトルエン2g及びテトラヒドロフラン46gとを回転子とともに容量100mlの三角フラスコに入れ、25℃で2時間攪拌して均一な添加剤含有液を得た。
[Example 2]
Synthetic saponite (Smecton SA manufactured by Kunimine Kogyo Co., Ltd.) is used as the hydrophilic layered inorganic compound, synthetic hectorite (Lucent Tight SAN manufactured by Coop Chemical Co., Ltd.) is used as the hydrophobic layered inorganic compound, and water is used as the solvent. Sodium polyacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) as an additive to the hydrophilic layered inorganic compound-containing liquid used as a polyvinyl butyral resin (Sekisui Chemical Co., Ltd.) as an additive to the hydrophobic layered inorganic compound-containing liquid Each company's ESREC BX-1) was used.
8 g of the hydrophobic layered inorganic compound, 19.2 g of methanol, and 172.8 g of toluene were placed in a 300 ml Erlenmeyer flask together with a rotor and stirred at 25 ° C. for 2 hours to obtain a uniform hydrophobic layered inorganic compound dispersion. Moreover, 2 g of polyvinyl butyral, 2 g of toluene and 46 g of tetrahydrofuran were put together with a rotor in a 100 ml Erlenmeyer flask and stirred at 25 ° C. for 2 hours to obtain a uniform additive-containing liquid.

次に、この疎水性層状無機化合物分散液170gと添加剤含有液30gとを回転子とともに容量300mlの三角フラスコに入れ、25℃で2時間撹拌して、均一な疎水性層状無機化合物含有液を得た。そして、約25℃の疎水性層状無機化合物含有液を減圧脱気装置に入れ、約5分間、回転子で攪拌しながら十分に脱気を行った。
深さ3mmの金属製トレイのうち平坦部分に、離型剤を塗布したPET製フィルムを敷き、その上にこの疎水性層状無機化合物含有液を流し入れた。そして、金属製トレイの上部にガラス棒を載置して移動させることにより、余分な疎水性層状無機化合物含有液を除去した。これにより、均一な厚さの疎水性層状無機化合物含有液膜を形成した。この金属製トレイをホットプレート上に置き、60℃の温度条件下で約4時間加熱して乾燥し、PET製フィルム上に疎水性層状無機化合物層を形成した。
Next, 170 g of the hydrophobic layered inorganic compound dispersion liquid and 30 g of the additive-containing liquid are put together with a rotor in a 300 ml Erlenmeyer flask and stirred at 25 ° C. for 2 hours to obtain a uniform hydrophobic layered inorganic compound-containing liquid. Obtained. Then, the hydrophobic layered inorganic compound-containing liquid at about 25 ° C. was placed in a vacuum degassing apparatus and sufficiently deaerated while being stirred for about 5 minutes by a rotor.
A PET film coated with a release agent was laid on a flat portion of a metal tray having a depth of 3 mm, and this hydrophobic layered inorganic compound-containing liquid was poured thereon. And the excess hydrophobic layered inorganic compound containing liquid was removed by mounting and moving a glass rod on the metal tray. Thereby, a hydrophobic layered inorganic compound-containing liquid film having a uniform thickness was formed. This metal tray was placed on a hot plate and dried by heating at 60 ° C. for about 4 hours to form a hydrophobic layered inorganic compound layer on the PET film.

次に、実施例1と全く同様にして得た脱気済みの親水性層状無機化合物含有液を、上記のようにして作製した疎水性層状無機化合物層上に流し込み、厚さ約2mmの疎水性層状無機化合物含有液膜を形成した。そして、この金属製トレイを強制送風式オーブン内に入れ、60℃の温度条件下で約7時間加熱して乾燥させ、PET製フィルムを剥離すると、疎水性層状無機化合物層(厚さは約17μm)と親水性層状無機化合物層(厚さは約50μm)との2層が積層した無機化合物膜(膜厚は約67μm)が得られた。
この無機化合物膜について、実施例1と同様の測定を行ったところ、316nmから800nmまでの範囲では80%以上の透過率を有し、376nmから800nmまでの範囲では85%以上の透過率を有し、着色は認められなかった。また、全光線透過率は91.9%であり、ヘイズ(曇度)は2.0%であった。
Next, the degassed hydrophilic layered inorganic compound-containing liquid obtained in exactly the same manner as in Example 1 was poured onto the hydrophobic layered inorganic compound layer produced as described above, and the hydrophobic layer having a thickness of about 2 mm was obtained. A layered inorganic compound-containing liquid film was formed. Then, this metal tray is placed in a forced air oven, heated under a temperature condition of 60 ° C. for about 7 hours and dried, and when the PET film is peeled off, the hydrophobic layered inorganic compound layer (thickness is about 17 μm). ) And a hydrophilic layered inorganic compound layer (having a thickness of about 50 μm), an inorganic compound film (film thickness of about 67 μm) was obtained.
This inorganic compound film was measured in the same manner as in Example 1. As a result, it had a transmittance of 80% or more in the range from 316 nm to 800 nm, and a transmittance of 85% or more in the range from 376 nm to 800 nm. However, coloring was not recognized. The total light transmittance was 91.9%, and the haze (haze) was 2.0%.

〔実施例3〕
実施例2と全く同様にして、疎水性層状無機化合物層(厚さは約17μm)と親水性層状無機化合物層(厚さは約50μm)との2層が積層した無機化合物膜(膜厚は約67μm)を作製した。ただし、PET製フィルムから剥離はせずに、PET製フィルムが金属製トレイの底面に接するようにして金属製トレイ上に置き、実施例2と全く同様にして作製した疎水性層状無機化合物含有液を、2層が積層した無機化合物膜上に流し込み、厚さ約3mmの疎水性層状無機化合物含有液膜を形成した。
Example 3
In the same manner as in Example 2, an inorganic compound film (thickness is about 50 μm) and a hydrophobic layered inorganic compound layer (thickness is about 17 μm) and a hydrophilic layered inorganic compound layer (thickness is about 50 μm) are laminated. About 67 μm). However, the liquid containing a hydrophobic layered inorganic compound prepared in exactly the same manner as in Example 2 without being peeled from the PET film and placed on the metal tray so that the PET film was in contact with the bottom surface of the metal tray. Was poured onto an inorganic compound film in which two layers were laminated to form a hydrophobic layered inorganic compound-containing liquid film having a thickness of about 3 mm.

そして、この金属製トレイを強制送風式オーブン内に入れ、60℃の温度条件下で約7時間加熱して乾燥させ、PET製フィルムを剥離すると、親水性層状無機化合物層が疎水性層状無機化合物層によって挟まれた構造を有する、3層が積層した無機化合物膜(膜厚は約140μm)が得られた。実施例1と同様の試験により、この無機化合物膜のフレキシビリティーが優れていることが分かった。   Then, when this metal tray is placed in a forced air oven, dried by heating for about 7 hours at 60 ° C., and the PET film is peeled off, the hydrophilic layered inorganic compound layer becomes a hydrophobic layered inorganic compound. An inorganic compound film (thickness: about 140 μm) in which three layers were laminated having a structure sandwiched between layers was obtained. The same test as in Example 1 revealed that the flexibility of the inorganic compound film was excellent.

また、この無機化合物膜について、実施例1と同様の測定を行ったところ、367nmから800nmまでの範囲では80%以上の透過率を有し、391nmから800nmまでの範囲では85%以上の透過率を有し、着色は認められなかった。また、全光線透過率は91.4%であり、ヘイズ(曇度)は3.6%であった。
次に、この無機化合物膜を、温度24℃、湿度45%に保持された空気中で1週間放置した後に、前述と同様にして全光線透過率とヘイズ(曇度)とを測定したところ、全光線透過率は91.3%であり、ヘイズ(曇度)は3.4%であった。
さらに、この無機化合物膜を水平に置き、膜面に水を滴下し6時間放置したが、目視及び触診で分かる変化は全く認められなかった。
Further, this inorganic compound film was measured in the same manner as in Example 1. As a result, it had a transmittance of 80% or more in the range from 367 nm to 800 nm, and a transmittance of 85% or more in the range from 391 nm to 800 nm. The coloring was not recognized. The total light transmittance was 91.4%, and the haze (cloudiness) was 3.6%.
Next, after this inorganic compound film was left in air kept at a temperature of 24 ° C. and a humidity of 45% for 1 week, the total light transmittance and haze (haze) were measured in the same manner as described above. The total light transmittance was 91.3%, and the haze (cloudiness) was 3.4%.
Further, this inorganic compound film was placed horizontally, and water was dropped on the film surface and left for 6 hours. However, no change that could be visually and palpated was observed.

〔比較例1〕
実施例1と同様にして、親水性層状無機化合物とポリアクリル酸ナトリウムとを含有する親水性層状無機化合物層をPETフィルム上に形成し、PETフィルムから剥離した。得られた透明な無機化合物膜は1層構造であり、厚さは約22μmであった。
この無機化合物膜について、実施例1と同様の測定を行ったところ、264nmから800nmまでの範囲では80%以上の透過率を有し、着色は認められなかった。また、全光線透過率は91.7%であり、ヘイズ(曇度)は2.3%であった。
次に、この無機化合物膜を、温度24℃、湿度45%に保持された空気中で1週間放置した後に、前述と同様にして全光線透過率とヘイズ(曇度)とを測定したところ、全光線透過率は91.3%であり、ヘイズ(曇度)は21.4%であった。
さらに、この無機化合物膜に水を滴下すると、滴下部分は直ちに膨潤しゲル状になって、元の膜の形態を留めなかった。
[Comparative Example 1]
In the same manner as in Example 1, a hydrophilic layered inorganic compound layer containing a hydrophilic layered inorganic compound and sodium polyacrylate was formed on a PET film and peeled from the PET film. The obtained transparent inorganic compound film had a single layer structure and a thickness of about 22 μm.
This inorganic compound film was measured in the same manner as in Example 1. As a result, the inorganic compound film had a transmittance of 80% or more in the range from 264 nm to 800 nm, and no coloring was observed. Further, the total light transmittance was 91.7%, and the haze (haze) was 2.3%.
Next, after this inorganic compound film was left in air kept at a temperature of 24 ° C. and a humidity of 45% for 1 week, the total light transmittance and haze (haze) were measured in the same manner as described above. The total light transmittance was 91.3%, and the haze (cloudiness) was 21.4%.
Furthermore, when water was dropped onto the inorganic compound film, the dripped portion immediately swelled and became a gel, and the original film shape was not retained.

本発明の無機化合物膜は、親水性層状無機化合物層によって高いガスバリア性を有し、且つ、耐水性に優れるとともに経時的なヘイズの増大が生じにくいので、ディスプレイ用のフィルム基板やガスバリア膜に好適であり、さらには薬品や食品の包装用フィルム等にも好適である。   The inorganic compound film of the present invention has a high gas barrier property due to the hydrophilic layered inorganic compound layer, and is excellent in water resistance and is less prone to increase in haze over time, so it is suitable for a film substrate for display and a gas barrier film. Furthermore, it is also suitable for films for packaging medicines and foods.

3層構造を有する無機化合物膜の構造を示す断面図である。It is sectional drawing which shows the structure of the inorganic compound film | membrane which has a 3 layer structure. 無機化合物膜の紫外可視吸収スペクトルを示す図である。It is a figure which shows the ultraviolet visible absorption spectrum of an inorganic compound film | membrane.

符号の説明Explanation of symbols

1 疎水性層状無機化合物層
2 親水性層状無機化合物層
DESCRIPTION OF SYMBOLS 1 Hydrophobic layered inorganic compound layer 2 Hydrophilic layered inorganic compound layer

Claims (17)

多数の層状無機化合物の粒子が配向して積層した構造を有する層状無機化合物層が2層以上積層されてなる無機化合物膜において、
有機溶媒に対する親和性が高く有機溶媒に分散しやすい疎水性層状無機化合物のみ又は前記疎水性層状無機化合物と添加剤とで構成される疎水性層状無機化合物層と、水に対する親和性が高く水に分散しやすい親水性層状無機化合物のみ又は前記親水性層状無機化合物と添加剤とで構成される親水性層状無機化合物層と、が積層されてなり、自立膜として利用可能な機械的強度を有し且つ80%以上の全光線透過率を有することを特徴とする無機化合物膜。
In an inorganic compound film formed by laminating two or more layered inorganic compound layers having a structure in which a large number of layered inorganic compound particles are oriented and laminated,
Hydrophobic layered inorganic compound layer composed of only the hydrophobic layered inorganic compound or the hydrophobic layered inorganic compound and an additive having high affinity for the organic solvent and easy to disperse in the organic solvent; The hydrophilic layered inorganic compound layer composed of only the hydrophilic layered inorganic compound that is easy to disperse or the hydrophilic layered inorganic compound and an additive is laminated, and has mechanical strength that can be used as a self-supporting film. And an inorganic compound film having a total light transmittance of 80% or more.
前記疎水性層状無機化合物及び前記親水性層状無機化合物は、合成により得られた粘土鉱物よりなることを特徴とする請求項1に記載の無機化合物膜。   The inorganic compound film according to claim 1, wherein the hydrophobic layered inorganic compound and the hydrophilic layered inorganic compound are made of a clay mineral obtained by synthesis. ガスバリア性を有することを特徴とする請求項1又は請求項2に記載の無機化合物膜。   The inorganic compound film according to claim 1, wherein the inorganic compound film has a gas barrier property. 前記親水性層状無機化合物層の上下両面側に前記疎水性層状無機化合物層が配された3層構造であることを特徴とする請求項1〜3のいずれか一項に記載の無機化合物膜。   The inorganic compound film according to any one of claims 1 to 3, wherein the inorganic compound film has a three-layer structure in which the hydrophobic layered inorganic compound layer is disposed on both upper and lower surfaces of the hydrophilic layered inorganic compound layer. 前記親水性層状無機化合物層の全体が前記疎水性層状無機化合物層で包まれた構造を有することを特徴とする請求項1〜3のいずれか一項に記載の無機化合物膜。   The inorganic compound film according to any one of claims 1 to 3, wherein the entire hydrophilic layered inorganic compound layer has a structure wrapped with the hydrophobic layered inorganic compound layer. ヘイズが5%以下であることを特徴とする請求項1〜5のいずれか一項に記載の無機化合物膜。   Haze is 5% or less, The inorganic compound film | membrane as described in any one of Claims 1-5 characterized by the above-mentioned. 400nm以上800nm以下の波長範囲における光線透過率が80%以上95%以下であることを特徴とする請求項1〜6のいずれか一項に記載の無機化合物膜。   The inorganic compound film according to any one of claims 1 to 6, wherein light transmittance in a wavelength range of 400 nm or more and 800 nm or less is 80% or more and 95% or less. 請求項1〜7のいずれか一項に記載の無機化合物膜を、前記疎水性層状無機化合物層と前記親水性層状無機化合物層とを交互に形成して積層することにより製造する方法であって、前記疎水性層状無機化合物を含有する疎水性層状無機化合物含有液又は前記親水性層状無機化合物を含有する親水性層状無機化合物含有液をベース上に配して乾燥し、前記疎水性層状無機化合物層又は前記親水性層状無機化合物層を前記ベース上に形成する第一工程を行った後に、前記疎水性層状無機化合物含有液又は前記親水性層状無機化合物含有液を下層の層状無機化合物層上に配して乾燥することにより前記下層の層状無機化合物層とは異なる種類の層状無機化合物層を前記下層の層状無機化合物層上に形成する第二工程を少なくとも1回行うことを特徴とする無機化合物膜の製造方法。   A method for producing the inorganic compound film according to any one of claims 1 to 7 by alternately forming and laminating the hydrophobic layered inorganic compound layer and the hydrophilic layered inorganic compound layer. The hydrophobic layered inorganic compound-containing liquid containing the hydrophobic layered inorganic compound or the hydrophilic layered inorganic compound-containing liquid containing the hydrophilic layered inorganic compound is placed on a base and dried, and the hydrophobic layered inorganic compound is dried. After performing the first step of forming the layer or the hydrophilic layered inorganic compound layer on the base, the hydrophobic layered inorganic compound-containing liquid or the hydrophilic layered inorganic compound-containing liquid is placed on the lower layered inorganic compound layer. The second step of forming a layered inorganic compound layer of a type different from the layered inorganic compound layer on the lower layer by arranging and drying is performed at least once. Method of producing an inorganic compound film. 前記第二工程を行う前に、前記第一工程により前記ベース上に形成された層状無機化合物層を前記ベースから剥離し、その剥離した層状無機化合物層の上下両面又は片面に対して、前記第二工程を少なくとも1回行うことを特徴とする請求項8に記載の無機化合物膜の製造方法。   Prior to performing the second step, the layered inorganic compound layer formed on the base in the first step is peeled off from the base, and the upper and lower surfaces or one side of the peeled layered inorganic compound layer is The method for producing an inorganic compound film according to claim 8, wherein the two steps are performed at least once. 前記第二工程において使用する前記疎水性層状無機化合物含有液又は前記親水性層状無機化合物含有液は、前記下層の層状無機化合物層を構成する層状無機化合物が分散しないような組成であることを特徴とする請求項8又は請求項9に記載の無機化合物膜の製造方法。   The hydrophobic layered inorganic compound-containing liquid or the hydrophilic layered inorganic compound-containing liquid used in the second step has a composition such that the layered inorganic compound constituting the lower layered inorganic compound layer is not dispersed. The manufacturing method of the inorganic compound film | membrane of Claim 8 or Claim 9. 請求項1,2,3,5のいずれか一項に記載の無機化合物膜を製造する方法であって、前記疎水性層状無機化合物を含有する疎水性層状無機化合物含有液又は前記親水性層状無機化合物を含有する親水性層状無機化合物含有液をベース上に配して乾燥し、前記疎水性層状無機化合物層又は前記親水性層状無機化合物層を前記ベース上に形成し、形成された層状無機化合物層を前記ベースから剥離する第一工程を行った後に、前記疎水性層状無機化合物含有液又は前記親水性層状無機化合物含有液の中に浸漬し、浸漬した層状無機化合物層の周囲全体に前記疎水性層状無機化合物含有液又は前記親水性層状無機化合物含有液を配して乾燥することにより、前記浸漬した層状無機化合物層とは異なる種類の層状無機化合物層を前記浸漬した層状無機化合物層の周囲全体に形成する第二工程を少なくとも1回行うことを特徴とする無機化合物膜の製造方法。   A method for producing an inorganic compound film according to any one of claims 1, 2, 3, and 5, wherein the hydrophobic layered inorganic compound-containing liquid containing the hydrophobic layered inorganic compound or the hydrophilic layered inorganic film A layered inorganic compound formed by forming a hydrophilic layered inorganic compound-containing liquid containing a compound on a base and drying to form the hydrophobic layered inorganic compound layer or the hydrophilic layered inorganic compound layer on the base. After performing the first step of peeling the layer from the base, the layer is immersed in the hydrophobic layered inorganic compound-containing liquid or the hydrophilic layered inorganic compound-containing liquid, and the hydrophobic layer is entirely applied around the immersed layered inorganic compound layer. The layered inorganic compound-containing liquid or the hydrophilic layered inorganic compound-containing liquid is disposed and dried, whereby the layered inorganic compound layer of a different type from the immersed layered inorganic compound layer is immersed Method of producing an inorganic compound film a second step and carrying out at least once to form the entire periphery of the compound layer. 前記第二工程において使用する前記疎水性層状無機化合物含有液又は前記親水性層状無機化合物含有液は、前記浸漬した層状無機化合物層を構成する層状無機化合物が分散しないような組成であることを特徴とする請求項11に記載の無機化合物膜の製造方法。   The hydrophobic layered inorganic compound-containing liquid or the hydrophilic layered inorganic compound-containing liquid used in the second step is a composition that does not disperse the layered inorganic compound constituting the immersed layered inorganic compound layer. The method for producing an inorganic compound film according to claim 11. 請求項1〜7のいずれか一項に記載の無機化合物膜、又は、請求項8〜12のいずれか一項に記載の無機化合物膜の製造方法により得られた無機化合物膜で、少なくとも一部分が構成されたことを特徴とする電子ペーパー。   The inorganic compound film according to any one of claims 1 to 7, or the inorganic compound film obtained by the method for producing an inorganic compound film according to any one of claims 8 to 12, wherein at least a part of the inorganic compound film is obtained. Electronic paper characterized by being composed. 請求項1〜7のいずれか一項に記載の無機化合物膜、又は、請求項8〜12のいずれか一項に記載の無機化合物膜の製造方法により得られた無機化合物膜で、少なくとも一部分が構成されたことを特徴とするフレキシブル基板。   The inorganic compound film according to any one of claims 1 to 7, or the inorganic compound film obtained by the method for producing an inorganic compound film according to any one of claims 8 to 12, wherein at least a part of the inorganic compound film is obtained. A flexible substrate characterized by being configured. 請求項1〜7のいずれか一項に記載の無機化合物膜、又は、請求項8〜12のいずれか一項に記載の無機化合物膜の製造方法により得られた無機化合物膜で、少なくとも一部分が構成されたことを特徴とするフレキシブルプリント基板。   The inorganic compound film according to any one of claims 1 to 7, or the inorganic compound film obtained by the method for producing an inorganic compound film according to any one of claims 8 to 12, wherein at least a part of the inorganic compound film is obtained. A flexible printed circuit board characterized by being configured. 非発光有機半導体又はアモルファス無機半導体を備える電子デバイスが実装され、ガスバリア性を有する基板であって、請求項1〜7のいずれか一項に記載の無機化合物膜、又は、請求項8〜12のいずれか一項に記載の無機化合物膜の製造方法により得られた無機化合物膜で、少なくとも一部分が構成されたことを特徴とする基板。   An electronic device comprising a non-light-emitting organic semiconductor or an amorphous inorganic semiconductor is mounted and has a gas barrier property, the inorganic compound film according to any one of claims 1 to 7, or the claims 8 to 12. A substrate characterized by comprising at least a part of an inorganic compound film obtained by the method for producing an inorganic compound film according to any one of the preceding claims. 非発光有機半導体又はアモルファス無機半導体を備える電子デバイスをガスから保護するガスバリア膜であって、請求項1〜7のいずれか一項に記載の無機化合物膜、又は、請求項8〜12のいずれか一項に記載の無機化合物膜の製造方法により得られた無機化合物膜で、少なくとも一部分が構成されたことを特徴とするガスバリア膜。   It is a gas barrier film | membrane which protects the electronic device provided with a non-light-emitting organic semiconductor or an amorphous inorganic semiconductor from gas, Comprising: The inorganic compound film | membrane as described in any one of Claims 1-7, or any one of Claims 8-12 A gas barrier film comprising at least a part of an inorganic compound film obtained by the method for producing an inorganic compound film according to one item.
JP2007116608A 2006-04-26 2007-04-26 Inorganic compound film and method for producing the same Expired - Fee Related JP4873566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007116608A JP4873566B2 (en) 2006-04-26 2007-04-26 Inorganic compound film and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006122345 2006-04-26
JP2006122345 2006-04-26
JP2007116608A JP4873566B2 (en) 2006-04-26 2007-04-26 Inorganic compound film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007313891A true JP2007313891A (en) 2007-12-06
JP4873566B2 JP4873566B2 (en) 2012-02-08

Family

ID=38848181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007116608A Expired - Fee Related JP4873566B2 (en) 2006-04-26 2007-04-26 Inorganic compound film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4873566B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041652A1 (en) * 2008-10-10 2010-04-15 セントラル硝子株式会社 Hydrophilic film and heat exchanger member using same
JP2013010662A (en) * 2011-06-29 2013-01-17 Asahi Kasei Corp Dispersion liquid of layered inorganic compound
JP2014051419A (en) * 2012-09-10 2014-03-20 Kri Inc Lamellar clay mineral composite and method of manufacturing the same, film forming composition using the lamellar clay mineral composite, and film
KR101390067B1 (en) * 2012-07-27 2014-05-07 율촌화학 주식회사 Graphene lamination barrier film
CN112320811A (en) * 2020-11-20 2021-02-05 中国地质大学(武汉) Preparation method of humidity stimulus response type material with montmorillonite asymmetric structure
JP2022505253A (en) * 2018-10-17 2022-01-14 サンーゴバン アブレイシブズ,インコーポレイティド Package containing abrasives and desiccants
WO2022138863A1 (en) 2020-12-24 2022-06-30 日産化学株式会社 Composition for forming gas barrier film, gas barrier film and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242915A (en) * 1987-02-17 1988-10-07 アームストロング・ワールド・インダストリース・インコーポレーテツド 2-1 layered silicate aggregate and water-resistant product obtained therefrom
JPS63294936A (en) * 1987-05-26 1988-12-01 Kunimine Kogyo Kk Composition of organic clay conjugate material
JP2003195268A (en) * 2001-12-25 2003-07-09 Fuji Photo Film Co Ltd Plastics substrate for display device and manufacturing method therefor
WO2005023714A1 (en) * 2003-09-08 2005-03-17 National Institute Of Advanced Industrial Science And Technology Clay film
JP2005313604A (en) * 2004-03-31 2005-11-10 National Institute Of Advanced Industrial & Technology Clay film and its manufacturing method
JP2007277078A (en) * 2006-03-11 2007-10-25 National Institute Of Advanced Industrial & Technology Film using denatured clay

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242915A (en) * 1987-02-17 1988-10-07 アームストロング・ワールド・インダストリース・インコーポレーテツド 2-1 layered silicate aggregate and water-resistant product obtained therefrom
JPS63294936A (en) * 1987-05-26 1988-12-01 Kunimine Kogyo Kk Composition of organic clay conjugate material
JP2003195268A (en) * 2001-12-25 2003-07-09 Fuji Photo Film Co Ltd Plastics substrate for display device and manufacturing method therefor
WO2005023714A1 (en) * 2003-09-08 2005-03-17 National Institute Of Advanced Industrial Science And Technology Clay film
JP2005313604A (en) * 2004-03-31 2005-11-10 National Institute Of Advanced Industrial & Technology Clay film and its manufacturing method
JP2007277078A (en) * 2006-03-11 2007-10-25 National Institute Of Advanced Industrial & Technology Film using denatured clay

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041652A1 (en) * 2008-10-10 2010-04-15 セントラル硝子株式会社 Hydrophilic film and heat exchanger member using same
JP2013010662A (en) * 2011-06-29 2013-01-17 Asahi Kasei Corp Dispersion liquid of layered inorganic compound
KR101390067B1 (en) * 2012-07-27 2014-05-07 율촌화학 주식회사 Graphene lamination barrier film
JP2014051419A (en) * 2012-09-10 2014-03-20 Kri Inc Lamellar clay mineral composite and method of manufacturing the same, film forming composition using the lamellar clay mineral composite, and film
JP2022505253A (en) * 2018-10-17 2022-01-14 サンーゴバン アブレイシブズ,インコーポレイティド Package containing abrasives and desiccants
CN112320811A (en) * 2020-11-20 2021-02-05 中国地质大学(武汉) Preparation method of humidity stimulus response type material with montmorillonite asymmetric structure
CN112320811B (en) * 2020-11-20 2023-08-29 中国地质大学(武汉) Preparation method of humidity stimulus response material with montmorillonite asymmetric structure
WO2022138863A1 (en) 2020-12-24 2022-06-30 日産化学株式会社 Composition for forming gas barrier film, gas barrier film and method for producing same
KR20220137140A (en) 2020-12-24 2022-10-11 닛산 가가쿠 가부시키가이샤 Gas barrier film forming composition, gas barrier film, and manufacturing method thereof

Also Published As

Publication number Publication date
JP4873566B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP5688783B2 (en) Clay film and method for producing the same
JP4873566B2 (en) Inorganic compound film and method for producing the same
Ebina et al. Flexible Transparent Clay Films with Heat‐Resistant and High Gas‐Barrier Properties
JP5099412B2 (en) Membrane using modified clay
JP5716080B2 (en) Clay thin film manufacturing method
KR102114866B1 (en) Composite system comprising a polymer matrix and core-shell nanoparticles, process for preparing it and use thereof
JP5553330B2 (en) Moisture-proof film for electronic device and method for producing the same
JP5648814B2 (en) Water vapor barrier film and method for producing the same
KR101025003B1 (en) Functional inorganic thick film and thick film manufacturing method using functional surface treatment of inorganic nano-particle sol
WO2011024782A1 (en) Clay dispersion liquid, method for producing the clay dispersion liquid, clay film, method for producing the clay film, and transparent material
JP5462482B2 (en) Method for producing solid material containing layered inorganic compound, solid material and formed body formed using the same
JP4763496B2 (en) Thin film and thin film laminate using the same
Ebina Development of Clay‐Based Films
Jo et al. Solvent-free and highly transparent SiO2 nanoparticle–polymer composite with an enhanced moisture barrier property
JP2008274043A (en) Film and method of manufacturing the same
JP4930917B2 (en) Clay thin film, method for producing the same, and clay thin film laminate
Yang et al. Wetting‐Enabled Three‐Dimensional Interfacial Polymerization (WET‐DIP) for Bioinspired Anti‐Dehydration Hydrogels
JP5706096B2 (en) Gas barrier sheet containing nanosheets
JP4899124B2 (en) Method for producing laminated clay film
US9487638B2 (en) Inorganic film and multilayer structure
KR101530987B1 (en) high barrier and optically transparent hybrid packaging films
JP2008137828A (en) Method for producing clay film and clay film obtained by the same
Lashgari et al. Graphene-based polymer composites in corrosion protection applications
JP2013075285A (en) Method for producing laminate
JP2006265517A (en) Gas-barrier material and gas-barrier method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees