JP2007305306A - Coin type electrochemical element and its manufacturing method - Google Patents

Coin type electrochemical element and its manufacturing method Download PDF

Info

Publication number
JP2007305306A
JP2007305306A JP2006129139A JP2006129139A JP2007305306A JP 2007305306 A JP2007305306 A JP 2007305306A JP 2006129139 A JP2006129139 A JP 2006129139A JP 2006129139 A JP2006129139 A JP 2006129139A JP 2007305306 A JP2007305306 A JP 2007305306A
Authority
JP
Japan
Prior art keywords
coin
conductive rubber
electrode
vulcanized
type electrochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006129139A
Other languages
Japanese (ja)
Inventor
Takashi Mizukoshi
崇 水越
Toshihiko Nishiyama
利彦 西山
Tomoki Shinoda
知希 信田
Naoki Takahashi
直樹 高橋
Tetsuya Yoshinari
哲也 吉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006129139A priority Critical patent/JP2007305306A/en
Publication of JP2007305306A publication Critical patent/JP2007305306A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coin type electrochemical element which is downsized and highly hermetic, which is capable of responding to a reflow process of a lead-free solder, and which is high in heat resistance, and its manufacturing method. <P>SOLUTION: Disc-like electrodes containing electrode active materials are oppositely arranged with a separator pinched, a frame-like gasket by nonconductive rubber is formed at the side face part of that electrode, an outer packaging material of directions of the upper and the lower faces of that electrode is formed by conductive rubber, and after injection of an electrolytic solution, the inner cell in which that conductive rubber and the nonconductive rubber are vulcanized and bonded and sealed is fabricated, and a contact part between the nonconductive rubber of the outer packaging side face of the laminated inner cell 12 and metallic coin cases (cap 11, case 14) and an insulating packing 13 is vulcanized and bonded by using a vulcanizing adhesive. Moreover, after caulking and sealing the metallic coin cases, rubber for outer packaging of the inner cell 12 is completely vulcanized. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、コイン型電池、コイン型電気二重層キャパシタなどのコイン型電気化学素子およびその製造方法に関し、特に、小型で、封止性、耐熱性に優れるコイン型電気化学素子およびその製造方法に関する。   The present invention relates to a coin-type electrochemical element such as a coin-type battery and a coin-type electric double layer capacitor, and a method for manufacturing the same, and more particularly to a coin-type electrochemical element that is small in size and excellent in sealing properties and heat resistance and a method for manufacturing the same. .

近年、電力貯蔵機器において、大型品としては、電池、電気二重層キャパシタが、自動車用のバッテリーとして使用されるなど、その市場の急拡大が予想されている。   In recent years, in the power storage device, as a large product, a battery and an electric double layer capacitor are used as a battery for an automobile, and the market is expected to expand rapidly.

他方、小型品としては、ユビキタス時代の到来により、新たなモバイル用電子機器、屋内で使用するコードレス機器の増加や、技術進歩による機器の高機能化が進むため消費電力の上昇が予想される。それに伴い、電池、電気二重層キャパシタの需要が増加するとともに、エネルギー密度の向上、小型化の要求が非常に強くなっている。特に、バックアップ用では、機器の小型化に伴い、コイン型電池、コイン型電気二重層コンデンサ、コイン型プロトンポリマー電池等は、共通の開発課題として小型化が重要とされ、電極材料の性能、利用率向上によるエネルギー密度の向上、封止技術、外装効率の向上等が必要になっている。また、鉛フリーのリフロー化が必須とされており、熱に対する対策が重要な課題になっている。   On the other hand, as compact products, with the advent of the ubiquitous era, power consumption is expected to increase because new mobile electronic devices and cordless devices used indoors will increase, and the functionality of devices will increase due to technological advances. Along with this, the demand for batteries and electric double layer capacitors has increased, and the demand for improved energy density and miniaturization has become very strong. In particular, as backup devices are downsized, coin-type batteries, coin-type electric double-layer capacitors, coin-type proton polymer batteries, etc. are important as a common development issue, and the performance and utilization of electrode materials are important. Improvements in energy density, sealing technology, exterior efficiency, etc. are required by improving the rate. In addition, lead-free reflow is indispensable, and countermeasures against heat are an important issue.

コイン型電池、コイン型電気二重層コンデンサ、コイン型プロトンポリマー電池等の外装は、従来、電解液がアルカリ溶液あるいは有機溶媒の場合には、電池、キャパシタ用の外装材として、一般的には、導電性や液のバリア性に関して非常に優れた金属材料が用いられる。しかし、電解液が酸溶液の場合、一部の貴金属を除いて、金属材料が腐食するため、外装材として使用することができない。そこで、電解液に酸溶液を使用する場合、カーボン材料あるいはゴム材にカーボン粉末(カーボンフィラーなど)を分散させた導電性ゴムを用いて内部セルを作製し、それを金属製のコインにかしめる方法が用いられている。   Conventionally, the exterior of a coin-type battery, a coin-type electric double layer capacitor, a coin-type proton polymer battery, etc., when the electrolytic solution is an alkaline solution or an organic solvent, A metal material that is extremely excellent in terms of conductivity and liquid barrier properties is used. However, when the electrolytic solution is an acid solution, the metal material corrodes except for some noble metals, and thus cannot be used as an exterior material. Therefore, when an acid solution is used as the electrolyte, an internal cell is produced using a conductive rubber in which carbon powder (carbon filler, etc.) is dispersed in a carbon material or rubber material, and it is caulked on a metal coin. The method is used.

ところで体積エネルギー密度を高めるには外装効率の向上が必要であるが、そのためには、集電体、ガスケットといった部材を可能な限り薄くすることが求められる。しかし、外装を薄くすることはガス透過による封止性低下につながり、また製造工程での高い寸法精度が求められ、液漏れ不良などによる歩留まりの低下が懸念される。   Incidentally, in order to increase the volume energy density, it is necessary to improve the exterior efficiency. To that end, it is required to make the members such as the current collector and the gasket as thin as possible. However, thinning the exterior leads to a decrease in sealing performance due to gas permeation, requires high dimensional accuracy in the manufacturing process, and there is a concern about a decrease in yield due to poor liquid leakage.

非水系の電解液を使用したコイン型電池、コイン型電気二重層キャパシタの封止性向上のための技術としては、金属製のコインケースと樹脂製のパッキン部分の間にシール剤を塗布して密閉性を向上させる、特許文献1、特許文献2等の技術がある。図3はその従来技術に係るコイン型電池の断面図を示し、11は金属製のコインケースのキャップ、13は樹脂製の絶縁パッキン、14は金属製の有底筒状のケース、22は正極、24はセパレータ、25は負極、そして31はシール剤である。   As a technology for improving the sealing performance of coin-type batteries and coin-type electric double layer capacitors using non-aqueous electrolyte, a sealant is applied between the metal coin case and the resin packing. There are techniques such as Patent Document 1 and Patent Document 2 that improve sealing performance. FIG. 3 is a cross-sectional view of a coin-type battery according to the prior art, 11 is a metal coin case cap, 13 is a resin insulating packing, 14 is a metal bottomed cylindrical case, and 22 is a positive electrode. , 24 is a separator, 25 is a negative electrode, and 31 is a sealant.

この技術は、水系の電解液を使用したコイン型電池、コイン型電気二重層キャパシタにも適応可能である。また、水系の場合には、内部セルと金属性コインケース、樹脂製パッキンの接する部分を接着剤で接着し内部セルの外装材であるゴムをシール剤の代用として密閉性を向上させる方法も考えられる。ただし、接着剤でゴムを、金属あるいは樹脂と接着する場合、各々の物性が異なるため、非常に接着しづらく長期的に良好な接着を保つのは難しい。更に、鉛フリーのリフローに対応するためには耐熱性のある接着剤を用いる必要があるため選択の範囲が狭められるという制約を伴う。   This technology can also be applied to a coin-type battery and a coin-type electric double layer capacitor using an aqueous electrolyte. In the case of water-based systems, it is also possible to improve the airtightness by adhering the contact area between the inner cell, the metallic coin case, and the resin packing with an adhesive, and using rubber, which is the exterior material of the inner cell, as a substitute for the sealing agent. It is done. However, when the rubber is bonded to the metal or resin with an adhesive, the physical properties are different, so that it is very difficult to bond and it is difficult to maintain good bonding over the long term. Furthermore, since it is necessary to use a heat-resistant adhesive to cope with lead-free reflow, there is a restriction that the selection range is narrowed.

特開2000−11972号公報JP 2000-11972 A 特開2000−348977号公報JP 2000-348777 A

すでに一部を説明したように、電解液に酸溶液を使用するコイン型電池、コイン型電気二重層キャパシタでは、ゴム材にカーボン粉末(カーボンフィラーなど)を分散させた道電性ゴムと、非導電性ゴムとを、それぞれ集電体およびガスケットとして用いた内部セルを作製し、それを金属製のコインケースにかしめる。このとき、エネルギー密度を向上させる方法の一つは、内部セルの外装効率を上げることであり、集電体、ガスケットといった外装用部材を可能な限り薄くすることである。しかし、外装を薄くすることはガス透過の遮蔽性、外装強度を低下させ、封止性、歩留まりを低下させる。   As already explained in part, in coin-type batteries and coin-type electric double-layer capacitors that use an acid solution as the electrolyte, a conductive rubber in which carbon powder (carbon filler, etc.) is dispersed in a rubber material, An internal cell using conductive rubber as a current collector and a gasket, respectively, is produced, and it is caulked in a metal coin case. At this time, one of the methods for improving the energy density is to increase the exterior efficiency of the internal cell, and to make the exterior members such as the current collector and the gasket as thin as possible. However, reducing the thickness of the exterior reduces the gas permeation shielding and exterior strength, and reduces the sealing performance and yield.

その解決策としては、内部セルと金属製コインケース、樹脂製パッキンの接する部分を接着する方法が考えられるが、一般に接着剤でゴムを、金属あるいは樹脂に接着する場合、各々の物性が異なるため、非常に接着しづらい。また、鉛フリーのリフローに対応するためには耐熱性のある接着剤を用いる必要があるため選択の範囲が狭められ、コインの密閉性を保つような十分な接着を行うことは難しい。   As a solution, a method of bonding the inner cell, the metal coin case, and the portion where the resin packing is in contact can be considered. Generally, when bonding rubber to metal or resin with an adhesive, each physical property is different. Very difficult to bond. Further, in order to cope with lead-free reflow, it is necessary to use a heat-resistant adhesive, so that the range of selection is narrowed, and it is difficult to perform sufficient adhesion to keep the coin tightness.

そこで、本発明の課題は、小型で密閉性が高く、鉛フリーはんだのリフロー工程に対応できる耐熱性の高いコイン型電気化学素子およびその製造方法を提供することにある。   Therefore, an object of the present invention is to provide a coin-type electrochemical device that is small in size, has high hermeticity, and has high heat resistance that can be used in a lead-free solder reflow process, and a method for manufacturing the same.

上記課題を解決するために、本発明では、内部セルの外装用に導電性および非導電性ゴムを用い、その内部セルの外装側面の非導電性ゴムと金属製コインケースおよび樹脂製パッキンの接触部分を加硫接着剤を用い加硫接着する。また、金属製コインケースをかしめ封止した後で、内部セルを外装するゴムの加硫を行う工程を用いる。   In order to solve the above problems, in the present invention, conductive and non-conductive rubber is used for the exterior of the internal cell, and the non-conductive rubber on the exterior side of the internal cell contacts with the metal coin case and the resin packing. The parts are vulcanized and bonded using a vulcanizing adhesive. Further, after caulking and sealing the metal coin case, a process of vulcanizing the rubber that covers the inner cell is used.

本発明では、内部セルの外装側面のゴムと、金属製コインケースおよび樹脂製パッキンとの接触部分を加硫接着剤を用い加硫接着するので、通常の接着剤などに比べ、接着強度、密閉性、長期信頼性、耐熱性の高い接着が可能になり、小型であるにもかかわらず、内部セルの外装補強、歩留まり、コイン密閉性、鉛フリーリフローの耐熱性を向上させたコイン型電気化学素子およびその製造方法の提供が可能になる。   In the present invention, the contact portion between the rubber on the exterior side of the internal cell and the metal coin case and the resin packing is vulcanized and bonded using a vulcanized adhesive. , Long-term reliability, heat-resistant adhesion, and coin-type electrochemical with improved internal cell exterior reinforcement, yield, coin sealability, and lead-free reflow heat resistance despite its small size An element and a method for manufacturing the element can be provided.

本発明の一実施の形態を、図面に基づき、コイン型のプロトンポリマー電池の製造方法にそって説明する。   An embodiment of the present invention will be described with reference to the drawings, along with a method for manufacturing a coin-type proton polymer battery.

コイン型プロトンポリマー電池は、図1の断面図に示すように、蓄電作用を有する内部セル12を単独または直列に複数個積層された状態で配置され(図1では2個直列に接続)、環状の絶縁パッキン13を介して、下蓋となる金属製で有底筒状のケース14と上蓋となるキャップ11とで、かしめ封止して得られる。このとき、内部セル12の外装側面のゴムと、金属製コインケース(キャップ11とケース14)および樹脂製パッキン(絶縁パッキン13)との接触部分を加硫接着剤15を用い加硫接着する。その加硫接着剤には、フェノール樹脂系、ハロゲン化ゴム系のものなどを用い、接着力を補助するために、フェノール樹脂系、ハロゲン化ゴム系などのプライマーを用いる。なお、加硫接着剤は内部セル12の外装側面のゴムに塗布してもよく、樹脂製パッキン(絶縁パッキン13)に塗布してもよい。   As shown in the cross-sectional view of FIG. 1, the coin-type proton polymer battery is arranged in a state in which a plurality of internal cells 12 having a power storage function are singly or stacked in series (two in series are connected in series in FIG. 1). It is obtained by caulking and sealing with a metal-made bottomed cylindrical case 14 serving as a lower lid and a cap 11 serving as an upper lid through the insulating packing 13. At this time, the contact portion between the rubber on the exterior side surface of the internal cell 12, the metal coin case (cap 11 and case 14), and the resin packing (insulating packing 13) is vulcanized and bonded using the vulcanizing adhesive 15. As the vulcanized adhesive, a phenol resin or halogenated rubber is used, and a primer such as phenol resin or halogenated rubber is used to assist the adhesive force. The vulcanized adhesive may be applied to the rubber on the exterior side surface of the internal cell 12 or may be applied to a resin packing (insulating packing 13).

その内部セル12の構造は一例を図2に断面図で示すように、正極22および負極25がセパレータ24を介して対向配置されており、プロトン源を含む水溶液または非水溶液である電解液が各電極中およびセパレータ24中に存在している。各極に含まれる電極活物質としては目的とする起電力を発現可能な酸化還元電位の差となる組み合わせで適宜選択されたプロトン伝導型高分子を使用する。そして、その周囲は集電体21およびガスケット23で封止されており集電体21は各電極と外部との電気的接触をとる機能を併せ持つ。   As an example of the structure of the internal cell 12, as shown in a cross-sectional view in FIG. 2, a positive electrode 22 and a negative electrode 25 are arranged to face each other with a separator 24 therebetween, and an electrolyte solution that is an aqueous solution containing a proton source or a non-aqueous solution is provided for each. It exists in the electrode and in the separator 24. As the electrode active material contained in each electrode, a proton-conducting polymer that is appropriately selected in combination with a difference in redox potential capable of expressing the target electromotive force is used. And the circumference | surroundings are sealed with the electrical power collector 21 and the gasket 23, and the electrical power collector 21 has the function to take an electrical contact with each electrode and the exterior.

電解液は有機溶媒系と水溶液系に大別されるが、プロトンポリマー電池ではプロトン源を含む水溶液の方が特に高容量となるため、専ら酸性水溶液が使用される。そのため集電体21、ガスケット23、およびセパレータ24には耐酸性を有する材料が使用される。例えば、集電体21にはカーボンなどを添加して導電性を付与したブチルゴムやエラストマー等が使用され、ガスケット23にはブチルゴムや熱可塑性のエラストマーなどの軟質プラスチック等が一般的に使用されている。   The electrolytic solution is roughly classified into an organic solvent system and an aqueous solution system. In the proton polymer battery, since an aqueous solution containing a proton source has a particularly high capacity, an acidic aqueous solution is exclusively used. Therefore, a material having acid resistance is used for the current collector 21, the gasket 23, and the separator 24. For example, the current collector 21 is made of butyl rubber, elastomer or the like imparted with conductivity by adding carbon, and the gasket 23 is generally made of soft plastic such as butyl rubber or thermoplastic elastomer. .

本発明の他の実施の形態での電気二重層コンデンサは、基本的に上記のプロトンポリマー電池と同様の構造を有しており、図2の正極22および負極25に対応する分極性電極に含まれる電極活物質として活性炭を使用したものである。   The electric double layer capacitor according to another embodiment of the present invention basically has the same structure as the proton polymer battery described above, and is included in the polarizable electrodes corresponding to the positive electrode 22 and the negative electrode 25 in FIG. Activated carbon is used as the electrode active material.

ところで、上記本発明の実施の形態において、金属製コインケースをなす上蓋(キャップ)と下蓋(ケース)とを絶縁性パッキンを介してかしめ封止した後で、加熱し、加硫接着剤の加硫を行う際に、内部セルを外装するゴムを完全に加硫させる工程を含ませてもよい。すなわち、内部セルを外装する導電性ゴムおよび非導電性ゴムが半加硫または未加硫の状態で前記かしめ封止を行い、その後、加硫接着剤を加硫すると同時に、内部セルを外装するゴムの加硫を完成させてもよい。   By the way, in the above-described embodiment of the present invention, the upper lid (cap) and the lower lid (case) forming a metal coin case are caulked and sealed through an insulating packing, and then heated to obtain a vulcanized adhesive. When performing vulcanization, a step of completely vulcanizing the rubber covering the inner cell may be included. That is, the caulking and sealing is performed with the conductive rubber and non-conductive rubber covering the inner cell semi-cured or unvulcanized, and then the vulcanized adhesive is vulcanized and at the same time the outer cell is sheathed. Rubber vulcanization may be completed.

以下、本発明の実施例について説明する。ただし、本発明はこの実施例に限られるものではない。   Examples of the present invention will be described below. However, the present invention is not limited to this embodiment.

(実施例1)
正極活物質であるインドール3量体(100重量%)に導電材として気相成長カーボン20重量%を粉末ブレンダーで混合し、その混合物に結着剤としてPTFE(ポリテトラフルオロエチレン)粒子が10重量%(添加後の全重量に対するPTFE粒子の重量比率)となるように60重量%PTFEディスパージョンを添加し、攪拌脱泡機で混合した後、乾燥した。得られた混合物に水を100重量%加え、乳鉢で混練した。その後、混練物をロール成型機により圧延し、厚さ0.2mmのシート状電極を得た。そのシート状正極をφ2.0mmで打ち抜き、薄円板状の正極を得た。
Example 1
The indole trimer (100% by weight), which is a positive electrode active material, is mixed with 20% by weight of vapor-grown carbon as a conductive material in a powder blender, and 10% by weight of PTFE (polytetrafluoroethylene) particles is used as a binder in the mixture. 60% by weight of PTFE dispersion was added so as to be% (weight ratio of PTFE particles with respect to the total weight after addition), mixed with a stirring deaerator, and then dried. 100% by weight of water was added to the obtained mixture and kneaded in a mortar. Thereafter, the kneaded product was rolled with a roll molding machine to obtain a sheet-like electrode having a thickness of 0.2 mm. The sheet-like positive electrode was punched out at φ2.0 mm to obtain a thin disc-like positive electrode.

負極活物質としてのポリフェニルキノキサリンに導電材としてのケッチェンブラックEC600JD(ライオン社製)を負極活物質に対して25重量%加え粉末ブレンダーで混合した。得られた混合粉末にm−クレゾールを負極活物質と導電材の合計重量に対して100重量%加え、ニーダで1時間混練した。得られた混練物に更にm−クレゾールを加え混合スラリーの粘度が1000mPa・sとなるようにホモジナイザーで30分混合し、スラリーを得た。   25% by weight of ketjen black EC600JD (manufactured by Lion Corporation) as a conductive material was added to polyphenylquinoxaline as a negative electrode active material with respect to the negative electrode active material and mixed with a powder blender. 100% by weight of m-cresol was added to the obtained mixed powder with respect to the total weight of the negative electrode active material and the conductive material, and kneaded with a kneader for 1 hour. M-Cresol was further added to the obtained kneaded material and mixed for 30 minutes with a homogenizer so that the viscosity of the mixed slurry became 1000 mPa · s to obtain a slurry.

得られた電極スラリーをポリエチレンテレフタレート(以下PET)上に塗布し、乾燥後、PETを剥離することで負極シートを得た。そのシート状負極をφ2.0mmで打ち抜き、薄円板状の負極を得た。   The obtained electrode slurry was applied onto polyethylene terephthalate (hereinafter referred to as PET), dried, and then the PET was peeled off to obtain a negative electrode sheet. The sheet-like negative electrode was punched out at φ2.0 mm to obtain a thin disc-shaped negative electrode.

セパレータは、PTFE製、厚み50μm(ゴアテックス社製)、導電性ゴムは、カーボン添加の導電性未加硫ブチルゴム、厚み75μm(藤倉ゴム工業社製)、非導電性ゴムは、未加硫ブチルゴム、厚み240μm(藤倉ゴム工業社製)、電解液は20%硫酸にイミダゾールを50重量%添加したものを使用した。   The separator is made of PTFE, the thickness is 50 μm (manufactured by Gore-Tex), the conductive rubber is carbon-added conductive unvulcanized butyl rubber, the thickness is 75 μm (manufactured by Fujikura Rubber Industrial Co., Ltd.), and the non-conductive rubber is unvulcanized butyl rubber. The thickness was 240 μm (manufactured by Fujikura Rubber Industrial Co., Ltd.), and the electrolyte used was 20% sulfuric acid added with 50% by weight of imidazole.

90mm×90mmの未加硫ブチルゴムに、電極配置用の孔を正極用φ2.3mm、負極用φ2.5mmとして各25個開けガスケットとした。これを集電体である90mm×90mmの導電性未加硫ブチルゴム上に配置し、ゴムの粘着性を利用し圧着した。電極配置用の孔に正極、負極をそれぞれ挿入し、正極シート、負極シートとし、正極シートにはφ2.5mmのセパレータを圧着した。各電極シートに電解液を注液し、真空中で貼り合わせた。   A non-vulcanized butyl rubber of 90 mm × 90 mm was provided with 25 holes for electrode arrangement, each having a positive electrode φ of 2.3 mm and a negative electrode φ of 2.5 mm. This was arrange | positioned on the electroconductive unvulcanized butyl rubber of 90 mm x 90 mm which is a collector, and it crimped | bonded using the adhesiveness of rubber. A positive electrode and a negative electrode were inserted into the electrode placement holes, respectively, to form a positive electrode sheet and a negative electrode sheet, and a 2.5 mm separator was pressure-bonded to the positive electrode sheet. An electrolyte solution was poured into each electrode sheet and bonded in a vacuum.

得られた正極、負極一体化シートを、電極が挿入されている孔の同心円上で、外径φ5.0mm、内径φ2.5mmの範囲を加硫した。加硫冶具は加圧面を凹凸に加工して上述の範囲のみを加硫できるようにしてある。加硫方法は、正極、負極一体化シートに対して片面側の冶具のみを170℃に加熱し、30秒間、圧力10[kgf/cm]で加圧し加硫した後、シートを一度冷却し、反転させ、はじめに加硫した面と反対側から同様に加熱し加硫した。この加硫と冷却、加熱面の反転を、加硫が正極、負極一体化シートの片面に対して3回ずつとなるように行った。この状態では、加硫は完全ではなく、仮留めの状態であり加硫接着部分の剥離強度は十分ではない。 The obtained positive and negative electrode integrated sheets were vulcanized in a range of an outer diameter of φ5.0 mm and an inner diameter of φ2.5 mm on the concentric circles of the holes into which the electrodes were inserted. The vulcanizing jig is configured to process the pressure surface into irregularities so that only the above-mentioned range can be vulcanized. The vulcanization method is such that only the jig on one side of the positive electrode and negative electrode integrated sheet is heated to 170 ° C. and pressurized for 30 seconds at a pressure of 10 kgf / cm 2 , and then the sheet is cooled once. Inverted and heated in the same way from the side opposite to the first vulcanized surface. This vulcanization, cooling, and reversal of the heating surface were performed so that vulcanization was performed three times for each side of the positive electrode and negative electrode integrated sheet. In this state, the vulcanization is not complete, and is in a temporarily fixed state, and the peel strength of the vulcanized bonded portion is not sufficient.

このシートを電極が挿入されている孔の同心円上φ3.2mmで打ち抜くことにより内 部セルとした。1シートから内部セルは25個得られる。その内部セルを2個直列になるように配置し、ステンレス鋼製キャップおよびステンレス鋼製ケースからなるコイン外装容器中に加硫接着剤(株式会社東洋化学研究所製)をコーティングしたPPS(ポリフェニレンサルファイド)製絶縁パッキンを介して一体化し、その後、かしめ封止することによりコイン型プロトンポリマー電池を得た。   This sheet was punched out with a diameter of 3.2 mm on the concentric circle of the hole into which the electrode was inserted to form an inner cell. 25 internal cells are obtained from one sheet. PPS (polyphenylene sulfide) in which two internal cells are arranged in series, and a vulcanized adhesive (manufactured by Toyo Chemical Laboratory Co., Ltd.) is coated in a coin outer container composed of a stainless steel cap and a stainless steel case. ) Integrated through an insulating packing, and then sealed by caulking to obtain a coin-type proton polymer battery.

PPS製絶縁パッキンへの加硫接着剤(株式会社東洋化学研究所製)のコーティングは、パッキンにプライマー(株式会社東洋化学研究所製)をディッピングし、その乾燥後、加硫接着剤をディッピングした。   The coating of the vulcanized adhesive (made by Toyo Chemical Laboratory Co., Ltd.) on the insulating packing made of PPS was made by dipping the primer (made by Toyo Chemical Laboratory Co., Ltd.) on the packing, and then dipping the vulcanized adhesive after drying. .

このコイン型プロトンポリマー電池を160℃の恒温槽で15分間加熱し、内部セルのガスケット、集電体、加硫接着剤を加硫することにより、加硫が完全ではなかった集電体−ガスケット間、ガスケット−ガスケット間、そして、内部セル側面−コイン内部を完全に加硫接着した。   The coin-type proton polymer battery was heated in a thermostatic bath at 160 ° C. for 15 minutes, and the gasket, current collector, and vulcanized adhesive of the internal cell were vulcanized. Between the gasket, between the gasket and the side of the inner cell, and the inside of the coin were completely vulcanized.

次に、鉛フリーリフロー対応、ピーク温度260℃のリフロー試験を行った際の不良発生率を調べ、また、封止性が大きく影響する60℃電圧通電信頼性試験を行った。   Next, the defect occurrence rate when conducting a reflow test corresponding to lead-free reflow and a peak temperature of 260 ° C. was examined, and a 60 ° C. voltage energization reliability test in which sealing performance was greatly affected was conducted.

(実施例2)
実施例1の工程で、正極、負極一体化シートを仮留めの加硫をせずに作製した内部セルを用い本実施例2のコイン型プロトンポリマー電池とした。
(Example 2)
In the process of Example 1, a coin-type proton polymer battery of Example 2 was obtained by using an internal cell produced without vulcanizing the positive and negative electrode integrated sheets temporarily.

(実施例3)
実施例2の工程で、プライマー、加流用接着剤をPPS製絶縁パッキンではなく内部セルの側面に塗布して本実施例3のコイン型プロトンポリマー電池とした。
(Example 3)
In the process of Example 2, a primer and a flow-adhesive adhesive were applied to the side surface of the internal cell instead of the PPS insulating packing to obtain a coin-type proton polymer battery of Example 3.

(実施例4)
正極、負極一体化シート、加硫方法は、実施例3と同様であるコイン型電気二重層キャパシタであり、以下の要領で作製した電極を用いた。
Example 4
The positive electrode, the negative electrode integrated sheet, and the vulcanization method were the same coin type electric double layer capacitor as in Example 3, and the electrode produced in the following manner was used.

電極活物質として比表面積1500m/gの活性炭を用い、導電材としてカーボンブラックを活性炭にその重量の20重量%だけ粉末ブレンダーで混合し、この混合物にPTFE粒子が10重量%(添加後の全重量に対するPTFE粒子の重量比率)となるように60重量%PTFEディスパージョンを添加し、攪拌脱泡機で混合し、その後、乾燥した。得られた混合物に対して水を180重量%加え、乳鉢で混練した。その後、混練物をロール成型機により圧延し、厚さ0.2mmのシート状電極を得た。得られたシート状活性炭電極をφ2.3mmで打ち抜き、薄円板状の活性炭電極を得た。 Activated carbon having a specific surface area of 1500 m 2 / g is used as an electrode active material, carbon black is mixed with activated carbon by 20% by weight in a powder blender as a conductive material, and PTFE particles are added to this mixture by 10% by weight (total amount after addition). 60 wt% PTFE dispersion was added so that the weight ratio of the PTFE particles to the weight) was mixed with a stirring deaerator, and then dried. 180% by weight of water was added to the obtained mixture and kneaded in a mortar. Thereafter, the kneaded product was rolled with a roll molding machine to obtain a sheet-like electrode having a thickness of 0.2 mm. The obtained sheet-like activated carbon electrode was punched out with a diameter of 2.3 mm to obtain a thin disk-like activated carbon electrode.

(比較例1)
加硫接着剤を用いないこと以外は実施例3と同様である。
(Comparative Example 1)
Example 3 is the same as Example 3 except that no vulcanized adhesive is used.

(比較例2)
耐熱性のある接着剤として一液加熱硬化型エポキシ接着剤の低粘度タイプを用いた。それ以外は実施例3と同様である。
(Comparative Example 2)
As a heat-resistant adhesive, a one-component heat-curable epoxy adhesive low-viscosity type was used. Other than that is the same as Example 3.

(比較例3)
加硫接着剤を用いないこと以外は実施例4と同様である。
(Comparative Example 3)
Example 4 is the same as Example 4 except that no vulcanized adhesive is used.

表1に実施例1〜4、比較例1〜3のピーク温度260℃鉛フリーリフロー試験を3回実施した後の不良発生率を示した。   Table 1 shows the defect occurrence rate after performing the peak temperature 260 ° C. lead-free reflow test of Examples 1 to 4 and Comparative Examples 1 to 3 three times.

Figure 2007305306
Figure 2007305306

表1から分かるように本発明の加硫接着剤を使用した実施例1〜4は従来法の加硫接着剤を用いない比較例1,3、エポキシ系接着剤を用いた比較例2に比べ不良発生率が低下する結果となった。これは、リフロー時に内部セルの内圧上昇により、内部セルの外装であるガスケット−集電体間、ガスケット−ガスケット間の加硫接着面が剥離し内部の電解液が漏れ出る不良が減少したことによる。内部セル側面のブチルゴム製のガスケットと集電体が、変形の小さいステンレス製コインケース、PPS製絶縁パッキンと接着することにより、変形しづらくなり、接着界面にかかる力が小さくなり剥離しにくくなったと考えられる。   As can be seen from Table 1, Examples 1 to 4 using the vulcanized adhesive of the present invention are compared with Comparative Examples 1 and 3 that do not use the conventional vulcanized adhesive and Comparative Example 2 that uses the epoxy adhesive. As a result, the failure rate decreased. This is because the internal pressure of the internal cell increased during reflow, and the vulcanized adhesive surface between the gasket and the current collector, which was the exterior of the internal cell, and the gasket-gasket adhesive layer peeled off, reducing the leakage of electrolyte inside. . The gasket and current collector made of butyl rubber on the side of the inner cell adhere to a stainless steel coin case and PPS insulating packing that are less deformed, making it difficult to deform and the force applied to the adhesive interface is reduced, making it difficult to peel off. Conceivable.

接着剤による違いは、加硫接着剤を用いた実施例1〜4の場合には、金属製コインケース、PPS製絶縁パッキンとプライマーの間は水素結合やアンカー効果(物理吸着)で接着され、プライマーと加硫接着剤の間は加硫接着される。加硫接着剤とブチルゴムの間は加硫時にブチルゴムの表面が加硫接着剤から放出されるハロゲン化水素で極性化され、加硫接着剤中の架橋剤により界面架橋がおこり接着される。加硫接着剤が、金属、PPS製絶縁パッキンとブチルゴムの弾性率の大きな差を埋め、接着界面を組成的に連続にすることで良好な接着が得られている。   In the case of Examples 1 to 4 using a vulcanized adhesive, the difference due to the adhesive is that the metal coin case, the PPS insulating packing and the primer are bonded by hydrogen bonding or anchor effect (physical adsorption), The primer and vulcanized adhesive are vulcanized and bonded. Between the vulcanized adhesive and the butyl rubber, the surface of the butyl rubber is polarized by hydrogen halide released from the vulcanized adhesive during vulcanization, and the cross-linking agent in the vulcanized adhesive is subjected to interfacial cross-linking and bonded. Good adhesion is obtained when the vulcanized adhesive fills a large difference in elastic modulus between metal, PPS insulating packing and butyl rubber, and makes the bonding interface compositionally continuous.

一方、エポキシ系接着剤を用いた比較例2で不良発生率が大きく改善されていない原因は、エポキシ系の接着剤が、金属に対しては水素結合により強固に接着するが、本実施例で使用した内部セルの外装であるブチルゴム、PPS製絶縁パッキンとは化学結合せず、アンカー効果のみの弱い接着になってしまうため、リフローの際に内部セルとコインケースあるいはパッキンの接着部分に剥離が生じたためと考えられる。   On the other hand, the reason why the defect occurrence rate is not greatly improved in Comparative Example 2 using an epoxy adhesive is that the epoxy adhesive is firmly bonded to metal by hydrogen bonding. The butyl rubber and PPS insulating packing used for the inner cell are not chemically bonded to each other, resulting in weak adhesion with only an anchor effect. Therefore, during reflow, the inner cell and the coin case or packing are peeled off. This is thought to have occurred.

実施例1〜4については明確な差は無かった。   There was no clear difference about Examples 1-4.

表2に実施例1〜4、比較例1〜3の260℃ピーク鉛フリーリフロー試験を3回行った後、60℃で2.5[V]通電信頼性試験を行った際の内部抵抗(1[kHz])の変化率(初期値を100%として変化後の値を%で表示)を示した。   In Table 2, after conducting the 260 ° C peak lead-free reflow test of Examples 1 to 4 and Comparative Examples 1 to 3 three times, the internal resistance when 2.5 [V] energization reliability test was conducted at 60 ° C ( 1 [kHz]) (the initial value is 100% and the value after the change is expressed in%).

Figure 2007305306
Figure 2007305306

表2の結果より比較例1〜3に比べ、実施例1〜4の全てにおいて、内部抵抗の上昇が抑えられていることが分かる。内部抵抗が高くなる原因の1つとして、セル外へ電解液、電解液中の水分が透過することによる電解液減少、電解液および添加物の濃度上昇が考えられる。つまり、セルの封止性が高いほど、内部抵抗の上昇が小さいと考えられる。表2の結果より比較例1〜3に比べ、実施例1〜4の全てにおいてセルの封止性が向上しており、内部セルからの電解液透過を、加硫接着したコインケース、パッキンが抑制する効果が出ていると考えられる。   From the results in Table 2, it can be seen that the increase in internal resistance is suppressed in all of Examples 1 to 4 as compared with Comparative Examples 1 to 3. One possible cause of the increase in internal resistance is a decrease in the electrolyte due to the permeation of the electrolyte and water in the electrolyte to the outside of the cell, and an increase in the concentration of the electrolyte and additives. That is, it is considered that the higher the cell sealing property, the smaller the increase in internal resistance. From the results of Table 2, compared to Comparative Examples 1 to 3, the sealing properties of the cells are improved in all of Examples 1 to 4, and the coin case and packing in which the electrolyte solution permeated from the internal cell is vulcanized and bonded It is thought that the effect to suppress has come out.

実施例1と実施例2,3の差については、それほど大きくないが、加硫接着剤は接着したいゴムが未加硫であると接着強度が高くなるため若干実施例2,3の方が内部抵抗の上昇が小さくなっている。実施例2と実施例3の明確な差は無いが、実施例3は金属コインケース部分にも加硫接着しているため実施例2に比べ封止性は高いと考えられる。   Although the difference between Example 1 and Examples 2 and 3 is not so large, the adhesive strength of the vulcanized adhesive becomes higher when the rubber to be bonded is unvulcanized. Resistance rise is small. Although there is no clear difference between Example 2 and Example 3, Example 3 is considered to have higher sealing performance than Example 2 because it is also vulcanized and bonded to the metal coin case part.

エポキシ系の接着剤を用いた比較例2は、接着剤を用いない比較例1に比べ特性の改善は見られたが、加硫接着剤を用いた実施例3に比べ劣る結果となった。これは、表1の結果でも上述したように接着強度の差が封止性に影響したと考えられる。   Although the comparative example 2 using the epoxy adhesive showed improvement in characteristics as compared with the comparative example 1 not using the adhesive, the results were inferior to those of the example 3 using the vulcanized adhesive. This is considered to be because the difference in adhesive strength affected the sealing property as described above in Table 1.

本発明に係るコイン型プロトンポリマー電池の断面図。1 is a cross-sectional view of a coin-type proton polymer battery according to the present invention. 本発明に係る内部セルの断面図。Sectional drawing of the internal cell which concerns on this invention. 従来技術のコイン型電池の断面図。Sectional drawing of the coin-type battery of a prior art.

符号の説明Explanation of symbols

11 キャップ
12 内部セル
13 絶縁パッキン
14 ケース
15 加硫接着剤
21 集電体
22 正極
23 ガスケット
24 セパレータ
25 負極
31 シール剤
11 Cap 12 Internal cell 13 Insulating packing 14 Case 15 Vulcanized adhesive 21 Current collector 22 Positive electrode 23 Gasket 24 Separator 25 Negative electrode 31 Sealant

Claims (6)

電極活物質を含有する1対の円板状の電極にセパレータを挟んで対向させ、前記電極の側面部に非導電性ゴムによる枠状のガスケットを形成し、前記電極の上下面方向の外装材を導電性ゴムで形成し、電解液の注液後、前記導電性ゴムおよび非導電性ゴムを加硫接着し封止してなる内部セルを、単層または積層状態で、キャップ状および有底筒状の部分からなる金属製ケース内に収容するように、環状の樹脂製パッキンを介して前記金属製ケースをかしめ封止したコイン型電気化学素子において、
前記樹脂製パッキンに加硫接着剤を塗布し、前記内部セルと前記樹脂製パッキンを加硫接着したことを特徴とするコイン型電気化学素子。
A pair of disk-shaped electrodes containing an electrode active material are opposed to each other with a separator interposed therebetween, a frame-shaped gasket made of non-conductive rubber is formed on a side surface of the electrode, and an exterior material in the direction of the upper and lower surfaces of the electrode The inner cell formed by sealing the conductive rubber and the non-conductive rubber by vulcanization adhesion after the injection of the electrolytic solution in a single layer or a laminated state, with a cap shape and a bottom In a coin-type electrochemical element in which the metal case is caulked and sealed via an annular resin packing so as to be accommodated in a metal case made of a cylindrical portion,
A coin-type electrochemical element, wherein a vulcanizing adhesive is applied to the resin packing, and the internal cell and the resin packing are vulcanized and bonded.
電極活物質を含有する1対の円板状の電極にセパレータを挟んで対向させ、前記電極の側面部に非導電性ゴムによる枠状のガスケットを形成し、前記電極の上下面方向の外装材を導電性ゴムで形成し、電解液の注液後、前記導電性ゴムおよび非導電性ゴムを加硫接着し封止してなる内部セルを、単層または積層状態で、キャップ状および有底筒状の部分からなる金属製ケース内に収容するように、環状の樹脂製パッキンを介して、前記金属製ケースをかしめ封止したコイン型電気化学素子において、
前記内部セルの側面に加硫接着剤を塗布し、前記樹脂製パッキンおよび前記金属製ケースと前記内部セルとを加硫接着したことを特徴とするコイン型電気化学素子。
A pair of disk-shaped electrodes containing an electrode active material are opposed to each other with a separator interposed therebetween, a frame-shaped gasket made of non-conductive rubber is formed on a side surface of the electrode, and an exterior material in the direction of the upper and lower surfaces of the electrode The inner cell formed by sealing the conductive rubber and the non-conductive rubber by vulcanization adhesion after the injection of the electrolytic solution in a single layer or a laminated state, with a cap shape and a bottom In a coin-type electrochemical device in which the metal case is caulked and sealed via an annular resin packing so as to be accommodated in a metal case made of a cylindrical portion,
A coin-type electrochemical element, wherein a vulcanizing adhesive is applied to a side surface of the internal cell, and the resin packing, the metal case, and the internal cell are vulcanized and bonded.
前記電極は、正極または負極の電極活物質と、導電材と、結着剤とを含有してなり、電池として動作することを特徴とする請求項1または2記載のコイン型電気化学素子。   The coin-type electrochemical element according to claim 1, wherein the electrode includes a positive electrode or negative electrode active material, a conductive material, and a binder, and operates as a battery. 前記電極活物質として活性炭が用いられ、電気二重層キャパシタとして動作することを特徴とする請求項1または2記載のコイン型電気化学素子。   3. The coin-type electrochemical device according to claim 1, wherein activated carbon is used as the electrode active material and operates as an electric double layer capacitor. 請求項1から4のいずれか1項に記載のコイン型電気化学素子の製造方法であって、前記内部セルを外装する導電性ゴムおよび非導電性ゴムを半加硫状態にして、前記加硫接着剤の塗布後に前記樹脂製パッキンを介して前記金属ケースをかしめ封止する工程と、
かしめ封止後に加熱することにより前記導電性ゴムおよび非導電性ゴムを完全加硫させる工程とを有することを特徴とするコイン型電気化学素子の製造方法。
5. The method for producing a coin-type electrochemical device according to claim 1, wherein the conductive rubber and the non-conductive rubber for covering the inner cell are in a semi-vulcanized state, and the vulcanization is performed. A step of caulking and sealing the metal case via the resin packing after application of the adhesive;
And a step of completely vulcanizing the conductive rubber and the non-conductive rubber by heating after caulking and sealing.
請求項1から4のいずれか1項に記載のコイン型電気化学素子の製造方法であって、
前記内部セルを外装する導電性ゴムおよび非導電性ゴムが未加硫の状態で、前記加硫接着剤の塗布後に前記樹脂製パッキンを介して前記金属ケースをかしめ封止する工程と、
かしめ封止後に加熱することにより前記導電性ゴムおよび非導電性ゴムを加硫させる工程とを有することを特徴とするコイン型電気化学素子の製造方法。
It is a manufacturing method of the coin type electrochemical device according to any one of claims 1 to 4,
The step of caulking and sealing the metal case through the resin packing after application of the vulcanized adhesive, with the conductive rubber and non-conductive rubber covering the inner cell being unvulcanized,
And a step of vulcanizing the conductive rubber and the non-conductive rubber by heating after caulking and sealing, and a method for producing a coin-type electrochemical element.
JP2006129139A 2006-05-08 2006-05-08 Coin type electrochemical element and its manufacturing method Pending JP2007305306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006129139A JP2007305306A (en) 2006-05-08 2006-05-08 Coin type electrochemical element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006129139A JP2007305306A (en) 2006-05-08 2006-05-08 Coin type electrochemical element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007305306A true JP2007305306A (en) 2007-11-22

Family

ID=38839081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006129139A Pending JP2007305306A (en) 2006-05-08 2006-05-08 Coin type electrochemical element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007305306A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231829A (en) * 2008-02-29 2009-10-08 Sumitomo Chemical Co Ltd Ionic liquid-containing electrode membrane and electrode, process for producing them, and electric storage device
JP2014195053A (en) * 2013-02-28 2014-10-09 Seiko Instruments Inc Electrochemical cell and method of manufacturing the same
JP2014195052A (en) * 2013-02-28 2014-10-09 Seiko Instruments Inc Electrochemical cell and method of manufacturing the same
JP2014195051A (en) * 2013-02-28 2014-10-09 Seiko Instruments Inc Electrochemical cell and method of manufacturing the same
CN105210229A (en) * 2013-03-15 2015-12-30 纸电池公司 Energy storage structures and fabrication methods thereof
CN108135104A (en) * 2018-01-30 2018-06-08 广东欧珀移动通信有限公司 A kind of electronic equipment and its assembly method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231829A (en) * 2008-02-29 2009-10-08 Sumitomo Chemical Co Ltd Ionic liquid-containing electrode membrane and electrode, process for producing them, and electric storage device
JP2014195053A (en) * 2013-02-28 2014-10-09 Seiko Instruments Inc Electrochemical cell and method of manufacturing the same
JP2014195052A (en) * 2013-02-28 2014-10-09 Seiko Instruments Inc Electrochemical cell and method of manufacturing the same
JP2014195051A (en) * 2013-02-28 2014-10-09 Seiko Instruments Inc Electrochemical cell and method of manufacturing the same
CN105210229A (en) * 2013-03-15 2015-12-30 纸电池公司 Energy storage structures and fabrication methods thereof
EP2973836A4 (en) * 2013-03-15 2017-03-22 The Paper Battery Company, Inc. Energy storage structures and fabrication methods thereof
US9831533B2 (en) 2013-03-15 2017-11-28 The Paper Battery Co. Energy storage structures and fabrication methods thereof
CN108135104A (en) * 2018-01-30 2018-06-08 广东欧珀移动通信有限公司 A kind of electronic equipment and its assembly method

Similar Documents

Publication Publication Date Title
US7365962B2 (en) Capacitor and method of connecting the same
JP3422745B2 (en) Electric double layer capacitor
US20090181297A1 (en) Storage cell
JP2007305306A (en) Coin type electrochemical element and its manufacturing method
US9236198B2 (en) Chip-type electric double layer capacitor cell and method of manufacturing the same
WO2008018369A1 (en) Accumulator and its manufacturing method
JP2003092149A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
US20040233613A1 (en) Electric double layer capacitor and electric double layer capacitor stacked body
CN110140229B (en) Secondary battery and method of manufacturing the same
WO2009119094A1 (en) Sealed battery
JP2006236937A (en) Energy storage device
JP2008123875A (en) Coin type electrochemical element
JP5115204B2 (en) Surface mount square storage cell
JP2009266530A (en) Sealing plate for battery, and battery using it
JP3466117B2 (en) Electric double layer capacitor, basic cell thereof, and method of manufacturing basic cell
JP2006294735A (en) Electric double-layer capacitor
JP2008027607A (en) Electric power storage device, cell for electric power storage device, and its manufacturing method
KR20100128102A (en) Supercapacitor and manufacture method of the same
JP2008177196A (en) Surface-mounting square power storage cell
JP2010040959A (en) Electric double-layer capacitor
JP2009076754A (en) Electric double-layer capacitor
KR101060850B1 (en) Chip Type Electric Double Layer Capacitors
JP5179008B2 (en) Capacitor
JP2007227425A (en) Electric double layer capacitor
JP4821298B2 (en) Capacitor