JP2007271610A - Method and apparatus for identifying ground-fault bank - Google Patents

Method and apparatus for identifying ground-fault bank Download PDF

Info

Publication number
JP2007271610A
JP2007271610A JP2007056286A JP2007056286A JP2007271610A JP 2007271610 A JP2007271610 A JP 2007271610A JP 2007056286 A JP2007056286 A JP 2007056286A JP 2007056286 A JP2007056286 A JP 2007056286A JP 2007271610 A JP2007271610 A JP 2007271610A
Authority
JP
Japan
Prior art keywords
ground
ground fault
voltage
bank
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007056286A
Other languages
Japanese (ja)
Other versions
JP5021341B2 (en
Inventor
Tsumayuki Nagai
詳幸 長井
Kazuto Ikeda
一人 池田
Mikio Ishihara
幹夫 石原
Kenji Kawahara
健治 河原
Takashi Nakazawa
孝志 中澤
Shigeo Matsuoka
樹生 松岡
Masanori Ota
正徳 太田
Akira Matsuda
明 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hasegawa Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Hasegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hasegawa Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2007056286A priority Critical patent/JP5021341B2/en
Publication of JP2007271610A publication Critical patent/JP2007271610A/en
Application granted granted Critical
Publication of JP5021341B2 publication Critical patent/JP5021341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for identifying, from a plurality of banks provided on a multiple-grounded low-pressure alternating-current distribution line, ground-fault banks with the banks remaining multiple-grounded. <P>SOLUTION: When a ground fault occurs in a bank of a multiple-grounded low-pressure alternating-current distribution line 1 including a plurality of banks B1 to B5, a current transformer 10 detects a ground-fault current that flows through a common grounding wire 5 extending between banks, and a voltage detector 20 detects any one reference voltage of the low-pressure alternating-current distribution line 1. The location of the ground-fault bank is identified comprehensively by sensing the direction of a ground-fault current between banks in accordance with the phase difference between the detected current and the detected voltage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、低圧需要家に電力供給する複数のバンク(柱上変圧器)のB種接地線を共同接地線で並列に連結した多重接地式低圧交流配電線路における地絡バンク特定方法および特定装置に関する。   The present invention relates to a ground fault bank identification method and identification apparatus in a multi-grounding type low-voltage AC distribution line in which B-type ground wires of a plurality of banks (pole transformers) for supplying power to a low-voltage consumer are connected in parallel by a common ground wire. About.

バンクの変圧器B種接地線が単独接地されている場合、当該バンクの低圧交流配電線路から電力供給される住宅や工場、事務所などの低圧需要家において地絡が発生すると、地絡発生の低圧需要家に電力供給するバンクのB種接地線にのみ地絡電流が流れる。複数あるバンクで低圧需要家に地絡が発生した場所のバンクの特定探査は、別の地絡発生の無いバンクには地絡電流が流れないので、地絡発生のバンクのみについて行い、漏電遮断器がある低圧需要家ではその動作確認で行い、また、漏電遮断器がない低圧需要家については引込線で地絡電流を測定しその有無で地絡が発生した低圧需要家を特定する。さらに、地絡発生が特定できた低圧需要家の負荷回線で地絡電流を測定し、地絡発生場所を特定することが行われている(例えば、特許文献1参照)。
特開2004−101352号公報
When a transformer B class ground wire is grounded alone, if a ground fault occurs in a low voltage consumer such as a house, factory, or office that is supplied with power from the low voltage AC distribution line of the bank, The ground fault current flows only in the B-type ground line of the bank that supplies power to the low-voltage consumer. In a specific bank, where a ground fault has occurred in a low-voltage customer in multiple banks, the ground fault current does not flow in another bank without a ground fault. The low-voltage consumer with a device is confirmed by checking its operation, and the low-voltage customer without the earth leakage breaker is measured with a lead-in wire to identify a low-voltage customer with a ground fault. Furthermore, ground fault current is measured by using a load line of a low-voltage customer who has been able to specify the occurrence of a ground fault, and the location where the ground fault occurs is specified (for example, see Patent Document 1).
JP 2004-101352 A

バンクの変圧器二次側の中性線または1端子に施設するB種接地工事は、バンク個々について行う単独接地の他、複数の各バンクのB種接地線を並列に連結して多重化する多重接地がある。B種接地工事が行われる土地の状況によっては、単独接地では接地抵抗を規定の値に保つことが経済的に難しくなる場合がある。このような場合には、複数バンクのB種接地線を共同接地線で並列に連結して合成接地抵抗値を低くし、これを規定値に保つことが行われている。   Class B grounding works on the neutral line or one terminal of the transformer secondary side of the bank, in addition to single grounding for each bank, the B type grounding lines of each bank are connected in parallel and multiplexed. There is multiple grounding. Depending on the conditions of the land where Class B grounding work is performed, it may be economically difficult to maintain the grounding resistance at a specified value with single grounding. In such a case, the B type grounding wires of a plurality of banks are connected in parallel with a common grounding wire to lower the combined grounding resistance value and keep it at a specified value.

複数のバンクを多重接地した多重接地式(架空共同地線式)の低圧交流配電線路においては、任意の1つのバンクから電力供給される低圧需要家に地絡が発生して地絡電流が流れた場合、当該バンクのB種接地線だけでなく共同接地線を通して連結される他の全てのバンクのB種接地線にもその接地抵抗値に応じた地絡電流が流れる。このため、地絡が発生した低圧需要家を電力供給するバンクの特定ができず、B種接地を共同接地している全てのバンクから電力供給される全ての低圧需要家の引込線や負荷回線で地絡電流を測定する必要があり、探査範囲が広がり過ぎて地絡発生箇所の特定とその作業が困難であった。   In a multiple grounding (overhead joint ground type) low-voltage AC distribution line with multiple banks grounded, a ground fault occurs in a low-voltage customer supplied with power from any one bank, and a ground fault current flows. In this case, a ground fault current corresponding to the ground resistance value flows not only in the B type ground line of the bank but also in the B type ground lines of all other banks connected through the common ground line. For this reason, it is not possible to specify a bank that supplies power to low-voltage consumers in which a ground fault has occurred, and it is not possible to use the service lines or load lines of all low-voltage consumers that are supplied with power from all banks that are jointly grounded with Class B grounding. It was necessary to measure the ground fault current, and the exploration range was too wide, and it was difficult to identify and work on the ground fault occurrence location.

また、複数の各バンクのB種接地を切り離して単独接地に戻すことで、地絡発生のバンクを正確に特定することができる。この場合、複数のバンクでのB種接地の切離しの手間と、元の多重接地に戻す手間を要するのみならず、地絡発生が間欠的に行われる間欠地絡では、B種接地切離し後、次の地絡発生までB種接地抵抗値が規定値未満となる状態を招く不具合があり、信頼性に欠ける。   Further, by separating the B-type grounding of each of the plurality of banks and returning to the single grounding, it is possible to accurately specify the bank where the ground fault has occurred. In this case, not only the trouble of disconnecting the B type grounding in a plurality of banks and the trouble of returning to the original multiple grounding is required, but also in the intermittent grounding in which the ground fault is generated intermittently, Until the next ground fault occurs, there is a problem that causes the state that the class B ground resistance value is less than the specified value, and the reliability is lacking.

本発明の目的は、多重接地式低圧交流配電線路における複数バンクにおいて、あるバンクから供給される低圧需要家で地絡が発生したとき、この地絡発生のバンクを多重接地のままで正確に特定できる地絡バンク特定方法とその特定装置を提供することにある。   The object of the present invention is to accurately identify a bank in which multiple grounding occurs with multiple grounding when a grounding fault occurs in a plurality of banks in a multiple grounding type low-voltage AC distribution line in a low-voltage consumer supplied from a certain bank. An object of the present invention is to provide a method for identifying a ground fault bank and a device for identifying the same.

上記目的を達成する本発明方法は、複数のバンクのB種接地線を共同接地線で並列に連結した多重接地式低圧交流配電線路における地絡バンク特定方法であって、複数のバンクのいずれかの共同接地線に地絡電流を検出する変流器を設け、この変流器で検出した地絡電流と低圧交流配電線路のいずれかの電圧との位相差から、検出した地絡電流の方向を検知し、この検知した地絡電流方向に基づいて地絡発生のバンクを特定することを特徴とする。   The method of the present invention that achieves the above object is a method of identifying a ground fault bank in a multi-grounding type low-voltage AC distribution line in which B-type ground lines of a plurality of banks are connected in parallel by a common ground line, and any one of the plurality of banks A current transformer that detects ground fault current is installed on the common ground line of the ground, and the direction of the detected ground fault current is determined from the phase difference between the ground fault current detected by this current transformer and one of the voltages on the low-voltage AC distribution line. And a bank in which a ground fault occurs is specified based on the detected ground fault current direction.

ここで、低圧交流配電線路は、高圧配電線路に柱上変圧器であるバンクで連携される単相交流式または三相交流式の低圧配電線路が適用できる。この低圧交流配電線路における複数のバンクは、住宅や工場などの低圧需要家に電力供給する柱上変圧器系で、各バンクの変圧器B種接地線が共通の共同接地線で連結されて多重接地される。1つのバンクで漏電による地絡が発生すると、地絡発生のバンクを含む全てのバンクのB種接地線、共同接地線に異なる大きさの地絡電流が流れる。各バンクでの地絡電流は交流で、その電流方向は地絡発生のバンクに流入する方向と、地絡発生のバンクから流出する方向の繰り返しである。各バンクでの地絡電流方向を、この地絡電流と低圧交流配電線路の予め設定された線間電圧や対地電圧などの基準とする線路電圧との位相差から求めて、複数の電流方向を総括的に判読して地絡発生したバンクを特定する。複数のバンクの全てにおいて地絡電流方向を検知することが望ましいが、地絡発生バンクの位置によっては少数バンクで地絡電流方向を検知すれば地絡発生のバンクが特定できる。各バンクで地絡電流の方向検出は、地絡電流と低圧交流配電線路の基準とする線路電圧の位相差により地絡電流値が小さくても正確にして容易に検出でき、多重接地のままで地絡発生バンクの特定が正確にして簡単、安価な設備で実行できる。   Here, the low-voltage AC distribution line can be a single-phase AC type or a three-phase AC type low-voltage distribution line that is linked to the high-voltage distribution line by a bank that is a pole transformer. A plurality of banks in this low-voltage AC distribution line are pole transformer systems that supply power to low-voltage consumers such as houses and factories, and transformer B class ground wires of each bank are connected by a common common ground wire and multiplexed. Grounded. When a ground fault occurs due to leakage in one bank, ground fault currents of different magnitudes flow in the B-type ground lines and common ground lines of all banks including the bank where the ground fault occurs. The ground fault current in each bank is an alternating current, and the current direction is a repetition of the direction flowing into the bank where the ground fault occurs and the direction flowing out from the bank where the ground fault occurs. The direction of the ground fault current in each bank is obtained from the phase difference between the ground fault current and a preset line voltage of the low-voltage AC distribution line or a reference line voltage such as a ground voltage. The bank where the ground fault occurred is identified through comprehensive interpretation. Although it is desirable to detect the direction of the ground fault current in all of the plurality of banks, depending on the position of the ground fault occurrence bank, if the direction of the ground fault current is detected by a small number of banks, the bank in which the ground fault occurs can be specified. The direction of ground fault current in each bank can be detected accurately and easily even if the ground fault current value is small due to the phase difference between the ground fault current and the line voltage used as the reference for the low-voltage AC distribution line. The identification of the bank for generating a ground fault can be carried out with accurate, simple and inexpensive equipment.

本発明方法においては、複数バンクでの地絡電流方向を、各バンクでの地絡電流と共同接地線と大地間の対地電圧との位相差に基づいて検知することができる。この場合、共同接地線の対地電圧は、接触式電圧検出器あるいは小形軽量で安価な非接触式電圧検出器を使用することで簡単、迅速に検出でき、地絡発生バンクを特定する作業が高能率で行え、特定する設備費の低減が図れる。   In the method of the present invention, the ground fault current direction in the plurality of banks can be detected based on the phase difference between the ground fault current in each bank and the ground voltage between the common ground line and the ground. In this case, the ground voltage of the common ground line can be detected easily and quickly by using a contact-type voltage detector or a small, lightweight, and inexpensive non-contact-type voltage detector. It can be done with efficiency and the specified equipment cost can be reduced.

また、複数のバンクでの地絡電流方向を、各バンクでの地絡電流とB種接地線に直列接続した抵抗の両端の端子電圧との位相差に基づいて検知することができる。B種接地線に直列接続した抵抗に地絡電流が流れて両端に端子電圧が発生し、この端子電圧は対地電圧と同位相であることから、対地電圧と同様に地絡電流方向の検知に適用できる。抵抗を使用した地絡電流方向検知のための基準電圧は精度的に優れ、地絡電流方向検知の精度を上げる。   Further, the direction of the ground fault current in the plurality of banks can be detected based on the phase difference between the ground fault current in each bank and the terminal voltage at both ends of the resistor connected in series to the B-type ground line. A ground fault current flows through the resistor connected in series with the B-type ground wire, and a terminal voltage is generated at both ends. This terminal voltage is in phase with the ground voltage, so that the ground fault current direction can be detected in the same manner as the ground voltage. Applicable. The reference voltage for detecting a ground fault current direction using a resistor is excellent in accuracy and increases the precision of ground fault current direction detection.

また、上記抵抗は、B種接地線の途中に着脱自在に直列接続された短絡バーを外して代わりに直列接続することができる。通常のバンクにおいては、定期的な接地抵抗測定のために電柱の上部に短絡バーを収容したアースターミナルが常設されている。短絡バーはB種接地線の途中一部を構成し、定期的な接地抵抗測定時にB種接地線から外される。そこで、B種接地線の途中に短絡バーに代わり抵抗を挿入するようにすれば、抵抗挿入のためにB種接地線を切断するなどといった不都合な作業が省略できる。また、B種接地線の近くの大地に接地補助極を打ち込んで対地電圧を測定する方法に比べ、B種接地線に抵抗を挿入する作業は容易であり、接地補助極の打ち込みが難しいところのバンクであっても適用できて汎用性に優れる。   Further, the resistor can be connected in series instead by removing the short-circuit bar detachably connected in series in the middle of the class B grounding wire. In an ordinary bank, an earth terminal that houses a short-circuit bar is installed at the top of a utility pole for periodic ground resistance measurement. The short-circuit bar constitutes a part of the B-type ground line, and is removed from the B-type ground line during periodic ground resistance measurement. Therefore, if a resistor is inserted in the middle of the B-type ground line instead of the short-circuit bar, inconvenient work such as cutting the B-type ground line for inserting the resistor can be omitted. Compared to the method of measuring the ground voltage by driving a grounding auxiliary electrode near the ground of the B type grounding wire, it is easier to insert a resistor into the B type grounding wire, and it is difficult to drive the grounding auxiliary electrode. It can be applied even to banks and has excellent versatility.

また、地絡電流の検出箇所は、負荷電流が流れないバンク間の共同接地線の接続箇所を選定すれば、負荷電流と重複しないので両者を分離する必要がなく、地絡電流方向の検出が容易になる。   In addition, if the joint ground line connection between banks where load current does not flow is selected, the ground fault current detection location does not overlap with the load current, so there is no need to separate both, and detection of the ground fault current direction is possible. It becomes easy.

また、複数のバンクの共同接地線それぞれに独自に地絡電流を検出する変流器を設置して、複数のバンクで地絡電流方向を同時に検知することができる。さらに、複数のバンクの共同接地線それぞれに変流器を常設して、複数バンクでの地絡バンク特定動作を常時および同時刻に行うことができる。このように複数のバンクでの地絡バンク特定動作を常時行うことで、間欠地絡を発生するバンクの特定にも正確に対応できる。   In addition, a current transformer that uniquely detects the ground fault current can be installed in each of the common ground lines of the plurality of banks, and the direction of the ground fault current can be detected simultaneously in the plurality of banks. Furthermore, a current transformer is permanently installed in each of the common ground lines of the plurality of banks, and the ground fault bank specifying operation in the plurality of banks can be performed constantly and at the same time. Thus, by always performing the ground fault bank specifying operation in a plurality of banks, it is possible to accurately cope with the specification of the bank that generates the intermittent ground fault.

上記目的を達成する本発明装置は、複数のバンクの変圧器B種接地線を共同接地線で並列に連結した多重接地式低圧交流配電線路における地絡バンク特定装置であって、バンクの共同接地線に流れる地絡電流を検出する変流器と、低圧交流配電線路のいずれかの基準とする線路の電圧を検出する電圧検出器と、変流器で検出された地絡電流と電圧検出器で検出された電圧の位相差から共同接地線における地絡電流方向を検出する電流方向検出回路とを具備する。   A device of the present invention that achieves the above object is a ground fault bank identification device in a multi-grounding type low-voltage AC distribution line in which transformer B type ground wires of a plurality of banks are connected in parallel by a common ground wire, A current transformer for detecting a ground fault current flowing in the line, a voltage detector for detecting a voltage of a line as a reference of any one of the low-voltage AC distribution lines, and a ground fault current and a voltage detector detected by the current transformer. And a current direction detection circuit for detecting the direction of the ground fault current in the common ground line from the phase difference of the voltage detected in (1).

また、本発明装置は、複数のバンクの共同接地線それぞれに設置されて各共同接地線に流れる地絡電流を独自に検出する複数の変流器と、低圧交流配電線路のいずれかの基準とする線路の電圧を検出する電圧検出器と、複数の変流器で検出されたそれぞれの地絡電流と電圧検出器で検出された電圧との位相差から複数のバンクの共同接地線での地絡電流方向をそれぞれに検出して記録する電流方向検出記録回路とを具備した構造とすることができる。   In addition, the device of the present invention includes a plurality of current transformers that are installed in each of the common ground lines of a plurality of banks and independently detect a ground fault current flowing in each common ground line, and any one of the low-voltage AC distribution lines. A voltage detector that detects the voltage of the line to be connected, and the ground difference between the ground fault current detected by the plurality of current transformers and the voltage detected by the voltage detector. It is possible to have a structure including a current direction detection recording circuit for detecting and recording each of the current directions.

ここで、電圧検出器は、共同接地線と大地間の対地電圧を検出する接触式または非接触式のものや、バンクのB種接地線に直列接続した抵抗の両端の端子電圧を検出する電圧計が適用できる。また、電流方向検出回路は、検出した地絡電流方向のデータを視認できるよう表示したり、遠隔地に送信する機能を備えたものが適用できる。同様に電流方向検出記録回路は、記録した地絡電流方向のデータを視認できるよう表示したり、遠隔地に送信する機能を備えたものが適用できる。また、電流方向検出記録回路で、複数バンクの共同接地線での地絡電流方向をそれぞれに検出して記録すると共に、検出された複数の地絡電流の同時刻での位相が同相か反転相かを比較検知させることができる。この場合、左右両側に共同接地線を延在させた任意の単一バンクにおいて、両側の共同接地線から検出された地絡電流の同時刻の位相が同位相であると、両側の地絡電流方向は同方向と判断でき、両側の共同接地線から検出された地絡電流の同時刻の位相が互いに反転した位相であると、両側の地絡電流方向は逆方向と判断でき、このときの単一バンクが地絡発生のバンクと特定することもできる。   Here, the voltage detector is a contact type or non-contact type that detects a ground voltage between the common ground line and the ground, or a voltage that detects a terminal voltage at both ends of a resistor connected in series to the B-type ground line of the bank. The total is applicable. In addition, the current direction detection circuit can be applied to a circuit having a function of displaying the data of the detected ground fault current direction so as to be visible or transmitting the data to a remote place. Similarly, as the current direction detection recording circuit, a circuit having a function of displaying the recorded ground fault current direction data so as to be visible or transmitting it to a remote place can be applied. In addition, the current direction detection recording circuit detects and records the direction of the ground fault current in the common ground line of the plurality of banks, and the phase of the detected ground fault currents at the same time is the same phase or reversed phase. Can be detected and compared. In this case, if the same time phase of the ground fault current detected from the common ground line on both sides is the same phase in any single bank with the common ground line extending on both sides, the ground fault current on both sides The direction can be determined to be the same direction, and if the ground fault currents detected from the joint ground lines on both sides are the phases reversed at the same time, the ground fault current directions on both sides can be determined to be opposite directions. A single bank can also be identified as a bank with a ground fault.

本発明によれば、多重接地式低圧交流配電線路の複数バンクのいずれかに地絡が発生して、複数のバンクに地絡電流が流れても、多重接地のままで地絡発生したバンクが簡単、正確に特定できるようになり、多重接地式低圧交流配電線路のバンク地絡対策が作業性よく、常に正確にできるようになるという優れた効果を奏し得る。   According to the present invention, even if a ground fault occurs in any of a plurality of banks of a multiple ground type low-voltage AC distribution line and a ground fault current flows through the plurality of banks, This makes it possible to easily and accurately specify the bank ground fault countermeasure for the multi-grounding type low-voltage AC distribution line with good workability and an excellent effect that it can always be accurately performed.

また、複数バンクの共同接地線のそれぞれに変流器を常設することで、間欠地絡をも正確に検知して間欠地絡発生バンクの特定ができるようになり、多重接地式低圧交流配電線路のバンク地絡対策がより信頼性よく行えるようになる。   In addition, by installing a current transformer in each of the common ground lines of multiple banks, it is possible to accurately detect intermittent ground faults and identify the bank that generates the intermittent ground fault. Bank ground fault countermeasures can be performed more reliably.

以下、本発明の実施の形態を図1〜図6を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、複数例えば5つのバンクB1〜B5を備えた単相三線式の多重接地式低圧交流配電線路1を示す。高圧交流配電線路に接続された各バンクB1〜B5のそれぞれのB種接地線4は、低圧柱2の変圧器二次側に低圧線3がある場合は低圧線中性線に、低圧線がない場合は直接柱上変圧器中性線に接続される。また、各バンクB1〜B5の中性線は共同接地線5で接続されて、5つのバンク全体のB種接地を並列に連結した多重接地で行われる。これにより低圧線中性線は同時に共同接地線5ともなる。各バンクB1〜B5における接地抵抗値は、5つのバンクB1〜B5の接地抵抗を並列接続したときの合成接地抵抗値になる。また、各バンクB1〜B5の低圧線中性線あるいは変圧器中性線の間を接続する箇所の共同接地線には負荷電流が流れず、いずれかのバンクの低圧需要家7に地絡が発生したときに、後述するような地絡電流Iが流れる。   FIG. 1 shows a single-phase three-wire multiple grounded low-voltage AC distribution line 1 having a plurality of, for example, five banks B1 to B5. The B ground wires 4 of the banks B1 to B5 connected to the high-voltage AC distribution line are connected to the low-voltage line neutral line when the low-voltage line 3 is on the transformer secondary side of the low-voltage column 2, and the low-voltage line is If not, it is connected directly to the pole transformer neutral wire. Further, the neutral lines of the banks B1 to B5 are connected by the common ground line 5 and are performed by multiple grounding in which the B-type grounds of the five banks are connected in parallel. Thereby, the low-voltage line neutral line also becomes the common ground line 5 at the same time. The ground resistance value in each of the banks B1 to B5 is a combined ground resistance value when the ground resistances of the five banks B1 to B5 are connected in parallel. In addition, no load current flows through the common ground line at the location connecting the low-voltage line neutral line or the transformer neutral line of each bank B1 to B5, and a ground fault occurs in the low-voltage customer 7 of any bank. When it occurs, a ground fault current I as described later flows.

図2は、5つのバンクB1〜B5の内の、図1で左から2番目のバンクB2から供給する低圧需要家7に漏電による地絡が発生して地絡電流Igが発生した場合を示す。この地絡電流Igは交流で、地絡箇所から大地に流れ出し、地絡発生バンクB2のB種接地線4を通り、大地から地絡発生バンクB2に地絡電流Ig2が戻る。このバンクB2から供給されるB種接地が施設された低圧柱2が当該柱以外にあれば、そのB種接地線4からも大地を通った地絡電流が戻ってくる。また、地絡電流Iは、地絡発生のバンクB2以外のバンクB1、B3〜B5の低圧柱2(バンクが施設された低圧柱を含む)のB種接地線4を通って、それぞれに電流Ig1、Ig3〜Ig5が大地から戻る。この電流Ig1、Ig3〜Ig5は共同接地線5を通って地絡発生のバンクB2に戻る。5つのバンクB1〜B5の間を接続する共同接地線5を流れる4つの地絡電流IをIa〜Idとすると、この各地絡電流Ia〜Idは、その流れる方向が地絡発生バンクと地絡が発生していないバンクの位置関係によって決まり、それぞれの大きさは各バンクの位置関係と各々のバンクのB種接地抵抗値によって決まる。地絡発生箇所から大地に流出する電流Igは、共同接地線5で連結された5つの各バンクB1〜B5のすべてのB種接地線4を通って大地から戻り、それぞれの電流Ig1〜Ig5の向きは同じであることから、B種接地線4を流れる地絡電流Ig1〜Ig5を検知しても地絡発生バンクは分からない。   FIG. 2 shows a case where a ground fault occurs due to a leakage in the low voltage consumer 7 supplied from the second bank B2 from the left in FIG. 1 among the five banks B1 to B5, and a ground fault current Ig is generated. . This ground fault current Ig is an alternating current, and flows out from the ground fault location to the ground. The ground fault current Ig2 returns from the ground to the ground fault generation bank B2 through the B-type ground line 4 of the ground fault generation bank B2. If the low-pressure column 2 provided with the B-type grounding supplied from the bank B2 is located other than the column, the ground fault current passing through the ground also returns from the B-type grounding wire 4. In addition, the ground fault current I passes through the B-type ground line 4 of the low-voltage column 2 (including the low-voltage column in which the bank is installed) of the banks B1, B3 to B5 other than the bank B2 in which the ground fault is generated. Ig1, Ig3 to Ig5 return from the ground. The currents Ig1, Ig3 to Ig5 return to the bank B2 where the ground fault has occurred through the common ground line 5. Assuming that the four ground fault currents I flowing through the common ground line 5 connecting the five banks B1 to B5 are Ia to Id, the local fault currents Ia to Id flow in the direction of the ground fault occurrence bank and the ground fault. The size of each bank is determined by the positional relationship of each bank and the B-type ground resistance value of each bank. The current Ig flowing out from the ground fault occurrence point to the ground returns from the ground through all the B-type ground lines 4 of the five banks B1 to B5 connected by the common ground line 5, and the currents Ig1 to Ig5 Since the directions are the same, even if the ground fault currents Ig1 to Ig5 flowing through the B-type ground line 4 are detected, the ground fault occurrence bank is not known.

ここで、図2に示すように、左端のバンクB1と地絡発生のバンクB2を接続する共通接地線5を流れる地絡電流Iaは、図2の左から右に流れる方向(以下、必要に応じマイナス方向と称する)に流れる。また、地絡発生のバンクB2とその右隣りのバンクB3を接続する共同接地線5を流れる電流Ibは、右から左に流れる方向(以下、必要に応じプラス方向と称する)に流れる。また、別のバンクB3とバンクB4を接続する共同接地線5を流れる電流Icと、バンクB4とバンクB5を接続する共同接地線5を流れる電流Idは、共に右から左のプラス方向に流れる。   Here, as shown in FIG. 2, the ground fault current Ia flowing through the common ground line 5 connecting the leftmost bank B1 and the ground fault occurrence bank B2 flows from the left to the right in FIG. (Referred to as a minus direction). Further, the current Ib flowing through the common ground line 5 connecting the bank B2 in which the ground fault occurs and the bank B3 adjacent to the right flows in a direction flowing from right to left (hereinafter, referred to as a plus direction if necessary). Further, the current Ic flowing through the common ground line 5 connecting another bank B3 and the bank B4 and the current Id flowing through the common ground line 5 connecting the bank B4 and the bank B5 both flow in the plus direction from right to left.

つまり、図2で地絡発生のバンクB2においては、左右で隣接するバンクB1、B3の共同接地線を流れる電流の向きが、一方がプラス方向、他方がマイナス方向になる。このことから隣接バンクから地絡電流が流れ込むばかりのバンクが、地絡発生バンクであると判定できる。さらに、地絡が発生していないバンクでは、隣接するバンクとの共同接地線を流れる地絡電流の向きが両方ともプラス、あるいは両方ともマイナスになり、地絡電流が流れ込むが流れ出していくバンクは、地絡発生バンクでないと判定できる。   In other words, in the bank B2 in which the ground fault occurs in FIG. 2, the direction of the current flowing through the common ground line of the banks B1 and B3 adjacent on the left and right is positive and the other is negative. From this, it can be determined that the bank into which the ground fault current just flows from the adjacent bank is the ground fault occurrence bank. Furthermore, in a bank where no ground fault has occurred, the direction of the ground fault current flowing through the joint ground line with the adjacent bank is both positive, or both are negative, and the bank where the ground fault current flows in but flows out is It can be determined that the bank is not a ground fault occurrence bank.

なお、ここでは便宜上に電流の向きを設定したが、地絡電流は交流であるので実際の判定にあたっては、地絡発生の有無を判定しようとするバンクに隣接する共同接地線を流れる電流の位相が、電圧に対して図3の波形図に示すように両側ともに同相であるか、位相が反転しているかで判定する。図3に示すZCT1〜ZCT5は、共同接地線5を流れる電流を検出する零相変流器であり、後述する変流器10に相当する。   Although the direction of the current is set here for convenience, since the ground fault current is an alternating current, in the actual determination, the phase of the current flowing through the common ground line adjacent to the bank where the determination of the occurrence of the ground fault is made. However, as shown in the waveform diagram of FIG. 3 with respect to the voltage, whether both sides are in phase or whether the phase is reversed is determined. ZCT1 to ZCT5 shown in FIG. 3 are zero-phase current transformers that detect currents flowing through the common ground line 5, and correspond to current transformers 10 described later.

また、例えば図4に示すように左端のバンクB1に地絡が発生した場合、このバンクB1では隣接するバンクとの共同接地線が一方にしかないが、地絡の発生していないバンクB2〜B5からの電流Ia〜Idが集まって流れるのでその大きさから、あるいは、その他の各バンク間の共同接地線5を流れる地絡電流の向きから判定することができる。   For example, as shown in FIG. 4, when a ground fault occurs in the leftmost bank B1, there is only one common ground line with an adjacent bank in this bank B1, but banks B2 to B5 where no ground fault occurs. Currents Ia to Id are collected and flow, so that it can be determined from the magnitude thereof or from the direction of the ground fault current flowing through the common ground line 5 between the other banks.

上記のような地絡発生のバンクB2の位置の特定は、図1あるいは図5に示す地絡バンク特定装置を使用して行うことができる。   The position of the bank B2 in which the ground fault occurs can be specified by using the ground fault bank specifying apparatus shown in FIG. 1 or FIG.

図1は、任意のバンクBの共同接地線5に流れる地絡電流を検出する変流器10と、交流配電線路1のいずれかの線路の電圧を検出する電圧検出器20と、変流器10で検出された地絡電流と電圧検出器20で検出された線路電圧の位相差から共同接地線5における地絡電流方向を検出する電流方向検出回路30を備える。電流方向検出回路30には、検出した電流方向を表示する表示手段40や、検出した電流方向をメモリし、遠隔地に送信する手段(図示せず)を付設することができる。電圧検出器20は、例えば共同接地線5の対地電圧を検出する接触式または小型軽量で安価な非接触式のものを使用することができる。また、電圧検出器20は、図6で後述する抵抗Rの端子電圧を検出する電圧計が適用できる。   FIG. 1 shows a current transformer 10 that detects a ground fault current flowing in a common ground line 5 of an arbitrary bank B, a voltage detector 20 that detects the voltage of any line of the AC distribution line 1, and a current transformer. A current direction detection circuit 30 that detects the direction of the ground fault current in the common ground line 5 from the phase difference between the ground fault current detected at 10 and the line voltage detected at the voltage detector 20 is provided. The current direction detection circuit 30 can be provided with a display means 40 for displaying the detected current direction and a means (not shown) for storing the detected current direction and transmitting it to a remote place. As the voltage detector 20, for example, a contact type that detects the ground voltage of the common ground line 5 or a non-contact type that is small, light, and inexpensive can be used. The voltage detector 20 can be a voltmeter that detects the terminal voltage of the resistor R, which will be described later with reference to FIG.

地絡発生バンクの特定作業は、例えば次の手順で行える。任意の2つのバンクB1とバンクB2の間の共同接地線5に変流器10を設置して地絡電流(図2のIaに相当)を検出し、この地絡電流と検電器20で検出した例えば対地電圧との位相差を求めて、図2における地絡電流Iaの電流方向がマイナス方向であることを検知する。次に、別の2つのバンクB2とバンクB3の間の共同接地線5に変流器10を設置して地絡電流(図2のIbに相当)を検出し、この地絡電流と検電器20で検出した基準とする対地電圧との位相差を求めて、図2における地絡電流Ibの電流方向がプラス方向であることを検知する。地絡発生バンクがバンクB2である場合、上述の2回の電流方向検知の結果からバンクB2に地絡電流が流入していることが分かり、バンクB2が地絡発生バンクであると特定できる。   The identification work of the ground fault occurrence bank can be performed, for example, by the following procedure. A current transformer 10 is installed in the common ground line 5 between any two banks B1 and B2, and a ground fault current (corresponding to Ia in FIG. 2) is detected. For example, the phase difference from the ground voltage is obtained, and it is detected that the current direction of the ground fault current Ia in FIG. Next, a current transformer 10 is installed in the common ground line 5 between the other two banks B2 and B3 to detect a ground fault current (corresponding to Ib in FIG. 2). The phase difference from the reference ground voltage detected at 20 is obtained, and it is detected that the current direction of the ground fault current Ib in FIG. 2 is the plus direction. In the case where the ground fault occurrence bank is the bank B2, it can be seen from the result of the current direction detection twice that the ground fault current flows into the bank B2, and the bank B2 can be specified as the ground fault occurrence bank.

また、図1の低圧交流配電線路1において、右端のバンクB5側から地絡電流方向を順に検知することもできる。この場合は、右端のバンクB5とその左隣りのバンクB4の間の共同接地線5に変流器10を設置して地絡電流(図2のIdに相当)を検出し、この地絡電流と検電器20で検出した基準とする例えば対地電圧との位相差を求めて、図2における地絡電流Idの電流方向がプラス方向であることを検知する。同様にしてバンクB4とバンクB3の間の共同接地線5の地絡電流方向を検知し、さらにバンクB3とバンクB2の間の共同接地線5の地絡電流方向を検知し、いずれもプラス方向であることを検知する。この場合、まだ地絡発生バンクの特定をせず、バンクB2とバンクB1の間の共同接地線6の地絡電流方向がマイナス方向であると検知した段階で、地絡発生バンクがバンクB2であると特定する。   Further, in the low-voltage AC distribution line 1 of FIG. 1, the direction of the ground fault current can also be detected in order from the bank B5 side at the right end. In this case, a current transformer 10 is installed in the common ground line 5 between the rightmost bank B5 and the left bank B4 to detect a ground fault current (corresponding to Id in FIG. 2). And the reference voltage detected by the voltage detector 20, for example, a phase difference with the ground voltage is obtained to detect that the current direction of the ground fault current Id in FIG. Similarly, the ground fault current direction of the common ground line 5 between the bank B4 and the bank B3 is detected, and further the ground fault current direction of the common ground line 5 between the bank B3 and the bank B2 is detected. Is detected. In this case, the ground fault occurrence bank is not identified yet, and when the ground fault current direction of the common ground line 6 between the bank B2 and the bank B1 is detected to be negative, the ground fault occurrence bank is the bank B2. Identifies it.

図4に示す交流配電線路1は、地絡発生バンクが左端のバンクB1である。この場合、例えばバンクB1とバンクB2の間の共同接地線5に変流器10を設置して地絡電流を検出し、この地絡電流と検電器20で検出した基準とする対地電圧との位相差を求めて、図3における地絡電流Iaの電流方向がプラス方向であることを検知する。この1回の電流方向の検知で、共同接地線5の一番端のバンクB1に地絡電流が流入していることが分かり、バンクB1が地絡発生バンクであることが特定できる。実際は、他のバンク間の電流方向や大きさ(バンクB1が地絡バンクの場合、電流は他のバンクに比べ最も大きくなる)をも検知して、総合的に地絡発生バンクを特定することが望ましい。   In the AC distribution line 1 shown in FIG. 4, the ground fault occurrence bank is the leftmost bank B <b> 1. In this case, for example, a current transformer 10 is installed in the common ground line 5 between the bank B1 and the bank B2 to detect a ground fault current, and the ground fault current and the reference ground voltage detected by the voltage detector 20 are detected. The phase difference is obtained, and it is detected that the current direction of the ground fault current Ia in FIG. 3 is the plus direction. By detecting the current direction once, it can be seen that the ground fault current flows into the bank B1 at the extreme end of the common grounding line 5, and the bank B1 can be specified as the ground fault occurrence bank. Actually, it is also necessary to detect the direction and magnitude of current between other banks (when bank B1 is a ground fault bank, the current is the highest compared to other banks) and to identify the ground fault generating bank comprehensively. Is desirable.

図5の地絡バンク特定装置は、複数のバンク間の共同接地線5に単機ずつ変流器10、…を設置している。この場合、交流配電線路1のいずれかの基準とする線路電圧を検出する電圧検出器20と、複数の変流器10、…で検出されたそれぞれの地絡電流と電圧検出器20で検出された電圧との位相差から複数バンク間の共同接地線5での地絡電流方向をそれぞれに検出して記録する電流方向検出記録回路50を装備する。電流方向検出記録回路50は、複数のバンク間の共同接地線5を流れる地絡電流方向を同時に検知したり、順次に検知することができる。   In the ground fault bank identification device of FIG. 5, current transformers 10,... Are installed on a common ground line 5 between a plurality of banks. In this case, the voltage detector 20 that detects the line voltage as a reference of the AC distribution line 1 and the ground fault currents detected by the plurality of current transformers 10. A current direction detection recording circuit 50 is provided for detecting and recording the direction of the ground fault current in the common ground line 5 between a plurality of banks based on the phase difference from the detected voltage. The current direction detection recording circuit 50 can simultaneously or sequentially detect the direction of the ground fault current flowing through the common ground line 5 between a plurality of banks.

電流方向検出記録回路50で複数のバンク間の地絡電流方向を同時に検知して記録し、その位相を比較すれば、地絡バンク両側では共同接地線5を流れる地絡電流位相が反転するので、これより地絡バンクを特定できる。この場合、電圧検出器20を省略してもよい。   If the current direction detection recording circuit 50 simultaneously detects and records the direction of the ground fault current between the plurality of banks and compares the phases, the ground fault current phase flowing through the common ground line 5 is reversed on both sides of the ground fault bank. From this, the ground fault bank can be specified. In this case, the voltage detector 20 may be omitted.

また、複数のバンク間の共同接地線5のそれぞれに単機ずつ変流器10、…を常設して、電流方向検出記録回路50を常時作動させることで、間欠地絡発生バンクでの間欠地絡が検知でき、間欠地絡発生バンクの特定ができる。すなわち、各バンクB1〜B5において発生した地絡は、地絡状況の変動で回復したりして間欠的に発生することが多く、地絡無しのときに各バンク間の地絡電流方向を検知するようにしても検知不能となり、間欠地絡発生バンクの特定ができないことがある。複数の各バンク間に変流器10、…を常設して、複数の各バンク間の地絡電流方向検知を常時および同時刻で行うことで、間欠地絡発生バンクが特定できる。また、電流方向検出記録回路50が間欠地絡発生バンクを検知すれば、無線あるいは有線で遠隔地に間欠地絡発生のデータ信号と地絡発生バンクの位置データ信号を送信するようにすることが望ましい。   Further, by installing a current transformer 10,... On each of the common ground lines 5 between a plurality of banks and operating the current direction detection recording circuit 50 at all times, an intermittent ground fault in the intermittent ground fault generating bank is obtained. Can be detected, and an intermittent ground fault occurrence bank can be identified. That is, the ground fault generated in each of the banks B1 to B5 often occurs intermittently by recovering due to a change in the ground fault condition, and the direction of the ground fault current between the banks is detected when there is no ground fault. Even if it does, it becomes impossible to detect, and it may not be possible to specify the intermittent ground fault occurrence bank. An intermittent ground fault generation bank can be specified by permanently installing the current transformers 10,... Between the plurality of banks and performing the ground fault current direction detection between the plurality of banks at all times and at the same time. Further, if the current direction detection recording circuit 50 detects the intermittent ground fault occurrence bank, it is possible to transmit the data signal of the occurrence of the intermittent ground fault and the position data signal of the ground fault occurrence bank to the remote place by wireless or wired. desirable.

地絡電流方向検知のための交流配電線路1のいずれかの基準とする線路電圧は、図6に示すような各バンクBにおけるB種接地線4に追加的に直列接続した抵抗Rの両端の端子電圧も有効である。B種接地線4に流れる地絡電流が抵抗Rを流れ、その両端に発生する端子電圧は対地電圧と同位相であることから、地絡電流方向検知のための基準電圧として適用できる。   The line voltage used as a reference of the AC distribution line 1 for detecting the direction of the ground fault current is obtained by adding a resistor R connected in series to the B-type ground line 4 in each bank B as shown in FIG. Terminal voltage is also effective. Since the ground fault current flowing through the B-type ground line 4 flows through the resistor R and the terminal voltage generated at both ends thereof is in phase with the ground voltage, it can be applied as a reference voltage for detecting the direction of the ground fault current.

また、図6に示すように、各バンクBのB種接地線4には、定期的な接地抵抗測定に備えてアースターミナル60が常設されている。アースターミナル60には短絡バー61が収容され、短絡バー61がB種接地線4の途中に端子62、63を介して直列接続される。定期的な接地抵抗測定時に短絡バー61が端子62、63から取り外されて、接地抵抗測定が行われる。接地抵抗測定が終了すると、短絡バー61が端子62、63に戻されてB種接地線の一部になる。そこで、短絡電流方向検知の際に、B種接地線4から短絡バー61を取り外し、代わりに抵抗Rの両端を端子62、63に接続する。この端子62、63の間の端子電圧を電圧検出器20で検出する。   In addition, as shown in FIG. 6, a ground terminal 60 is permanently installed in the B-type ground line 4 of each bank B in preparation for periodic ground resistance measurement. A shorting bar 61 is accommodated in the earth terminal 60, and the shorting bar 61 is connected in series via terminals 62 and 63 in the middle of the class B grounding wire 4. The short-circuit bar 61 is removed from the terminals 62 and 63 during periodic ground resistance measurement, and ground resistance measurement is performed. When the ground resistance measurement is completed, the shorting bar 61 is returned to the terminals 62 and 63 and becomes a part of the class B ground wire. Therefore, when detecting the direction of the short-circuit current, the short-circuit bar 61 is removed from the B-type ground wire 4, and instead, both ends of the resistor R are connected to the terminals 62 and 63. A voltage between the terminals 62 and 63 is detected by the voltage detector 20.

B種接地線4に挿入する抵抗Rの抵抗値は、B種接地線4の法的に規定された接地抵抗に応じ、かつ、基準電圧が測定し易い適値のものが選定される。抵抗値の異なる複数種類の抵抗Rを用意し、B種接地線4の種類に応じて予め分かっている最適な一種類を切換的に使用する。抵抗Rが設置されるアースターミナル60は、一般人が容易に近づけない高所にあるため、間欠地絡発生バンクを特定するためにバンクに常設しても安全性が確保できる。   The resistance value of the resistor R to be inserted into the B-type ground line 4 is selected according to the legally prescribed ground resistance of the B-type ground line 4 and an appropriate value at which the reference voltage can be easily measured. A plurality of types of resistors R having different resistance values are prepared, and one optimal type known in advance according to the type of the B-type grounding wire 4 is used in a switching manner. Since the earth terminal 60 in which the resistor R is installed is at a high place where ordinary people cannot easily approach, the safety can be ensured even if it is permanently installed in the bank in order to specify the intermittent ground fault occurrence bank.

なお、本発明の地絡バンク特定装置は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the ground fault bank identification device of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.

本発明の地絡バンク特定方法と特定装置を説明するための低圧交流配電線路の概要を示す配線図である。It is a wiring diagram which shows the outline | summary of the low voltage | pressure AC distribution line for demonstrating the ground fault bank identification method and identification apparatus of this invention. 図1の低圧交流配線路の等価回路図である。FIG. 2 is an equivalent circuit diagram of the low-voltage AC wiring path of FIG. 1. 図2に対地電圧と地絡電流の位相差を示す波形図を加えた図である。It is the figure which added the wave form diagram which shows the phase difference of a ground voltage and a ground fault current to FIG. 図1の低圧交流配電線路の図2と別の地絡状況時の等価回路図である。It is the equivalent circuit figure at the time of another ground fault condition of FIG. 2 of the low voltage | pressure AC distribution line of FIG. 図1と異なる地絡バンク特定方法と特定装置を説明するための低圧交流配電線路の概要を示す配線図である。It is a wiring diagram which shows the outline | summary of the low voltage | pressure AC distribution line for demonstrating the ground fault bank identification method and identification apparatus different from FIG. 低圧交流配電線路の基準となる電圧測定の一例を説明するための配線図である。It is a wiring diagram for demonstrating an example of the voltage measurement used as the reference | standard of a low voltage | pressure AC distribution line.

符号の説明Explanation of symbols

1 低圧交流配電線路
2 低圧柱
3 低圧線
4 B種接地線
5 共同接地線(低圧線中性線を含む)
7 低圧需要家
10 変流器
20 電圧検出器(接触式あるいは非接触式)
30 電流方向検出回路
40 表示手段
50 電流方向検出記録回路
B1〜B5 バンク(柱上変圧器)
Ia〜Id 地絡電流
R 抵抗
60 アースターミナル
61 短絡バー
1 Low-voltage AC distribution line 2 Low-voltage column 3 Low-voltage line 4 Class B ground wire 5 Joint ground wire (including low-voltage wire neutral wire)
7 Low voltage customer 10 Current transformer 20 Voltage detector (contact or non-contact)
30 Current direction detection circuit 40 Display means 50 Current direction detection recording circuit B1 to B5 Bank (pillar transformer)
Ia to Id Ground fault current R Resistance 60 Ground terminal 61 Short-circuit bar

Claims (10)

複数のバンクのB種接地線を共同接地線で並列に連結した多重接地式低圧交流配電線路における地絡バンク特定方法であって、
前記複数のバンクのいずれかの前記共同接地線に地絡電流を検出する変流器を設け、当該変流器で検出した地絡電流と前記低圧交流配電線路のいずれかの電圧との位相差から、前記検出地絡電流の方向を検知し、この検知した地絡電流方向に基づいて地絡発生のバンクを特定することを特徴とする地絡バンク特定方法。
A ground fault bank identification method in a multiple grounding type low-voltage AC distribution line in which B-type ground wires of a plurality of banks are connected in parallel by a common ground wire,
A current transformer for detecting a ground fault current is provided in the common ground line of any of the plurality of banks, and a phase difference between the ground fault current detected by the current transformer and the voltage of any of the low-voltage AC distribution lines A ground fault bank identification method comprising: detecting a direction of the detected ground fault current, and identifying a bank in which a ground fault occurs based on the detected ground fault current direction.
前記複数のバンクでの地絡電流方向を、各バンクでの地絡電流と前記共同接地線と大地間の対地電圧との位相差に基づいて検知することを特徴とする請求項1に記載の地絡バンク特定方法。   The ground fault current direction in the plurality of banks is detected based on a phase difference between a ground fault current in each bank and a ground voltage between the common ground line and the ground. Ground fault bank identification method. 前記複数のバンクでの地絡電流方向を、各バンクでの地絡電流と前記B種接地線に直列接続した抵抗の両端の端子電圧との位相差に基づいて検知することを特徴とする請求項1に記載の地絡バンク特定方法。   The ground fault current direction in the plurality of banks is detected based on a phase difference between a ground fault current in each bank and a terminal voltage at both ends of a resistor connected in series to the type B ground line. Item 2. The method for identifying a ground fault bank according to Item 1. 前記抵抗を前記B種接地線に、当該B種接地線の途中に着脱自在に直列接続した短絡バーを前記B種接地線から外し、この外した短絡バーに代り直列接続するようにしたことを特徴とする請求項3に記載の地絡バンク特定方法。   The resistor is connected to the B-type ground wire, and the short-circuit bar detachably connected in series in the middle of the B-type ground wire is removed from the B-type ground wire and connected in series instead of the removed short-circuit bar. The ground fault bank identification method according to claim 3, wherein: 前記複数のバンクの共同接地線それぞれに独自に地絡電流を検出する変流器を設置して、複数の各バンクでの地絡電流方向を同時に検知することを特徴とする請求項1〜4のいずれかに記載の地絡バンク特定方法。   5. A current transformer that uniquely detects a ground fault current is installed in each of the common ground lines of the plurality of banks to simultaneously detect the direction of the ground fault current in each of the plurality of banks. The ground fault bank identification method according to any of the above. 前記複数のバンクの共同接地線それぞれに前記変流器を常設して、複数バンクでの地絡バンク特定動作を常時および同時刻に行うことを特徴とする請求項1〜5のいずれかに記載の地絡バンク特定方法。   The said current transformer is permanently installed in each common ground line of said several bank, and the earth fault bank specific operation | movement in several banks is always performed at the same time, The any one of Claims 1-5 characterized by the above-mentioned. How to identify the ground fault bank. 複数のバンクのB種接地線を共同接地線で並列に連結した多重接地式低圧交流配電線路における地絡バンク特定装置であって、
前記バンクの共同接地線に流れる地絡電流を検出する変流器と、前記低圧交流配電線路のいずれかの基準とする線路の電圧を検出する電圧検出器と、前記変流器で検出された地絡電流と前記電圧検出器で検出された電圧との位相差から前記共同接地線における地絡電流方向を検出する電流方向検出回路を具備したことを特徴とする地絡バンク特定装置。
A ground fault bank identification device in a multiple grounding type low-voltage AC distribution line in which B type grounding wires of a plurality of banks are connected in parallel by a common grounding wire,
A current transformer for detecting a ground fault current flowing in the common ground line of the bank, a voltage detector for detecting a voltage of a line as a reference of the low-voltage AC distribution line, and detected by the current transformer A ground fault bank identification device comprising a current direction detection circuit for detecting a ground fault current direction in the common ground line from a phase difference between a ground fault current and a voltage detected by the voltage detector.
複数のバンクのB種接地線を共同接地線で並列に連結した多重接地式低圧交流配電線路における地絡バンク特定装置であって、
前記複数のバンクの共同接地線それぞれに設置されて各共同接地線に流れる地絡電流を独自に検出する複数の変流器と、前記低圧交流配電線路のいずれかの基準とする線路の電圧を検出する電圧検出器と、前記複数の変流器で検出されたそれぞれの地絡電流と前記電圧検出器で検出された電圧との位相差から前記複数バンクの共同接地線での地絡電流方向をそれぞれに検出して記録する電流方向検出記録回路とを具備したことを特徴とする地絡バンク特定装置。
A ground fault bank identification device in a multiple grounding type low-voltage AC distribution line in which B type grounding wires of a plurality of banks are connected in parallel by a common grounding wire,
A plurality of current transformers that are installed in each of the common ground lines of the plurality of banks and independently detect a ground fault current flowing in each common ground line, and a voltage of a line as a reference of any one of the low-voltage AC distribution lines Voltage detectors to detect, and ground fault current directions in the common ground lines of the plurality of banks from the phase difference between the respective ground fault currents detected by the plurality of current transformers and the voltages detected by the voltage detectors A ground fault bank specifying device comprising: a current direction detection recording circuit for detecting and recording each of them.
前記電圧検出器は、前記共同接地線と大地間の対地電圧を検出する非接触式電圧検出器であることを特徴とする請求項7または8に記載の地絡バンク特定装置。   The ground fault bank identification device according to claim 7 or 8, wherein the voltage detector is a non-contact voltage detector that detects a ground voltage between the common ground line and the ground. 前記電圧検出器は、前記B種接地線に直列接続した抵抗の両端の端子電圧を検出することを特徴とする請求項7または8に記載の地絡バンク特定装置。   9. The ground fault bank identification device according to claim 7, wherein the voltage detector detects a terminal voltage at both ends of a resistor connected in series to the B-type ground line.
JP2007056286A 2006-03-06 2007-03-06 Ground fault bank identification method and ground fault bank identification device Active JP5021341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007056286A JP5021341B2 (en) 2006-03-06 2007-03-06 Ground fault bank identification method and ground fault bank identification device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006059908 2006-03-06
JP2006059908 2006-03-06
JP2007056286A JP5021341B2 (en) 2006-03-06 2007-03-06 Ground fault bank identification method and ground fault bank identification device

Publications (2)

Publication Number Publication Date
JP2007271610A true JP2007271610A (en) 2007-10-18
JP5021341B2 JP5021341B2 (en) 2012-09-05

Family

ID=38674535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007056286A Active JP5021341B2 (en) 2006-03-06 2007-03-06 Ground fault bank identification method and ground fault bank identification device

Country Status (1)

Country Link
JP (1) JP5021341B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092417A (en) * 2007-10-04 2009-04-30 Kansai Electric Power Co Inc:The Method and device for investigating bank generating ground-fault
CN102420420A (en) * 2011-12-05 2012-04-18 清华大学 Single-phase grounding protection method and system
CN103048587A (en) * 2012-12-12 2013-04-17 深圳供电局有限公司 Method, device and system for positioning faults of power distribution network with distributed power supply
CN103513157A (en) * 2013-08-05 2014-01-15 国家电网公司 Fault locating method of smart power distribution network in distribution line multi-power-supply-point environment
CN103823153A (en) * 2014-03-12 2014-05-28 中国水电顾问集团中南勘测设计研究院有限公司 35kV distribution network single-phase earth fault type judging device
CN104991162A (en) * 2015-06-21 2015-10-21 云南电力试验研究院(集团)有限公司 Positioning device of small-current grounding system single-phase grounding fault and usage method
CN110261721A (en) * 2019-08-06 2019-09-20 云南电网有限责任公司电力科学研究院 Single-phase earthing under active compensation mode differentiates and sentences phase method
CN111273194A (en) * 2020-04-01 2020-06-12 李晓明 Extraction method, line selection method and system for small current ground fault quantity of transformer
JP2021129415A (en) * 2020-02-13 2021-09-02 株式会社エネゲート Current calculation system for power transmission line and calculation method of current
CN113484659A (en) * 2021-05-26 2021-10-08 贵州电网有限责任公司 10kV distribution line single-phase line break fault direction detection method and device based on phase voltage change information

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807187A (en) * 2016-04-28 2016-07-27 云南电力试验研究院(集团)有限公司 Single-phase ground-fault assist detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153977A (en) * 1987-12-11 1989-06-16 Toko Denki Kk Investigating method for accident point of multiple earth distribution line
JPH01153976A (en) * 1987-12-11 1989-06-16 Toko Denki Kk Investigating method for accident point of multiple earth distribution line
JPH0375607U (en) * 1989-11-24 1991-07-30
JPH0580109A (en) * 1991-09-20 1993-04-02 Matsushita Electric Ind Co Ltd Troubled division sensing device for power distribution line

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153977A (en) * 1987-12-11 1989-06-16 Toko Denki Kk Investigating method for accident point of multiple earth distribution line
JPH01153976A (en) * 1987-12-11 1989-06-16 Toko Denki Kk Investigating method for accident point of multiple earth distribution line
JPH0375607U (en) * 1989-11-24 1991-07-30
JPH0580109A (en) * 1991-09-20 1993-04-02 Matsushita Electric Ind Co Ltd Troubled division sensing device for power distribution line

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092417A (en) * 2007-10-04 2009-04-30 Kansai Electric Power Co Inc:The Method and device for investigating bank generating ground-fault
CN102420420A (en) * 2011-12-05 2012-04-18 清华大学 Single-phase grounding protection method and system
CN103048587A (en) * 2012-12-12 2013-04-17 深圳供电局有限公司 Method, device and system for positioning faults of power distribution network with distributed power supply
CN103513157A (en) * 2013-08-05 2014-01-15 国家电网公司 Fault locating method of smart power distribution network in distribution line multi-power-supply-point environment
CN103823153A (en) * 2014-03-12 2014-05-28 中国水电顾问集团中南勘测设计研究院有限公司 35kV distribution network single-phase earth fault type judging device
CN104991162A (en) * 2015-06-21 2015-10-21 云南电力试验研究院(集团)有限公司 Positioning device of small-current grounding system single-phase grounding fault and usage method
CN104991162B (en) * 2015-06-21 2018-10-19 云南电力试验研究院(集团)有限公司 A kind of positioning device and application method of single-phase grounded malfunction in grounded system of low current
CN110261721A (en) * 2019-08-06 2019-09-20 云南电网有限责任公司电力科学研究院 Single-phase earthing under active compensation mode differentiates and sentences phase method
JP2021129415A (en) * 2020-02-13 2021-09-02 株式会社エネゲート Current calculation system for power transmission line and calculation method of current
CN111273194A (en) * 2020-04-01 2020-06-12 李晓明 Extraction method, line selection method and system for small current ground fault quantity of transformer
CN111273194B (en) * 2020-04-01 2022-02-11 李晓明 Extraction method, line selection method and system for small current ground fault quantity of transformer
CN113484659A (en) * 2021-05-26 2021-10-08 贵州电网有限责任公司 10kV distribution line single-phase line break fault direction detection method and device based on phase voltage change information

Also Published As

Publication number Publication date
JP5021341B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5021341B2 (en) Ground fault bank identification method and ground fault bank identification device
Baldwin et al. Fault locating in ungrounded and high-resistance grounded systems
US9190836B2 (en) Potential arc fault detection and suppression
KR102050255B1 (en) Method and test device for testing wiring of transducers
RU2557017C2 (en) Fault identification and directional detection in three-phase power system
WO2018221619A1 (en) Electricity leakage detecting method
Olszowiec Insulation Measurement and Supervision in Live AC and DC Unearthed Systems
JP6373019B2 (en) Simulated power supply device and normal weighing confirmation device
JP5743296B1 (en) Leakage location exploration method and apparatus
JP4599120B2 (en) Electrical installation insulation monitoring device and method
CN205210220U (en) Measure device of direct current circuit to ground leakage current
JP2009081929A (en) Cable connection checker
Hunt Impact of CT errors on protective relays-Case studies and analysis
JP4712594B2 (en) Method for determining erroneous connection of outlet with ground electrode and tester for determining erroneous connection of outlet with ground electrode
CN105403808A (en) DC line ground fault point locating method and device
KR20090132349A (en) Current transformer checker
KR100915243B1 (en) Test terminal board for watt-hour meter
JP2008113546A (en) Discrimination system of dc ground fault line and discrimination method therefor
JP5026906B2 (en) Ground fault occurrence bank identification method and ground fault occurrence bank identification device
JP4489395B2 (en) Equipment for measuring electrostatic capacitance of power system to ground
JP2010273478A (en) Method and system for detection of line-to-ground fault in dc and ac circuit
JP6969079B2 (en) Forced installation device, ground fault investigation device and method using it
JP6604882B2 (en) Transformer high voltage side phase loss detection system
JP2019060726A (en) Forcible grounding device and ground fault surveying device
Heskitt et al. Ground fault protection for an ungrounded system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R150 Certificate of patent or registration of utility model

Ref document number: 5021341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250