JP2007178256A - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
JP2007178256A
JP2007178256A JP2005377071A JP2005377071A JP2007178256A JP 2007178256 A JP2007178256 A JP 2007178256A JP 2005377071 A JP2005377071 A JP 2005377071A JP 2005377071 A JP2005377071 A JP 2005377071A JP 2007178256 A JP2007178256 A JP 2007178256A
Authority
JP
Japan
Prior art keywords
pressure sensor
insulating layer
layer
gate insulating
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005377071A
Other languages
Japanese (ja)
Inventor
Taira Nakagawa
平 中川
Katsumi Abe
勝美 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005377071A priority Critical patent/JP2007178256A/en
Publication of JP2007178256A publication Critical patent/JP2007178256A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new pressure sensor device which is manufactured onto plastic substrates, reduced in weight, simplified in structure the process, and flexibile and upsized. <P>SOLUTION: The pressure sensor has at least a source electrode, a drain electrodes, a gate electrode, an organic semiconductor layer, and a gate insulating layer, on an insulating substrate, at least one layer of the gate insulating layer is of an elastic layer having rubber elasticity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電界効果型有機トランジスタを用いた圧力センサに関する。   The present invention relates to a pressure sensor using a field effect organic transistor.

従来、圧力センサは、無機半導体を用いるため、重い、フレキシブル基板上での作製は難しい、大面積化も難しいことが容易に予想される。そのため、指紋等の微小な面積を読み取るセンサは可能であるが(特許文献1)、それ以上の大面積センサに適用することは困難である。   Conventionally, since the pressure sensor uses an inorganic semiconductor, it is easily expected that it is heavy, difficult to manufacture on a flexible substrate, and difficult to increase in area. Therefore, a sensor that reads a minute area such as a fingerprint is possible (Patent Document 1), but it is difficult to apply to a larger area sensor.

特許第3053007号公報Japanese Patent No. 3053007

本発明は、プラスチック基板上への製造や、軽量化、構造・プロセスの簡素化が可能であり、フレキシブルで、大面積化が可能な新しい圧力センサデバイスを提供することを目的とする。   An object of the present invention is to provide a new pressure sensor device that can be manufactured on a plastic substrate, can be reduced in weight, can be simplified in structure and process, is flexible, and can have a large area.

すなわち、本発明の圧力センサは、絶縁性基板上に、少なくともソース電極、ドレイン電極、ゲート電極、有機半導体層及びゲート絶縁層を有し、該ゲート絶縁層の少なくとも一層がゴム弾性を示す弾性層であることを特徴とする。   That is, the pressure sensor of the present invention has at least a source electrode, a drain electrode, a gate electrode, an organic semiconductor layer, and a gate insulating layer on an insulating substrate, and at least one of the gate insulating layers exhibits rubber elasticity. It is characterized by being.

本発明の圧力センサは、フレキシブル基板上への形成が可能、かつ大面積化が可能である。そのため、携帯性に優れた大面積圧力センサを提供することができる。   The pressure sensor of the present invention can be formed on a flexible substrate and can have a large area. Therefore, a large area pressure sensor excellent in portability can be provided.

図1は、本発明の圧力センサの一例を示す図である。図1(a)に示す様に、本発明の圧力センサは、基板101上に、ソース・ドレイン電極102、有機半導体103、ゴム弾性を示すゲート絶縁層(弾性層)104、ゲート電極105及び保護層106を有する。   FIG. 1 is a diagram showing an example of a pressure sensor of the present invention. As shown in FIG. 1A, a pressure sensor of the present invention includes a source / drain electrode 102, an organic semiconductor 103, a gate insulating layer (elastic layer) 104 showing rubber elasticity, a gate electrode 105, and a protection on a substrate 101. It has a layer 106.

本発明の圧力センサは、図1(b)に示す様に、外部から圧力が加わると、ゲート絶縁層104の厚さが変化しゲート絶縁層104の容量が変化することを利用している。そして、電界効果型有機トランジスタのドレイン電流の変化を読み取ることで、外部圧力を検出する圧力センサを構成する。   As shown in FIG. 1B, the pressure sensor of the present invention utilizes the fact that the thickness of the gate insulating layer 104 changes and the capacitance of the gate insulating layer 104 changes when pressure is applied from the outside. And the pressure sensor which detects an external pressure is comprised by reading the change of the drain current of a field effect type organic transistor.

本発明の圧力センサの原理について図1を用いて説明する。   The principle of the pressure sensor of the present invention will be described with reference to FIG.

有機半導体103の移動度をμ[cm2/Vs]、ドレイン電流をId[A]、チャネル長をL[cm]、チャネル幅をW[cm]、ゲート容量をCi[F/cm2]、ゲート電圧をVg[V]、閾値電圧をVth[V]とすると、
Id=(1/2)×μ×(W/L)×Ci×(Vg−Vth)2 (1)
と表すことが出来る。
The mobility of the organic semiconductor 103 is μ [cm 2 / Vs], the drain current is Id [A], the channel length is L [cm], the channel width is W [cm], the gate capacitance is Ci [F / cm 2 ], When the gate voltage is Vg [V] and the threshold voltage is Vth [V],
Id = (1/2) × μ × (W / L) × Ci × (Vg−Vth) 2 (1)
Can be expressed as

また、ゲート絶縁層104の誘電率をε、ゲート絶縁層104の膜厚をd[cm]とすると、単位面積当たりのゲート容量をCi=ε/dと表すことが出来、式(1)に代入すると
Id=(1/2)×μ×(W/L)×(ε/d)×(Vg−Vth)2 (2)
と表すことが出来る。
Further, when the dielectric constant of the gate insulating layer 104 is ε and the film thickness of the gate insulating layer 104 is d [cm], the gate capacitance per unit area can be expressed as Ci = ε / d, and the equation (1) When substituted, Id = (1/2) × μ × (W / L) × (ε / d) × (Vg−Vth) 2 (2)
Can be expressed as

よって、ドレイン電圧Idはゲート絶縁層104の膜厚dに反比例する。   Therefore, the drain voltage Id is inversely proportional to the film thickness d of the gate insulating layer 104.

次に、圧力を加えない図1(a)の状態のゲート絶縁層104の膜厚をd1したときのドレイン電流をId1[A]とする。ここで、図1(b)に示す圧力X[Pa]加えたときのゲート絶縁層104の膜厚d2、このときのドレイン電流をId2[A]とすると、Id2=(d1/d2)Id1[A]となる。 Then, the drain current when the thickness of the gate insulating layer 104 in the state of FIG. 1 without the addition of pressure (a) and d 1 and Id 1 [A]. Here, when the film thickness d 2 of the gate insulating layer 104 when the pressure X [Pa] shown in FIG. 1B is applied and the drain current at this time is Id 2 [A], Id 2 = (d 1 / d 2 ) Id 1 [A].

このときの電流値を読み取ることで圧力を検知することが出来、また読み取った電流値からどの程度の圧力が加えられたかを知ることが出来る。   By reading the current value at this time, the pressure can be detected, and it is possible to know how much pressure has been applied from the read current value.

ゲート絶縁層104は、少なくとも一層がゴム弾性を示す弾性層である。ゴム弾性を示す弾性層としては特に限定されないが、例えば天然ゴム、ポリイソプレンゴム、スチレン・ブタジエン共重合体ゴム、ポリブタジエンゴム、ブチルゴム、エチレン・プロピレン・ジエン共重合ゴムクロロプレンゴムの他、ジエン系、オレフィン系、アクリル酸アルキルエステル系、エチレンアクリル系、ポリエーテル系、ウレタン系、多硫化物系材料を用いることもできる。   The gate insulating layer 104 is an elastic layer in which at least one layer exhibits rubber elasticity. The elastic layer exhibiting rubber elasticity is not particularly limited.For example, natural rubber, polyisoprene rubber, styrene / butadiene copolymer rubber, polybutadiene rubber, butyl rubber, ethylene / propylene / diene copolymer rubber, chloroprene rubber, diene series, Olefin-based, acrylic acid alkyl ester-based, ethylene acrylic-based, polyether-based, urethane-based and polysulfide-based materials can also be used.

ゴム弾性を示す弾性層のヤング率は、0.1MPa以上50MPa以下であることが好ましく、より好ましくは1MPa以上20MPa以下である。また、圧力を加えた時の変化する領域の90%以上がゴム弾性を示す弾性層であることが好ましいため、ゴム弾性を示す弾性層のヤング率は有機半導体のヤング率の10%以下であることが好ましい。更に、ゴム弾性を示す弾性層のガラス転移点が0℃以下であること、電気絶縁性が1×1010[Ω・cm]以上であることがより好ましい。 The Young's modulus of the elastic layer exhibiting rubber elasticity is preferably from 0.1 MPa to 50 MPa, more preferably from 1 MPa to 20 MPa. Moreover, since it is preferable that 90% or more of the region that changes when pressure is applied is an elastic layer exhibiting rubber elasticity, the Young's modulus of the elastic layer exhibiting rubber elasticity is 10% or less of the Young's modulus of the organic semiconductor. It is preferable. Furthermore, it is more preferable that the glass transition point of the elastic layer exhibiting rubber elasticity is 0 ° C. or less, and the electrical insulation is 1 × 10 10 [Ω · cm] or more.

ゲート絶縁層104は、絶縁耐性を上げる目的、有機半導体103と良好な界面を形成させる目的で、2層以上積層させることが出来る。ゴム弾性を示す弾性層以外の絶縁層としては特に限定はされないが、SiO2、SiNx、Al23、Ta25等の無機材料、ポリイミド、ポリアクリロニトリル、ポリテトラフルオロエチレン、ポリビニルアルコール、ポリビニルフェノール、ポリエチレンテレフタレート、ポリフッ化ビニリデン等の有機材料および有機無機ハイブリッド材料を用いることができる。これらのうちでも、低コストにつながる液相プロセスを利用できるという観点から有機化合物が好ましい。また、トランジスタ特性向上のためゴム弾性を示す弾性層以外の絶縁層の誘電率は4以上であることが望ましい。 Two or more gate insulating layers 104 can be stacked for the purpose of increasing the insulation resistance and for forming a good interface with the organic semiconductor 103. There are no particular limitations on the insulating layer other than the elastic layer exhibiting rubber elasticity, SiO 2, SiNx, Al 2 O 3, Ta 2 O 5 or the like of inorganic materials, polyimide, polyacrylonitrile, polytetrafluoroethylene, polyvinyl alcohol, Organic materials such as polyvinylphenol, polyethylene terephthalate, and polyvinylidene fluoride, and organic-inorganic hybrid materials can be used. Among these, an organic compound is preferable from the viewpoint that a liquid phase process leading to low cost can be used. Further, in order to improve the transistor characteristics, it is desirable that the dielectric constant of the insulating layer other than the elastic layer exhibiting rubber elasticity is 4 or more.

基板101、保護層106としては特に限定はされないが、例えばシリコン、ガラス、石英等の無機材料のほか、アクリル系、ビニル系、エステル系、イミド系、ウレタン系、ジアゾ系、シンナモイル系等の高分子化合物、ポリフッ化ビニリデン、ポリエチレンテレフタレート、ポリエチレン等の有機材料、有機無機ハイブリッド材料を用いることができる。また、これらの材料を2層以上積層させて用いることもでき、絶縁耐圧を上げる目的で効果がある。基板101の平坦性としてはRa≦10nmであることが望ましく、また、基板上に形成する有機半導体103が良好な秩序構造を形成する材料が好ましい。   Although it does not specifically limit as the board | substrate 101 and the protective layer 106, For example, in addition to inorganic materials, such as a silicon | silicone, glass, quartz, acrylic, vinyl type, ester type, imide type, urethane type, diazo type, cinnamoyl type etc. An organic material such as a molecular compound, polyvinylidene fluoride, polyethylene terephthalate, or polyethylene, or an organic-inorganic hybrid material can be used. In addition, two or more layers of these materials can be used, which is effective for increasing the withstand voltage. The flatness of the substrate 101 is preferably Ra ≦ 10 nm, and a material in which the organic semiconductor 103 formed on the substrate forms a good ordered structure is preferable.

有機半導体103を構成する化合物は特には限定されないが、例えばポリアセチレン誘導体、チオフェン環を有するポリチオフェン誘導体、ポリ(3−アルキルチオフェン)誘導体、ポリ(3,4−エチレンジオキシチオフェン)誘導体、ポリチエニレンビニレン誘導体、ベンゼン環を有するポリフェニレン誘導体、ポリフェニレンビニレン誘導体、窒素原子を有するポリピリジン誘導体、ポリピロール誘導体、ポリアニリン誘導体、ポリキノリン誘導体等の共役高分子化合物、ジメチルセクシチオフェン、クオータチオフェンに代表されるオリゴマー、ペリレン、テトラセン、ペンタセンに代表されるアセン類、銅フタロシアニン誘導体に代表される堆積有機分子、トリフェニレン誘導体に代表されるディスコチック液晶、フェニルナフタレン誘導体、ベンゾチアゾール誘導体に代表されるスメクチック液晶、ポリ(9,9−ジアルキルフルオレン−ビチオフェン)共重合体に代表される液晶ポリマー等が挙げられるがこれらに限定されるものではない。   Although the compound which comprises the organic semiconductor 103 is not specifically limited, For example, a polyacetylene derivative, a polythiophene derivative having a thiophene ring, a poly (3-alkylthiophene) derivative, a poly (3,4-ethylenedioxythiophene) derivative, a polythienylene Vinylene derivatives, polyphenylene derivatives having a benzene ring, polyphenylene vinylene derivatives, polypyridine derivatives having a nitrogen atom, conjugated polymer compounds such as polypyrrole derivatives, polyaniline derivatives, polyquinoline derivatives, oligomers typified by dimethylsecthiophene, quarterthiophene, perylene, Acenes typified by tetracene and pentacene, deposited organic molecules typified by copper phthalocyanine derivatives, discotic liquid crystals typified by triphenylene derivatives, phenyl naphtha Emissions derivatives, smectic liquid crystals typified by benzothiazole derivatives, poly (9,9-dialkyl fluorene - bithiophene) is a liquid crystal polymer and the like typified by a copolymer is not limited thereto.

好ましくは高分子化合物、より好ましくは共役高分子化合物であり、ポリチオフェン誘導体が特に好ましい。共役高分子化合物としては、例えば以下に示す構造の化合物が挙げられる。   Preferred are polymer compounds, more preferred are conjugated polymer compounds, and polythiophene derivatives are particularly preferred. Examples of the conjugated polymer compound include compounds having the following structures.

Figure 2007178256
Figure 2007178256

(式中、R1、R2、R3、R4、R5、R6、R7、R8は、H、Fまたは炭素原子数が1乃至20の直鎖状または分岐状、環状のアルキル基またはアルコキシ基、パーフルオロアルキル基を示す。nは正の整数を示す。)
これらの共役高分子化合物の分子量は特に限定はされないが、溶媒に対する可溶性、成膜性等を考慮すると、重量平均分子量が5,000から100,000が好ましい。
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are H, F or linear or branched, cyclic having 1 to 20 carbon atoms, cyclic An alkyl group, an alkoxy group, or a perfluoroalkyl group, and n represents a positive integer.)
Although the molecular weight of these conjugated polymer compounds is not particularly limited, the weight average molecular weight is preferably from 5,000 to 100,000 in consideration of solubility in a solvent, film formability, and the like.

本発明で用いられる素子構造において、ソース電極及びドレイン電極を形成する位置は、有機半導体103に電荷を注入できれば特に限定されず、例えばトップコンタクト、ボトムコンタクトが挙げられるが、これらに限定されるものではない。   In the element structure used in the present invention, the position where the source electrode and the drain electrode are formed is not particularly limited as long as charge can be injected into the organic semiconductor 103, and examples thereof include a top contact and a bottom contact. is not.

以下、実施例により本発明について更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

<実施例1>
図1に本実施例の圧力センサの断面図を示す。
<Example 1>
FIG. 1 shows a cross-sectional view of the pressure sensor of this embodiment.

ガラス基板101上にレジストを塗布しフォトリソグラフィを行い、金を50nm蒸着する。その後、リフトオフ法により、チャネル長10cm、チャネル幅100μmのソース・ドレイン電極102を形成する。次に、ポリ−3−ヘキシルチオフェンのクロロホルム溶液(0.01g/ml)をスピンコート法により塗布した後、窒素雰囲気下において200℃で30分乾燥し、有機半導体103を100nmする。   A resist is applied on the glass substrate 101, photolithography is performed, and gold is deposited by 50 nm. Thereafter, a source / drain electrode 102 having a channel length of 10 cm and a channel width of 100 μm is formed by a lift-off method. Next, a chloroform solution of poly-3-hexylthiophene (0.01 g / ml) is applied by spin coating, and then dried at 200 ° C. for 30 minutes in a nitrogen atmosphere, so that the organic semiconductor 103 has a thickness of 100 nm.

次に、ゴム弾性を示すエチレン・プロピレンゴムを、混合過程、圧延過程、成形工程、加硫工程を経て、有機半導体103上に、厚さ300nm、ヤング率10MPaのゲート絶縁層104を積層する。   Next, a gate insulating layer 104 having a thickness of 300 nm and a Young's modulus of 10 MPa is laminated on the organic semiconductor 103 through a mixing process, a rolling process, a molding process, and a vulcanization process.

次に、金属マスクを用いて金を50nm蒸着し、ゲート電極105を形成する。その後、ポリビニルフェノールをスピンコート法により塗布し、保護層106を形成する。最後に、ゲート電極、ドレイン電極、ソース電極の各電極に0.1mmφの銀ペーストで配線し、圧力センサを作製する。   Next, gold is deposited by 50 nm using a metal mask to form the gate electrode 105. Thereafter, polyvinyl phenol is applied by a spin coating method to form the protective layer 106. Finally, wiring is made to each electrode of the gate electrode, the drain electrode, and the source electrode with a silver paste of 0.1 mmφ to produce a pressure sensor.

圧力を加えない図1(a)の状態でゲート電極に−50V、ドレイン電極に−50V印加すると、5×10-5Aの電流値を得ることが出来る。 When -50 V is applied to the gate electrode and -50 V is applied to the drain electrode in the state of FIG. 1A without applying pressure, a current value of 5 × 10 −5 A can be obtained.

また、3.5MPaの圧力を保護層106側から加えた図1(b)の状態で、ゲート電極に−50V、ドレイン電極に−50V印加すると、7.7×10-5Aの電流値を得ることが出来る。 In addition, when -50V is applied to the gate electrode and -50V to the drain electrode in the state of FIG. 1B in which a pressure of 3.5 MPa is applied from the protective layer 106 side, a current value of 7.7 × 10 −5 A is obtained. Can be obtained.

更に、再度圧力を加えない図1(a)の状態に戻し、ゲート電極に−50V、ドレイン電極に−50V印加すると、5×10-5Aの電流値を得ることが出来、圧力を加えた後も同等の特性を得ることが出来る。 Furthermore, when the pressure is not applied again and the state shown in FIG. 1A is restored and -50V is applied to the gate electrode and -50V is applied to the drain electrode, a current value of 5 × 10 -5 A can be obtained. The same characteristics can be obtained later.

<実施例2>
図2に本実施例の圧力センサの断面図を示す。
<Example 2>
FIG. 2 shows a cross-sectional view of the pressure sensor of this embodiment.

ポリイミド基板101上にレジストを塗布しフォトリソグラフィを行い、金を50nm蒸着する。その後、リフトオフ法によりゲート電極105を形成する。   A resist is applied on the polyimide substrate 101, photolithography is performed, and gold is deposited by 50 nm. Thereafter, the gate electrode 105 is formed by a lift-off method.

次に、スチレン・ブタジエン共重合ゴムを、混合過程、圧延過程、成形工程、加硫工程を経て、厚さ300nm、ヤング率2MPaのゲート絶縁層104を形成する。   Next, the gate insulating layer 104 having a thickness of 300 nm and a Young's modulus of 2 MPa is formed from the styrene / butadiene copolymer rubber through a mixing process, a rolling process, a molding process, and a vulcanization process.

次に、インクジェット法により、チャネル長10cm、チャネル幅100μmのソース・ドレイン電極102をゲート絶縁層104上に形成する。次に、ポリ(9,9−ジオクチルフルオレン−コ−ビチオフェン)のキシレン溶液(0.01g/ml)をスピンコート法により塗布した後、窒素雰囲気下において150℃で30分乾燥し、有機半導体103を100nm形成する。その後、ポリビニルフェノールをスピンコート法により塗布し、保護層106を形成する。   Next, a source / drain electrode 102 having a channel length of 10 cm and a channel width of 100 μm is formed on the gate insulating layer 104 by an inkjet method. Next, a xylene solution (0.01 g / ml) of poly (9,9-dioctylfluorene-co-bithiophene) was applied by a spin coating method, and then dried at 150 ° C. for 30 minutes in a nitrogen atmosphere. To 100 nm. Thereafter, polyvinyl phenol is applied by a spin coating method to form the protective layer 106.

最後に、実施例1と同様にして各電極に配線し、圧力センサを作製する。   Finally, wiring is made to each electrode in the same manner as in Example 1 to produce a pressure sensor.

圧力を加えない状態でゲート電極に−50V、ドレイン電極に−50V印加すると、3×10-5Aの電流値を得ることが出来る。 When -50V is applied to the gate electrode and -50V to the drain electrode without applying pressure, a current value of 3 × 10 -5 A can be obtained.

また、0.5MPaの圧力を保護層106側から加えた状態でゲート電極に−50V、ドレイン電極に−50Vそれぞれ印加すると、4×10-5Aの電流値を得ることが出来る。 When a pressure of 0.5 MPa is applied from the protective layer 106 side and −50 V is applied to the gate electrode and −50 V to the drain electrode, a current value of 4 × 10 −5 A can be obtained.

更に、再度圧力を加えない状態に戻し、ゲート電極に−50V、ドレイン電極に−50V印加すると、3×10-5Aの電流値を得ることが出来、圧力を加えた後も同等の特性を得ることが出来る。 Furthermore, when the pressure is not applied again and -50V is applied to the gate electrode and -50V is applied to the drain electrode, a current value of 3 × 10 -5 A can be obtained. Can be obtained.

<実施例3>
図3に本実施例の圧力センサの断面図を示す。
<Example 3>
FIG. 3 shows a cross-sectional view of the pressure sensor of this embodiment.

ソース・ドレイン電極102のチャネル幅を50μmとした以外は実施例1と同様にして、ガラス基板101上に有機半導体103まで形成する。   The organic semiconductor 103 is formed on the glass substrate 101 in the same manner as in Example 1 except that the channel width of the source / drain electrode 102 is set to 50 μm.

次に、ポリビニルフェノールをスピンコート法により塗布し、絶縁層104−2を100nm形成する。次に、ゴム弾性を示すクロロプレンゴムを、混合過程、圧延過程、成形工程、加硫工程を経て、絶縁層104−2上に、厚さ200nm、ヤング率10MPaの弾性層104−1を形成する。   Next, polyvinyl phenol is applied by a spin coating method to form an insulating layer 104-2 with a thickness of 100 nm. Next, an elastic layer 104-1 having a thickness of 200 nm and a Young's modulus of 10 MPa is formed on the insulating layer 104-2 through a mixing process, a rolling process, a molding process, and a vulcanization process using chloroprene rubber exhibiting rubber elasticity. .

その後、実施例1と同様にして、圧力センサを作製する。   Thereafter, a pressure sensor is fabricated in the same manner as in Example 1.

圧力を加えない状態でゲート電極に−50V、ドレイン電極に−50V印加すると、8×10-5Aの電流値を得ることが出来る。 When -50V is applied to the gate electrode and -50V to the drain electrode without applying pressure, a current value of 8 × 10 -5 A can be obtained.

また、3.5MPaの圧力を保護層106側から加えた状態でゲート電極に−50V、ドレイン電極に−50V印加すると、1.04×10-4Aの電流値を得ることが出来る。 In addition, when −50 V is applied to the gate electrode and −50 V is applied to the drain electrode with a pressure of 3.5 MPa applied from the protective layer 106 side, a current value of 1.04 × 10 −4 A can be obtained.

更に、再度圧力を加えない状態に戻し、ゲート電極に−50V、ドレイン電極に−50V印加すると、8×10-5Aの電流値を得ることが出来、圧力を加えた後も同等の特性を得ることが出来る。 Furthermore, if the pressure is not applied again and -50V is applied to the gate electrode and -50V is applied to the drain electrode, a current value of 8 × 10 -5 A can be obtained, and the same characteristics can be obtained after the pressure is applied. Can be obtained.

<実施例4>
図4に本実施例の圧力センサの断面図を示す。
<Example 4>
FIG. 4 shows a cross-sectional view of the pressure sensor of this embodiment.

実施例2と同様にして、ポリイミド基板101上にゲート電極105を形成する。   In the same manner as in Example 2, a gate electrode 105 is formed on the polyimide substrate 101.

次に、シリコンゴムを、混合過程、圧延過程、成形工程、加硫工程を経て、厚さ200nm、ヤング率0.7MPaの弾性層104−1を形成する。次に、弾性層104−1上に、パリレンを真空蒸着し、絶縁層104−2を100nm形成する。   Next, silicon rubber is subjected to a mixing process, a rolling process, a molding process, and a vulcanization process to form an elastic layer 104-1 having a thickness of 200 nm and a Young's modulus of 0.7 MPa. Next, parylene is vacuum-deposited on the elastic layer 104-1 to form the insulating layer 104-2 with a thickness of 100 nm.

その後、有機半導体103の形成にポリ−3−ヘキシルチオフェンのクロロホルム溶液(0.01g/ml)を用いた以外は実施例2と同様にして、圧力センサを作製する。   Thereafter, a pressure sensor is produced in the same manner as in Example 2 except that a chloroform solution (0.01 g / ml) of poly-3-hexylthiophene is used for forming the organic semiconductor 103.

圧力を加えない状態でゲート電極に−50V、ドレイン電極に−50V印加すると、2×10-4Aの電流値を得ることが出来る。 When -50 V is applied to the gate electrode and -50 V is applied to the drain electrode without applying pressure, a current value of 2 × 10 -4 A can be obtained.

また、0.35MPaの圧力を保護層106側から加えた状態でゲート電極に−50V、ドレイン電極に−50Vそれぞれ印加すると、2.2×10-4Aの電流値を得ることが出来る。 When a pressure of 0.35 MPa is applied from the protective layer 106 side and −50 V is applied to the gate electrode and −50 V to the drain electrode, a current value of 2.2 × 10 −4 A can be obtained.

更に、再度圧力を加えない状態に戻し、ゲート電極に−50V、ドレイン電極に−50V印加すると、2×10-4Aの電流値を得ることが出来、圧力を加えた後も同等の特性を得ることが出来る。 Furthermore, when the pressure is not applied again and -50V is applied to the gate electrode and -50V is applied to the drain electrode, a current value of 2 × 10 -4 A can be obtained. Can be obtained.

次に、0.35MPaの圧力に基板101側から加えた状態でゲート電極に−50V、ドレイン電極に−50Vそれぞれ印加すると、2.15×10-4Aの電流値を得ることが出来る。 Next, a current value of 2.15 × 10 −4 A can be obtained by applying −50 V to the gate electrode and −50 V to the drain electrode while applying a pressure of 0.35 MPa from the substrate 101 side.

また、再度圧力を加えない状態に戻し、ゲート電極に−50V、ドレイン電極に−50V印加すると、2×10-4Aの電流値を得ることが出来、圧力を加えた後も同等の特性を得ることが出来る。 Moreover, when the pressure is not applied again and -50V is applied to the gate electrode and -50V is applied to the drain electrode, a current value of 2 × 10 -4 A can be obtained. Can be obtained.

本発明の圧力センサの構成図の一例を示す図である。It is a figure which shows an example of the block diagram of the pressure sensor of this invention. 実施例の圧力センサの構成図を示す図である。It is a figure which shows the block diagram of the pressure sensor of an Example. 実施例の圧力センサの構成図を示す図である。It is a figure which shows the block diagram of the pressure sensor of an Example. 実施例の圧力センサの構成図を示す図である。It is a figure which shows the block diagram of the pressure sensor of an Example.

符号の説明Explanation of symbols

101 基板
102 ソース・ドレイン電極
103 有機半導体
104 ゲート絶縁層
104−1 弾性層
104−2 絶縁層
105 ゲート電極
106 保護層
DESCRIPTION OF SYMBOLS 101 Substrate 102 Source / drain electrode 103 Organic semiconductor 104 Gate insulating layer 104-1 Elastic layer 104-2 Insulating layer 105 Gate electrode 106 Protective layer

Claims (4)

絶縁性基板上に、少なくともソース電極、ドレイン電極、ゲート電極、有機半導体層及びゲート絶縁層を有し、該ゲート絶縁層の少なくとも一層がゴム弾性を示す弾性層であることを特徴とする圧力センサ。   A pressure sensor having at least a source electrode, a drain electrode, a gate electrode, an organic semiconductor layer, and a gate insulating layer on an insulating substrate, wherein at least one of the gate insulating layers is an elastic layer exhibiting rubber elasticity . 前記弾性層のヤング率が0.1MPa以上50MPa以下であることを特長とする請求項1記載の圧力センサ。   The pressure sensor according to claim 1, wherein Young's modulus of the elastic layer is 0.1 MPa or more and 50 MPa or less. 前記ゲート絶縁層が少なくとも2層以上よりなることを特徴とする請求項1または2記載の圧力センサ。   3. The pressure sensor according to claim 1, wherein the gate insulating layer comprises at least two layers. 前記有機半導体が高分子化合物であることを特徴とする請求項1乃至3のいずれかに記載の圧力センサ。   The pressure sensor according to claim 1, wherein the organic semiconductor is a polymer compound.
JP2005377071A 2005-12-28 2005-12-28 Pressure sensor Withdrawn JP2007178256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377071A JP2007178256A (en) 2005-12-28 2005-12-28 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377071A JP2007178256A (en) 2005-12-28 2005-12-28 Pressure sensor

Publications (1)

Publication Number Publication Date
JP2007178256A true JP2007178256A (en) 2007-07-12

Family

ID=38303593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377071A Withdrawn JP2007178256A (en) 2005-12-28 2005-12-28 Pressure sensor

Country Status (1)

Country Link
JP (1) JP2007178256A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031045A (en) * 2007-07-25 2009-02-12 Seiko Epson Corp Pressure sensor
WO2009019897A1 (en) * 2007-08-09 2009-02-12 Ssd Company Limited Input device, input system, input method, program, and storage medium
KR101108178B1 (en) 2010-07-27 2012-01-31 삼성모바일디스플레이주식회사 Thin film transistor sensor and method of manufacturing the tft sensor
GB2484089A (en) * 2010-09-29 2012-04-04 Peratech Ltd Dual action parallel sensor
CN102856495A (en) * 2011-06-30 2013-01-02 清华大学 Pressure regulating and controlling thin film transistor and application thereof
JP2013004637A (en) * 2011-06-15 2013-01-07 National Institute Of Advanced Industrial & Technology Evaluation method of organic thin film transistor
JP2013016777A (en) * 2011-06-30 2013-01-24 Qinghua Univ Thin-film transistor and pressure sensor using the same
WO2013021095A3 (en) * 2011-08-09 2013-04-18 Nokia Corporation Field effect transistor apparatus, device and method for sensing deformation
US8803536B2 (en) 2010-09-29 2014-08-12 Peratech Limited Detector responsive to interactions of varying intensity
KR101519100B1 (en) * 2014-04-03 2015-05-12 동국대학교 산학협력단 Semiconductor active layer comprised elastic material, Gate insulating film and Thin-film transistor using the same
EP2889053A1 (en) 2013-12-27 2015-07-01 Panasonic Intellectual Property Management Co., Ltd. Percutaneous penetration enhancing apparatus
EP2889052A1 (en) 2013-12-27 2015-07-01 Panasonic Intellectual Property Management Co., Ltd. Posture correction apparatus and posture correction method
EP2918257A1 (en) 2014-03-13 2015-09-16 Panasonic Intellectual Property Management Co., Ltd. Massage measurement apparatus and massage measurement method
JP2017519369A (en) * 2014-08-12 2017-07-13 北京納米能源与系統研究所 Back-gate field effect transistor based on frictional contact charging effect
CN108735889A (en) * 2017-04-14 2018-11-02 中国科学院苏州纳米技术与纳米仿生研究所 pressure sensor and preparation method thereof
KR20190056032A (en) * 2017-11-16 2019-05-24 경북대학교 산학협력단 Multifunction flexible sensor and method tpreparing the same
JP7115610B1 (en) * 2021-03-15 2022-08-09 凸版印刷株式会社 Thin film transistor and method for manufacturing thin film transistor

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031045A (en) * 2007-07-25 2009-02-12 Seiko Epson Corp Pressure sensor
WO2009019897A1 (en) * 2007-08-09 2009-02-12 Ssd Company Limited Input device, input system, input method, program, and storage medium
US8803155B2 (en) 2010-07-27 2014-08-12 Samsung Display Co., Ltd. Thin-film transistor sensor and method of manufacturing the TFT sensor
KR101108178B1 (en) 2010-07-27 2012-01-31 삼성모바일디스플레이주식회사 Thin film transistor sensor and method of manufacturing the tft sensor
GB2484089A (en) * 2010-09-29 2012-04-04 Peratech Ltd Dual action parallel sensor
US9442594B2 (en) 2010-09-29 2016-09-13 Peratech Holdco Limited Resistance changing sensor
US8803536B2 (en) 2010-09-29 2014-08-12 Peratech Limited Detector responsive to interactions of varying intensity
JP2013004637A (en) * 2011-06-15 2013-01-07 National Institute Of Advanced Industrial & Technology Evaluation method of organic thin film transistor
JP2013016777A (en) * 2011-06-30 2013-01-24 Qinghua Univ Thin-film transistor and pressure sensor using the same
JP2013016778A (en) * 2011-06-30 2013-01-24 Qinghua Univ Thin-film transistor and pressure sensor using the same
CN102856495A (en) * 2011-06-30 2013-01-02 清华大学 Pressure regulating and controlling thin film transistor and application thereof
US8592888B2 (en) 2011-08-09 2013-11-26 Nokia Corporation Field effect transistor for sensing deformation
CN103814445A (en) * 2011-08-09 2014-05-21 诺基亚公司 Apparatus and associated methods
WO2013021095A3 (en) * 2011-08-09 2013-04-18 Nokia Corporation Field effect transistor apparatus, device and method for sensing deformation
EP2742532A4 (en) * 2011-08-09 2015-08-05 An apparatus and associated methods
EP2889053A1 (en) 2013-12-27 2015-07-01 Panasonic Intellectual Property Management Co., Ltd. Percutaneous penetration enhancing apparatus
US9393410B2 (en) 2013-12-27 2016-07-19 Panasonic Intellectual Property Management Co., Ltd. Posture correction apparatus and posture correction method
EP2889052A1 (en) 2013-12-27 2015-07-01 Panasonic Intellectual Property Management Co., Ltd. Posture correction apparatus and posture correction method
US9504825B2 (en) 2013-12-27 2016-11-29 Panasonic Intellectual Property Management Co., Ltd. Percutaneous penetration enhancing apparatus and percutaneous penetration enhancing method
US10010267B2 (en) 2014-03-13 2018-07-03 Panasonic Intellctual Property Management Co., Ltd. Massage measurement apparatus and massage measurement method
EP2918257A1 (en) 2014-03-13 2015-09-16 Panasonic Intellectual Property Management Co., Ltd. Massage measurement apparatus and massage measurement method
KR101519100B1 (en) * 2014-04-03 2015-05-12 동국대학교 산학협력단 Semiconductor active layer comprised elastic material, Gate insulating film and Thin-film transistor using the same
JP2017519369A (en) * 2014-08-12 2017-07-13 北京納米能源与系統研究所 Back-gate field effect transistor based on frictional contact charging effect
CN108735889A (en) * 2017-04-14 2018-11-02 中国科学院苏州纳米技术与纳米仿生研究所 pressure sensor and preparation method thereof
CN108735889B (en) * 2017-04-14 2021-08-17 中国科学院苏州纳米技术与纳米仿生研究所 Pressure sensor and preparation method thereof
KR20190056032A (en) * 2017-11-16 2019-05-24 경북대학교 산학협력단 Multifunction flexible sensor and method tpreparing the same
KR102093935B1 (en) * 2017-11-16 2020-03-26 경북대학교 산학협력단 Multifunction flexible sensor and method tpreparing the same
JP7115610B1 (en) * 2021-03-15 2022-08-09 凸版印刷株式会社 Thin film transistor and method for manufacturing thin film transistor
WO2022196684A1 (en) * 2021-03-15 2022-09-22 凸版印刷株式会社 Thin film transistor and method for producing thin film transistor

Similar Documents

Publication Publication Date Title
JP2007178256A (en) Pressure sensor
US7795611B2 (en) Field effect organic transistor
Roberts et al. Cross-linked polymer gate dielectric films for low-voltage organic transistors
JP2008535218A (en) Polymer gate dielectric for thin film transistors
US8202759B2 (en) Manufacturing method of organic semiconductor device
JP2008141197A (en) Thin-film transistor and organic thin-film transistor
Ha et al. Improved performance in diketopyrrolopyrrole-based transistors with bilayer gate dielectrics
Kang et al. High crystalline dithienosilole-cored small molecule semiconductor for ambipolar transistor and nonvolatile memory
JP2008537330A (en) Semiconductor materials for thin film transistors
Yu et al. High-k polymeric gate insulators for organic field-effect transistors
JP2005159360A (en) Organic thin film transistor
US8981358B2 (en) Organic insulating layer composition, method of forming organic insulating layer, and organic thin film transistor including the organic insulating layer
US7928181B2 (en) Semiconducting polymers
JP2008124085A (en) Organic thin film transistor
JP2010123951A (en) Thin-film transistor and semiconductor composition
CA2675081C (en) Electronic device comprising semiconducting polymers
JP4700976B2 (en) Manufacturing method of field effect organic transistor
JP2005158765A (en) Field effect organic transistor and manufacturing method thereof
JP2005072200A (en) Field effect organic transistor
KR102277814B1 (en) Thin film transistor and method of manufacturing the same and electronic device including the thin film transistor
JP2006028055A (en) Organic semiconductor material, organic transistor, field-effect transistor and switching element
JP5630364B2 (en) Organic semiconductor device manufacturing method and organic semiconductor device
US9123899B2 (en) Semiconductor compound
US7727703B2 (en) Methods of fabricating an electronic device and an sililation polyvinyl phenol for a dielectric layer of an electronic device
Lee et al. OFETs: Basic concepts and material designs

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303