JP2007073217A - Manufacturing method of field emission type cold cathode - Google Patents

Manufacturing method of field emission type cold cathode Download PDF

Info

Publication number
JP2007073217A
JP2007073217A JP2005256062A JP2005256062A JP2007073217A JP 2007073217 A JP2007073217 A JP 2007073217A JP 2005256062 A JP2005256062 A JP 2005256062A JP 2005256062 A JP2005256062 A JP 2005256062A JP 2007073217 A JP2007073217 A JP 2007073217A
Authority
JP
Japan
Prior art keywords
carbon nanotube
nanotube film
substrate
oriented carbon
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005256062A
Other languages
Japanese (ja)
Inventor
Takashi Fujii
尊 藤井
Masao Someya
昌男 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2005256062A priority Critical patent/JP2007073217A/en
Publication of JP2007073217A publication Critical patent/JP2007073217A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a field emission type cold cathode enabling uniform electron emission with a low voltage by laminating a structural body having a micro-opening vertically in the surface of an orientative carbon nanotube film. <P>SOLUTION: This manufacturing method of the field emission type cathode includes a process to transfer the orientative carbon nanotube film to an electrode substrate from a holding substrate, a process to give a vertical opening to a two layer structural body comprising a conductive layer and an insulating layer, and a process to install the conductive layer side of the two layer structural body on the surface of the orientative carbon nanotube film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、配向性カーボンナノチューブ(以下、CNT)膜の表面を部分的に表面に露出させる方法、および均等に露出した該配向性CNT膜の表面に電界を集中させることで、低電圧で均一な強度の電界電子放出が得られる冷陰極の製造方法に関する。本技術は、例えばフィールド・エミッション・ディスプレイ(以下、FED)などの薄型面発光表示装置に応用できる。   The present invention provides a method for partially exposing the surface of an oriented carbon nanotube (hereinafter referred to as CNT) film to the surface, and by concentrating the electric field on the uniformly exposed surface of the oriented CNT film, so that it is uniform at a low voltage. The present invention relates to a method for manufacturing a cold cathode capable of obtaining field electron emission with a high intensity. The present technology can be applied to a thin surface emitting display device such as a field emission display (hereinafter referred to as FED).

CNTは、1991年に飯島澄男氏によって発見されたもので(非特許文献1参照)、一般的な形状は、直径0.5〜100nm、長さ1〜100μmであり、非常に細長い中空のチューブ状の炭素材料である。近年、CNTは電界電子放出型の電子源としての応用が期待されている。電界電子放出型の電子源が並んだ電極には負の電圧がかかり、熱を放出しないため、冷陰極と呼ばれる。特に、FEDなどの面発光表示装置の電子源としてCNTを用いる場合は、一本のCNTからでは電子放出量が不足なため、多数本が必要である。さらに、均等な面発光を得るためには、面積あたり均等な本数で高さの揃ったCNTに電界を集中させる必要がある。   CNT was discovered by Sumio Iijima in 1991 (see Non-Patent Document 1). The general shape is 0.5-100 nm in diameter and 1-100 μm in length, and is a very elongated hollow tube. Carbon material. In recent years, CNT is expected to be applied as a field electron emission type electron source. A negative voltage is applied to the electrode on which the field electron emission type electron source is arranged, and it is called a cold cathode because it does not emit heat. In particular, when CNT is used as an electron source of a surface-emitting display device such as an FED, a large number of electrons are required because the amount of electron emission from one CNT is insufficient. Furthermore, in order to obtain uniform surface light emission, it is necessary to concentrate the electric field on the CNTs having the same number per area and the same height.

CNTを用いた電界電子放出型冷陰極の製造には様々な方法が知られており、電極に直接CNTを成長させる方法と、別途調製したCNTを電極に付着させる方法とがある。前者は、製造工程が短くなる利点があるものの、CNTの製造条件が、電極基板の性質で制限されるため、製造できるCNT形状が制限されるという問題がある。後者は、製造工程が長くなるものの、CNT製造条件に制約が無いため、種々の形状、パターニングのCNTが製造でき、また大面積の電極作製にも有利である。   Various methods are known for manufacturing a field electron emission cold cathode using CNT, and there are a method of growing CNT directly on an electrode and a method of attaching separately prepared CNT to an electrode. Although the former has the advantage of shortening the manufacturing process, there is a problem that the CNT shape that can be manufactured is limited because the manufacturing conditions of CNT are limited by the properties of the electrode substrate. Although the latter requires a long manufacturing process, there are no restrictions on the CNT manufacturing conditions. Therefore, CNTs with various shapes and patterns can be manufactured, and it is advantageous for manufacturing a large area electrode.

電極に直接CNTを成長させる方法としては、電極基板表面の所定の位置に触媒を付着させCVDを行うことで、電極に垂直配向したCNTを成長させる方法がある(例えば、特許文献1、2、3参照)。しかし、これらの方法で用いられる電極基板は、高温の炭素析出条件下に曝されるため、電極基板の材質が劣化する場合がある。   As a method of directly growing CNTs on an electrode, there is a method of growing CNTs vertically aligned on an electrode by attaching a catalyst to a predetermined position on the electrode substrate surface and performing CVD (for example, Patent Documents 1, 2, 3). However, since the electrode substrate used in these methods is exposed to high temperature carbon deposition conditions, the material of the electrode substrate may deteriorate.

また、別途調製したCNTを電極に付着させる方法としては、CNTを導電性ペーストと混ぜ、スクリーン印刷で電極にパターン形成する方法(例えば、特許文献4参照)、CNTを溶剤やバインダーと混ぜ、滴下、塗布、または噴霧させることによって電極上にCNT層を形成する方法(例えば、特許文献5、6参照)、CNTを溶剤やバインダーと混ぜ、金属メッシュを通して電極上に押し出す方法(例えば、非特許文献2参照)がある。これらは、電極とCNTとの密着力を強くし電気的にも良く導通させるという方法である。しかしながらCNTのようなナノスケールの物質は他の流動性物質と混ぜようとしても凝集し易く、均一に混合させるのは難しい。CNTと他の流動性物質とが不均一に混ざったままの状態で電極に付着させると、電極上の各電子源に含まれるCNTの密度が一定でなく、また電子源の表面に凹凸が生じてしまうので面発光表示装置としてはむらを生じてしまう。ここで、なるべく均一に混ざるように溶剤の比率を増やすという手段もあるが、電極に溶剤が残存すると、高真空中で電界電子放出を行う際の妨げとなるので、溶剤の使用は極力少なくすることが望ましい。   In addition, as a method of attaching separately prepared CNT to the electrode, a method of mixing CNT with a conductive paste and patterning the electrode by screen printing (for example, see Patent Document 4), mixing CNT with a solvent or a binder, dropping A method of forming a CNT layer on an electrode by coating or spraying (for example, see Patent Documents 5 and 6), a method of mixing CNT with a solvent or a binder, and extruding the electrode through a metal mesh (for example, a non-patent document) 2). These are methods in which the adhesion between the electrode and the CNTs is strengthened and electrically conductive. However, nanoscale substances such as CNTs tend to aggregate even if mixed with other fluid substances, and it is difficult to mix them uniformly. If CNT and other fluid substances are attached to the electrode in an unevenly mixed state, the density of the CNT contained in each electron source on the electrode is not constant, and irregularities occur on the surface of the electron source. As a result, the surface emitting display device becomes uneven. Here, there is a means of increasing the ratio of the solvent so that it is mixed as uniformly as possible. However, if the solvent remains in the electrode, it becomes a hindrance when performing field electron emission in a high vacuum, so use of the solvent is minimized. It is desirable.

バインダーを用いない方法としては、CNT懸濁液をフィルターに通すことでフィルター表面にCNT層を形成させ、該CNT層を電極に転写する方法がある(例えば、非特許文献3参照)。しかしながら、フィルター上のCNT集合体を直に電極であるテフロン(登録商標)シートに付着させているため、パターン形成には不向きである。また、電極とCNTとの密着力にも問題がある。   As a method not using a binder, there is a method in which a CNT layer is formed on the surface of a filter by passing a CNT suspension through a filter, and the CNT layer is transferred to an electrode (for example, see Non-Patent Document 3). However, since the CNT aggregate on the filter is directly attached to the Teflon (registered trademark) sheet as an electrode, it is not suitable for pattern formation. There is also a problem with the adhesion between the electrode and the CNT.

上述の非特許文献3に類する転写法としては、電界電子放出型冷陰極の製造方法には触れていないが、基体上に配向性のあるCNT集合体を成長させ、該配向性CNT集合体を第二の基体に転写する方法も開示されている(例えば、特許文献7参照)。しかしながらこの方法も膜状のCNTを一括転写する方法であり、細かく分割する、あるいは表面を一部覆う方法は明示していない。   As a transfer method similar to the above-mentioned Non-Patent Document 3, although a method for producing a field electron emission cold cathode is not mentioned, an oriented CNT aggregate is grown on a substrate, and the oriented CNT aggregate is A method of transferring to a second substrate is also disclosed (for example, see Patent Document 7). However, this method is also a method of batch-transferring film-like CNTs, and does not clearly indicate a method of finely dividing or partially covering the surface.

特許文献8では、配向性のあるCNTを形成させ、成長用支持部材を除いてCNT部分を電極板に移し替え、電子放出層の開口を行っている。しかしながら、配向性はあるが一本が孤立して立っているCNTの形状を維持するため、マトリックス材料に埋め込むという煩雑な作業を必要としている。   In Patent Document 8, an aligned CNT is formed, the CNT portion is transferred to an electrode plate except for a growth support member, and an electron emission layer is opened. However, in order to maintain the shape of a single CNT that is oriented but is isolated, a complicated operation of embedding in a matrix material is required.

ここで、電界電子放出型冷陰極用のCNTとしては、1本1本がより細い方が、より良い電界放出能を有することが知られている。また、CNT集合体としては、電極基板に対し垂直方向に配向していること、および密度がより低い、あるいはCNT集合体の面積がより小さい方が、より良い電界放出能を有することが知られている。本発明者らは、上記の如き現状に鑑み、高さ10μm以上、管径10nm以下のCNTからなる配向性CNT集合体の製造に成功しており(特許文献9参照)、該配向性CNTの柱形状集合体からの電子放出にも成功した(特許文献10参照)。   Here, as CNTs for field electron emission type cold cathodes, it is known that the thinner each one has better field emission capability. In addition, it is known that the CNT aggregate is oriented in the direction perpendicular to the electrode substrate, and the density is lower or the smaller the area of the CNT aggregate, the better the field emission ability. ing. In view of the present situation as described above, the present inventors have succeeded in producing an aligned CNT aggregate composed of CNTs having a height of 10 μm or more and a tube diameter of 10 nm or less (see Patent Document 9). Electron emission from the columnar assembly was also successful (see Patent Document 10).

配向性CNT集合体をμmオーダの微小な面積に位置選択的に成長させる方法としては、触媒金属をマスク法でパターニング配置する方法(特許文献1参照)、触媒金属をマスク法でパターニング蝕刻する方法(特許文献11参照)、触媒層をスパッタリングで形成しストライプ状にパターニングする方法(特許文献8参照)、がある。しかし、これらの方法で製造したCNTは管径が10nm以上と太めである。
特表2002−530805号公報 特開2001−15077号公報 特開2003−100198号公報 特開平11−260249号公報 特開2000−340098号公報 特開2000−311578号公報 特表2003−500325号公報 特開2005−116469号公報 特開2002−338221号公報 特願2004−256429号公報 特表2003−500324号公報 S.Iijima, "Helical microtubules of graphite carbon", Nature, 354, p56-58 (1991) W.B.Choiら, "Fully sealed high-brightness carbon-nanotube field-emission display",Applied Physics Letters, 75, 20, p3129-3131 (1999) W.A.de Heerら, "A Carbon Nanotube Field-Emission Electron Source", Science, 270, p1179-1180 (1995)
As a method for selectively growing an oriented CNT aggregate in a minute area on the order of μm, a method of patterning and arranging a catalytic metal by a mask method (see Patent Document 1), a method of patterning and etching a catalytic metal by a mask method (Refer to Patent Document 11) and a method of forming a catalyst layer by sputtering and patterning in a stripe shape (refer to Patent Document 8). However, the CNTs manufactured by these methods have a large tube diameter of 10 nm or more.
Special Table 2002-530805 gazette JP 2001-15077 A JP 2003-100198 A JP-A-11-260249 JP 2000-340098 A JP 2000-311578 A Special table 2003-500325 gazette JP 2005-116469 A JP 2002-338221 A Japanese Patent Application No. 2004-256429 Special table 2003-500324 gazette S.Iijima, "Helical microtubules of graphite carbon", Nature, 354, p56-58 (1991) WBChoi et al., "Fully sealed high-brightness carbon-nanotube field-emission display", Applied Physics Letters, 75, 20, p3129-3131 (1999) WAde Heer et al., "A Carbon Nanotube Field-Emission Electron Source", Science, 270, p1179-1180 (1995)

電界電子放出型冷陰極を用いた面発光表示装置を作動させるには、なるべく低電圧で、かつ均一な強度の電子放出をさせる方が有利である。そのため電界電子放出型冷陰極に用いられる各CNTはなるべく管径の細いほうが望ましい。ただし、単層CNTは強度的に課題があるため、2層以上の多層CNTが望ましい。   In order to operate a surface light emitting display device using a field electron emission type cold cathode, it is advantageous to emit electrons with as low voltage and uniform intensity as possible. Therefore, it is desirable that each CNT used in the field electron emission type cold cathode has as small a tube diameter as possible. However, since single-walled CNT has a problem in strength, a multilayered CNT having two or more layers is desirable.

電界電子放出型冷陰極に用いられるCNT集合体としては、多数のCNTが電極に対して垂直方向に配向し、高さが一定である配向性CNT集合体が好ましい。垂直配向していれば、多数本から成るCNT電子源の総和として垂直方向に最大の電子放出強度が得られる。また、表面の高さが一定であれば、平面方向に対して均一な電子放出が得られる。さらに、電界電子放出の場合、CNTの先端と引き出し電極との距離が近いほど電子を引き出す電圧を低くできるため、電子源の高さが一定であれば、電子源の表面近くに引き出し電極を近接させても距離の均一性を保つことが可能で、同じ電子放出強度を得るのに引き出し電圧を低くできる。   As the CNT aggregate used for the field electron emission type cold cathode, an oriented CNT aggregate in which a large number of CNTs are oriented in a direction perpendicular to the electrodes and the height is constant is preferable. If it is vertically aligned, the maximum electron emission intensity can be obtained in the vertical direction as the sum of a plurality of CNT electron sources. Moreover, if the height of the surface is constant, uniform electron emission can be obtained in the planar direction. Furthermore, in the case of field electron emission, the closer the distance between the tip of the CNT and the extraction electrode, the lower the voltage for extracting electrons, so if the height of the electron source is constant, the extraction electrode is close to the surface of the electron source. Even if they are used, the uniformity of the distance can be maintained, and the extraction voltage can be lowered to obtain the same electron emission intensity.

しかしながら、配向性CNT集合体の表面全体から電子を引き出すには引き出し電極をアスペクト比1以上離す必要があると言われている。例えば直径1mmの面状に形成した配向性CNT膜全体から電子を引き出すためには引き出し電極を1mm以上離して設置せねばならず、たとえ形成したCNTのしきい電界が1V/ミクロンという高性能なCNTであっても、1KV以上の電圧をかける必要がある。   However, it is said that in order to extract electrons from the entire surface of the oriented CNT aggregate, the extraction electrode needs to be separated by an aspect ratio of 1 or more. For example, in order to extract electrons from the entire oriented CNT film formed in a planar shape with a diameter of 1 mm, the extraction electrode must be set apart by 1 mm or more. Even if the formed CNT has a high threshold electric field of 1 V / micron. Even for CNT, it is necessary to apply a voltage of 1 KV or more.

以上の考察から、電界電子放出型冷陰極に用いられる配向性CNT集合体は、その電子放出面の面積がより小さい方が好ましい。また、配向性CNT集合体の面積をより小さくすることにより、一画素あたり、あるいは単位面積あたりに、より多数の配向性CNT集合体電子源を配置することができるため、より大きな電界放出能が期待できる。   From the above consideration, the oriented CNT aggregate used for the field electron emission type cold cathode preferably has a smaller area of the electron emission surface. In addition, by reducing the area of the oriented CNT aggregate, a larger number of oriented CNT aggregate electron sources can be arranged per pixel or per unit area. I can expect.

さらに、電界電子放出型冷陰極に用いられる配向性CNT集合体は、引き出し電極をCNT表面近くに設置しやすい構造をとることも、将来的に引き出し電圧が低く加速電圧で明るい表示が可能な三極管デバイスを開発する上で望ましい。   Furthermore, the oriented CNT aggregate used for the field electron emission type cold cathode has a structure in which the extraction electrode can be easily installed near the surface of the CNT, or a triode that can be brightly displayed with a low extraction voltage and an acceleration voltage in the future. Desirable for developing devices.

本発明は上記に鑑み、垂直配向性があり、高さが一定であり、管径の細いCNTからなる、微小面積に露出した配向性CNT集合体、つまり配向性CNT膜の表面に垂直方向に微小口を有する構造体を積層することにより、低電圧で均一な電子放出を可能とする、電界放出型冷陰極の製造方法を提供することを目的とする。   In view of the above, the present invention has a vertical orientation, a constant height, and a CNT aggregate having a small tube diameter and exposed to a small area, that is, perpendicular to the surface of the oriented CNT film. It is an object of the present invention to provide a method for manufacturing a field emission cold cathode that enables uniform electron emission at a low voltage by laminating structures having minute openings.

本発明者らは、電界放出型冷陰極の製造方法について鋭意研究を重ねた結果、電極基板上の配向性CNT膜の表面に垂直方向に微小口を有する導電層および絶縁層の二層構造体を積層することにより、低電圧で均一な電子放出を可能とする、電界放出型冷陰極の製造方法を見いだし本発明に到達した。すなわち、本発明はつぎのとおりである。
(1) 配向性カーボンナノチューブ膜を保持基板から電極基板に転写する工程と、導電層および絶縁層から成る二層構造体に垂直方向の開口を施す工程と、該配向性カーボンナノチューブ膜の表面に該二層構造体の該導電層側を設置する工程を含む、電界放出型冷陰極の製造方法。
(2) 前記配向性カーボンナノチューブ膜を保持基板から電極基板に転写する工程が、基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と、電極基板表面に導電性バインダーを塗布する工程と、該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した配向性カーボンナノチューブ膜部分を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程を含む、前記(1)記載の電界放出型冷陰極の製造方法。
(3) 前記配向性カーボンナノチューブ膜を保持基板から電極基板に転写する工程が、基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と、該配向性カーボンナノチューブ膜の表面を可逆的接着性表面を有する可撓性基板の表面に接着後、該可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、電極基板表面に導電性バインダーを塗布する工程と、該可撓性基板に転写された該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した配向性カーボンナノチューブ膜部分を残して該可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程を含む、前記(1)記載の電界放出型冷陰極の製造方法。
(4) 前記配向性カーボンナノチューブ膜を保持基板から電極基板に転写する工程が、基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と、該配向性カーボンナノチューブ膜の表面を第一の可逆的接着性表面を有する可撓性基板の表面に接着後、該第一の可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、該第一の可撓性基板に転写された該配向性カーボンナノチューブ膜の表面を第二の可逆的接着性表面を有する可撓性基板の表面に接着後、該第二の可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該第一の可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、電極基板表面に導電性バインダーを塗布する工程と、該第二の可撓性基板に転写された該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した配向性カーボンナノチューブ膜部分を残して該第二の可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程を含む、前記(1)記載の電界放出型冷陰極の製造方法。
(5) 導電層および絶縁層から成る二層構造体に垂直方向の開口を施す工程において、レーザー照射法、フォトリソグラフィー法、サンドブラスト法、またはエッチング法を用いる、前記(1)記載の電界放出型冷陰極の製造方法。
(6) 導電層および絶縁層から成る二層構造体に施された開口部の径が100ミクロンメートル以下である、前記(1)記載の電界放出型冷陰極の製造方法。
(7) 前記導電層を形成する材料が融点100〜500℃の金属または合金である、前記(1)記載の電界放出型冷陰極の製造方法。
(8) 前記配向性カーボンナノチューブ膜の表面に前記二層構造体の導電層側を設置する工程において、接着、圧着、または熱圧着を行なう、前記(1)記載の電界放出型冷陰極の製造方法。
(9) 前記(1)〜(8)のいずれかの方法によって得られる電界放出型冷陰極。
(10) 前記(9)記載の電界放出型冷陰極、ゲート電極および対向陽極を備えた三極管デバイス。
As a result of intensive research on a method of manufacturing a field emission cold cathode, the present inventors have made a two-layer structure of a conductive layer and an insulating layer having a minute opening perpendicular to the surface of the oriented CNT film on the electrode substrate. As a result, the inventors have found a method of manufacturing a field emission cold cathode that enables uniform electron emission at a low voltage, and have reached the present invention. That is, the present invention is as follows.
(1) a step of transferring the oriented carbon nanotube film from the holding substrate to the electrode substrate, a step of forming a vertical opening in a two-layer structure comprising a conductive layer and an insulating layer, and a surface of the oriented carbon nanotube film A method for manufacturing a field emission cold cathode, comprising a step of installing the conductive layer side of the two-layer structure.
(2) The step of transferring the oriented carbon nanotube film from the holding substrate to the electrode substrate includes a step of producing an oriented carbon nanotube film on the base substrate surface, and a step of applying a conductive binder to the electrode substrate surface And the surface of the oriented carbon nanotube film and the surface of the conductive binder, and then the base substrate is peeled off leaving the oriented carbon nanotube film portion adhered to the conductive binder, and the oriented carbon nanotube film The manufacturing method of the field emission type cold cathode as described in said (1) including the process to transcribe | transfer.
(3) The step of transferring the oriented carbon nanotube film from the holding substrate to the electrode substrate includes a step of producing an oriented carbon nanotube film on the base substrate surface, and the surface of the oriented carbon nanotube film is reversible. After bonding to the surface of a flexible substrate having an adhesive surface, leaving the oriented carbon nanotube film adhered to the flexible substrate surface, peeling the base substrate and transferring the oriented carbon nanotube film; A step of applying a conductive binder to the surface of the electrode substrate, and an orientation in which the surface of the oriented carbon nanotube film transferred to the flexible substrate and the surface of the conductive binder are bonded together and then bonded to the conductive binder Including the step of transferring the oriented carbon nanotube film by peeling off the flexible substrate leaving the carbon nanotube film portion. Manufacturing method of field emission type cold cathode.
(4) The step of transferring the oriented carbon nanotube film from the holding substrate to the electrode substrate includes the step of producing an oriented carbon nanotube film on the surface of the base substrate, and the surface of the oriented carbon nanotube film is first After adhering to the surface of a flexible substrate having a reversible adhesive surface, the base substrate is peeled off leaving the oriented carbon nanotube film adhered to the first flexible substrate surface, and the oriented carbon nanotube film And bonding the surface of the oriented carbon nanotube film transferred to the first flexible substrate to the surface of the flexible substrate having a second reversible adhesive surface, A step of transferring the oriented carbon nanotube film by peeling off the first flexible substrate while leaving the oriented carbon nanotube film adhered to the surface of the flexible substrate, and a conductive binder on the surface of the electrode substrate. An orientation carbon nanotube bonded to the conductive binder after bonding the surface of the orientation carbon nanotube film transferred to the second flexible substrate and the surface of the conductive binder The method for producing a field emission cold cathode according to (1), comprising a step of transferring the oriented carbon nanotube film by peeling off the second flexible substrate while leaving a film portion.
(5) The field emission type according to (1), wherein a laser irradiation method, a photolithography method, a sand blast method, or an etching method is used in the step of forming a vertical opening in a two-layer structure including a conductive layer and an insulating layer. A method for producing a cold cathode.
(6) The method of manufacturing a field emission cold cathode according to (1), wherein the diameter of the opening formed in the two-layer structure including the conductive layer and the insulating layer is 100 micrometers or less.
(7) The method for producing a field emission cold cathode according to (1), wherein the material forming the conductive layer is a metal or an alloy having a melting point of 100 to 500 ° C.
(8) Production of field emission type cold cathode according to (1), wherein adhesion, pressure bonding, or thermocompression bonding is performed in the step of placing the conductive layer side of the double-layer structure on the surface of the oriented carbon nanotube film. Method.
(9) A field emission cold cathode obtained by any one of the methods (1) to (8).
(10) A triode device comprising the field emission cold cathode according to (9), a gate electrode, and a counter anode.

本発明の電界放出型冷陰極の製造方法によれば、垂直配向性があり高さおよび密度が均一の配向性CNTの集合体が微小面積に露出している積層構造の電界放出型冷陰極を、大面積で容易に製造できる。本発明の方法により製造された陰極を用いて、低電圧で作動し、均一な輝度の面発光表示装置を得ることができる。また、将来的には、引き出し電極を設置することで、さらに低電圧で作動させることが可能な三極管表示装置を開発できるポテンシャルを有する。   According to the method for manufacturing a field emission cold cathode of the present invention, a field emission type cold cathode having a laminated structure in which an assembly of oriented CNTs having a vertical orientation and a uniform height and density is exposed in a small area. Can be easily manufactured in a large area. By using the cathode manufactured by the method of the present invention, it is possible to obtain a surface-emitting display device that operates at a low voltage and has uniform luminance. In the future, it has the potential to develop a triode display device that can be operated at a lower voltage by installing an extraction electrode.

本実施形態における電界放出型冷陰極の製造法は、配向性カーボンナノチューブ膜を保持基板から電極基板に転写する工程と、導電層および絶縁層から成る二層構造体に垂直方向の開口を施す工程と、該配向性カーボンナノチューブ膜の表面に該二層構造体の該導電層側を設置することを特徴としている。   The method of manufacturing a field emission cold cathode in this embodiment includes a step of transferring an oriented carbon nanotube film from a holding substrate to an electrode substrate, and a step of providing a vertical opening in a two-layer structure comprising a conductive layer and an insulating layer And the conductive layer side of the double-layer structure is provided on the surface of the oriented carbon nanotube film.

まず、配向性カーボンナノチューブ膜を保持基板から電極基板に転写する工程としては、以下に示す三通りの方法(A、B、またはC法)がある。尚、保持基板とは、下記A〜C法における基礎基板または可撓性基板の総称である。   First, there are the following three methods (A, B, or C methods) for transferring the oriented carbon nanotube film from the holding substrate to the electrode substrate. The holding substrate is a general term for a basic substrate or a flexible substrate in the following AC methods.

A法は、図1に示すように基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と、電極基板表面に導電性バインダーを塗布する工程と、該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した配向性カーボンナノチューブ膜部分を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程を含む方法である。   As shown in FIG. 1, the method A includes a step of producing an oriented carbon nanotube film on the surface of the base substrate, a step of applying a conductive binder to the surface of the electrode substrate, a surface of the oriented carbon nanotube film, After bonding the surface of the conductive binder, the method includes a step of transferring the oriented carbon nanotube film by peeling off the base substrate leaving a portion of the oriented carbon nanotube film adhered to the conductive binder.

B法は、図2に示すように基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と、該配向性カーボンナノチューブ膜の表面を可逆的接着性表面を有する可撓性基板の表面に接着後、該可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、電極基板表面に導電性バインダーを塗布する工程と、該可撓性基板に転写された該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した配向性カーボンナノチューブ膜部分を残して該可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程を含む方法である。   As shown in FIG. 2, the method B is a step of producing an oriented carbon nanotube film on the surface of the base substrate, and the surface of the oriented carbon nanotube film is a surface of a flexible substrate having a reversible adhesive surface. After bonding to the flexible substrate surface, leaving the oriented carbon nanotube film adhered to the flexible substrate surface, peeling the basic substrate and transferring the oriented carbon nanotube film, and applying a conductive binder to the electrode substrate surface And bonding the surface of the oriented carbon nanotube film transferred to the flexible substrate and the surface of the conductive binder, and leaving the portion of the oriented carbon nanotube film bonded to the conductive binder, the flexible This is a method including a step of transferring the oriented carbon nanotube film by peeling the conductive substrate.

可逆的接着性表面を有する可撓性基板とは、対象物をその表面に接着または剥離が可能な可撓性基板を意味し、その表面に弱い粘着性または接着性がある基板であれば良い。粘着剤または接着剤が基板表面に全面的またはパターンに合わせて部分的に塗布してある場合と、基板そのものが粘着性または接着性を有する場合とがある。また、通常の環境下では接着性や粘着性がない基板でも、湿潤雰囲気や高温など特殊な環境下で接着性や粘着性を発現する基板も使用できる。逆に通常の環境下では接着性や粘着性がある基板でも、光照射や高温など特殊な環境下で接着性や粘着性を失う基板も使用できる。
可撓性基板材料としては、電極基板に押圧した際に変形しうる材料が使用でき、接着性樹脂、熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂あるいは水溶性樹脂からなる単独または多層構造のシートが使用できる。
The flexible substrate having a reversible adhesive surface means a flexible substrate that can adhere or peel off an object on the surface, and may be any substrate that has weak adhesiveness or adhesiveness on the surface. . There are cases where the pressure-sensitive adhesive or adhesive is applied to the entire surface of the substrate or partially according to a pattern, and cases where the substrate itself is sticky or adhesive. In addition, a substrate that does not have adhesiveness or tackiness under a normal environment, or a substrate that exhibits adhesiveness or tackiness under a special environment such as a humid atmosphere or high temperature can be used. Conversely, a substrate that has adhesiveness or tackiness under a normal environment or a substrate that loses adhesiveness or tackiness under a special environment such as light irradiation or high temperature can be used.
As a flexible substrate material, a material that can be deformed when pressed against an electrode substrate can be used, and a single or multilayer structure made of an adhesive resin, a thermosetting resin, a thermoplastic resin, a photocurable resin, or a water-soluble resin. Sheets can be used.

具体的な可撓性基板としては、熱可塑性樹脂からなる単層シート、粘着性アクリル樹脂/熱可塑性ポリオレフィンの二層構造シート、及び粘着性EVA/熱可塑性ポリオレフィンの接着性二層構造シートが挙げられ、熱可塑性樹脂としてはポリオレフィン、ポリエステル、ポリカーボネート、ポリアミド、ポリイミドが例示される。また、エポキシ樹脂、フェノール樹脂に例示される熱硬化性樹脂からなるシート、ポリビニルアルコールに例示される水溶性樹脂からなるシートも使用できる。   Specific examples of the flexible substrate include a single-layer sheet made of a thermoplastic resin, an adhesive acrylic resin / thermoplastic polyolefin two-layer structure sheet, and an adhesive EVA / thermoplastic polyolefin adhesive two-layer structure sheet. Examples of the thermoplastic resin include polyolefin, polyester, polycarbonate, polyamide, and polyimide. Moreover, the sheet | seat consisting of the thermosetting resin illustrated by an epoxy resin and a phenol resin, and the sheet | seat consisting of water-soluble resin illustrated by polyvinyl alcohol can also be used.

C法は、図3に示すように基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と、該配向性カーボンナノチューブ膜の表面を第一の可逆的接着性表面を有する可撓性基板の表面に接着後、該第一の可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、該第一の可撓性基板に転写された該配向性カーボンナノチューブ膜の表面を第二の可逆的接着性表面を有する可撓性基板の表面に接着後、該第二の可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該第一の可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、電極基板表面に導電性バインダーを塗布する工程と、該第二の可撓性基板に転写された該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した配向性カーボンナノチューブ膜部分を残して該第二の可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程を含む方法である。   As shown in FIG. 3, the method C includes a step of producing an oriented carbon nanotube film on the surface of the base substrate, and the flexibility of the oriented carbon nanotube film having a first reversible adhesive surface. After bonding to the surface of the substrate, leaving the oriented carbon nanotube film adhered to the surface of the first flexible substrate, separating the base substrate and transferring the oriented carbon nanotube film; The orientation of the oriented carbon nanotube film transferred to the flexible substrate is adhered to the surface of the flexible substrate having the second reversible adhesive surface and then adhered to the surface of the second flexible substrate. Removing the first flexible substrate while leaving the carbon nanotube film, transferring the oriented carbon nanotube film, applying a conductive binder to the surface of the electrode substrate, and the second flexible substrate Transcribed into After adhering the surface of the directional carbon nanotube film and the surface of the conductive binder, the second flexible substrate is peeled off leaving the oriented carbon nanotube film part adhered to the conductive binder, and the oriented carbon The method includes a step of transferring a nanotube film.

第一及び第二の可逆的接着性表面を有する可撓性基板としては、前記の可逆的接着性表面を有する可撓性基板と同様のシートが使用でき、三番目の工程で配向性カーボンナノチューブ膜との接着性に差をつけて転写性を高くするために、異なる種類のシートを用いることが好ましい。   As the flexible substrate having the first and second reversible adhesive surfaces, the same sheet as the flexible substrate having the reversible adhesive surface can be used, and the oriented carbon nanotubes are used in the third step. In order to improve transferability by making a difference in adhesiveness with the film, it is preferable to use different types of sheets.

本発明における配向性CNT膜としては、電界放出型電子源として用いるため、高さおよび密度が一定であることが好ましい。また、各々のCNTはなるべく管径の細いほうが望ましい。ただし、単層CNTは強度的に課題があるため、2層以上の多層CNTが望ましい。さらに、第一の基体上にある配向性CNT膜としては、後に第一の基体から剥離する操作を行うため、第一の基体と該基体上のCNTの密着力が弱い方が好ましい。加えて、本発明において保持基板から電極基板に転写された配向性カーボンナノチューブ膜は後段の積層操作に耐えられる材質であることが必要とされる。すなわち、接着、圧着、熱圧着といった外的操作でも形状を保持することが望ましい。   Since the oriented CNT film in the present invention is used as a field emission electron source, the height and density are preferably constant. Each CNT preferably has the smallest possible tube diameter. However, since single-walled CNT has a problem in strength, a multilayered CNT having two or more layers is desirable. Furthermore, the orientation CNT film on the first substrate is preferably one in which the adhesion between the first substrate and the CNT on the substrate is weak in order to perform an operation of peeling from the first substrate later. In addition, in the present invention, the oriented carbon nanotube film transferred from the holding substrate to the electrode substrate is required to be made of a material that can withstand the subsequent lamination operation. That is, it is desirable to maintain the shape even in external operations such as bonding, pressure bonding, and thermocompression bonding.

上記の条件を満たす配向性CNT膜として、例えば、本発明者らが発明した特開2002−338221号公報や特開2004−002182号公報で開示した配向性CNT膜が挙げられる。該CNT膜は特開2002−338221号公報に記載されているように、支持基板上にアルミニウムを蒸着して作製した基礎基板に、CNT生成触媒を担持してCNT成長用基板を作製し、該基板上で炭素化合物を分解することにより製造できる。また、該CNT膜は特開2004−002182号公報に記載されているように、支持基板上に0.1〜50nmの細孔を有するゾルゲル法多孔質担体を作製した基礎基板に、CNT生成触媒を担持してCNT成長用基板を作製し、該基板上で炭素化合物を分解することにより製造できる。   Examples of the oriented CNT film satisfying the above conditions include oriented CNT films disclosed in Japanese Patent Application Laid-Open Nos. 2002-338221 and 2004-002182, which have been invented by the present inventors. As described in Japanese Patent Application Laid-Open No. 2002-338221, the CNT film is a base substrate prepared by vapor-depositing aluminum on a support substrate to carry a CNT generation catalyst to produce a CNT growth substrate, It can be produced by decomposing a carbon compound on a substrate. Further, as described in JP-A-2004-002182, the CNT film is formed on a base substrate in which a sol-gel porous carrier having pores of 0.1 to 50 nm on a support substrate is formed. Can be produced by preparing a substrate for growing CNTs and decomposing a carbon compound on the substrate.

ここで用いられるCNT生成触媒としては、CNTを形成する触媒であればいずれでも良く、例えば鉄、コバルト、ニッケル、モリブデン、またはこれらの化合物が用いられる。これらの触媒は単独または混合物として用いることができる。触媒の担持法としては、担体に触媒を担持させる方法であればいずれでも良く、含浸法、浸漬法、ゾルゲル法等が挙げられる。また、触媒を担持後に、該CNT成長用基板を加熱する場合もある。   The CNT production catalyst used here may be any catalyst that forms CNTs. For example, iron, cobalt, nickel, molybdenum, or a compound thereof is used. These catalysts can be used alone or as a mixture. Any catalyst loading method may be used as long as the catalyst is supported on a carrier, and examples thereof include an impregnation method, an immersion method, and a sol-gel method. In some cases, the CNT growth substrate is heated after supporting the catalyst.

該CNT成長用基板を用いて炭素化合物を分解することにより、該基板上に配向性CNT膜が生成する。使用される炭素化合物は、適当な触媒の存在下で、CNTを生じさせるものなら何でも良く、例えば、メタン、エタン、プロパンなどの飽和炭化水素化合物、エチレン、プロピレン、アセチレンなどの不飽和炭化水素化合物、ベンゼン、トルエンなどの芳香族炭化水素化合物、メタノール、エタノール、アセトンなどの含酸素炭化水素化合物などが挙げられ、好ましくは、メタン、エチレン、プロピレン、アセチレン、メタノール、エタノール、プロパノールである。該炭素化合物の導入形態としては、ガス状のまま導入しても良いし、アルゴンのような不活性ガスと混合して導入しても良いし、あるいは不活性ガス中の飽和蒸気として導入しても良い。また、ナノチューブに組み込まれるホウ素、窒素などのヘテロ元素を含む化合物を混ぜることで、ヘテロ元素含有ナノチューブとすることも可能である。   By decomposing the carbon compound using the CNT growth substrate, an oriented CNT film is formed on the substrate. Any carbon compound may be used as long as it generates CNTs in the presence of a suitable catalyst, for example, saturated hydrocarbon compounds such as methane, ethane, and propane, and unsaturated hydrocarbon compounds such as ethylene, propylene, and acetylene. , Aromatic hydrocarbon compounds such as benzene and toluene, and oxygen-containing hydrocarbon compounds such as methanol, ethanol, and acetone, preferably methane, ethylene, propylene, acetylene, methanol, ethanol, and propanol. The carbon compound may be introduced in the form of a gas, mixed with an inert gas such as argon, or introduced as a saturated vapor in the inert gas. Also good. Further, a hetero element-containing nanotube can be obtained by mixing a compound containing a hetero element such as boron or nitrogen incorporated into the nanotube.

該炭素化合物の分解反応としては、熱分解が最も一般的で、好ましい反応温度は400〜1100℃、より好ましくは500〜900℃、好ましい反応圧力は1kPa〜1MPa、より好ましくは0.01〜0.12MPaである。   As the decomposition reaction of the carbon compound, thermal decomposition is the most common, and a preferable reaction temperature is 400 to 1100 ° C, more preferably 500 to 900 ° C, and a preferable reaction pressure is 1 kPa to 1 MPa, more preferably 0.01 to 0. .12 MPa.

本実施形態において、触媒粒子は、CNTの生成後には各CNTの先端部分すなわち配向性CNT膜の先端側に内包されていることが多い。本発明の製造方法によると、高さ1〜100μmの配向性CNT膜を基礎基板上に一様に生成させることができる。この時、個々のCNTの外径は1〜10nmの範囲で製造できる。また、該基礎基板と基礎基板上の該CNT膜は物理的に接触しているのみであり、基礎基板と該基板上のCNT膜の密着力は弱い。   In the present embodiment, the catalyst particles are often included in the tip portion of each CNT, that is, the tip side of the oriented CNT film, after the CNTs are generated. According to the manufacturing method of the present invention, an oriented CNT film having a height of 1 to 100 μm can be uniformly formed on a basic substrate. At this time, the outer diameter of each CNT can be manufactured in the range of 1 to 10 nm. Further, the basic substrate and the CNT film on the basic substrate are only in physical contact, and the adhesion between the basic substrate and the CNT film on the substrate is weak.

上記A〜C法によって、保持基板から電極基板に転写された配向性カーボンナノチューブ膜は、100kg/cmという高圧着力に対してもその形状を崩すことはない。 The oriented carbon nanotube film transferred from the holding substrate to the electrode substrate by the A to C methods does not break its shape even with a high pressure bonding force of 100 kg / cm 2 .

続いて、本発明の電界放出型冷陰極の製造方法における、導電層および絶縁層から成る二層構造体に垂直方向の開口を施す工程について説明する。
まず、導電層および絶縁層から成る二層構造体を準備する。各層の厚みとしては、導電層が0.1〜1μm、絶縁層が5〜50μmが目安であるが、これに限らない。また、二層構造体の準備方法も特に限定はしないが、保持フィルムに絶縁層を固定し、必要であれば所定の厚みまで薄膜化処理を行い、その表面に導電層を形成するという方法が簡便である。
Next, the step of forming a vertical opening in a two-layer structure composed of a conductive layer and an insulating layer in the method for manufacturing a field emission cold cathode according to the present invention will be described.
First, a two-layer structure including a conductive layer and an insulating layer is prepared. The thickness of each layer is 0.1 to 1 μm for the conductive layer and 5 to 50 μm for the insulating layer, but is not limited thereto. Also, the preparation method of the two-layer structure is not particularly limited, but there is a method in which an insulating layer is fixed to a holding film, if necessary, thinning treatment is performed to a predetermined thickness, and a conductive layer is formed on the surface. Convenient.

ここで保持フィルムとしては前出の可逆的接着性表面を有する可撓性基板と同じ機能を有するフィルムで良いが、後の工程で二層構造体から剥離する必要がある。該二層構造体は可撓性
のない薄膜なので、できるだけ力を加えず、あるいは熱をかけないで剥離する必要がある。従ってここで用いる保持フィルムはUV硬化フィルムなど穏和な条件で粘着性を失う可撓性フィルムが特に好ましい。
具体的なUV硬化フィルムとしては、粘着性アクリル樹脂/ポリオレフィンの二層構造シートが代表的である。
Here, the holding film may be a film having the same function as the flexible substrate having the above-described reversible adhesive surface, but it is necessary to peel from the two-layer structure in a later step. Since the two-layer structure is an inflexible thin film, it needs to be peeled off by applying as little force as possible or without applying heat. Therefore, the holding film used here is particularly preferably a flexible film that loses tackiness under mild conditions such as a UV cured film.
As a specific UV cured film, a two-layer structure sheet of adhesive acrylic resin / polyolefin is typical.

導電層の形成方法に関しては通常の薄膜積層法で良く、蒸着法、スパッタリング法、あるいはスクリーン印刷法などが好ましい。また導電層の材質としては、導電性のある材質、例えば金属類であれば何でも良いが、融点100〜500℃の低融点金属または低融点合金がより好ましい。具体的な低融点金属としては、例えばインジウム、スズ、亜鉛などが良く、低融点合金としては、インジウム-スズ、スズ-亜鉛などが良い。   As a method for forming the conductive layer, a normal thin film lamination method may be used, and a vapor deposition method, a sputtering method, a screen printing method, or the like is preferable. The conductive layer may be made of any conductive material such as metal, but a low melting point metal or low melting point alloy having a melting point of 100 to 500 ° C. is more preferable. Specific examples of the low melting point metal include indium, tin, and zinc, and examples of the low melting point alloy include indium-tin and tin-zinc.

絶縁層としては、絶縁物から成り真空封止時の温度(約500℃程度)でもその形状を保持できるものが良い。また、真空中でガスを発生させないものが好ましく、通常はケイ素を主成分とするガラス質を用いる。また、近年開発された、感光性有機ケイ酸膜もこの機能を満たしており使用することができる。 The insulating layer is preferably made of an insulating material and can maintain its shape even at a vacuum sealing temperature (about 500 ° C.). Moreover, the thing which does not generate | occur | produce a gas in a vacuum is preferable, and the glassy substance which has silicon as a main component is used normally. In addition, a photosensitive organosilicate film developed in recent years also satisfies this function and can be used.

垂直方向の開口方法に関しては、通常の薄膜の開口方法で良く、レーザー照射法、フォトリソグラフィー法、サンドブラスト法、あるいはエッチング法などを用いる。   As the vertical opening method, a normal thin film opening method may be used, and a laser irradiation method, a photolithography method, a sand blast method, an etching method, or the like is used.

開口径としては、100μm以下が好ましい。例えば開口径100μmの場合では、開口部のCNT前面から電子を引き出すには、引き出し電極をCNT表面から100μmの位置に設置した場合、該CNTのしきい電界が1V/ミクロンという高性能なCNTであれば、100Vで可能となる。
また、開口部が接近しすぎてもCNTに電界がかかりにくくなり、好ましくない。ただし、逆に開口部を離しすぎても、単位面積あたりに充分な電流量が得られなくなる。本製造方法では、開口径と同程度の距離を置いて、すなわちピッチを開口径の倍程度に設定するのが好ましい。この場合、開口部分の単位面積あたりの割合としては、約20%となる。
The opening diameter is preferably 100 μm or less. For example, in the case of an opening diameter of 100 μm, in order to extract electrons from the front surface of the CNT in the opening, when the extraction electrode is installed at a position of 100 μm from the CNT surface, the CNT has a threshold electric field of 1 V / micron. If there is, it will be possible at 100V.
Further, even if the opening is too close, it is difficult to apply an electric field to the CNT, which is not preferable. However, if the opening is too far away, a sufficient amount of current per unit area cannot be obtained. In this manufacturing method, it is preferable to set a distance approximately the same as the opening diameter, that is, to set the pitch to about twice the opening diameter. In this case, the ratio per unit area of the opening is about 20%.

続いて、本発明の電界放出型冷陰極の製造方法における、配向性カーボンナノチューブ膜の表面に二層構造体の該導電層側を設置する工程について説明する。
基本的な操作としては、第一の工程で電極表面に転写した配向性カーボンナノチューブ膜の表面と、第二の工程で得た開口した二層構造のうち導電層側の表面とを接触させるだけで良い。第二の工程で保持フィルムを用いた場合は、剥離する必要がある。この場合、予め保持フィルムとしてUV硬化フィルムなど、粘着性を下げることができるフィルムを選択すると都合が良い。
Next, the step of installing the conductive layer side of the two-layer structure on the surface of the oriented carbon nanotube film in the method for producing a field emission cold cathode of the present invention will be described.
As a basic operation, only the surface of the oriented carbon nanotube film transferred to the electrode surface in the first step is brought into contact with the surface on the conductive layer side of the open two-layer structure obtained in the second step. Good. When a holding film is used in the second step, it needs to be peeled off. In this case, it is convenient to select in advance a film that can lower the tackiness, such as a UV curable film, as the holding film.

また、接触させただけでは、デバイスとして強度的に不足な場合は、接着、圧着、熱圧着など、積極的に導電層と配向性カーボンナノチューブ膜とを機械的、電気的に結ぶ操作を行う。この場合、予め導電層として低融点金属あるいは低融点合金を選択すると都合が良い。   Further, when the strength is insufficient as a device simply by contact, an operation of mechanically and electrically connecting the conductive layer and the oriented carbon nanotube film, such as adhesion, pressure bonding, and thermocompression bonding, is performed. In this case, it is convenient to select a low melting point metal or a low melting point alloy as the conductive layer in advance.

以下に、本実施形態における電界放出型冷陰極の製造方法について簡易的な断面図を持って説明する。
まず、図4に示すように、絶縁板8を準備し、その表面に導電層9を形成する。各層の厚みとしては、導電層が0.1〜1μm、絶縁板が5〜50μmが目安であるがこれに限らない。導電層9の形成方法としては、一般的な金属層の形成方法で良く、真空蒸着やスパッター等を用いる。
Below, the manufacturing method of the field emission type cold cathode in this embodiment is demonstrated with simple sectional drawing.
First, as shown in FIG. 4, an insulating plate 8 is prepared, and a conductive layer 9 is formed on the surface thereof. The thickness of each layer is not limited to 0.1 to 1 μm for the conductive layer and 5 to 50 μm for the insulating plate. As a method for forming the conductive layer 9, a general method for forming a metal layer may be used, and vacuum deposition, sputtering, or the like is used.

次に図5に示すように上記により得た二層構造体に垂直方向の開口処理を施す。開口方法としては上に記したように、レーザー照射法、フォトリソグラフィー法、サンドブラスト法、あるいはエッチング法などを用いる。この開口処理の際、該二層構造体が壊れないようにUV硬化フィルムのような、保持フィルム10に固定する方法も望ましい。   Next, as shown in FIG. 5, a vertical opening process is performed on the two-layer structure obtained as described above. As described above, a laser irradiation method, a photolithography method, a sand blast method, an etching method, or the like is used as the opening method. A method of fixing to the holding film 10 such as a UV cured film is also desirable so that the two-layer structure is not broken during the opening treatment.

図5で開口処理した二層構造体のうち、導電層9の表面と、上記A〜C法のいずれかによって電極基板に転写した配向性CNT膜2の表面を、図6に示すように接触させ、図7に示すように保持フィルム10を剥離することで、目的の電界放出型冷陰極11を得る。ここで、保持フィルム10がUV硬化フィルムである場合は、フィルム側からUVを照射することで、保持フィルム10をより簡便に剥離することができる。   As shown in FIG. 6, the surface of the conductive layer 9 in the two-layer structure subjected to the opening treatment in FIG. 5 and the surface of the oriented CNT film 2 transferred to the electrode substrate by any of the above AC methods are contacted. Then, the target field emission cold cathode 11 is obtained by peeling the holding film 10 as shown in FIG. Here, when the holding film 10 is a UV cured film, the holding film 10 can be more easily peeled off by irradiating UV from the film side.

また、導電層9を形成する材料が低融点金属または低融点合金である場合は、該低融点金属の融点まで電界放出型冷陰極11を加熱することにより、導電層9と配向性CNT膜2とを機械的にまた電気的により強く結びつけることができる。   When the material for forming the conductive layer 9 is a low melting point metal or a low melting point alloy, the conductive layer 9 and the oriented CNT film 2 are heated by heating the field emission cold cathode 11 to the melting point of the low melting point metal. Can be more mechanically and electrically connected.

本発明の製造方法で得た電界放出型冷陰極は、真空中、対向陽極12との間に電位がかかると、配向性CNT膜2の表面のうち、微小口に露出した13の部分は対向陽極12に対して電位差があるので、閾値を超えると電子放出を行う(図8参照)。露出していない14の部分は、接触している導電層9との間に電位差がないので、電子放出せずまた放電破壊を起こすこともない。図8の電界放出型冷陰極と、配向性CNTの柱形状集合体15を電子源とする冷陰極(図9参照)とを比較すると、図8の微小口に露出した13の部分と図9の柱形状集合体15の表面16の部分の面積が等しければ、同等の電子放出能力を有する。   When a potential is applied between the field emission cold cathode obtained by the manufacturing method of the present invention and the counter anode 12 in a vacuum, 13 portions of the surface of the oriented CNT film 2 exposed to the minute mouth face each other. Since there is a potential difference with respect to the anode 12, electron emission is performed when the threshold value is exceeded (see FIG. 8). Since there is no potential difference between the unexposed portion 14 and the conductive layer 9 in contact therewith, neither electrons are emitted nor discharge breakdown occurs. Comparing the field emission cold cathode of FIG. 8 with the cold cathode (see FIG. 9) using the columnar aggregate 15 of oriented CNTs as an electron source, the portion 13 exposed in the micro-mouth of FIG. If the area of the surface 16 of the columnar aggregate 15 is equal, the electron emission ability is equivalent.

ここで、図8の電界放出型冷陰極の絶縁層8にさらにゲート層(ゲート電極)17を積層した場合(図10参照)、対向陽極12を設置することで三極管デバイスを開発することが可能である。   Here, when a gate layer (gate electrode) 17 is further laminated on the insulating layer 8 of the field emission cold cathode of FIG. 8 (see FIG. 10), it is possible to develop a triode device by installing the counter anode 12. It is.

[配向性CNT膜を成長させる工程]
シリカ25%、アルミナ75%の組成で、厚さ2mm、一辺15mmの角型シリカアルミナ板を支持基板として選び、真空蒸着法にてアルミニウムを蒸着により被覆した。この際のアルミニウム薄膜の厚さは0.5μmであった。次いで、濃度0.2mol/lの硝酸コバルト水溶液に2時間浸漬した。基板を引き上げた後、400℃、3時間空気中で焼成し、基礎基板を得た。焼成後、アルミニウム蒸着側を水平上向きにして、基礎基板を石英管状炉内に設置した。水平方向にアルゴンを1000cm/minで送風しながら管状炉を700℃まで昇温した。続いて、700℃に保持したまま、1000cm/minのアルゴンにプロピレンを300cm/minで混合させて管状炉内に送風した。プロピレン/アルゴン混合ガスを2分間流した後、再びアルゴンのみに切り替えて流しながら、管状炉の加熱を止めて、室温まで放冷した。反応終了後、基礎基板表面を走査型電子顕微鏡(SEM)観察した結果、基礎基板上側に厚さ10μmの配向性CNT膜が形成されたことが確認できた。
当該膜は、垂直方向に配向したCNTからなっており、厚さは一定で膜の表面は平滑であった。また、この配向膜の透過型電子顕微鏡(TEM)観察を行ったところ、配向膜を構成するCNTは、外径5〜8nm、5〜7層程度の多層CNTであった。
[Step of growing oriented CNT film]
A square silica alumina plate having a composition of 25% silica and 75% alumina and a thickness of 2 mm and a side of 15 mm was selected as a support substrate, and aluminum was coated by vapor deposition by a vacuum deposition method. At this time, the thickness of the aluminum thin film was 0.5 μm. Subsequently, it was immersed in a cobalt nitrate aqueous solution having a concentration of 0.2 mol / l for 2 hours. After raising the substrate, the substrate was baked in air at 400 ° C. for 3 hours to obtain a basic substrate. After firing, the base substrate was placed in a quartz tube furnace with the aluminum deposition side facing up horizontally. The tube furnace was heated to 700 ° C. while blowing argon at 1000 cm 3 / min in the horizontal direction. Then, while holding 700 ° C., and blown into a tubular furnace of propylene to argon 1000 cm 3 / min was mixed with 300 cm 3 / min. After flowing a propylene / argon mixed gas for 2 minutes, while switching to argon only again, the heating of the tubular furnace was stopped and the mixture was allowed to cool to room temperature. After completion of the reaction, the surface of the basic substrate was observed with a scanning electron microscope (SEM). As a result, it was confirmed that an oriented CNT film having a thickness of 10 μm was formed on the upper side of the basic substrate.
The film was made of CNTs oriented in the vertical direction, and had a constant thickness and a smooth surface. When this alignment film was observed with a transmission electron microscope (TEM), the CNT constituting the alignment film was a multilayer CNT having an outer diameter of 5 to 8 nm and about 5 to 7 layers.

[配向性カーボンナノチューブ膜を基礎基板から電極基板に転写する工程]
基礎基板上の配向性CNT膜表面に接着性アクリル樹脂/ポリエチレンテレフタレートからなる再剥離フィルムA(粘着力0.02N/cm)20mm×20mmを接触させ、プレス機で10kg/cm、3分間加圧した。圧着後、再剥離フィルムAを基礎基板から剥離することで、15mm×15mmの配向性CNT膜すべてが再剥離フィルムAに転写された。さらに、再剥離フィルムA上の配向性CNT膜表面に再剥離フィルムB(粘着力0.04N/cm)25mm×25mmを接触させ、プレス機で5kg/cm、15分間加圧した。圧着後、再剥離フィルムBを再剥離フィルムAから剥離することで、15mm×15mmの配向性CNT膜すべてが再剥離フィルムBに転写された。ここで電極基板として30mm×100mmのITOガラス板(厚み1.1mm)を準備し、その表面中央部に10mm×10mmの大きさに導電性銀ペーストを厚み約4μmにスクリーン印刷した。印刷後、再剥離フィルムB上の配向性CNT膜表面と導電性銀ペーストとを接触させ、プレス機で2kg/cm、60分間加圧した。圧着後、再剥離フィルムBをITOガラス板から剥離することで、導電性ペースト上に10mm×10mmの大きさの配向性CNT膜が転写された。
[Process of transferring oriented carbon nanotube film from base substrate to electrode substrate]
A re-peeling film A (adhesive strength 0.02 N / cm) 20 mm × 20 mm made of adhesive acrylic resin / polyethylene terephthalate is brought into contact with the surface of the oriented CNT film on the base substrate, and 10 kg / cm 2 is applied for 3 minutes with a press. Pressed. After the pressure bonding, the re-peeling film A was peeled from the base substrate, whereby all the 15 mm × 15 mm oriented CNT films were transferred to the re-peeling film A. Further, the re-peeling film B (adhesive strength 0.04 N / cm) 25 mm × 25 mm was brought into contact with the surface of the oriented CNT film on the re-peeling film A, and pressurized with a press at 5 kg / cm 2 for 15 minutes. After the pressure bonding, the re-peeling film B was peeled from the re-peeling film A, whereby all the 15 mm × 15 mm oriented CNT films were transferred to the re-peeling film B. Here, a 30 mm × 100 mm ITO glass plate (thickness 1.1 mm) was prepared as an electrode substrate, and a conductive silver paste was screen-printed in a size of 10 mm × 10 mm on the center of the surface to a thickness of about 4 μm. After printing, the surface of the oriented CNT film on the re-peeling film B and the conductive silver paste were brought into contact with each other and pressed with a press at 2 kg / cm 2 for 60 minutes. After the pressure bonding, the re-peeling film B was peeled from the ITO glass plate, whereby an oriented CNT film having a size of 10 mm × 10 mm was transferred onto the conductive paste.

[導電層および絶縁層から成る二層構造体に垂直方向の開口を施す工程]
10mm×10mm、厚み100μmのガラス板を、アクリル樹脂/ポリオレフィンから成るUV硬化フィルムに固定し、厚み30μmまで研磨した。次にガラス表面にスズを厚み0.2μmにスパッターで積層した。さらに得られたガラス/スズの二層構造体をUV硬化フィルムに固定したまま、レーザーを用いて開口径30μm、ピッチ60μmで垂直方向に全面開口処理を行った。
[Process for forming a vertical opening in a two-layer structure comprising a conductive layer and an insulating layer]
A glass plate having a size of 10 mm × 10 mm and a thickness of 100 μm was fixed to a UV cured film made of acrylic resin / polyolefin and polished to a thickness of 30 μm. Next, tin was laminated on the glass surface by sputtering to a thickness of 0.2 μm. Further, while the obtained glass / tin two-layer structure was fixed to the UV cured film, the entire surface was subjected to an opening process in the vertical direction with an opening diameter of 30 μm and a pitch of 60 μm using a laser.

[配向性カーボンナノチューブ膜の表面に二層構造体を設置する工程]
電極基板上の配向性CNT膜表面と二層構造体のスズ積層面とを接触させ、上からUV硬化フィルム、ガラス板、スズ、配向性CNT膜、導電性ペースト、電極基板、の順の積層体を得た。上方、UV硬化フィルム側から500mJ/cmのUVを照射した。照射後、UV硬化フィルムをガラス板から剥離した。さらに、0.5kgのSUSブロックをガラス板上に加重し、全体を400℃に加熱した。冷却後、SUSブロックを除くことで、目的の電界放出型冷陰極を得た。
陰極として電界電子放出測定を行った結果、しきい電界が0.8V/μm、電流密度が5mA/cm、達成電界が2.0V/μmであった。
[Step of installing double-layer structure on the surface of oriented carbon nanotube film]
The orientation CNT film surface on the electrode substrate is brought into contact with the tin lamination surface of the two-layer structure, and a UV cured film, a glass plate, tin, an orientation CNT film, a conductive paste, and an electrode substrate are laminated in that order from the top. Got the body. Upper, 500 mJ / cm 2 UV was irradiated from the UV cured film side. After irradiation, the UV cured film was peeled from the glass plate. Furthermore, 0.5 kg of SUS block was loaded on the glass plate, and the whole was heated to 400 ° C. After cooling, the target field emission cold cathode was obtained by removing the SUS block.
As a result of conducting field electron emission measurement as a cathode, the threshold electric field was 0.8 V / μm, the current density was 5 mA / cm 2 , and the achieved electric field was 2.0 V / μm.

配向性CNT膜を保持基板から電極基板に転写する方法(A法)Method for transferring an oriented CNT film from a holding substrate to an electrode substrate (Method A) 配向性CNT膜を保持基板から電極基板に転写する方法(B法)Method for transferring an oriented CNT film from a holding substrate to an electrode substrate (Method B) 配向性CNT膜を保持基板から電極基板に転写する方法(C法)Method for transferring an oriented CNT film from a holding substrate to an electrode substrate (Method C) 導電層および絶縁層からなる二層構造体Two-layer structure comprising a conductive layer and an insulating layer 保持フィルムに固定された開口処理後の二層構造体Two-layer structure after opening treatment fixed to holding film 開口処理した二層構造体の導電層表面と電極基板に転写したCNT膜表面との接触Contact between the conductive layer surface of the two-layer structure subjected to the opening treatment and the CNT film surface transferred to the electrode substrate 保持フィルムを剥離して得られた電界放出型冷陰極Field emission cold cathode obtained by peeling the holding film 対向陽極を設置した電界放出型冷陰極Field emission cold cathode with counter anode installed 配向性CNTの柱形状集合体を電子源とする冷陰極Cold cathode using columnar aggregate of oriented CNT as electron source 三極管デバイスTriode device

符号の説明Explanation of symbols

1 基礎基板
2 配向性CNT膜
3 電極基板
4 導電性バインダー
5 可撓性基板
6 第一の可撓性基板
7 第二の可撓性基板
8 絶縁板
9 導電層
10 保持フィルム
11 電界放出型冷陰極
12 対向陽極
13 配向性CNT膜の露出した表面
14 配向性CNT膜の露出していない表面
15 配向性CNTの柱形状集合体
16 配向性CNTの柱形状集合体の表面
17 ゲート層
DESCRIPTION OF SYMBOLS 1 Base substrate 2 Oriented CNT film | membrane 3 Electrode substrate 4 Conductive binder 5 Flexible substrate 6 First flexible substrate 7 Second flexible substrate 8 Insulating plate 9 Conductive layer 10 Holding film 11 Field emission type cold Cathode 12 Opposite anode 13 Exposed surface of oriented CNT film 14 Unexposed surface of oriented CNT film 15 Columnar aggregate 16 of oriented CNT Surface 17 of columnar aggregate of oriented CNT Gate layer

Claims (10)

配向性カーボンナノチューブ膜を保持基板から電極基板に転写する工程と、
導電層および絶縁層から成る二層構造体に垂直方向の開口を施す工程と、該配向性カーボンナノチューブ膜の表面に該二層構造体の該導電層側を設置する工程を含む、電界放出型冷陰極の製造方法。
Transferring the oriented carbon nanotube film from the holding substrate to the electrode substrate;
A field emission type comprising: a step of providing a vertical opening in a two-layer structure comprising a conductive layer and an insulating layer; and a step of placing the conductive layer side of the double-layer structure on the surface of the oriented carbon nanotube film A method for producing a cold cathode.
前記配向性カーボンナノチューブ膜を保持基板から電極基板に転写する工程が、基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と、電極基板表面に導電性バインダーを塗布する工程と、該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した配向性カーボンナノチューブ膜部分を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程を含む、請求項1記載の電界放出型冷陰極の製造方法。   The step of transferring the oriented carbon nanotube film from the holding substrate to the electrode substrate includes a step of producing an oriented carbon nanotube film on the surface of the base substrate, a step of applying a conductive binder to the surface of the electrode substrate, After adhering the surface of the oriented carbon nanotube film and the surface of the conductive binder, the oriented carbon nanotube film is transferred by peeling off the base substrate leaving the oriented carbon nanotube film part adhered to the conductive binder. The manufacturing method of the field emission type cold cathode of Claim 1 including a process. 前記配向性カーボンナノチューブ膜を保持基板から電極基板に転写する工程が、基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と、該配向性カーボンナノチューブ膜の表面を可逆的接着性表面を有する可撓性基板の表面に接着後、該可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、電極基板表面に導電性バインダーを塗布する工程と、該可撓性基板に転写された該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した配向性カーボンナノチューブ膜部分を残して該可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程を含む、請求項1記載の電界放出型冷陰極の製造方法。   The step of transferring the oriented carbon nanotube film from the holding substrate to the electrode substrate includes the step of producing an oriented carbon nanotube film on the base substrate surface, and the reversible adhesive surface of the surface of the oriented carbon nanotube film. A step of transferring the oriented carbon nanotube film by peeling off the base substrate leaving the oriented carbon nanotube film adhered to the surface of the flexible substrate after bonding to the surface of the flexible substrate having Applying the conductive binder to the substrate, and bonding the surface of the oriented carbon nanotube film transferred to the flexible substrate and the surface of the conductive binder, and then aligning the oriented carbon nanotubes with the conductive binder The field emission type according to claim 1, further comprising a step of transferring the oriented carbon nanotube film by peeling off the flexible substrate while leaving a film portion. Method of manufacturing the cathode. 前記配向性カーボンナノチューブ膜を保持基板から電極基板に転写する工程が、基礎基板表面上に配向性のあるカーボンナノチューブ膜を作製する工程と、該配向性カーボンナノチューブ膜の表面を第一の可逆的接着性表面を有する可撓性基板の表面に接着後、該第一の可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該基礎基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、該第一の可撓性基板に転写された該配向性カーボンナノチューブ膜の表面を第二の可逆的接着性表面を有する可撓性基板の表面に接着後、該第二の可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して該第一の可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程と、電極基板表面に導電性バインダーを塗布する工程と、該第二の可撓性基板に転写された該配向性カーボンナノチューブ膜の表面と該導電性バインダーの表面とを接着後、該導電性バインダーと接着した配向性カーボンナノチューブ膜部分を残して該第二の可撓性基板を剥離して配向性カーボンナノチューブ膜を転写する工程を含む、請求項1記載の電界放出型冷陰極の製造方法。   The step of transferring the oriented carbon nanotube film from the holding substrate to the electrode substrate includes the step of producing an oriented carbon nanotube film on the surface of the base substrate, and the first reversible surface of the oriented carbon nanotube film. After bonding to the surface of a flexible substrate having an adhesive surface, the orientation substrate is peeled off while leaving the oriented carbon nanotube film adhered to the first flexible substrate surface, and the oriented carbon nanotube film is transferred. And bonding the surface of the oriented carbon nanotube film transferred to the first flexible substrate to the surface of the flexible substrate having a second reversible adhesive surface, A step of transferring the oriented carbon nanotube film by peeling off the first flexible substrate while leaving the oriented carbon nanotube film adhered to the surface of the oriented substrate, and a conductive binder on the surface of the electrode substrate. A portion of the oriented carbon nanotube film bonded to the conductive binder after bonding the surface of the oriented carbon nanotube film transferred to the second flexible substrate and the surface of the conductive binder. 2. The method of manufacturing a field emission cold cathode according to claim 1, further comprising the step of transferring the oriented carbon nanotube film by peeling the second flexible substrate while leaving the film. 導電層および絶縁層から成る二層構造体に垂直方向の開口を施す工程において、レーザー照射法、フォトリソグラフィー法、サンドブラスト法、またはエッチング法を用いる、請求項1記載の電界放出型冷陰極の製造方法。   2. The method of manufacturing a field emission cold cathode according to claim 1, wherein a laser irradiation method, a photolithography method, a sand blast method, or an etching method is used in the step of forming a vertical opening in a two-layer structure comprising a conductive layer and an insulating layer. Method. 導電層および絶縁層から成る二層構造体に施された開口部の径が100ミクロンメートル以下である、請求項1記載の電界放出型冷陰極の製造方法。   2. The method of manufacturing a field emission cold cathode according to claim 1, wherein the diameter of the opening formed in the two-layer structure including the conductive layer and the insulating layer is 100 micrometers or less. 前記導電層を形成する材料が融点100〜500℃の金属または合金である、請求項1記載の電界放出型冷陰極の製造方法。   The method of manufacturing a field emission cold cathode according to claim 1, wherein the material forming the conductive layer is a metal or alloy having a melting point of 100 to 500C. 前記配向性カーボンナノチューブ膜の表面に前記二層構造体の導電層側を設置する工程において、接着、圧着、または熱圧着を行なう、請求項1記載の電界放出型冷陰極の製造方法。   The method for producing a field emission cold cathode according to claim 1, wherein in the step of placing the conductive layer side of the double-layer structure on the surface of the oriented carbon nanotube film, adhesion, pressure bonding, or thermocompression bonding is performed. 請求項1〜8のいずれかの方法によって得られる電界放出型冷陰極。   A field emission cold cathode obtained by the method according to claim 1. 請求項9記載の電界放出型冷陰極、ゲート電極および対向陽極を備えた三極管デバイス。   A triode device comprising the field emission cold cathode according to claim 9, a gate electrode, and a counter anode.
JP2005256062A 2005-09-05 2005-09-05 Manufacturing method of field emission type cold cathode Pending JP2007073217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256062A JP2007073217A (en) 2005-09-05 2005-09-05 Manufacturing method of field emission type cold cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256062A JP2007073217A (en) 2005-09-05 2005-09-05 Manufacturing method of field emission type cold cathode

Publications (1)

Publication Number Publication Date
JP2007073217A true JP2007073217A (en) 2007-03-22

Family

ID=37934521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256062A Pending JP2007073217A (en) 2005-09-05 2005-09-05 Manufacturing method of field emission type cold cathode

Country Status (1)

Country Link
JP (1) JP2007073217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042614A (en) * 2005-06-30 2007-02-15 Furukawa Electric Co Ltd:The Method for manufacturing component with functional material
JP2011530184A (en) * 2008-08-06 2011-12-15 エーエスエムエル ネザーランズ ビー.ブイ. Optical element for a lithographic apparatus, lithographic apparatus comprising such an optical element, and method for manufacturing such an optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042614A (en) * 2005-06-30 2007-02-15 Furukawa Electric Co Ltd:The Method for manufacturing component with functional material
JP2011530184A (en) * 2008-08-06 2011-12-15 エーエスエムエル ネザーランズ ビー.ブイ. Optical element for a lithographic apparatus, lithographic apparatus comprising such an optical element, and method for manufacturing such an optical element
US9897930B2 (en) 2008-08-06 2018-02-20 Asml Netherlands B.V. Optical element comprising oriented carbon nanotube sheet and lithographic apparatus comprising such optical element

Similar Documents

Publication Publication Date Title
US7150801B2 (en) Process for producing cold field-emission cathodes
US8529798B2 (en) Process for improving the emission of electron field emitters
JP4937910B2 (en) Activation of carbon nanotubes for field emission applications
CN100576405C (en) Carbon nano-tube, electron emission source, electron emitting device and preparation method thereof
JP2006008473A (en) Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode
EP2096659B1 (en) Electron emission source, electric device using the same, and method of manufacturing the electron emission source
JP2002170480A (en) Field emission cold cathode, its manufacturing method and flat picture display device
JP2008512849A (en) Enhancement of field emission by non-activated carbon nanotubes
JP4355928B2 (en) Manufacturing method of field emission cold cathode
JP4484047B2 (en) Method for producing patterned columnar aggregate of oriented carbon nanotubes and field emission cold cathode
JP2007188662A (en) Method of manufacturing field emission type cold cathode
JP2007073217A (en) Manufacturing method of field emission type cold cathode
KR100977312B1 (en) Flexible light emission device and display device, and fabrication method the devices
JP2007287478A (en) Manufacturing method of oriented carbon nanotube wiring
KR101015150B1 (en) Field emission device using metal nanoparticle and method thereof
KR101106121B1 (en) Electron emitter and method for manufacturing the same
JP3597740B2 (en) Cold cathode and method of manufacturing the same
JP4236627B2 (en) Method for manufacturing cold cathode image display device
JP4378992B2 (en) Carbon nanotube production equipment
TW201025416A (en) Method of making air-fired cathode assemblies in field emission devices
JP4984130B2 (en) Nanocarbon emitter, manufacturing method thereof, and surface light emitting device
KR101100821B1 (en) Electron emission source, and electron emission device having the same
KR101046775B1 (en) electron emission source
JP5604926B2 (en) Nanocarbon material composite substrate manufacturing method and nanocarbon material composite substrate
JP5283031B2 (en) Electronic devices using coin-stacked nanocarbon material composites