JP2007007074A - Thermotherapy apparatus - Google Patents

Thermotherapy apparatus Download PDF

Info

Publication number
JP2007007074A
JP2007007074A JP2005190456A JP2005190456A JP2007007074A JP 2007007074 A JP2007007074 A JP 2007007074A JP 2005190456 A JP2005190456 A JP 2005190456A JP 2005190456 A JP2005190456 A JP 2005190456A JP 2007007074 A JP2007007074 A JP 2007007074A
Authority
JP
Japan
Prior art keywords
cavity resonator
frequency
high frequency
electromagnetic field
field distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005190456A
Other languages
Japanese (ja)
Inventor
Yasutoshi Ishihara
康利 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
Original Assignee
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC filed Critical Nagaoka University of Technology NUC
Priority to JP2005190456A priority Critical patent/JP2007007074A/en
Publication of JP2007007074A publication Critical patent/JP2007007074A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermotherapy apparatus capable of noninvasively measuring the temperature inside a treatment subject body without using a large scale device in the thermotherapy apparatus heating the subject body using a cavity resonator. <P>SOLUTION: This thermotherapy apparatus is provided with the cavity resonator 1, a high frequency oscillator 2 supplying a high frequency electric power to the cavity resonator 1, a high frequency amplifier 3, a tuning/matching circuit 4, a detector 5 detecting a phase change in an electromagnetic field distribution inside the subject body stored in the cavity resonator 1, and a controlling circuit 6 controlling the high frequency oscillator 2, the high frequency amplifier 3, the tuning/matching circuit 4, and the detector 5. This thermotherapy apparatus allows the detector 5 to detect the phase change in the electromagnetic field distribution inside the subject body stored in the cavity resonator 1 to estimate the temperature inside the subject body and noninvasively measure the temperature inside the subject body without using the large scale device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、癌の治療などに用いられる温熱治療装置に関する。   The present invention relates to a thermotherapy device used for cancer treatment or the like.

従来の癌の治療法としては、外科治療,化学療法,放射線治療がよく知られている。しかし、これらの治療法は患者が受ける負担が甚大であるという問題があった。このような問題を解決する治療法として、被治療体を43℃前後で加温して癌細胞のみを死滅させるハイパーサーミアという加温治療法が開発されつつある。この非侵襲的な治療法は、患者のQOL(Quality of Life)を改善するものであり、これまでに種々の加温方法が提案されている。   Surgical treatment, chemotherapy, and radiotherapy are well known as conventional cancer treatment methods. However, these treatment methods have a problem that the burden on the patient is enormous. As a treatment method for solving such a problem, a warming treatment method called hyperthermia is being developed, in which a subject is heated at around 43 ° C. to kill only cancer cells. This non-invasive treatment method improves a patient's QOL (Quality of Life), and various warming methods have been proposed so far.

例えば、特許文献1には、対向する一組の電極間に被治療体を配置し、これら電極間に高周波アンプから供給される電力を印加することで、誘電加温の原理に基づいて加温する方法が開示されている。しかし、この方法では、被治療体を一様に加温してしまい、癌細胞が分布する部分のみ局所的に加温することができないという欠点があった。   For example, in Patent Document 1, a subject to be treated is disposed between a pair of opposed electrodes, and electric power supplied from a high-frequency amplifier is applied between these electrodes, thereby heating based on the principle of dielectric heating. A method is disclosed. However, this method has a drawback that the treatment object is uniformly heated, and only the portion where the cancer cells are distributed cannot be locally heated.

これに対して、特許文献2には、空洞共振器内の電磁界分布を利用した高周波温熱治療装置が開示されている。この方法は、図2に示すように、空洞共振器101内に被治療体102を配置し、ループアンテナ103から放射される電磁波によって被治療体102を加温するもので、空洞共振器101内の電界がリエントラント部104に集中することを利用するものである。この方法によれば、リエントラント部104近傍の被治療体102のみを局所的に加温することができる。しかし、この方法において、効果的に治療が行われているかどうかを評価するためには被治療体内部の温度を測定する必要がある。温度を測定するためには被治療体内部に熱電対などの温度プローブを挿入する必要があり、このため、患者に負担を掛けてしまうという問題があった。   On the other hand, Patent Document 2 discloses a high-frequency thermotherapy device using an electromagnetic field distribution in a cavity resonator. In this method, as shown in FIG. 2, a treatment object 102 is disposed in a cavity resonator 101, and the treatment object 102 is heated by an electromagnetic wave radiated from a loop antenna 103. The electric field is concentrated on the reentrant part 104. According to this method, only the treatment object 102 in the vicinity of the reentrant unit 104 can be locally heated. However, in this method, it is necessary to measure the temperature inside the body to be treated in order to evaluate whether treatment is being performed effectively. In order to measure the temperature, it is necessary to insert a temperature probe such as a thermocouple into the body to be treated, which causes a problem of burdening the patient.

このような状況から、近年、非侵襲的な測温技術として、MRI(Magnetic Resonance Imaging)を利用した種々の方法が提案されている(例えば、非特許文献1を参照)。この方法は、集束超音波、あるいは、レーザを用いた局所的な加温治療に際して臨床的に利用されているものの、測温のために大掛かりな装置を新たに用意する必要があるなど、実用上の問題があった。
特開平6−79003号公報 特開平8−117346号公報 Y. Ishihara, et al., A precise and fast temperature mapping using water proton chemical shift, Magn. Reson. Med., 34, pp.814-823(1995).
Under these circumstances, various methods using MRI (Magnetic Resonance Imaging) have recently been proposed as a noninvasive temperature measurement technique (see, for example, Non-Patent Document 1). Although this method is clinically used for local warming treatment using focused ultrasound or laser, it is necessary to prepare a large-scale device for temperature measurement. There was a problem.
JP-A-6-79003 JP-A-8-117346 Y. Ishihara, et al., A precise and fast temperature mapping using water proton chemical shift, Magn.Reson. Med., 34, pp.814-823 (1995).

そこで、本発明は上記問題点に鑑み、空洞共振器を利用して被治療体を加温する温熱治療装置であって、大掛かりな装置を用いずに非侵襲的に被治療体内部の温度を測定することのできる温熱治療装置を提供することをその目的とする。   Therefore, in view of the above problems, the present invention is a thermal treatment apparatus that heats a treatment object using a cavity resonator, and the temperature inside the treatment object is non-invasively used without using a large-scale device. It is an object of the present invention to provide a thermotherapy device that can be measured.

本発明の請求項1記載の温熱治療装置は、空洞共振器と、この空洞共振器に高周波電力を供給する高周波供給手段と、前記空洞共振器に収容された被治療体内部の電磁界分布の位相変化を検出する検出手段と、前記高周波供給手段と前記検出手段を制御する制御手段とを備えたことを特徴とする。   The thermotherapy apparatus according to claim 1 of the present invention is a cavity resonator, a high-frequency supply means for supplying high-frequency power to the cavity resonator, and an electromagnetic field distribution inside the treatment object accommodated in the cavity resonator. It is characterized by comprising detection means for detecting a phase change, control means for controlling the high-frequency supply means and the detection means.

本発明の請求項2記載の温熱治療装置は、請求項1において、前記検出手段は、高周波コイルから構成されたことを特徴とする。   The thermotherapy apparatus according to claim 2 of the present invention is characterized in that, in claim 1, the detection means comprises a high-frequency coil.

本発明の請求項3記載の温熱治療装置は、請求項1又は2において、前記制御手段は、前記検出手段が電磁界分布の位相変化を検出するときに前記高周波供給手段が供給する高周波電力を小さくするように構成されたことを特徴とする。   The thermotherapy apparatus according to claim 3 of the present invention is the thermotherapy device according to claim 1 or 2, wherein the control means generates high-frequency power supplied by the high-frequency supply means when the detection means detects a phase change of the electromagnetic field distribution. It is configured to be small.

本発明の請求項4記載の温熱治療装置は、請求項1〜3のいずれか1項において、前記制御手段は、前記空洞共振器内の共振周波数を切り替え可能に構成されたことを特徴とする。   The thermotherapy apparatus according to claim 4 of the present invention is characterized in that, in any one of claims 1 to 3, the control means is configured to be able to switch a resonance frequency in the cavity resonator. .

本発明の請求項1記載の温熱治療装置によれば、検出手段により空洞共振器に収容された被治療体内部の電磁界分布の位相変化を検出することにより、被治療体内部の温度を推定することができ、大掛かりな装置を用いずに非侵襲的に被治療体内部の温度を測定することができる。   According to the thermotherapy device of claim 1 of the present invention, the temperature inside the treatment object is estimated by detecting the phase change of the electromagnetic field distribution inside the treatment object housed in the cavity resonator by the detecting means. It is possible to measure the temperature inside the treatment object non-invasively without using a large-scale apparatus.

本発明の請求項2記載の温熱治療装置によれば、簡単に検出手段を構成することができる。   According to the thermotherapy apparatus of the second aspect of the present invention, the detection means can be configured easily.

本発明の請求項3記載の温熱治療装置によれば、高周波供給手段が供給する高周波電力による影響を抑えて電磁界分布の位相変化を正確に検出し、被治療体内部の温度を正確に推定することができる。   According to the thermotherapy apparatus of claim 3 of the present invention, the phase change of the electromagnetic field distribution is accurately detected by suppressing the influence of the high frequency power supplied by the high frequency supply means, and the temperature inside the treatment object is accurately estimated. can do.

本発明の請求項4記載の温熱治療装置によれば、空洞共振器内の共振周波数を切り替えることにより、被治療体内部における任意の深度において電磁界分布の位相変化を検出し、被治療体内部における任意の深度における温度を推定することができる。   According to the thermotherapy device of claim 4 of the present invention, the phase change of the electromagnetic field distribution is detected at an arbitrary depth inside the treatment object by switching the resonance frequency in the cavity resonator, and the inside of the treatment object The temperature at any depth in can be estimated.

以下、本発明の温熱治療装置の一実施形態について、図面を参照しながら説明する。   Hereinafter, an embodiment of a thermotherapy device of the present invention will be described with reference to the drawings.

図1において、1は被治療体を収容して被治療体を加温する空洞共振器である。2は空洞共振器1に供給される高周波信号を発振する高周波発振器であり、この高周波発振器2で発振された高周波信号は、高周波アンプ3で増幅され、高周波アンプ3と空洞共振器1の同調・整合を図る同調・整合回路4にて同調・整合された後、空洞共振器1に高周波電力として供給されるように構成されている。そして、高周波発振器2,高周波アンプ3,同調・整合回路4から、空洞共振器1に高周波電力を供給する高周波供給手段が構成されている。   In FIG. 1, reference numeral 1 denotes a cavity resonator that accommodates a treatment object and heats the treatment object. Reference numeral 2 denotes a high-frequency oscillator that oscillates a high-frequency signal supplied to the cavity resonator 1, and the high-frequency signal oscillated by the high-frequency oscillator 2 is amplified by a high-frequency amplifier 3, and the high-frequency amplifier 3 and the cavity resonator 1 are tuned. After being tuned and matched by a tuning / matching circuit 4 for matching, the cavity resonator 1 is supplied as high frequency power. The high frequency oscillator 2, the high frequency amplifier 3, and the tuning / matching circuit 4 constitute high frequency supply means for supplying high frequency power to the cavity resonator 1.

なお、高周波発振器2により発振される高周波の周波数は、空洞共振器1の形状、寸法に基づいて決定されるが、空洞共振器1に収容される被治療体の大きさ、設置状態によって変化する。そこで、空洞共振器1内の共振周波数は、制御手段としての制御回路6により調整可能に構成されている。   The frequency of the high frequency oscillated by the high frequency oscillator 2 is determined based on the shape and size of the cavity resonator 1, but varies depending on the size of the treatment target housed in the cavity resonator 1 and the installation state. . Therefore, the resonance frequency in the cavity resonator 1 is configured to be adjustable by a control circuit 6 as control means.

空洞共振器1には、空洞共振器1に収容された被治療体内部の温度変化を電磁界分布の位相変化として検出する検出手段としての検出器5が接続している。この検出器5は、高周波コイルから構成されており、検出器5により検出された電磁界分布の位相変化は、制御回路6により、誘電率を物理パラメータとして温度情報へ変換され、この温度情報は表示手段としての表示回路7に表示されるようになっている。さらに、制御回路6は、検出器5が電磁界分布の位相変化を検出するときに高周波供給手段が供給する高周波電力を微小な高周波信号に切り替えるように構成されている。   Connected to the cavity resonator 1 is a detector 5 as detection means for detecting a temperature change inside the treatment object accommodated in the cavity resonator 1 as a phase change of the electromagnetic field distribution. This detector 5 is composed of a high-frequency coil, and the phase change of the electromagnetic field distribution detected by the detector 5 is converted into temperature information by using the dielectric constant as a physical parameter by the control circuit 6, and this temperature information is It is displayed on the display circuit 7 as a display means. Further, the control circuit 6 is configured to switch the high frequency power supplied by the high frequency supply means to a minute high frequency signal when the detector 5 detects a phase change of the electromagnetic field distribution.

また、検出器5が電磁界分布の位相変化を検出するときに、印加する高周波信号の周波数を切り替えることによって、被治療体内の異なる深度における温度情報を得ることが可能であり、被治療体内部の温度分布を識別するために、制御回路6は、空洞共振器1内の共振周波数、あるいは共振モードを切り替え可能に構成されている。   Further, when the detector 5 detects the phase change of the electromagnetic field distribution, it is possible to obtain temperature information at different depths in the body to be treated by switching the frequency of the high frequency signal to be applied. In order to identify the temperature distribution, the control circuit 6 is configured to be able to switch the resonance frequency or resonance mode in the cavity resonator 1.

つぎに、本実施例の温熱治療装置の動作について説明する。なお、以下の一連の動作は、制御回路6により制御される。   Next, the operation of the thermal treatment apparatus of this embodiment will be described. The following series of operations is controlled by the control circuit 6.

まず、空洞共振器1に収容された被治療体を加温するために、空洞共振器1の形状、寸法などから決定される共振周波数を有する高周波信号を高周波発振器2から供給する。ここで、共振周波数は、空洞共振器1に収容される被治療体の大きさ、設置状態によって若干変化するので、加温操作を行う前に微小な高周波信号を空洞共振器1へ印加し、高周波発振器2から発振される高周波の周波数を調整するともに、同調・整合回路4により同調・整合する。   First, a high frequency signal having a resonance frequency determined from the shape, size, etc. of the cavity resonator 1 is supplied from the high frequency oscillator 2 in order to heat the treatment object accommodated in the cavity resonator 1. Here, since the resonance frequency slightly changes depending on the size of the treatment object accommodated in the cavity resonator 1 and the installation state, a minute high frequency signal is applied to the cavity resonator 1 before performing the heating operation, The frequency of the high frequency oscillated from the high frequency oscillator 2 is adjusted, and the tuning / matching circuit 4 performs tuning / matching.

そして、被治療体を加温するために、空洞共振器1へ供給される高周波電力が所定の値になるように、高周波発振器2から発振された高周波信号の出力を調整するとともに、この高周波信号を高周波アンプ3により増幅する。   And in order to heat a to-be-treated body, while adjusting the output of the high frequency signal oscillated from the high frequency oscillator 2 so that the high frequency electric power supplied to the cavity resonator 1 may become a predetermined value, this high frequency signal Is amplified by the high-frequency amplifier 3.

加温操作中の被治療体内部の温度は、検出器5により検出される信号を基に制御回路6で計算され、表示回路7に表示される。また、制御回路6は、被治療体内部の温度が適切な温度になるように、空洞共振器1へ供給される高周波電力の値を調整する。   The temperature inside the treatment object during the heating operation is calculated by the control circuit 6 based on the signal detected by the detector 5 and displayed on the display circuit 7. Further, the control circuit 6 adjusts the value of the high-frequency power supplied to the cavity resonator 1 so that the temperature inside the treatment object becomes an appropriate temperature.

以下、被治療体内部の温度を測定する原理について説明する。   Hereinafter, the principle of measuring the temperature inside the body to be treated will be described.

誘電率は、温度変化に伴い、物質ごとに異なる温度依存性を示すことが知られている。例えば、純水の誘電率ε0は、温度Tに依存した数1の近似式に従うことが知られている。 It is known that the dielectric constant exhibits different temperature dependence for each substance as the temperature changes. For example, it is known that the dielectric constant ε 0 of pure water follows an approximate expression of Equation 1 depending on the temperature T.

Figure 2007007074
Figure 2007007074

この数1より、温度Tの2次以上の項に関しては係数が小さいことから、誘電率ε0は温度Tと線形の関係があるものとみなせる。したがって、被治療体内部の温度が変化すると被治療体内部の誘電率が変化し、温度変化によって誘電率が変化すると、空洞共振器1の容量成分が変化し、この関係を利用することによって被治療体内部の温度を推定することができると考えられる。 From Equation 1, since the coefficient is small for the second and higher order terms of the temperature T, the dielectric constant ε 0 can be regarded as having a linear relationship with the temperature T. Therefore, when the temperature inside the body to be treated changes, the dielectric constant inside the body to be treated changes, and when the dielectric constant changes due to the temperature change, the capacitance component of the cavity resonator 1 changes. It is considered that the temperature inside the treatment body can be estimated.

なお、この現象を利用して空洞共振器1の共振周波数の変化から物質の誘電率を決定する空洞共振器摂動法が知られているが、この方法を採用する場合には、摂動理論が保証される必要があり、実際には誘電率の変化を測定できる試料の大きさ、形状に制限があり、生体を対象とすることは甚だ困難である。   A cavity resonator perturbation method that uses this phenomenon to determine the dielectric constant of a substance from a change in the resonance frequency of the cavity resonator 1 is known. However, when this method is employed, the perturbation theory is guaranteed. In reality, there are limitations on the size and shape of the sample that can measure the change in dielectric constant, and it is extremely difficult to target a living body.

そこで、本実施例では、空洞共振器1の共振周波数の変化から誘電率を決定し、これに基づき被治療体内部の絶対温度を計測するのではなく、被治療体収容後の空洞共振器1の電磁界分布の位相変化から誘電率を決定して、この誘電率を物理パラメータとして温度変化を検出することとしている。   Therefore, in this embodiment, instead of determining the dielectric constant from the change in the resonance frequency of the cavity resonator 1 and measuring the absolute temperature inside the treatment object based on this, the cavity resonator 1 after the treatment object is accommodated is measured. The dielectric constant is determined from the phase change of the electromagnetic field distribution, and the temperature change is detected using this dielectric constant as a physical parameter.

電磁界分布の位相項βは、数2によって表される。   The phase term β of the electromagnetic field distribution is expressed by Equation 2.

Figure 2007007074
Figure 2007007074

ここで、ωは高周波発振器2から発振される高周波信号の角周波数、μは空洞共振器1に収容された被治療体の透磁率、σは被治療体の導電率を示している。数1によれば、温度変化に伴い誘電率εが変化するため、これに伴って空洞共振器1内の電磁界分布の位相が数2にしたがって相対的に変化する。   Here, ω is the angular frequency of the high-frequency signal oscillated from the high-frequency oscillator 2, μ is the magnetic permeability of the treatment object accommodated in the cavity resonator 1, and σ is the conductivity of the treatment object. According to Equation 1, since the dielectric constant ε changes with temperature change, the phase of the electromagnetic field distribution in the cavity resonator 1 relatively changes according to Equation 2.

したがって、加温前の電磁界分布の位相β0と、温度変化後の電磁界分布の位相βTから、位相変化Δβ=βT−β0を検出すれば、温度変化を推定することができ、被治療体内部の温度を算出することができる。 Therefore, if the phase change Δβ = β T −β 0 is detected from the phase β 0 of the electromagnetic field distribution before heating and the phase β T of the electromagnetic field distribution after temperature change, the temperature change can be estimated. The temperature inside the body to be treated can be calculated.

本実施例において、検出器5は高周波コイルから構成されているが、高周波コイルを空洞共振器1内に設置することによって、加温に必要な電磁界分布を乱す虞がある。加温中の高周波コイルと空洞共振器1のカップリングを抑制して、空洞共振器1内の電磁界分布の乱れを最小とするために、公知のデカップリング、Qダンプ等の技術が用いられている。この制御は制御回路6により行われ、加温中はデカップリングをオンとし、測温中はデカップリングをオフとする。さらに、検出器5が電磁界分布の位相変化を検出するときには、空洞共振器1へ被治療体の加温のために供給される高周波電力を微小な高周波信号に切り替える。   In this embodiment, the detector 5 is composed of a high-frequency coil. However, the installation of the high-frequency coil in the cavity resonator 1 may disturb the electromagnetic field distribution necessary for heating. In order to suppress the coupling between the high-frequency coil and the cavity resonator 1 during heating and minimize the disturbance of the electromagnetic field distribution in the cavity resonator 1, known techniques such as decoupling and Q dump are used. ing. This control is performed by the control circuit 6, and decoupling is turned on during heating, and decoupling is turned off during temperature measurement. Furthermore, when the detector 5 detects a phase change of the electromagnetic field distribution, the high-frequency power supplied to the cavity resonator 1 for heating the treatment object is switched to a minute high-frequency signal.

加温中に被治療体の温度が上昇して、空洞共振器1の同調・整合状態が外れた場合は、高周波発振器2の発振周波数を調整し、同調・整合回路4により同調・整合を図る。この再調整の際には、調整前に電磁界分布の位相βT'を測定しておき、数2にしたがって調整前までの期間の位相変化Δβ’=βT'−β0を記録しておく。そして、調整直後に再度位相β0'を測定し、調整後の位相変化の算出はこのβ0'を基準とする。したがって、位相変化Δβは、Δβ=Δβ’+βT−β0'により算出される。 When the temperature of the object to be treated rises during heating and the tuning / matching state of the cavity resonator 1 is removed, the oscillation frequency of the high-frequency oscillator 2 is adjusted and the tuning / matching circuit 4 performs tuning / matching. . In this readjustment, the phase β T ′ of the electromagnetic field distribution is measured before the adjustment, and the phase change Δβ ′ = β T ′ −β 0 in the period before the adjustment is recorded according to Equation 2. deep. Then, the phase β 0 ′ is measured again immediately after the adjustment, and the calculation of the phase change after the adjustment is based on this β 0 ′ . Therefore, the phase change Δβ is calculated by Δβ = Δβ ′ + β T −β 0 ′ .

このように位相変化を求めることにより、被治療体内の温度変化を求めることができるが、さらに、表皮効果と呼ばれる現象を利用することにより、被治療体内の大まかな温度分布を把握することができる。   By obtaining the phase change in this way, the temperature change in the body to be treated can be obtained, but by using a phenomenon called the skin effect, a rough temperature distribution in the body to be treated can be grasped. .

表皮効果とは、電磁界分布が物質表面にのみ侵立する現象であり、数3によってその深さが定義されている。   The skin effect is a phenomenon in which the electromagnetic field distribution is invaded only on the material surface, and its depth is defined by Equation (3).

Figure 2007007074
Figure 2007007074

これは、空洞共振器1に印加する高周波信号の周波数を切り替えることによって、電磁界分布の位相に反映される被治療体内の深度を制御できることを示している。したがって、位相変化を検出する際に、被治療体の表面近傍の温度変化を捉える場合には、空洞共振器1に印加する高周波信号の共振周波数を高くし、より深部の温度変化を検出する場合には、共振周波数を低くして電磁界分布の位相を測定する。ただし、周波数を低くした場合には、深部のみの状態のみならず表面近傍の温度変化による影響も含まれてしまうため、単純な多層モデルから位相変化の値と被治療体の体積を考慮して、深部の位相変化を算出する。このように、空洞共振器1に印加する高周波信号の周波数を切り替えることによって、被治療体内部の温度分布が測定される。   This indicates that the depth within the body to be treated reflected in the phase of the electromagnetic field distribution can be controlled by switching the frequency of the high-frequency signal applied to the cavity resonator 1. Therefore, when detecting the temperature change near the surface of the treatment object when detecting the phase change, the resonance frequency of the high-frequency signal applied to the cavity resonator 1 is increased, and the temperature change in the deeper part is detected. First, the phase of the electromagnetic field distribution is measured by lowering the resonance frequency. However, if the frequency is lowered, not only the state of the deep part but also the effect of temperature change near the surface is included, so the phase change value and the volume of the treatment object are taken into account from a simple multilayer model. The phase change in the deep part is calculated. In this manner, the temperature distribution inside the treatment object is measured by switching the frequency of the high-frequency signal applied to the cavity resonator 1.

以上のように、本実施形態の温熱治療装置は、空洞共振器1と、空洞共振器1に高周波電力を供給する高周波供給手段としての高周波発振器2,高周波アンプ3,同調・整合回路4と、空洞共振器1に収容された被治療体内部の電磁界分布の位相変化を検出する検出手段としての検出器5と、高周波発振器2,高周波アンプ3,同調・整合回路4,検出器5を制御する制御手段としての制御回路6を備えている。したがって、検出器5により空洞共振器1に収容された被治療体内部の電磁界分布の位相変化を検出することにより、被治療体内部の温度を推定することができ、大掛かりな装置を用いずに非侵襲的に被治療体内部の温度を測定することができる。そして、癌の温熱治療において、加温効果を確認しながら治療を行うことが可能になり、治療効果を改善することができる。さらに、測温のために大掛かりな装置を用いる必要がないので、安価に温熱治療装置を提供することができる。   As described above, the thermotherapy apparatus of the present embodiment includes the cavity resonator 1, the high-frequency oscillator 2, the high-frequency amplifier 3, the tuning / matching circuit 4 as high-frequency supply means for supplying high-frequency power to the cavity resonator 1, Controls the detector 5 as a detecting means for detecting the phase change of the electromagnetic field distribution inside the treatment object accommodated in the cavity resonator 1, the high frequency oscillator 2, the high frequency amplifier 3, the tuning / matching circuit 4, and the detector 5. A control circuit 6 is provided as a control means. Therefore, by detecting the phase change of the electromagnetic field distribution inside the treatment object accommodated in the cavity resonator 1 by the detector 5, the temperature inside the treatment object can be estimated, and a large apparatus is not used. The temperature inside the treatment object can be measured non-invasively. And in the thermotherapy of cancer, it becomes possible to perform treatment while confirming the heating effect, and the therapeutic effect can be improved. Furthermore, since it is not necessary to use a large-scale device for temperature measurement, a thermal treatment device can be provided at a low cost.

また、検出器5は、高周波コイルから構成されているので、簡単に検出器5を構成することができる。   Moreover, since the detector 5 is comprised from the high frequency coil, the detector 5 can be comprised easily.

また、制御回路6は、検出器5が電磁界分布の位相変化を検出するときに高周波発振器2,高周波アンプ3,同調・整合回路4が供給する高周波電力を小さくするように構成されている。したがって、高周波発振器2,高周波アンプ3,同調・整合回路4が供給する高周波電力による影響を抑えて電磁界分布の位相変化を正確に検出し、被治療体内部の温度を正確に推定することができる。   The control circuit 6 is configured to reduce the high-frequency power supplied from the high-frequency oscillator 2, the high-frequency amplifier 3, and the tuning / matching circuit 4 when the detector 5 detects the phase change of the electromagnetic field distribution. Accordingly, it is possible to accurately detect the phase change of the electromagnetic field distribution by accurately suppressing the influence of the high frequency power supplied from the high frequency oscillator 2, the high frequency amplifier 3, and the tuning / matching circuit 4, and accurately estimate the temperature inside the treatment object. it can.

さらに、制御回路6は、空洞共振器1内の共振周波数を切り替え可能に構成されている。したがって、空洞共振器1内の共振周波数を切り替えることにより、被治療体内部における任意の深度において電磁界分布の位相変化を検出し、被治療体内部における任意の深度における温度を推定することができる。   Further, the control circuit 6 is configured to be able to switch the resonance frequency in the cavity resonator 1. Therefore, by switching the resonance frequency in the cavity resonator 1, it is possible to detect the phase change of the electromagnetic field distribution at an arbitrary depth inside the treatment object and to estimate the temperature at the arbitrary depth inside the treatment object. .

なお、本発明は上記実施形態に限定されるものではなく、本発明の思想を逸脱しない範囲で種々の変形実施が可能である。例えば、上記実施形態では、温度情報を得るための物理パラメータとして誘電率を用いたが、これに限らず、導電率などのほかの物理パラメータを用いてもよい。   The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the above embodiment, the dielectric constant is used as a physical parameter for obtaining temperature information. However, the present invention is not limited to this, and other physical parameters such as conductivity may be used.

本発明の温熱治療装置の一実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of one Embodiment of the thermotherapy apparatus of this invention. 従来の空洞共振器の形状の一例を示す断面図である。It is sectional drawing which shows an example of the shape of the conventional cavity resonator.

符号の説明Explanation of symbols

1 空洞共振器
2 高周波発振器(高周波供給手段)
3 高周波アンプ(高周波供給手段)
4 同調・整合回路(高周波供給手段)
5 検出器(検出手段)
6 制御回路(制御手段)
DESCRIPTION OF SYMBOLS 1 Cavity resonator 2 High frequency oscillator (high frequency supply means)
3 High frequency amplifier (high frequency supply means)
4 Tuning / matching circuit (high-frequency supply means)
5 Detector (Detection means)
6 Control circuit (control means)

Claims (4)

空洞共振器と、この空洞共振器に高周波電力を供給する高周波供給手段と、前記空洞共振器に収容された被治療体内部の電磁界分布の位相変化を検出する検出手段と、前記高周波供給手段と前記検出手段を制御する制御手段とを備えたことを特徴とする温熱治療装置。 A cavity resonator, a high-frequency supply means for supplying high-frequency power to the cavity resonator, a detection means for detecting a phase change of the electromagnetic field distribution inside the treatment object accommodated in the cavity resonator, and the high-frequency supply means And a control means for controlling the detection means. 前記検出手段は、高周波コイルから構成されたことを特徴とする請求項1記載の温熱治療装置。 The thermotherapy apparatus according to claim 1, wherein the detection means is composed of a high-frequency coil. 前記制御手段は、前記検出手段が電磁界分布の位相変化を検出するときに前記高周波供給手段が供給する高周波電力を小さくするように構成されたことを特徴とする請求項1又は2記載の温熱治療装置。 3. The heat according to claim 1, wherein the control means is configured to reduce the high-frequency power supplied by the high-frequency supply means when the detection means detects a phase change of the electromagnetic field distribution. Therapeutic device. 前記制御手段は、前記空洞共振器内の共振周波数を切り替え可能に構成されたことを特徴とする請求項1〜3のいずれか1項記載の温熱治療装置。

The thermotherapy apparatus according to any one of claims 1 to 3, wherein the control means is configured to be able to switch a resonance frequency in the cavity resonator.

JP2005190456A 2005-06-29 2005-06-29 Thermotherapy apparatus Pending JP2007007074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005190456A JP2007007074A (en) 2005-06-29 2005-06-29 Thermotherapy apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005190456A JP2007007074A (en) 2005-06-29 2005-06-29 Thermotherapy apparatus

Publications (1)

Publication Number Publication Date
JP2007007074A true JP2007007074A (en) 2007-01-18

Family

ID=37746311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190456A Pending JP2007007074A (en) 2005-06-29 2005-06-29 Thermotherapy apparatus

Country Status (1)

Country Link
JP (1) JP2007007074A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1947841A2 (en) 2007-01-16 2008-07-23 Sony Corporation Image pickup system, image pickup apparatus, and interchangeable lens
JP2008220434A (en) * 2007-03-08 2008-09-25 Nagaoka Univ Of Technology Heating and temperature measurement integrated thermotherapy instrument and its temperature measuring method
US10545772B2 (en) 2014-03-18 2020-01-28 International Business Machines Corporation Architectural mode configuration

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172229A (en) * 1986-01-23 1987-07-29 シ−メンス、アクチエンゲゼルシヤフト Noncontact measuring method and device for temperature distribution in object to be inspected
JPS62284659A (en) * 1986-05-31 1987-12-10 株式会社島津製作所 Ultrasonic hyperthermia apparatus
JPH02215477A (en) * 1989-02-16 1990-08-28 Yoshiaki Saito Electromagnetic wave heater
JPH08117346A (en) * 1994-10-24 1996-05-14 Omron Corp High frequency thermotherapy device
JPH11510406A (en) * 1995-06-14 1999-09-14 メドトロニック・インコーポレーテッド Method and system for steering a catheter probe
JP2004530900A (en) * 2001-06-21 2004-10-07 グルコン インク Temperature measurement and related methods based on dielectric constant
JP2004530518A (en) * 2001-06-26 2004-10-07 シーメンス アクチエンゲゼルシヤフト Magnetic resonance apparatus and operation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172229A (en) * 1986-01-23 1987-07-29 シ−メンス、アクチエンゲゼルシヤフト Noncontact measuring method and device for temperature distribution in object to be inspected
JPS62284659A (en) * 1986-05-31 1987-12-10 株式会社島津製作所 Ultrasonic hyperthermia apparatus
JPH02215477A (en) * 1989-02-16 1990-08-28 Yoshiaki Saito Electromagnetic wave heater
JPH08117346A (en) * 1994-10-24 1996-05-14 Omron Corp High frequency thermotherapy device
JPH11510406A (en) * 1995-06-14 1999-09-14 メドトロニック・インコーポレーテッド Method and system for steering a catheter probe
JP2004530900A (en) * 2001-06-21 2004-10-07 グルコン インク Temperature measurement and related methods based on dielectric constant
JP2004530518A (en) * 2001-06-26 2004-10-07 シーメンス アクチエンゲゼルシヤフト Magnetic resonance apparatus and operation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1947841A2 (en) 2007-01-16 2008-07-23 Sony Corporation Image pickup system, image pickup apparatus, and interchangeable lens
JP2008220434A (en) * 2007-03-08 2008-09-25 Nagaoka Univ Of Technology Heating and temperature measurement integrated thermotherapy instrument and its temperature measuring method
US10545772B2 (en) 2014-03-18 2020-01-28 International Business Machines Corporation Architectural mode configuration
US10552175B2 (en) 2014-03-18 2020-02-04 International Business Machines Corporation Architectural mode configuration

Similar Documents

Publication Publication Date Title
Morris et al. Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field
Guntur et al. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation
US8753381B2 (en) Apparatus and methods for determining a property of a tissue
JP4263406B2 (en) Apparatus for heat treatment of biological tissue and use thereof
Sherar et al. Comparison of thermal damage calculated using magnetic resonance thermometry, with magnetic resonance imaging post-treatment and histology, after interstitial microwave thermal therapy of rabbit brain
JP6543243B2 (en) Temperature monitoring apparatus and method for monitoring temperature in tissue
US20100211060A1 (en) Radio frequency treatment of subcutaneous fat
KR101633707B1 (en) Radio frequency therapy apparatus and control method for radio frequency therapy apparatus
Guntur et al. Influence of temperature-dependent thermal parameters on temperature elevation of tissue exposed to high-intensity focused ultrasound: numerical simulation
JP6952311B2 (en) Affected area heating system and tumor diagnostic system
Zhou Noninvasive thermometry in high-intensity focused ultrasound ablation
JP2007007074A (en) Thermotherapy apparatus
JP2009125457A (en) Hyperthermia system
Ye et al. Model-based ultrasound temperature visualization during and following HIFU exposure
JP5845536B2 (en) Puncture target organ temperature distribution estimation system, analysis device, and analysis device program
KR20150096272A (en) Method of controlling temperature of tissue and apparatus of teperature control using the same
JP4574781B2 (en) Magnetic resonance apparatus and thermotherapy apparatus
KR101969779B1 (en) RF ablation needle sensing tissue pressure
JP2008220434A (en) Heating and temperature measurement integrated thermotherapy instrument and its temperature measuring method
Nan et al. Non-invasive remote temperature monitoring using microwave-induced thermoacoustic imaging
JP4534053B2 (en) Local heating device
JPH08257048A (en) Hyperthermia device
FOCUSED THE ACCURACY AND PRECISION OF TWO NONINVASIVE
Feng et al. Real-Time Predictive Surgical Control for Cancer Treatment Using Laser Ablation [Life Science]
Pi et al. Magneto-Acoustic Theranostic Approach (Mata): Integration of Magnetomotive Ultrasound Shear Wave Elastography and Magnetic Hyperthermia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100726

A02 Decision of refusal

Effective date: 20101122

Free format text: JAPANESE INTERMEDIATE CODE: A02