JP2006344395A - Cathode for lithium secondary battery and utilization and manufacturing method of the same - Google Patents

Cathode for lithium secondary battery and utilization and manufacturing method of the same Download PDF

Info

Publication number
JP2006344395A
JP2006344395A JP2005166653A JP2005166653A JP2006344395A JP 2006344395 A JP2006344395 A JP 2006344395A JP 2005166653 A JP2005166653 A JP 2005166653A JP 2005166653 A JP2005166653 A JP 2005166653A JP 2006344395 A JP2006344395 A JP 2006344395A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
lithium
secondary battery
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005166653A
Other languages
Japanese (ja)
Inventor
Hiroaki Ikeda
博昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005166653A priority Critical patent/JP2006344395A/en
Publication of JP2006344395A publication Critical patent/JP2006344395A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cathode equipped to a lithium secondary battery realizing excellent cycle properties and discharge capacity, and utilization and a manufacturing method of the same. <P>SOLUTION: The manufacturing method of the cathode for lithium secondary battery comprises a process of preparing a powdered main activator mainly containing lithium nickelate and a powdered auxiliary activator capable of storing and releasing lithium within a range of 1.5 to 3.0 V at lithium metal standard voltage, a process of preparing a main activator layer forming slurries prepared by mixing the main activator and the auxiliary activator in a dispersed state, and a process of forming the activator layer on a current collector by applying it on a surface of a cathode current collector. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウム二次電池用の正極製造方法とその製造方法によって得られる正極に関する。また、本発明は、そのような正極を備えたリチウム二次電池に関する。   The present invention relates to a positive electrode manufacturing method for a lithium secondary battery and a positive electrode obtained by the manufacturing method. Moreover, this invention relates to the lithium secondary battery provided with such a positive electrode.

リチウム二次電池は、リチウムイオンを吸蔵及び放出し得る材料(活物質)を有する正極と負極を備え、該二極間の電解質(典型的には非水電解液)をリチウムイオンが行き来することにより充放電する二次電池であり、車両搭載バッテリー、或いはパソコン及び携帯端末用電源として重要性が高まっている。特に、従来使用されている高価なコバルト酸リチウム(LiCoO)に代えてニッケル酸リチウム(LiNiO)を正極活物質とする比較的安価なリチウム二次電池の普及が望まれる。
ところで、リチウム二次電池は、充放電を繰り返し、長期に渡って使用されることから、サイクル特性の更なる向上が望まれる。サイクル特性を向上させる方法としては、電極の活物質に種々の要素(補助成分)を加える方法等が提案されている。例えば特許文献1には、LiNiO粒子の表面に酸化バナジウム(V)を被覆したものを正極活物質として用いたリチウム二次電池が提案されている。しかし、特許文献1に記載の技術によると、Vを被覆する工程が煩雑であるために正極製造に係るコストや時間の増加といった問題が生じてしまう。
また、特許文献2には、LiCoOを主活物質とし、副次的に他のリチウム含有酸化物を添加した正極と、予めリチウムを含有させた炭素材料を活物質とした負極とを備えたリチウム二次電池が提案されている。しかし、特許文献2に記載の技術によると、正極活物質として用いられるLiCoOが高価なコバルト化合物であり、大量の活物質が必要な大型電池に適用する場合には、電池のコストアップの原因となってしまう。
A lithium secondary battery includes a positive electrode and a negative electrode having a material (active material) capable of inserting and extracting lithium ions, and lithium ions travel back and forth between the electrolyte (typically a nonaqueous electrolyte) between the two electrodes. It is a secondary battery that is charged and discharged by the above, and has become increasingly important as a vehicle-mounted battery or a power source for personal computers and portable terminals. In particular, it is desired that a relatively inexpensive lithium secondary battery using lithium nickelate (LiNiO 2 ) as a positive electrode active material instead of the conventionally used expensive lithium cobalt oxide (LiCoO 2 ) is desired.
By the way, since the lithium secondary battery is repeatedly charged and discharged and used for a long period of time, further improvement in cycle characteristics is desired. As a method for improving the cycle characteristics, a method of adding various elements (auxiliary components) to the electrode active material has been proposed. For example, Patent Document 1 proposes a lithium secondary battery using a LiNiO 2 particle surface coated with vanadium oxide (V 2 O 5 ) as a positive electrode active material. However, according to the technique described in Patent Document 1, since the process of coating V 2 O 5 is complicated, problems such as an increase in cost and time for manufacturing the positive electrode occur.
Patent Document 2 includes a positive electrode in which LiCoO 2 is used as a main active material and another lithium-containing oxide is added as a secondary material, and a negative electrode in which a carbon material previously containing lithium is used as an active material. Lithium secondary batteries have been proposed. However, according to the technique described in Patent Document 2, when LiCoO 2 used as the positive electrode active material is an expensive cobalt compound and is applied to a large battery that requires a large amount of active material, the cause of battery cost increase End up.

特開平9−293508号公報Japanese Patent Laid-Open No. 9-293508 特開平5−151995号公報Japanese Patent Laid-Open No. 5-151995

本発明者は、リチウム二次電池のサイクル特性を悪化させる原因として、過放電時における正極活物質の劣化にあることを見出した。ニッケル酸リチウム(LiNiO)を正極活物質とするリチウム二次電池の場合、放電が進行すると急激に正極の電極電位が低下し、かかる低電位状態での正極電極反応でLiOが生成される場合があり得る。LiOが生成される電極反応は不可逆反応であるため、結果として正極活物質の劣化や有効なリチウム量の減少が起きる。そして、このような正極活物質の劣化やリチウム量の損失により電池の電気容量が低下し、サイクル特性が悪化し得る。特に比較的広い表面積の正極を用いた電池を大電流で充放電すると、電極表面で局所的に電位の偏りが生じやすく、低電位に偏った部分から活物質の劣化が進行する虞がある。
そこで本発明は、ニッケル酸リチウムを正極活物質とするリチウム二次電池の性能向上を図るべく、放電進行時の正極電位の急激な低下を防止し、LiOの生成を抑制し得る構成の正極を製造する方法を提供することを一つの目的とする。また、本発明の他の一つの目的は、そのような方法によって製造された正極を提供することである。また、本発明の他の一つは、かかる正極を備えたリチウム二次電池を提供することである。
The present inventor has found that the cause of the deterioration of the cycle characteristics of the lithium secondary battery is the deterioration of the positive electrode active material during overdischarge. In the case of a lithium secondary battery using lithium nickelate (LiNiO 2 ) as a positive electrode active material, the electrode potential of the positive electrode rapidly decreases as the discharge proceeds, and Li 2 O is generated by the positive electrode reaction in such a low potential state. It may be possible. Since the electrode reaction in which Li 2 O is generated is an irreversible reaction, as a result, the cathode active material is deteriorated and the effective amount of lithium is reduced. And the electrical capacity of a battery falls by such deterioration of a positive electrode active material and the loss of lithium amount, and cycling characteristics may deteriorate. In particular, when a battery using a positive electrode having a relatively large surface area is charged / discharged with a large current, a potential bias is likely to occur locally on the electrode surface, and the active material may deteriorate from a portion biased to a low potential.
In view of this, the present invention aims to improve the performance of a lithium secondary battery using lithium nickelate as a positive electrode active material, to prevent a rapid decrease in the positive electrode potential during the progress of discharge and to suppress the generation of Li 2 O. One object is to provide a method for producing a positive electrode. Another object of the present invention is to provide a positive electrode manufactured by such a method. Moreover, another one of this invention is providing the lithium secondary battery provided with this positive electrode.

本発明はニッケル酸リチウムを活物質とするリチウム二次電池用正極の製造方法を提供する。即ち、ここで開示される正極製造方法は、ニッケル酸リチウムを主体とする粉末状の主活物質とリチウム金属標準電位(即ちリチウム金属を対極としたときの標準電位をいう。以下同じ。)において1.5〜3Vの範囲でリチウムを吸蔵及び放出し得る粉末状の副活物質とを用意する工程、前記主活物質と前記副活物質とを分散した状態で混在させた活物質層形成用材料を調製する工程、及び、正極用集電体の表面に前記材料を付与し、その集電体上に活物質層を形成する工程を包含する。   The present invention provides a method for producing a positive electrode for a lithium secondary battery using lithium nickelate as an active material. That is, the positive electrode manufacturing method disclosed here is based on a powdery main active material mainly composed of lithium nickelate and a lithium metal standard potential (that is, a standard potential when lithium metal is used as a counter electrode; the same applies hereinafter). A step of preparing a powdery side active material capable of occluding and releasing lithium in a range of 1.5 to 3 V, for forming an active material layer in which the main active material and the side active material are mixed in a dispersed state A step of preparing the material, and a step of applying the material to the surface of the positive electrode current collector and forming an active material layer on the current collector.

ここで開示される正極製造方法では、正極活物質の主体となるニッケル酸リチウムの他に放電末期(例えば電池電圧が1.5〜3Vの時)の正極電極反応に関与し得る副活物質が添加されることにより、正極の電極電位の急激な低下が抑制される正極を得ることができる。また、ここで開示される正極製造方法が広面積のシート状の正極の製造に適用されると、放電時の急激な電位低下が抑制される或いは電極表面の局所的な電位の偏りが緩和される正極が得られる。即ち、かかる方法で製造された正極では、不可逆反応であるLiOの生成反応が遅延され、正極の劣化及び電池内のリチウム量の低下が防止される。 In the positive electrode manufacturing method disclosed herein, in addition to lithium nickelate as a main component of the positive electrode active material, a secondary active material that can participate in the positive electrode reaction at the end of discharge (for example, when the battery voltage is 1.5 to 3 V) is included. By adding, it is possible to obtain a positive electrode in which a rapid decrease in the electrode potential of the positive electrode is suppressed. Further, when the positive electrode manufacturing method disclosed herein is applied to the manufacture of a sheet-shaped positive electrode having a large area, a rapid potential drop during discharge is suppressed or local potential bias on the electrode surface is alleviated. A positive electrode is obtained. That is, in the positive electrode manufactured by such a method, the generation reaction of Li 2 O, which is an irreversible reaction, is delayed, and deterioration of the positive electrode and a decrease in the amount of lithium in the battery are prevented.

ここで開示される正極製造方法の好ましい態様では、前記活物質層形成用材料(典型的にはスラリー)に含まれる前記主活物質と副活物質との総量を100質量%としたときの前記副活物質の含有率が2〜25質量%であることを特徴とする。かかる含有率が2〜10質量%であるものが特に好ましい。
このような含有率で副活物質を含む活物質層形成用材料(典型的にはスラリー)を用いて得られた正極は、過放電時の急激な正極電位低下が抑制され、低電位状態におけるLiOの生成反応(即ち、不可逆反応)が遅延される。そして、かかる正極を備えたリチウム二次電池によれば、サイクル特性が向上し、放電容量が高レベルに維持される。
In a preferred embodiment of the positive electrode manufacturing method disclosed herein, the total amount of the main active material and the sub active material contained in the active material layer forming material (typically slurry) is 100% by mass. The content rate of a by-active material is 2-25 mass%, It is characterized by the above-mentioned. The content is preferably 2 to 10% by mass.
The positive electrode obtained using the material for forming an active material layer (typically slurry) containing the secondary active material at such a content rate is suppressed from a rapid decrease in the positive electrode potential during overdischarge. Li 2 O production reaction (ie, irreversible reaction) is delayed. And according to the lithium secondary battery provided with such a positive electrode, the cycle characteristics are improved and the discharge capacity is maintained at a high level.

ここで開示される正極製造方法の特に好ましい態様では、前記副活物質が、チタン硫化物、マンガン酸化物及びバナジウム酸化物から成る群から選択される少なくとも一種であることを特徴とする。
かかる物質を副活物質として使用して得られた正極は、過放電時の急激な正極電位低下が更に抑制され、低電位状態におけるLiOの生成反応(即ち、不可逆反応)が更に遅延される。そして、かかる正極を備えたリチウム二次電池によれば、サイクル特性が更に向上し、放電容量が更に高レベルに維持される。
In a particularly preferable aspect of the positive electrode manufacturing method disclosed herein, the secondary active material is at least one selected from the group consisting of titanium sulfide, manganese oxide, and vanadium oxide.
The positive electrode obtained by using such a substance as a secondary active material further suppresses a rapid decrease in the positive electrode potential during overdischarge, further delaying the Li 2 O generation reaction (ie, irreversible reaction) in a low potential state. The And according to the lithium secondary battery provided with such a positive electrode, the cycle characteristics are further improved, and the discharge capacity is maintained at a higher level.

以上の説明から理解されるように、本発明は他の側面として、以下の構成のリチウム二次電池用正極を提供する。
即ち、ここで開示されるリチウム二次電池用正極は、正極用集電体と、該集電体上に形成された活物質層であって、ニッケル酸リチウムを主体とする主活物質とリチウム金属標準電位において1.5〜3.0Vの範囲でリチウムを吸蔵及び放出し得る副活物質とを含む活物質層とを備える。そして、前記活物質層において、粉末状の前記主活物質及び粉末状の前記副活物質が分散した状態で混在していることを特徴とする。
好ましくは、前記活物質層に含まれる前記主活物質と副活物質との総量を100質量%としたときの前記副活物質の含有率が2〜25質量%である。かかる含有率が2〜10質量%であるものが特に好ましい。また、前記副活物質が、チタン硫化物、マンガン酸化物及びバナジウム酸化物から成る群から選択される少なくとも一種であるものが特に好ましい。
また、本発明は他の側面として、ここで開示されるいずれかの正極を備えたリチウム二次電池を提供する。
As understood from the above description, as another aspect, the present invention provides a positive electrode for a lithium secondary battery having the following configuration.
That is, a positive electrode for a lithium secondary battery disclosed herein is a positive electrode current collector, an active material layer formed on the current collector, and a main active material mainly composed of lithium nickelate and lithium. An active material layer including a secondary active material capable of occluding and releasing lithium in a range of 1.5 to 3.0 V at a metal standard potential. And in the said active material layer, the said powdery main active material and the said powdery subactive material are mixed and mixed, It is characterized by the above-mentioned.
Preferably, the content of the secondary active material is 2 to 25% by mass when the total amount of the primary active material and the secondary active material contained in the active material layer is 100% by mass. The content is preferably 2 to 10% by mass. In addition, it is particularly preferable that the secondary active material is at least one selected from the group consisting of titanium sulfide, manganese oxide, and vanadium oxide.
Moreover, this invention provides the lithium secondary battery provided with one of the positive electrodes disclosed here as another aspect.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば、正極活物質層形成用材料の調製方法)以外の事柄であって本発明の実施に必要な事柄(例えば、リチウム二次電池の構築方法、電解質溶液の種類)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示される内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. In addition, matters other than matters specifically mentioned in the present specification (for example, a method for preparing a material for forming a positive electrode active material layer) and matters necessary for the implementation of the present invention (for example, a method for constructing a lithium secondary battery) The kind of the electrolyte solution) can be grasped as a design matter of those skilled in the art based on the prior art in the field. The present invention can be implemented based on the contents disclosed in the present specification and common general technical knowledge in the field.

ここで開示されるリチウム二次電池用正極は、上述のとおり、集電体の表面に活物質層を形成することによって得られる正極であり、その構成要素である集電体の組成や形状に特に制限はない。導電性良好な金属から成る導電性部材が集電体として使用可能であるが、特にリチウム二次電池用の正極集電体としては、アルミニウム製のものが好ましい。
集電体の形状は、正極及び電池の形状に応じて異なり得るために特に制限はなく、棒状、板状、シート状、若しくは箔状の種々の形態であり得る。例えば、ここで開示されるいずれかの正極を用いて構築されるリチウム二次電池の好ましい一態様として捲回型電極体ユニットを備える電池が挙げられる。この態様において、アルミニウム箔等の箔状金属からなる集電体が使用される。即ち、捲回型電極体ユニットを備える電池では、アルミニウム等から成る正極用箔状集電体の表面に正極活物質層を形成させて得た正極シートと、金属(例えば銅)又はカーボン等から成る負極用箔状集電体の表面に適当な負極活物質層を形成させて得た負極シートとを、セパレータを介して重ね合わせ、これを捲回して捲回型電極体ユニットを作製する。セパレータとしては例えば多孔質ポリオレフィン(ポリエチレン、ポリプロピレン等)シートを用いることができる。そして、この捲回型電極体ユニットを電解液(典型的には後述するような非水電解液)とともに適当な容器に収容することによってリチウム二次電池が構築される。なお、集電体自体の作製は、二次電池の製造分野において従来公知の方法であればよく、本発明を特徴付けるものではない。
As described above, the positive electrode for a lithium secondary battery disclosed herein is a positive electrode obtained by forming an active material layer on the surface of the current collector, and has a composition and shape of the current collector that is a component thereof. There is no particular limitation. A conductive member made of a metal with good conductivity can be used as a current collector, but an aluminum-made positive electrode current collector for a lithium secondary battery is particularly preferable.
The shape of the current collector is not particularly limited because it can vary depending on the shape of the positive electrode and the battery, and may be various shapes such as a rod shape, a plate shape, a sheet shape, or a foil shape. For example, a battery including a wound electrode body unit can be cited as a preferred embodiment of a lithium secondary battery constructed using any positive electrode disclosed herein. In this embodiment, a current collector made of a foil metal such as an aluminum foil is used. That is, in a battery including a wound electrode body unit, a positive electrode sheet obtained by forming a positive electrode active material layer on the surface of a positive electrode foil-shaped current collector made of aluminum or the like, and a metal (for example, copper) or carbon A negative electrode sheet obtained by forming an appropriate negative electrode active material layer on the surface of the negative electrode foil-shaped current collector is overlapped via a separator and wound to produce a wound electrode body unit. As the separator, for example, a porous polyolefin (polyethylene, polypropylene, etc.) sheet can be used. A lithium secondary battery is constructed by housing this wound electrode body unit in an appropriate container together with an electrolyte (typically a non-aqueous electrolyte as described later). The current collector itself may be produced by a conventionally known method in the field of manufacturing a secondary battery, and does not characterize the present invention.

活物質層は、本発明を特徴付ける主活物質及び副活物質の他、従来のリチウム二次電池正極における活物質層と同様の要素を含み得る。典型的には、従来の活物質層を構成する合材と同様、導電材、バインダー等を含む。
ここで開示される正極に備えられる主活物質としては、ニッケル酸リチウム(LiNiO)を主体としたものが用いられる。なお、ここでいう「ニッケル酸リチウム」とは、一般的なLiNiOの他、ニッケルの一部がCo、Al、Mg、Mn,Ti等から選ばれる少なくとも1種の金属元素で置換された複合ニッケル酸リチウムも含まれる概念である。かかるLiNiOは比較的安価であり且つ高い電池電圧を実現し得る。また、理論放電容量が大きいことから、リチウム二次電池の正極活物質として好ましい。
The active material layer may include the same elements as those of the active material layer in the conventional lithium secondary battery positive electrode, in addition to the main active material and the sub-active material that characterize the present invention. Typically, a conductive material, a binder, and the like are included as well as a composite material constituting a conventional active material layer.
As the main active material provided in the positive electrode disclosed here, a material mainly composed of lithium nickelate (LiNiO 2 ) is used. The “lithium nickelate” referred to here is a composite in which a part of nickel is substituted with at least one metal element selected from Co, Al, Mg, Mn, Ti, etc. in addition to general LiNiO 2. This concept includes lithium nickelate. Such LiNiO 2 is relatively inexpensive and can realize a high battery voltage. Moreover, since a theoretical discharge capacity is large, it is preferable as a positive electrode active material of a lithium secondary battery.

ここで開示される正極に備えられる副活物質は、リチウム金属標準電位において1.5〜3.0Vの範囲内でリチウムイオンを吸蔵及び放出する物質が好ましい。ニッケル酸リチウム(典型的にはLiNiO)を活物質とした正極の場合、リチウムイオンは高電位(例えばリチウム金属標準電位で3.0〜4.3V)で吸蔵及び放出される。このため、電極反応即ち放電が進行すると電極電位が急激に低下する。また、電位が低下してリチウム金属標準電位で1.5V以下になると、LiOを生成する不可逆反応がおき、正極活物質が劣化して、サイクル特性が悪くなる。しかし、正極活物質として上述した特性の副活物質を添加すると、副活物質が比較的低電位でリチウムを吸蔵及び放出し得るため、放電進行時の電極電位の急激な低下が生じ難い。その結果、低電位(典型的にはリチウム金属標準電位で1.5V以下)で生じるLiOの生成反応が遅延され、サイクル特性等の電池性能が維持され易くなる。 The secondary active material provided in the positive electrode disclosed herein is preferably a material that occludes and releases lithium ions within a range of 1.5 to 3.0 V at a lithium metal standard potential. In the case of a positive electrode using lithium nickelate (typically LiNiO 2 ) as an active material, lithium ions are occluded and released at a high potential (for example, a lithium metal standard potential of 3.0 to 4.3 V). For this reason, as the electrode reaction, that is, the discharge proceeds, the electrode potential rapidly decreases. Further, when the potential is lowered to 1.5 V or less at the lithium metal standard potential, an irreversible reaction for generating Li 2 O occurs, the positive electrode active material is deteriorated, and the cycle characteristics are deteriorated. However, when the secondary active material having the above-described characteristics is added as the positive electrode active material, the secondary active material can occlude and release lithium at a relatively low potential, so that a rapid decrease in the electrode potential during the progress of discharge hardly occurs. As a result, the Li 2 O production reaction that occurs at a low potential (typically 1.5 V or less at the lithium metal standard potential) is delayed, and battery performance such as cycle characteristics is easily maintained.

正極活物質層における副活物質の含有率は、正極活物質層に含まれる正極活物質の総量(即ち主活物質と副活物質との総量)を100質量%としたときに2〜25質量%(例えば2〜23質量%)が好ましく、2〜12質量%(特に2〜10質量%)が更に好ましい。副活物質の含有率が高すぎると、放電容量(即ちリチウム二次電池の電気容量)の減少を招くために好ましくない。また、副活物質の含有率が低すぎると、本発明の目的実現が困難となるため好ましくない。   The content of the secondary active material in the positive electrode active material layer is 2 to 25 masses when the total amount of the positive electrode active materials contained in the positive electrode active material layer (that is, the total amount of the main active material and the secondary active material) is 100 mass%. % (For example, 2 to 23% by mass) is preferable, and 2 to 12% by mass (particularly 2 to 10% by mass) is more preferable. If the content of the secondary active material is too high, the discharge capacity (that is, the electric capacity of the lithium secondary battery) is reduced, which is not preferable. Moreover, when the content rate of a by-active material is too low, since the objective objective of this invention will become difficult, it is unpreferable.

副活物質は、リチウム金属標準電位において1.5〜3Vの範囲内でリチウムイオンを吸蔵及び放出する物質であれば、特に限定することなく使用できる。副活物質として好ましい物質としては、チタン硫化物(典型的にはTiS)、マンガン酸化物(典型的にはMnO)及びバナジウム酸化物(典型的にはV)が挙げられる。
なかでもチタン硫化物であるTiSは、副活物質として特に好ましく、低電位におけるリチウムの吸蔵及び放出が良好に行われるため正極電位の急激な低下がよく抑制される。このため、不可逆反応であるLiOの生成反応は遅延され、正極劣化の防止とサイクル特性等の電池性能の維持が実現される。
The secondary active material can be used without particular limitation as long as it is a material that occludes and releases lithium ions within a range of 1.5 to 3 V at a lithium metal standard potential. Preferred materials for the secondary active material include titanium sulfide (typically TiS 2 ), manganese oxide (typically MnO 2 ), and vanadium oxide (typically V 2 O 5 ).
Among these, TiS 2 which is a titanium sulfide is particularly preferable as a secondary active material, and since lithium is well stored and released at a low potential, a rapid decrease in the positive electrode potential is well suppressed. Therefore, formation reaction of Li 2 O is an irreversible reaction is delayed, the maintenance of the battery performance such as preventing and cycle characteristics of the positive electrode deterioration is realized.

ここで開示されるリチウム二次電池用正極に用いられる導電材は、従来この種の二次電池で用いられているものであればよく、特定の導電材に限定されない。例えば、カーボンブラック(アセチレンブラック等)のような炭素(カーボン)粉末、ニッケル粉末等の導電性金属粉末等を用いることができる。   The conductive material used for the positive electrode for a lithium secondary battery disclosed herein is not limited to a specific conductive material as long as it is conventionally used in this type of secondary battery. For example, carbon (carbon) powder such as carbon black (acetylene black or the like), conductive metal powder such as nickel powder, or the like can be used.

また、ここで開示されるリチウム二次電池用正極に用いられるバインダーは、従来この種の二次電池で用いられているものであればよく、特定のバインダーに限定されない。例えば、後述する正極活物質層形成用スラリーを調製する際に非水系溶媒を使用する場合には、有機溶剤に可溶性であるポリマーを好ましく用いることができる。好適例として、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリエチレンオキサイド−プロピレンオキサイド共重合体(PEO−PPO)等が挙げられる。なかでもPVDF、PVDC等の使用が好ましい。
或いは、水系溶媒を使用して正極活物質層形成用スラリーを調製する場合には 水に溶解する親水性ポリマー及び/又は水に分散するポリマーを好ましく用いることができる。かかる親水性ポリマーの好適例として、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)等、種々のセルロース誘導体が挙げられる。なかでもCMCの使用が好ましい。また、好適な水分散ポリマーとしては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重含体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、エチレン−テトラフルオロエチレン共重合体(ETFE)等のフッ素系樹脂、酢酸ビニル共重合体、スチレンブタジエンブロック共重合体(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)、アラビアゴム等のゴム類が挙げられる。PTFE等のフッ素系樹脂が特に好ましい。
Moreover, the binder used for the positive electrode for lithium secondary batteries disclosed here should just be conventionally used with this kind of secondary battery, and is not limited to a specific binder. For example, when a non-aqueous solvent is used when preparing a positive electrode active material layer forming slurry described later, a polymer that is soluble in an organic solvent can be preferably used. Preferable examples include polyvinylidene fluoride (PVDF), polyvinylidene chloride (PVDC), polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide-propylene oxide copolymer (PEO-PPO), and the like. Of these, the use of PVDF, PVDC and the like is preferable.
Or when preparing the slurry for positive electrode active material layer formation using an aqueous solvent, the hydrophilic polymer melt | dissolved in water and / or the polymer disperse | distributed in water can be used preferably. Preferable examples of such hydrophilic polymer include various cellulose derivatives such as carboxymethyl cellulose (CMC), methyl cellulose (MC), cellulose acetate phthalate (CAP), hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose phthalate (HPMCP) and the like. It is done. Of these, the use of CMC is preferred. Suitable water-dispersed polymers include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene- Fluorine resins such as tetrafluoroethylene copolymer (ETFE), vinyl acetate copolymer, styrene butadiene block copolymer (SBR), acrylic acid-modified SBR resin (SBR latex), rubbers such as gum arabic It is done. A fluorine resin such as PTFE is particularly preferable.

次に本発明の正極製造方法を説明する。ここで開示される方法では、集電体の表面(形状や用途に応じて集電体の両面又は一方の面であり得る。)に正極活物質層形成用材料(典型的にはスラリー)を付与して活物質層を形成する。
活物質層形成用材料は、ニッケル酸リチウム(LiNiO)から成る主活物質と、少なくとも一種の上記特性を有する副活物質と、バインダーと、導電材とを適当な溶媒に混合及び分散させることによって調製することができる。使用する正極活物質(主活物質及び副活物質)、バインダー及び導電材は、いずれも粉末状であることが好ましい。
溶媒(分散媒)としては、有機溶剤(非水系溶媒)或いは水系溶媒(典型的には水)を用いることができる。溶媒の性質(水系又は非水系)に応じて適当なバインダーを採用するとよい。非水系溶媒を使用する場合には有機溶剤に可溶性であるポリマー(バインダー)を好ましく用いることができる。或いは、水系溶媒を使用する場合には水に溶解する親水性ポリマー及び/又は水に分散するポリマーの使用が好ましい。
Next, the positive electrode manufacturing method of the present invention will be described. In the method disclosed herein, a positive electrode active material layer forming material (typically slurry) is applied to the surface of the current collector (which may be either or both surfaces of the current collector depending on the shape and application). To form an active material layer.
The material for forming the active material layer is obtained by mixing and dispersing a main active material made of lithium nickelate (LiNiO 2 ), at least one secondary active material having the above characteristics, a binder, and a conductive material in an appropriate solvent. Can be prepared. The positive electrode active material (main active material and sub-active material), binder, and conductive material to be used are preferably in powder form.
As the solvent (dispersion medium), an organic solvent (non-aqueous solvent) or an aqueous solvent (typically water) can be used. A suitable binder may be employed depending on the nature of the solvent (aqueous or non-aqueous). When a non-aqueous solvent is used, a polymer (binder) that is soluble in an organic solvent can be preferably used. Alternatively, when an aqueous solvent is used, it is preferable to use a hydrophilic polymer that dissolves in water and / or a polymer that disperses in water.

而して上述したような材料を適宜混合して得られた正極活物質層形成用スラリーを適当な集電体の表面に適当な塗布装置を用いて塗布することによって、正極活物質層を備えた正極を構築することができる。例えばアルミニウム箔等の金属箔の表面に正極用合材を塗布することによって、シート状正極を構築することができる。   Thus, the positive electrode active material layer forming slurry obtained by appropriately mixing the materials as described above is applied to the surface of an appropriate current collector using an appropriate application device, thereby providing a positive electrode active material layer. A positive electrode can be constructed. For example, a sheet-like positive electrode can be constructed by applying a positive electrode mixture on the surface of a metal foil such as an aluminum foil.

本発明によると、ここで開示される方法により得られる正極を備えたリチウム二次電池を製造することができる。従って、本発明は、他の側面として、ここで開示される正極を作製又は用意することを特徴とするリチウム二次電池の製造方法を提供する。
なお、リチウム二次電池を作製する手段は、上述の正極を製造し且つその正極を用いること以外、従来の方法に従ってリチウム二次電池を製造すればよく、特に説明を要する特別な処理を必要としない。
According to the present invention, a lithium secondary battery having a positive electrode obtained by the method disclosed herein can be manufactured. Therefore, this invention provides the manufacturing method of the lithium secondary battery characterized by producing or preparing the positive electrode disclosed here as another aspect.
In addition, the means for producing the lithium secondary battery may be a lithium secondary battery manufactured according to a conventional method except that the positive electrode is manufactured and the positive electrode is used, and a special process requiring a particular description is required. do not do.

例えば、本発明に係るシート状正極と、それに対応するシート形状の適当な負極及びセパレータとを用い、従来公知の方法に基づいて、上述したような捲回型またはその他の構造(例えばシート状の正極、負極及びセパレータを多数積層した積層型)のリチウム二次電池を構築することができる。
具体的には、リチウムイオン(Li)を挿入及び脱離可能なグラファイト構造(層状構造)のカーボン材料(即ち負極活物質)を有するリチウム二次電池用負極シート及び上述したセパレータを用意し、本発明に係る正極シートと当該用意した負極シートとをセパレータを介して重ね合わせる(積層する)。この積層物を適当な電池容器に収容する。好ましい態様では、該積層物を捲回して捲回型電極体ユニットを構成し、それを電池容器に収容する。或いは、複数枚の正極シートおよび複数枚の負極シートをそれぞれセパレータを挟んで交互に積層した積層型電極体ユニットを構成し、それを電池容器に収容してもよい。
For example, by using a sheet-like positive electrode according to the present invention and an appropriate negative electrode and separator having a sheet shape corresponding thereto, based on a conventionally known method, a wound type or other structure as described above (for example, a sheet-like positive electrode) A laminated secondary battery in which a large number of positive electrodes, negative electrodes, and separators are stacked can be constructed.
Specifically, a negative electrode sheet for a lithium secondary battery having a carbon material (that is, a negative electrode active material) having a graphite structure (layered structure) capable of inserting and removing lithium ions (Li + ) and the separator described above are prepared, The positive electrode sheet according to the present invention and the prepared negative electrode sheet are overlapped (laminated) via a separator. This laminate is housed in a suitable battery container. In a preferred embodiment, the laminate is wound to form a wound electrode body unit, which is accommodated in a battery container. Alternatively, a stacked electrode body unit in which a plurality of positive electrode sheets and a plurality of negative electrode sheets are alternately stacked with separators interposed therebetween may be configured and accommodated in a battery container.

このような電極体ユニットを収容した電池容器に、予め用意しておいた電解液を供給(注入)することにより、正極、負極及びセパレータから成る電極体ユニットに電解液を含浸させる。これにより、所望するリチウム二次電池を構築することができる。
典型的なリチウム二次電池用電解液は、非水系溶媒と該溶媒に添加され溶解しているリチウム塩(支持塩)とを含む非水電解液である。
By supplying (injecting) an electrolyte prepared in advance into a battery container containing such an electrode body unit, the electrode body unit composed of a positive electrode, a negative electrode, and a separator is impregnated with the electrolyte. Thereby, the desired lithium secondary battery can be constructed.
A typical electrolyte for a lithium secondary battery is a non-aqueous electrolyte containing a non-aqueous solvent and a lithium salt (supporting salt) added to and dissolved in the solvent.

非水系溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性の溶媒を用いることができる。プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート、エチルメチルカーボネート(EMC)、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、1,3−ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ−ブチロラクトン等の、一般に非水系電池(リチウム二次電池等)の電解液等に使用し得るものとして知られている非水系溶媒から選択される一種または二種以上を用いることができる。   As the non-aqueous solvent, aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones, and lactones can be used. Propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate, ethyl methyl carbonate (EMC), 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, Generally non-aqueous batteries (lithium secondary batteries) such as dioxane, 1,3-dioxolane, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether, acetonitrile, propionitrile, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide, sulfolane, and γ-butyrolactone 1) or two or more selected from non-aqueous solvents known to be usable for the electrolytic solution etc.).

電解液に含有させる支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO、LiI等から選択される一種または二種以上のリチウム化合物(リチウム塩)を用いることができる。 As the supporting salt to be contained in the electrolytic solution, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , 1 type, or 2 or more types of lithium compounds (lithium salt) selected from LiI etc. can be used.

なお、電解液における支持塩の濃度は、従来のリチウム二次電池で使用される電解液と同様でよく、特に制限はない。適当なリチウム化合物(支持塩)を0.1〜5mol/L程度の濃度で含有する電解液を使用することができる。   In addition, the density | concentration of the supporting salt in electrolyte solution may be the same as that of the electrolyte solution used with the conventional lithium secondary battery, and there is no restriction | limiting in particular. An electrolytic solution containing an appropriate lithium compound (supporting salt) at a concentration of about 0.1 to 5 mol / L can be used.

以下、本発明に関する実験例につき説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Hereinafter, experimental examples relating to the present invention will be described. However, the present invention is not intended to be limited to the specific examples.

<実施例1:リチウム二次電池の製造(1)>
本実施例では、円筒形標準タイプである18650型のリチウム二次電池10を製造した。
図1に典型的な18650型リチウム二次電池10の模式図を示す。なお、図1では、電極体ユニット18の捲回状態を示すために、一部解体させた形態で表した。
典型的な18650型リチウム二次電池10は、正極シート12及び負極シート14にそれぞれ正極集電端子(タブ)26及び負極集電端子(タブ)16を付けた後、これらシートを2枚のセパレータ20(ここでは多孔質ポリプロピレンシートを用いた。)と共に積層し、この積層シートが巻き芯36に捲回されて捲回型電極体ユニット18が作製される。
次いで、電極体ユニット18が負極缶34に収容され負極缶34の底部と負極集電タブ16とが溶接される。負極缶34に非水電解液を注入し、負極缶34の内部を減圧することで収容された捲回型電極体ユニット18に非水電解液が含浸される。
そして、ガスケット24、安全弁30などの部品がセットされた正極蓋32と正極集電タブ26とが溶接される。負極缶34に正極蓋32が装着され、封口される。
以上のような手順で、直径18mm、高さ65mm(即ち18650型)の一般的な円筒型リチウム二次電池10が製造される。
本実施例に係るリチウム二次電池も上述した手順と同様な手法で製造した。以下、電池の各構成要素について説明する。
<Example 1: Production of lithium secondary battery (1)>
In this example, the 18650 type lithium secondary battery 10 which is a cylindrical standard type was manufactured.
FIG. 1 shows a schematic diagram of a typical 18650 type lithium secondary battery 10. In FIG. 1, in order to show the wound state of the electrode body unit 18, it is shown in a partially disassembled form.
A typical 18650 type lithium secondary battery 10 has a positive electrode current collector terminal (tab) 26 and a negative electrode current collector terminal (tab) 16 attached to a positive electrode sheet 12 and a negative electrode sheet 14, respectively. 20 (here, a porous polypropylene sheet is used), and the laminated sheet is wound around the winding core 36 to produce a wound electrode body unit 18.
Next, the electrode body unit 18 is accommodated in the negative electrode can 34 and the bottom of the negative electrode can 34 and the negative electrode current collecting tab 16 are welded. The non-aqueous electrolyte is impregnated into the wound electrode body unit 18 accommodated by injecting the non-aqueous electrolyte into the negative electrode can 34 and reducing the pressure inside the negative electrode can 34.
Then, the positive electrode lid 32 on which components such as the gasket 24 and the safety valve 30 are set and the positive electrode current collecting tab 26 are welded. A positive electrode lid 32 is attached to the negative electrode can 34 and sealed.
The general cylindrical lithium secondary battery 10 having a diameter of 18 mm and a height of 65 mm (that is, 18650 type) is manufactured by the above procedure.
The lithium secondary battery according to this example was also manufactured by the same method as that described above. Hereinafter, each component of the battery will be described.

先ず、正極主活物質であるニッケル酸リチウム(LiNiO)粉末、副活物質である硫化チタン(TiS)粉末、集電材であるアセチレンブラック、並びに、バインダーであるカルボキシメチルセルロース(CMC)及びポリテトラフルオロエチレン(PTFE)をイオン交換水と混合して正極活物質層形成用スラリー(正極用スラリー)を調製した。かかるスラリーに含まれる各成分(水以外)の凡その含有率は、LiNiOが88質量%、TiSが2質量%、アセチレンブラックが8質量%、CMCが1質量%、PTFEが1質量%である。表1に各成分の含有率を示す。
この正極用スラリーを、正極集電体としての厚み約15μmの長尺状アルミニウム箔の両面に塗布(付着)して乾燥させ、アルミニウム箔集電体両面に厚み120μmの正極活物質層を形成した。次いで全体の厚みが85μmとなるようにプレスした。このようにして正極シートを作製した。
First, lithium nickel oxide (LiNiO 2 ) powder as a positive electrode main active material, titanium sulfide (TiS 2 ) powder as a secondary active material, acetylene black as a current collector, carboxymethyl cellulose (CMC) as a binder, and polytetra Fluoroethylene (PTFE) was mixed with ion-exchanged water to prepare a positive electrode active material layer forming slurry (positive electrode slurry). The approximate content of each component (other than water) contained in the slurry is as follows: LiNiO 2 is 88 mass%, TiS 2 is 2 mass%, acetylene black is 8 mass%, CMC is 1 mass%, and PTFE is 1 mass%. It is. Table 1 shows the content of each component.
This positive electrode slurry was applied (attached) to both sides of a long aluminum foil having a thickness of about 15 μm as a positive electrode current collector and dried to form a positive electrode active material layer having a thickness of 120 μm on both surfaces of the aluminum foil current collector. . Subsequently, it pressed so that the whole thickness might be set to 85 micrometers. In this way, a positive electrode sheet was produced.

他方、負極活物質用のカーボン材料として黒鉛粉末を使用し、バインダーとしてCMC及びスチレンブタジエンブロック共重合体(SBR)を使用して負極活物質層形成用スラリーを調製した。即ち、前記負極活物質及びバインダーをイオン交換水と混合し、負極活物質層形成用スラリー(負極用スラリー)を調製した。このスラリーに含まれる各成分(水以外)の凡その含有率は、前記カーボン材料が98質量%、CMCが1質量%、SBRが1質量%である。
この負極用スラリーを、負極集電体としての厚み約15μmの長尺状銅箔の両面に塗布(付着)して乾燥させ、銅箔集電体両面に厚み120μmの負極活物質層を形成した。次いで全体の厚みが85μmとなるようにプレスした。このようにして負極シートを作製した。
On the other hand, a graphite powder was used as a carbon material for the negative electrode active material, and a slurry for forming a negative electrode active material layer was prepared using CMC and a styrene butadiene block copolymer (SBR) as a binder. That is, the negative electrode active material and the binder were mixed with ion-exchanged water to prepare a negative electrode active material layer forming slurry (negative electrode slurry). The approximate content of each component (other than water) contained in the slurry is 98% by mass for the carbon material, 1% by mass for CMC, and 1% by mass for SBR.
The negative electrode slurry was applied (attached) to both sides of a long copper foil having a thickness of about 15 μm as a negative electrode current collector and dried to form a negative electrode active material layer having a thickness of 120 μm on both sides of the copper foil current collector. . Subsequently, it pressed so that the whole thickness might be set to 85 micrometers. In this way, a negative electrode sheet was produced.

これら作製した正極シート及び負極シートを2枚のセパレータ(ここでは多孔質ポリエチレンシートを用いた。)とともに積層し、この積層シートを捲回して捲回型電極体ユニットを作製した。この電極体ユニットを電解液とともに容器に収容して、直径18mm、高さ65mm(即ち18650型)の円筒型リチウム二次電池を作製した。電解液としては従来のリチウム二次電池に用いられる電解液を特に制限なく用いることができるが、ここではエチレンカーボネート(EC)とジエチルカーボネート(DEC)との3:7(体積比)混合溶媒に1mol/LのLiPFを溶解させた組成の電解液を用いた。 The produced positive electrode sheet and negative electrode sheet were laminated together with two separators (here, a porous polyethylene sheet was used), and this laminated sheet was wound to produce a wound electrode body unit. This electrode body unit was housed in a container together with an electrolytic solution to produce a cylindrical lithium secondary battery having a diameter of 18 mm and a height of 65 mm (ie, 18650 type). As an electrolytic solution, an electrolytic solution used in a conventional lithium secondary battery can be used without any particular limitation. Here, a 3: 7 (volume ratio) mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) is used. An electrolytic solution having a composition in which 1 mol / L LiPF 6 was dissolved was used.

<実施例2:リチウム二次電池の製造(2)>
本実施例の正極用スラリーは、LiNiO粉末、TiS粉末、アセチレンブラック、並びに、バインダーであるCMC及びPTFEを混合し、調製した。かかる材料に含まれる各成分(水以外)の凡その含有率は、LiNiOが80質量%、TiSが10質量%、アセチレンブラックが8質量%、CMCが1質量%、PTFEが1質量%である。表1に各成分の含有率を示す。
なお、上述した態様の正極用スラリーを用いる以外は実施例1と同様の材料及びプロセスによって同形状の円筒型リチウム二次電池を作製した。
<Example 2: Production of lithium secondary battery (2)>
The positive electrode slurry of this example was prepared by mixing LiNiO 2 powder, TiS 2 powder, acetylene black, and CMC and PTFE as binders. The approximate content of each component (other than water) contained in the material is as follows: LiNiO 2 is 80% by mass, TiS 2 is 10% by mass, acetylene black is 8% by mass, CMC is 1% by mass, and PTFE is 1% by mass. It is. Table 1 shows the content of each component.
In addition, the cylindrical lithium secondary battery of the same shape was produced with the material and process similar to Example 1 except using the positive electrode slurry of the aspect mentioned above.

<実施例3:リチウム二次電池の製造(3)>
本実施例の正極用スラリーは、LiNiO粉末、TiS粉末、アセチレンブラック、並びに、バインダーであるCMC及びPTFEを混合し、調製した。かかる材料に含まれる各成分(水以外)の凡その含有率は、LiNiOが70質量%、TiSが20質量%、アセチレンブラックが8質量%、CMCが1質量%、PTFEが1質量%である。表1に各成分の含有率を示す。
なお、上述した態様の正極用スラリーを用いる以外は実施例1と同様の材料及びプロセスで同形状の円筒型リチウム二次電池を作製した。
<Example 3: Production of lithium secondary battery (3)>
The positive electrode slurry of this example was prepared by mixing LiNiO 2 powder, TiS 2 powder, acetylene black, and CMC and PTFE as binders. The approximate content of each component (other than water) contained in the material is as follows: LiNiO 2 is 70% by mass, TiS 2 is 20% by mass, acetylene black is 8% by mass, CMC is 1% by mass, and PTFE is 1% by mass. It is. Table 1 shows the content of each component.
In addition, the cylindrical lithium secondary battery of the same shape was produced with the material and process similar to Example 1 except using the positive electrode slurry of the aspect mentioned above.

<比較例1:リチウム二次電池の製造(4)>
本比較例の正極用スラリーは、LiNiO粉末、アセチレンブラック、並びに、バインダーであるCMC及びPTFEを混合し、調製した。かかるスラリーに含まれる各成分(水以外)の凡その含有率は、LiNiOが90質量%、アセチレンブラックが8質量%、CMCが1質量%、PTFEが1質量%である。表1に各成分の含有率を示す。
なお、上述した態様の正極用スラリーを用いる以外は実施例1と同様の材料及びプロセスで同形状の円筒型リチウム二次電池を作製した。
<Comparative Example 1: Production of lithium secondary battery (4)>
The positive electrode slurry of this comparative example was prepared by mixing LiNiO 2 powder, acetylene black, and CMC and PTFE as binders. The approximate content of each component (other than water) contained in the slurry is 90% by mass for LiNiO 2 , 8% by mass for acetylene black, 1% by mass for CMC, and 1% by mass for PTFE. Table 1 shows the content of each component.
In addition, the cylindrical lithium secondary battery of the same shape was produced with the material and process similar to Example 1 except using the positive electrode slurry of the aspect mentioned above.

<比較例2:リチウム二次電池の製造(5)>
本比較例の正極用スラリーは、LiNiO粉末、TiS粉末、カーボンブラック、並びに、バインダーであるCMC及びPTFEを混合し、調製した。かかるスラリーに含まれる各成分(水以外)の凡その含有率は、LiNiOが89質量%、TiSが1質量%、アセチレンブラックが8質量%、CMCが1質量%、PTFEが1質量%である。表1に各成分の含有率を示す。
なお、上述した態様の正極用スラリーを用いる以外は実施例1と同様の材料及びプロセスで同系状の円筒型リチウム二次電池を作製した。
<Comparative Example 2: Production of lithium secondary battery (5)>
The positive electrode slurry of this comparative example was prepared by mixing LiNiO 2 powder, TiS 2 powder, carbon black, and CMC and PTFE as binders. The approximate content of each component (other than water) contained in such a slurry is as follows: LiNiO 2 is 89 mass%, TiS 2 is 1 mass%, acetylene black is 8 mass%, CMC is 1 mass%, and PTFE is 1 mass%. It is. Table 1 shows the content of each component.
A similar cylindrical lithium secondary battery was produced using the same material and process as in Example 1 except that the positive electrode slurry having the above-described embodiment was used.

<比較例3:リチウム二次電池の製造(6)>
本比較例ではLiNiO粉末、TiS粉末、アセチレンブラック、並びに、バインダーであるCMC及びPTFEを混合して正極用スラリーを調製した。かかる材料に含まれる各成分(水以外)の凡その含有率は、LiNiOが65質量%、TiSが25質量%、アセチレンブラックが8質量%、CMCが1質量%、PTFEが1質量%である。表1に各成分の含有率を示す。
なお、上述した態様の正極活物質層形成用スラリーを用いる以外は実施例1と同様の材料及びプロセスで同形状の円筒型リチウム二次電池を作製した。
<Comparative Example 3: Production of lithium secondary battery (6)>
In this comparative example, LiNiO 2 powder, TiS 2 powder, acetylene black, and binders CMC and PTFE were mixed to prepare a positive electrode slurry. The approximate content of each component (other than water) contained in the material is as follows: LiNiO 2 is 65 mass%, TiS 2 is 25 mass%, acetylene black is 8 mass%, CMC is 1 mass%, and PTFE is 1 mass%. It is. Table 1 shows the content of each component.
In addition, the cylindrical lithium secondary battery of the same shape was produced with the material and process similar to Example 1 except using the slurry for positive electrode active material layer formation of the aspect mentioned above.

<試験例1:初期放電容量の測定>
各実施例及び比較例に係るリチウム二次電池の各々について初期放電容量を測定した。即ち、環境温度25℃において、800mAの定電流で電池電圧が4.1Vに達するまで充電を行い、続いて電池電圧が4.1Vで定電位充電(CCCV充電)を行った。その後、800mAの定電流で電池電圧が3.0Vになるまで放電(CC放電)し、このときの放電容量(mAh)を求めた。結果を表1に示す。
<Test Example 1: Measurement of initial discharge capacity>
The initial discharge capacity was measured for each of the lithium secondary batteries according to each example and comparative example. That is, at an environmental temperature of 25 ° C., charging was performed at a constant current of 800 mA until the battery voltage reached 4.1 V, and then constant potential charging (CCCV charging) was performed at a battery voltage of 4.1 V. Thereafter, the battery was discharged (CC discharge) at a constant current of 800 mA until the battery voltage reached 3.0 V, and the discharge capacity (mAh) at this time was determined. The results are shown in Table 1.

<試験例2:充放電サイクル試験による容量維持率の測定>
環境温度60℃において、電池電圧が4.1Vになるまで充電し、次いで電池電圧が2.0Vになるまで放電した。このサイクル(充電及び放電)を300回繰り返し、初めの1サイクル充放電後の放電容量と300サイクル充放電後の放電容量を求めた。そして、初めの1サイクル充放電後放電容量と300サイクル充放電後放電容量との比(300サイクル充放電後放電容量/1サイクル充放電後放電容量)に100を掛けて容量維持率(%)を算出した。結果を表1に示す。なお、充放電サイクル試験は、実施例1〜3と比較例2,3の電池は800mAの定電流で実施し、比較例1の電池は1Cの定電気量で実施した。
<Test Example 2: Capacity maintenance rate measurement by charge / discharge cycle test>
At an environmental temperature of 60 ° C., the battery was charged until the battery voltage reached 4.1V, and then discharged until the battery voltage reached 2.0V. This cycle (charge and discharge) was repeated 300 times, and the discharge capacity after the first charge / discharge cycle and the discharge capacity after 300 cycle charge / discharge cycles were obtained. The ratio of the first discharge capacity after 1 cycle charge / discharge and the discharge capacity after 300 cycle charge / discharge (discharge capacity after 300 cycle charge / discharge / discharge capacity after 1 cycle charge / discharge) is multiplied by 100 to maintain the capacity (%). Was calculated. The results are shown in Table 1. In addition, the charging / discharging cycle test was implemented with the battery of Examples 1-3 and the comparative examples 2 and 3 by the constant current of 800 mA, and the battery of the comparative example 1 was implemented by the constant electricity of 1C.

Figure 2006344395
Figure 2006344395

表1に示す結果から明らかなように、試験例1において、実施例1〜3に係る電池は650mAh以上の高い初期放電容量であった。特に実施例1及び2に係る電池において、優れた初期放電容量を示した。一方、副活物質の含有量が多い比較例3では、初期放電容量が600mAhと低かった。
また、試験例2において、実施例1〜3に係る電池は、300サイクル耐久試験後の放電容量維持率が70%以上という結果が得られた。一方、副活物質を含まない比較例1及び副活物質が1質量%と少ない比較例2に係る電池は、放電容量維持率が40%及び44%と低かった。
As is clear from the results shown in Table 1, in Test Example 1, the batteries according to Examples 1 to 3 had a high initial discharge capacity of 650 mAh or more. In particular, the batteries according to Examples 1 and 2 exhibited excellent initial discharge capacity. On the other hand, in Comparative Example 3 where the content of the secondary active material was large, the initial discharge capacity was as low as 600 mAh.
In Test Example 2, the batteries according to Examples 1 to 3 had a result that the discharge capacity retention rate after the 300 cycle durability test was 70% or more. On the other hand, the batteries according to Comparative Example 1 that did not contain the sub-active material and Comparative Example 2 with a small amount of the sub-active material of 1% by mass had low discharge capacity retention rates of 40% and 44%.

<実施例4:放電曲線測定用単極セルの作製(1)>
本実施例では、実施例1に係る電池の正極の放電曲線を測定するために用いられる単極セルを作製した。
本実施例に係る単極セルの試験極としては実施例1に用いられた正極と同様のものを用いた。つまり、本実施例では、各成分(水以外)の凡その含有率は、LiNiOが88質量%、TiSが2質量%、アセチレンブラックが8質量%、CMCが1質量%、PTFEが1質量%であるスラリーを調製し、かかるスラリーをアルミニウム箔に付与することによって作製した。
一方、対極としては、リチウム金属電極を用いた。また、電解質としては実施例1と同様、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との3:7(体積比)混合溶媒に1mol/LのLiPFを溶解させた組成の電解液を用いた。
<Example 4: Production of monopolar cell for discharge curve measurement (1)>
In this example, a monopolar cell used to measure the discharge curve of the positive electrode of the battery according to Example 1 was produced.
As the test electrode of the single electrode cell according to the present example, the same electrode as the positive electrode used in Example 1 was used. That is, in this example, the approximate content of each component (other than water) is as follows: LiNiO 2 is 88% by mass, TiS 2 is 2% by mass, acetylene black is 8% by mass, CMC is 1% by mass, and PTFE is 1%. The slurry which is a mass% was prepared, and this slurry was produced by providing to aluminum foil.
On the other hand, a lithium metal electrode was used as the counter electrode. In addition, as in Example 1, an electrolyte having a composition in which 1 mol / L LiPF 6 was dissolved in a 3: 7 (volume ratio) mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) was used as the electrolyte. It was.

<比較例4:放電カーブ測定用単極セルの作製(2)>
本実施例では、比較例1に係る電池の正極の放電曲線を測定するために用いられる単極セルを作製した。
本比較例に係る単極セルの試験極としては比較例1に用いられた正極と同様のものを用いた。つまり、本実施例では、各成分(水以外)の凡その含有率は、LiNiOが90質量%、アセチレンブラックが8質量%、CMCが1質量%、PTFEが1質量%であるスラリーを調製し、かかるスラリーをアルミニウム箔に付与することによって作製した。
一方、対極としては、リチウム金属電極を用いた。また、電解質としては比較例1と同様、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との3:7(体積比)混合溶媒に1mol/LのLiPFを溶解させた組成の電解液を用いた。
<Comparative Example 4: Production of a monopolar cell for discharge curve measurement (2)>
In this example, a monopolar cell used for measuring the discharge curve of the positive electrode of the battery according to Comparative Example 1 was produced.
As the test electrode of the single electrode cell according to this comparative example, the same one as the positive electrode used in Comparative Example 1 was used. That is, in this example, the approximate content of each component (other than water) is such that 90% by mass of LiNiO 2 , 8% by mass of acetylene black, 1% by mass of CMC, and 1% by mass of PTFE are prepared. The slurry was prepared by applying the slurry to an aluminum foil.
On the other hand, a lithium metal electrode was used as the counter electrode. In addition, as in Comparative Example 1, as the electrolyte, an electrolytic solution having a composition in which 1 mol / L LiPF 6 was dissolved in a 3: 7 (volume ratio) mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) was used. It was.

<試験例3:放電カーブ測定>
実施例4及び比較例4の単極セルについて放電容量に対する電極電位の変化の割合(即ち放電カーブ)を測定した。リチウム金属標準(基準)電位で4.8〜1.4Vの電位範囲で0.2Cのレートで定電流放電を行い、放電容量(mAh)に対する電極電位(V)の推移を測定したものである。結果を図2に示す。なお、図2中の実線は実施例4に係る試験極の電極電位、破線は比較例4に係る試験極の電極電位についての放電カーブを示している。
図示した放電カーブから明らかなように、比較例4に係る試験極の電極電位は、放電末期に急激に低下した。他方、実施例4に係る試験極の電極電位は、780mAh付近から放電末期にかけて緩やかに下降し、800mAh付近(電極電位で2.1V付近)では更に緩やかに下降しショルダー状の曲線を示した。即ち、実施例4に係る試験極を正極に用いると、放電末期における急激な電位低下が好適に緩和される。
<Test Example 3: Discharge curve measurement>
For the monopolar cells of Example 4 and Comparative Example 4, the rate of change in electrode potential with respect to the discharge capacity (that is, the discharge curve) was measured. A constant current discharge was performed at a rate of 0.2 C in a potential range of 4.8 to 1.4 V at a lithium metal standard (reference) potential, and the transition of the electrode potential (V) with respect to the discharge capacity (mAh) was measured. . The results are shown in FIG. The solid line in FIG. 2 shows the discharge curve for the electrode potential of the test electrode according to Example 4, and the broken line shows the discharge curve for the electrode potential of the test electrode according to Comparative Example 4.
As is apparent from the illustrated discharge curve, the electrode potential of the test electrode according to Comparative Example 4 rapidly decreased at the end of discharge. On the other hand, the electrode potential of the test electrode according to Example 4 gradually decreased from the vicinity of 780 mAh to the end of the discharge, and further decreased gradually near 800 mAh (around 2.1 V in terms of electrode potential) to show a shoulder-like curve. That is, when the test electrode according to Example 4 is used for the positive electrode, the rapid potential drop at the end of discharge is preferably mitigated.

試験例1〜3の結果を示した表1及び図2から明らかなように、本発明によって提供されるリチウム二次電池は高初期放電容量を維持しつつ優れたサイクル特性を実現することができる。
本発明で提供されるリチウム二次電池では、放電末期の正極電位の下降が緩やかであるため、正極電位の急激な低下が生じず、不可逆反応であるLiOの生成反応が生じにくい。そのため、充放電を繰り返しても正極の劣化が抑制され、結果、サイクル特性が向上する。
また、正極電位の急激な低下が生じないため、広面積の電極を有する大型電池を大電流で充放電した場合であっても、電極内の電位の偏りによる部分的な正極の劣化を抑制することができる。
As is clear from Table 1 showing the results of Test Examples 1 to 3 and FIG. 2, the lithium secondary battery provided by the present invention can realize excellent cycle characteristics while maintaining a high initial discharge capacity. .
In the lithium secondary battery provided by the present invention, since the positive electrode potential gradually decreases at the end of discharge, the positive electrode potential does not rapidly decrease, and the Li 2 O generation reaction, which is an irreversible reaction, hardly occurs. Therefore, even if charging / discharging is repeated, deterioration of the positive electrode is suppressed, and as a result, cycle characteristics are improved.
In addition, since the positive electrode potential does not rapidly decrease, even when a large battery having a large-area electrode is charged / discharged with a large current, partial deterioration of the positive electrode due to potential deviation in the electrode is suppressed. be able to.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
Further, the technical elements described in the present specification exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in the present specification achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

本発明の一実施例に係る電池の構造を示した模式図である。It is the schematic diagram which showed the structure of the battery which concerns on one Example of this invention. 実施例4及び比較例4の単極セルについて、放電容量に対する試験極の電位の変化(放電カーブ)を示すグラフであり、横軸は試験極の放電容量(mAh)を示し、縦軸はリチウム金属に対する(Li基準として)電極電位(V)を示す。FIG. 4 is a graph showing the change (discharge curve) of the potential of the test electrode with respect to the discharge capacity for the single electrode cells of Example 4 and Comparative Example 4, the horizontal axis shows the discharge capacity (mAh) of the test electrode, and the vertical axis shows lithium. The electrode potential (V) for the metal (as a Li reference) is shown.

符号の説明Explanation of symbols

10 円筒型リチウム二次電池
12 正極シート
14 負極シート
10 Cylindrical lithium secondary battery 12 Positive electrode sheet 14 Negative electrode sheet

Claims (9)

リチウム二次電池に用いられる正極の製造方法であって、以下の工程:
ニッケル酸リチウムを主体とする粉末状の主活物質と、リチウム金属標準電位において1.5〜3Vの範囲でリチウムを吸蔵及び放出し得る粉末状の副活物質とを用意する工程;
前記主活物質と前記副活物質とを分散した状態で混在させた活物質層形成用材料を調製する工程;及び
正極用集電体の表面に前記材料を付与し、その集電体上に活物質層を形成する工程;
を包含するリチウム二次電池用正極製造方法。
A method for producing a positive electrode used in a lithium secondary battery, comprising the following steps:
A step of preparing a powdery main active material mainly composed of lithium nickelate and a powdery side active material capable of inserting and extracting lithium in a range of 1.5 to 3 V at a lithium metal standard potential;
A step of preparing an active material layer forming material in which the main active material and the sub active material are mixed in a dispersed state; and the material is applied to the surface of the positive electrode current collector, and on the current collector Forming an active material layer;
And a method for producing a positive electrode for a lithium secondary battery.
前記活物質層形成用材料に含まれる前記主活物質と副活物質との総量を100質量%としたときの前記副活物質の含有率が2〜25質量%である、請求項1に記載の方法。   The content rate of the said subactive material is 2-25 mass% when the total amount of the said main active material and subactive material contained in the said active material layer forming material is 100 mass%. the method of. 前記活物質層形成用材料に含まれる前記主活物質と副活物質との総量を100質量%としたときの前記副活物質の含有率が2〜10質量%である、請求項1に記載の方法。   The content rate of the said subactive material is 2-10 mass% when the total amount of the said main active material and subactive material contained in the said active material layer forming material is 100 mass%. the method of. 前記副活物質は、チタン硫化物、マンガン酸化物及びバナジウム酸化物から成る群から選択される少なくとも一種である、請求項1〜3のいずれかに記載の方法。   The method according to claim 1, wherein the secondary active material is at least one selected from the group consisting of titanium sulfide, manganese oxide, and vanadium oxide. リチウム二次電池に用いられる正極であって、
正極用集電体と、
該集電体上に形成された活物質層であって、ニッケル酸リチウムを主体とする主活物質とリチウム金属標準電位において1.5〜3Vの範囲でリチウムを吸蔵及び放出し得る副活物質とを含む活物質層と、
を備えており、
前記活物質層において、粉末状の前記主活物質及び粉末状の前記副活物質が分散した状態で混在する、リチウム二次電池用正極。
A positive electrode used in a lithium secondary battery,
A current collector for the positive electrode;
An active material layer formed on the current collector, which is a main active material mainly composed of lithium nickelate and a secondary active material capable of inserting and extracting lithium at a lithium metal standard potential in a range of 1.5 to 3 V An active material layer containing
With
The positive electrode for a lithium secondary battery in which the powdery main active material and the powdery subactive material are mixed in the active material layer.
前記活物質層に含まれる前記主活物質と副活物質との総量を100質量%としたときの前記副活物質の含有率が2〜25質量%である、請求項5に記載の正極。   The positive electrode according to claim 5, wherein a content of the secondary active material is 2 to 25 mass% when a total amount of the main active material and the secondary active material included in the active material layer is 100 mass%. 前記活物質層に含まれる前記主活物質と副活物質との総量を100質量%としたときの前記副活物質の含有率が2〜10質量%である、請求項5に記載の正極。   The positive electrode according to claim 5, wherein a content of the secondary active material is 2 to 10% by mass when a total amount of the main active material and the secondary active material contained in the active material layer is 100% by mass. 前記副活物質として、チタン硫化物、マンガン酸化物及びバナジウム酸化物から成る群から選択される少なくとも一種を含む、請求項5〜7のいずれかに記載の正極。   The positive electrode according to claim 5, comprising at least one selected from the group consisting of titanium sulfide, manganese oxide, and vanadium oxide as the secondary active material. 請求項5〜8のいずれかに記載の正極を備えた、リチウム二次電池。   A lithium secondary battery comprising the positive electrode according to claim 5.
JP2005166653A 2005-06-07 2005-06-07 Cathode for lithium secondary battery and utilization and manufacturing method of the same Pending JP2006344395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005166653A JP2006344395A (en) 2005-06-07 2005-06-07 Cathode for lithium secondary battery and utilization and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166653A JP2006344395A (en) 2005-06-07 2005-06-07 Cathode for lithium secondary battery and utilization and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2006344395A true JP2006344395A (en) 2006-12-21

Family

ID=37641214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166653A Pending JP2006344395A (en) 2005-06-07 2005-06-07 Cathode for lithium secondary battery and utilization and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2006344395A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009753A (en) * 2007-06-26 2009-01-15 Nissan Motor Co Ltd Lithium ion battery
JP2012256624A (en) * 2012-10-04 2012-12-27 Nissan Motor Co Ltd Lithium ion battery
JP2016518012A (en) * 2013-07-30 2016-06-20 エルジー・ケム・リミテッド Positive electrode mixture for secondary battery containing irreversible additive

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326954A (en) * 1986-07-18 1988-02-04 Sanyo Electric Co Ltd Nonaqueous secondary battery
JPH01144574A (en) * 1987-11-30 1989-06-06 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte lithium secondary cell
JPH0513107A (en) * 1991-07-03 1993-01-22 Fujitsu Ltd Lithium secondary battery
JPH05290850A (en) * 1992-04-07 1993-11-05 Hitachi Maxell Ltd Lithium battery
JPH09293508A (en) * 1996-04-25 1997-11-11 Sony Corp Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
JPH10162810A (en) * 1996-11-28 1998-06-19 Japan Storage Battery Co Ltd Positive electrode plate for lithium battery and lithium battery
JPH11273675A (en) * 1998-03-20 1999-10-08 Sii Micro Parts:Kk Nonaqueous electrolyte battery and its manufacture
JP2001043859A (en) * 1999-08-02 2001-02-16 Toyota Motor Corp Lithium secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326954A (en) * 1986-07-18 1988-02-04 Sanyo Electric Co Ltd Nonaqueous secondary battery
JPH01144574A (en) * 1987-11-30 1989-06-06 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte lithium secondary cell
JPH0513107A (en) * 1991-07-03 1993-01-22 Fujitsu Ltd Lithium secondary battery
JPH05290850A (en) * 1992-04-07 1993-11-05 Hitachi Maxell Ltd Lithium battery
JPH09293508A (en) * 1996-04-25 1997-11-11 Sony Corp Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
JPH10162810A (en) * 1996-11-28 1998-06-19 Japan Storage Battery Co Ltd Positive electrode plate for lithium battery and lithium battery
JPH11273675A (en) * 1998-03-20 1999-10-08 Sii Micro Parts:Kk Nonaqueous electrolyte battery and its manufacture
JP2001043859A (en) * 1999-08-02 2001-02-16 Toyota Motor Corp Lithium secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009753A (en) * 2007-06-26 2009-01-15 Nissan Motor Co Ltd Lithium ion battery
JP2012256624A (en) * 2012-10-04 2012-12-27 Nissan Motor Co Ltd Lithium ion battery
JP2016518012A (en) * 2013-07-30 2016-06-20 エルジー・ケム・リミテッド Positive electrode mixture for secondary battery containing irreversible additive
US10218002B2 (en) 2013-07-30 2019-02-26 Lg Chem, Ltd. Positive electrode mix for secondary batteries including irreversible additive

Similar Documents

Publication Publication Date Title
US8597837B2 (en) Method for producing nonaqueous electrolyte lithium-ion secondary battery
JP5218808B2 (en) Lithium ion battery
US10062925B2 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JP2009245808A (en) Lithium ion secondary battery, and power source for electric vehicle
JP2013084400A (en) Sealed lithium secondary battery
WO2013099279A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery comprising negative electrode for nonaqueous electrolyte secondary batteries
JP2008097879A (en) Lithium ion secondary battery
US9184446B2 (en) Non-aqueous electrolyte lithium ion secondary battery
JP2011049114A (en) Lithium-ion secondary battery
JP2009200043A (en) Battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
CN104868168A (en) Nonaqueous electrolyte secondary battery
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
JP2008305688A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative electrode
JP2006066298A (en) Lithium secondary battery
WO2020202661A1 (en) Lithium ion secondary battery
JP4857608B2 (en) Lithium secondary battery and manufacturing method thereof
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same
JP2019169346A (en) Lithium ion secondary battery
JP2016072119A (en) Lithium secondary battery
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP5448175B2 (en) Non-aqueous electrolyte for electrochemical element and electrochemical element
JP2010027386A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115