JP2006220606A - Liquid sending device - Google Patents

Liquid sending device Download PDF

Info

Publication number
JP2006220606A
JP2006220606A JP2005036152A JP2005036152A JP2006220606A JP 2006220606 A JP2006220606 A JP 2006220606A JP 2005036152 A JP2005036152 A JP 2005036152A JP 2005036152 A JP2005036152 A JP 2005036152A JP 2006220606 A JP2006220606 A JP 2006220606A
Authority
JP
Japan
Prior art keywords
substrate
flow path
fluid
electrode
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005036152A
Other languages
Japanese (ja)
Other versions
JP4632300B2 (en
Inventor
Hiroaki Suzuki
博章 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukuba Technology Seed Co Ltd
Original Assignee
Tsukuba Technology Seed Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukuba Technology Seed Co Ltd filed Critical Tsukuba Technology Seed Co Ltd
Priority to JP2005036152A priority Critical patent/JP4632300B2/en
Publication of JP2006220606A publication Critical patent/JP2006220606A/en
Application granted granted Critical
Publication of JP4632300B2 publication Critical patent/JP4632300B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To realize high-degree integration of a fine liquid-sending system having a simple structure, consuming very little power, and capable of performing efficiently a series of liquid-sending control including injection and discharge of fluid. <P>SOLUTION: This liquid sending device 11 is equipped with a substrate 2 which is the first substrate having a hydrophilic passage surface 3 having a hydrophobic domain 6 formed on a part thereof, a glass substrate 1 which is the second substrate wherein the position facing to the passage surface 3 is hydrophilic and a working electrode 4 is formed on a position facing to the hydrophobic domain 6, and a reference electrode 7. In the liquid sending device 11, the passage surface 3 and the working electrode 4 are arranged at a distance, and thereby a passage space 15 is formed between the passage surface 3 and the glass substrate 1, and in a state of a fluid 14 arranged between the substrate 2 and the glass substrate 1 and brought into contact with the reference electrode 7 and the working electrode 4, a potential difference is generated between the reference electrode 7 and the working electrode 4, to thereby control movement of the fluid 14 in the passage space 15. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、化学、生物学、医学、物質工学、電気化学工学、半導体工学、エレクトロニクス、微小化学分析、ナノテクノロジー等の研究分野で用いられる、微量な流体を制御して送液する装置に関する。   The present invention relates to an apparatus for controlling and feeding a small amount of fluid used in research fields such as chemistry, biology, medicine, material engineering, electrochemical engineering, semiconductor engineering, electronics, microchemical analysis, and nanotechnology.

近年、チップ上で化学反応を進行させ分析を行う微小化学分析システム(μTAS)、あるいは、ガラス等の小さな基板に微細な溝やくぼみを刻んだチップに、化学反応、細胞培養、分離検出等のラボプロセス(実験室での工程)を集積化させたラボ・オン・チップ(実験室チップ、Lab on a Chip)の研究が、活発に行われている。これは、上述のように、従来の分析システムあるいは化学実験室を、手のひらに乗る程度まで微小化しようとするものである。   In recent years, chemical reactions, cell culture, separation detection, etc. have been performed on a microchemical analysis system (μTAS) that performs chemical reactions on a chip, or a chip that has a small groove or indentation on a small substrate such as glass. Research on a lab-on-a-chip (lab on a chip) that integrates a lab process (lab process) is being actively conducted. As described above, this intends to miniaturize a conventional analysis system or chemical laboratory to the extent that it can be put on a palm.

分析システム等を微小化することにより、(1)サンプル、試薬量の微量化、(2)応答の高速化、(3)ハイスル−プット化、などの効果が実現される。これら微小化された分析システム(以下、微小システムという)の用途はさまざまであるが、このような微小システム上では、微量な流体を制御して送液することが必要となる。特に、すべての要素が集積化された送液装置の実現が期待される。   By miniaturizing the analysis system and the like, effects such as (1) a small amount of sample and reagent, (2) faster response, and (3) high throughput can be realized. The applications of these miniaturized analysis systems (hereinafter referred to as microsystems) are various, but on such microsystems, it is necessary to control and send a small amount of fluid. In particular, it is expected to realize a liquid delivery device in which all elements are integrated.

微量な流体を制御して送液する装置として、機械的なマイクロポンプ、マイクロバルブの研究が既に1980年代より進められている。しかし、これらを集積化した高度な送液装置の構築はこれまでほとんど成功していない。これは、構造的に高度な集積化が難しいところに原因があるものと思われる。このため、微小な流路中に微小な流体(例えば溶液等)を導入し送液したい場合には、市販のマイクロシリンジポンプを利用している場合が多い。もちろん、基礎研究等、目的によってはこれで十分な場合もあるであろうが、マイクロシリンジポンプを用いると携帯性が損なわれてしまう。また、マイクロシリンジポンプは非常に高価である。   Mechanical micropumps and microvalves have already been studied since the 1980s as devices for controlling and feeding a small amount of fluid. However, the construction of an advanced liquid delivery device in which these are integrated has been hardly successful so far. This seems to be due to the fact that it is difficult to achieve a high degree of structural integration. For this reason, when it is desired to introduce a minute fluid (for example, a solution) into a minute flow path and send it, a commercially available micro syringe pump is often used. Of course, this may be sufficient depending on the purpose such as basic research, but if a microsyringe pump is used, portability is impaired. Also, the micro syringe pump is very expensive.

そこで、比較的複雑な微小流路中を送液する手段としては、電気浸透流を利用する送液機構がある。電気浸透流は、ガラス管等に接した溶液が高電圧下で示す移動現象であり、例えばDNAなどを測定対象としたキャピラリー電気泳動を用いた分析で、通常発生する。なお、キャピラリー電気泳動は、主に石英ガラス中に形成された微小流路末端に形成されたDNA等の粒子の入った溶液の液溜めに電極を挿入し、数百Vから数千Vの高電圧を印加して微小流路中の溶液を移動させる現象である。電気浸透流を利用した送液機構(以下、電気浸透流ポンプという)は構造的に極めて単純で、複雑な流路ネットワーク中での送液も容易である。   Therefore, as a means for feeding liquid in a relatively complicated microchannel, there is a liquid feeding mechanism that uses electroosmotic flow. The electroosmotic flow is a movement phenomenon that a solution in contact with a glass tube or the like exhibits under a high voltage, and is usually generated by analysis using capillary electrophoresis using DNA or the like as a measurement target. Capillary electrophoresis is performed by inserting an electrode into a solution reservoir containing DNA or other particles formed at the end of a microfluidic channel formed in quartz glass. This is a phenomenon in which a voltage is applied to move the solution in the microchannel. A liquid feeding mechanism using electroosmotic flow (hereinafter referred to as an electroosmotic pump) is structurally very simple and can be easily fed through a complicated flow channel network.

ところで、電気浸透流に関連して、例えば下記の特許文献1には、電気泳動を抑え、電気浸透流によりキャピラリーに資料を注入するキャピラリー電気泳動装置の資料注入装置が開示されている(特許文献1参照)。
特開平5−142198号公報(第1頁、第1図)
By the way, regarding the electroosmotic flow, for example, the following Patent Document 1 discloses a material injection device of a capillary electrophoresis apparatus that suppresses electrophoresis and injects a material into the capillary by the electroosmotic flow (Patent Document 1). 1).
Japanese Patent Laid-Open No. 5-142198 (first page, FIG. 1)

しかしながら、従来型のマイクロポンプ、マイクロバルブにおいては、駆動電圧や消費電力が大きくなってしまう問題を有する。具体的には、例えば駆動電圧も少ないものでも数十Vで、それに伴い消費電力も問題になっていた。さらに、流路が微小化すればするほど、界面張力等の影響が大きくなり流路中を流れる流体の抵抗が増大する。このため、特にマイクロポンプ、マイクロバルブのような従来型の機械的ポンプを用いる場合には、送液が困難になるという問題があった。また、電気浸透流ポンプにおいても、同様に、高電圧が必要であるため問題となるとともに、消費電力も無視できないほど大きくなってしまう。   However, conventional micropumps and microvalves have a problem that drive voltage and power consumption increase. Specifically, for example, even if the drive voltage is low, it is several tens of volts, and accordingly, power consumption has become a problem. Furthermore, the smaller the channel is, the greater the influence of interfacial tension and the like, and the resistance of the fluid flowing in the channel increases. For this reason, there is a problem that liquid feeding becomes difficult particularly when a conventional mechanical pump such as a micropump or a microvalve is used. Similarly, the electroosmotic pump also has a problem because a high voltage is required, and the power consumption becomes too large to be ignored.

本発明は、上記問題を解決するものであり、簡単な構造を有し、ほとんど電力を消費せず、流路が微小化してもスムーズな送液を行うことができ、さらには、順次、複数の流体の注入、排出も含めた、一連の送液制御を効率的に行うことができる、微小送液システムの高度集積化を実現することを課題とするものである。   The present invention solves the above problems, has a simple structure, consumes little power, can perform smooth liquid feeding even if the flow path is miniaturized, and in addition, sequentially It is an object of the present invention to realize a highly integrated micro liquid feeding system that can efficiently perform a series of liquid feeding control including injection and discharge of the fluid.

本発明は上記課題を解決するために、疎水性領域が一部に形成された親水性の流路面を有する、第1の基板と、前記流路面と対向する位置は親水性にされており、前記疎水性領域に対向する位置に作用電極が形成された第2の基板と、参照電極と、を具備し、前記流路面と前記第2の基板との間は距離を有して配置されることにより、前記流路面と前記第2の基板との間に、流路空間が形成される送液装置であって、流体を前記第1の基板と前記第2の基板との間に配置し、かつ、該流体を、前記参照電極と前記作用電極とに接触させた状態で、前記参照電極と前記作用電極との間に電位差を生じさせることにより、前記流体が前記流路空間を移動することについて制御を行うことを特徴とする送液装置を提供する。   In order to solve the above problems, the present invention has a hydrophilic flow path surface in which a hydrophobic region is formed in part, the first substrate, and the position facing the flow path surface is made hydrophilic. A second substrate on which a working electrode is formed at a position facing the hydrophobic region; and a reference electrode, and the flow path surface and the second substrate are arranged at a distance. Thus, a liquid delivery device in which a flow path space is formed between the flow path surface and the second substrate, wherein a fluid is disposed between the first substrate and the second substrate. In addition, the fluid moves in the flow path space by generating a potential difference between the reference electrode and the working electrode in a state where the fluid is in contact with the reference electrode and the working electrode. Provided is a liquid feeding device characterized by controlling the above.

また本発明は、疎水性領域が一部に形成された親水性の流路面を有する、第1の基板と、参照電極が形成され、前記流路面と対向する位置は親水性にされており、前記疎水性領域に対向する位置に作用電極が形成された第2の基板と、を具備し、前記流路面と前記第2の基板との間は距離を有して配置されることにより、前記流路面と前記第2の基板との間に、流路空間が形成される送液装置であって、流体を前記第1の基板と前記第2の基板との間に配置し、かつ、該流体を、前記参照電極と前記作用電極とに接触させた状態で、前記参照電極と前記作用電極との間に電位差を生じさせることにより、前記流体が前記流路空間を移動することについて制御を行うことを特徴とする送液装置を提供する。   In the present invention, the first substrate having a hydrophilic channel surface partially formed with a hydrophobic region, the reference electrode is formed, and the position facing the channel surface is made hydrophilic. A second substrate on which a working electrode is formed at a position facing the hydrophobic region, and a distance between the flow path surface and the second substrate is disposed, A liquid delivery device in which a flow path space is formed between a flow path surface and the second substrate, wherein a fluid is disposed between the first substrate and the second substrate, and The fluid is controlled to move in the flow path space by causing a potential difference between the reference electrode and the working electrode in a state where the fluid is in contact with the reference electrode and the working electrode. Provided is a liquid feeding device characterized in that it is performed.

また本発明は、疎水性領域が一部に形成された親水性の流路面を有する、第1の基板と、参照電極と対極とが形成され、前記流路面と対向する位置は親水性にされており、前記疎水性領域に対向する位置に作用電極が形成された第2の基板と、を具備し、前記流路面と前記第2の基板との間は距離を有して配置されることにより、前記流路面と前記第2の基板との間に、流路空間が形成される送液装置であって、流体を前記第1の基板と前記第2の基板との間に配置し、かつ、該流体を、前記参照電極と前記対極と前記作用電極とに接触させた状態で、前記参照電極と前記作用電極との間に電位差を生じさせることにより、前記流体が前記流路空間を移動することについて制御を行うことを特徴とする送液装置を提供する。   According to the present invention, a first substrate having a hydrophilic channel surface partially formed with a hydrophobic region, a reference electrode, and a counter electrode are formed, and the position facing the channel surface is made hydrophilic. And a second substrate on which a working electrode is formed at a position facing the hydrophobic region, and the flow path surface and the second substrate are arranged with a distance. By the above, in the liquid feeding device in which a channel space is formed between the channel surface and the second substrate, a fluid is disposed between the first substrate and the second substrate, In addition, in the state where the fluid is in contact with the reference electrode, the counter electrode, and the working electrode, a potential difference is generated between the reference electrode and the working electrode, so that the fluid passes through the flow path space. Provided is a liquid feeding device characterized by controlling movement.

前記作用電極上に絶縁層が設けられることが好ましい。   It is preferable that an insulating layer is provided on the working electrode.

前記第2の基板には、前記流路空間を移動する前記流体を混合させるための混合電極が設けられることが好ましい。   The second substrate is preferably provided with a mixing electrode for mixing the fluid moving in the flow path space.

前記第2の基板には、前記流路空間を移動する前記流体を排出させるための流体排出部が設けられることが好ましい。   The second substrate is preferably provided with a fluid discharge portion for discharging the fluid that moves in the flow path space.

前記流体中の陽イオンの吸着により界面張力の変化が引き起こされる電位の範囲内に前記作用電極の電位が設定されることが好ましい。   It is preferable that the potential of the working electrode is set within a range of potential that causes a change in interfacial tension due to adsorption of cations in the fluid.

以上の構成から成る本発明に係る送液装置によると、簡単な構造を有し、ほとんど電力を消費せず、流路が微小化してもスムーズな送液を行うことができ、送液される流体の注入、排出を含めた一連の送液制御を効率的に行うことができる、微小送液システムの高度集積化を実現することができる。   According to the liquid feeding device according to the present invention having the above-described configuration, it has a simple structure, consumes almost no electric power, and can carry out smooth liquid feeding even if the flow path is miniaturized. A highly integrated micro liquid feeding system capable of efficiently performing a series of liquid feeding control including fluid injection and discharge can be realized.

(原理)
本発明の課題を解決するための有効な手段の一つとしては、従来のマイクロポンプ、マイクロバルブで用いられていたような送液の構造や機能をできるかぎり単純化させることである。なお、前記した電気浸透流ポンプのように電気化学的原理を用いれば、これらの送液の構造・機能を単純化させるという問題の解決方法として有利である。
(principle)
One effective means for solving the problems of the present invention is to simplify as much as possible the structure and function of liquid feeding used in conventional micropumps and microvalves. In addition, if an electrochemical principle is used like the above-mentioned electroosmotic flow pump, it is advantageous as a solution method of the problem of simplifying the structure and function of these liquid feeding.

微小化した流路を流れる流体の抵抗の発生源の一つに、界面張力が考えられる。しかし、本発明者らは、逆にこの界面張力を送液の駆動力として利用すれば、流体の送液を制御でき、さらに毛管現象の利用と合わせて、非常に効率的な送液機構が実現できるものと考えた。ところで、電極と流体(特には電解液)界面との界面張力は、電極電位により制御することができる(この制御する方式を、エレクトロウエッティングという)。   Interfacial tension can be considered as one of the sources of resistance of the fluid flowing through the miniaturized flow path. However, the present inventors, on the contrary, can control the fluid feeding if this interfacial tension is used as the driving force for feeding the liquid, and in addition to the use of the capillary phenomenon, a very efficient liquid feeding mechanism is provided. I thought it could be realized. By the way, the interfacial tension between the electrode and the fluid (particularly electrolyte) interface can be controlled by the electrode potential (this control method is called electrowetting).

さらに、上記エレクトロウェッティングに基づく送液の原理について説明する。図1は、送液の原理を示す模式的な図である。図1には、基板34上に、液滴31がのせられている状態の側断面図が示されている。液滴31は、例えば電解液である。基板34は、例えば金から成る金属基板34a上に、絶縁層として、例えばポリマーから成る膜層34bが設けられて成る。   Further, the principle of liquid feeding based on the electrowetting will be described. FIG. 1 is a schematic diagram showing the principle of liquid feeding. FIG. 1 is a side sectional view showing a state in which the droplet 31 is placed on the substrate 34. The droplet 31 is, for example, an electrolytic solution. The substrate 34 is formed by providing, for example, a film layer 34b made of a polymer as an insulating layer on a metal substrate 34a made of gold, for example.

図1の場合、液滴31がのせられて接触している基板34、より正確には金属基板34aは、作用電極(作用極、駆動用電極)と呼ばれ、液滴31が接触しているもう一方の電極は参照電極(参照極、基準電極)33と呼ばれる。基板34上に液滴31がのせられ、かつ、参照電極33に液滴31が接触した状態において、基板34、即ち作用電極に電圧を印加することにより、作用電極と参照電極33との間に電位差を生じさせる。図1(a)は、電圧を印加する前の状態であり、図1(b)は、電圧を印加している状態である。   In the case of FIG. 1, the substrate 34 on which the droplet 31 is placed and in contact, more precisely, the metal substrate 34a is called a working electrode (working electrode, driving electrode), and the droplet 31 is in contact with it. The other electrode is called a reference electrode (reference electrode, reference electrode) 33. In a state where the droplet 31 is placed on the substrate 34 and the droplet 31 is in contact with the reference electrode 33, a voltage is applied to the substrate 34, that is, the working electrode, so that the working electrode and the reference electrode 33 are interposed. Create a potential difference. FIG. 1A shows a state before the voltage is applied, and FIG. 1B shows a state where the voltage is applied.

図1(a)(b)に示されるように、電圧を印加する前における液滴31の基板34に対する接触角θ(図1(a)参照)よりも、電圧を印加した状態における液滴31の基板34に対する接触角θ’(図1(b)参照)の方が小さくなる。つまり、電圧を印加すると、基板(作用電極)34上は濡れやすくなる。   As shown in FIGS. 1A and 1B, the droplet 31 in a state in which a voltage is applied is more than the contact angle θ (see FIG. 1A) of the droplet 31 with respect to the substrate 34 before the voltage is applied. The contact angle θ ′ with respect to the substrate 34 (see FIG. 1B) becomes smaller. That is, when a voltage is applied, the substrate (working electrode) 34 is easily wetted.

これは、次のような原理によると考えられる。図1(b)に示されるように、矢印33aは気体と固体との間に生じる界面張力であり、矢印33bは気体と液体との間に生じる界面張力、矢印33cは固体と液体との間に生じる界面張力である。基板(作用電極)34の電位を変化させると、固体である基板34と、液体である液滴31との間の(基板34―液滴31界面の)界面張力(矢印33c)が低下する。言い換えれば、液滴31により基板34が濡れやすい状態となる。そして、気体と固体との間の界面張力(矢印33a)により、液滴34は基板34上を進み、送液されることになる。電圧の印加をやめて電位を元に戻すと送液は止まる。   This is considered to be due to the following principle. As shown in FIG. 1B, the arrow 33a is the interfacial tension generated between the gas and the solid, the arrow 33b is the interfacial tension generated between the gas and the liquid, and the arrow 33c is between the solid and the liquid. It is the interfacial tension that occurs. When the potential of the substrate (working electrode) 34 is changed, the interfacial tension (arrow 33c) between the solid substrate 34 and the liquid droplet 31 (at the interface between the substrate 34 and the droplet 31) decreases. In other words, the substrate 34 is easily wetted by the droplets 31. Then, due to the interfacial tension between the gas and the solid (arrow 33a), the droplet 34 travels on the substrate 34 and is fed. When the voltage application is stopped and the potential is returned to the original state, liquid feeding stops.

なお、基板34と液滴31との間の(基板34−液滴31界面の)界面張力(矢印33c)に影響を及ぼしているのは、液滴31中のイオンの基板34表面への吸着である。より負の電位に変化させると陽イオンの吸着が、より正の電位に変化させると陰イオンの吸着が支配的になる。なお、図1では絶縁層の一例としてポリマーから成る膜層(ポリマー層)34bが、作用電極である金属基板34a上に設けられる場合について述べたが、このポリマーから成る膜層34b等の絶縁層が作用電極上に設けられなくても同様の変化を起こすことができる。   Note that the interfacial tension (arrow 33c) between the substrate 34 and the droplet 31 (at the interface between the substrate 34 and the droplet 31) affects the adsorption of ions in the droplet 31 to the surface of the substrate 34. It is. When it is changed to a more negative potential, adsorption of the cation becomes dominant, and when it is changed to a more positive potential, adsorption of the anion becomes dominant. In FIG. 1, as an example of the insulating layer, a film layer (polymer layer) 34b made of a polymer is described as being provided on a metal substrate 34a as a working electrode. However, an insulating layer such as the film layer 34b made of this polymer is used. A similar change can occur even if is not provided on the working electrode.

このエレクトロウェッティングの方式では原理的にほとんど電力を消費しない。本発明者らは、このエレクトロウエッティングの原理に基づき、スムーズに送液、排出を含めた一連の送液制御ができる新しい送液装置(機構)を発明した。   In principle, this electrowetting method consumes little power. Based on this electrowetting principle, the present inventors have invented a new liquid feeding device (mechanism) capable of smoothly controlling a series of liquid feeding including liquid feeding and discharging.

本発明に係る送液装置を実施するための最良の形態を、実施例に基づいて図面を参照して説明する。   The best mode for carrying out the liquid delivery device according to the present invention will be described with reference to the drawings based on the embodiments.

図2(a)(b)は、本発明の実施例1に係る送液装置11を分解した平面図である。図2(c)は、図2(a)の基板2と図2(b)のガラス基板1とを組み合わせた、送液装置11の上から見た仮想的な平面図である。また、図2(d)は、図2(c)の送液装置11を、X―X’で切断した流路部13近傍の拡大断面図である。   FIGS. 2A and 2B are exploded plan views of the liquid delivery device 11 according to the first embodiment of the present invention. FIG. 2C is a virtual plan view seen from above the liquid delivery device 11 in which the substrate 2 in FIG. 2A and the glass substrate 1 in FIG. 2B are combined. FIG. 2D is an enlarged cross-sectional view of the vicinity of the flow path 13 obtained by cutting the liquid delivery device 11 of FIG. 2C along X-X ′.

図3(a)(b)は、図2(c)で示される送液装置11内に、送液される流体14が配置されている状態が示されている。流体14は、図3(a)(b)において斜線で示されている。図3(c)(d)は、送液装置11の側断面図である。図3(c)(d)においても、送液装置11内に、送液される流体14が配置されている状態が示されている。   3A and 3B show a state in which the fluid 14 to be fed is arranged in the liquid feeding device 11 shown in FIG. The fluid 14 is indicated by hatching in FIGS. 3C and 3D are side cross-sectional views of the liquid feeding device 11. 3C and 3D also show a state in which the fluid 14 to be fed is arranged in the liquid feeding device 11.

送液装置11は、電極が形成された第2の基板であるガラス基板1と、流路部13が形成された第1の基板である基板2とを具備する。本実施例では、ガラス基板1上に、電極として、作用電極4、対極5、及び参照電極7が形成されている。   The liquid delivery device 11 includes a glass substrate 1 that is a second substrate on which electrodes are formed, and a substrate 2 that is a first substrate on which flow paths 13 are formed. In the present embodiment, a working electrode 4, a counter electrode 5, and a reference electrode 7 are formed on the glass substrate 1 as electrodes.

基板2において、流路部13は凹状に形成されており、流路面3を有する。具体的には、凹状に形成された細長い流路部13の底面が流路面3となっている。   In the substrate 2, the flow path portion 13 is formed in a concave shape and has a flow path surface 3. Specifically, the bottom surface of the elongated channel portion 13 formed in a concave shape is the channel surface 3.

流路面3は、親水性であるが、疎水性領域6が一部に形成されている。ガラス基板1上において、流路面3と対向する位置は親水性であり、疎水性領域6に対向する位置に、作用電極4が、形成される。   The flow path surface 3 is hydrophilic, but has a hydrophobic region 6 formed in part. On the glass substrate 1, the position facing the flow path surface 3 is hydrophilic, and the working electrode 4 is formed at a position facing the hydrophobic region 6.

基板2には、凹状の液溜め部(リザーバー)10が形成されている。液溜め部10は、流路面3を有する流路部13の端部3dに隣接して形成されている(図3(c)(d)参照)。液溜め部10は、流路面3に沿って送液すべき流体(溶液、液滴、サンプル)14を、溜めておくためのものである。なお、液溜め部10には、流体14を導入するための導入口8が形成されている。   A concave liquid reservoir (reservoir) 10 is formed on the substrate 2. The liquid reservoir 10 is formed adjacent to the end 3d of the flow channel 13 having the flow channel surface 3 (see FIGS. 3C and 3D). The liquid reservoir 10 is for storing a fluid (solution, droplet, sample) 14 to be sent along the flow path surface 3. The liquid reservoir 10 is formed with an inlet 8 for introducing the fluid 14.

基板2は、例えば樹脂材料から成り、シリコーンゴム、アクリル、PET(ポリエチレンテレフタレート)等の材料が考えられる。本実施例では、基板2は、PDMS(ポリジメチルシロキサン)で形成されている(基板2をPDMS基板ともいう)。この場合、作用電極4に対向する位置付近のPDMS基板の表面は、酸素プラズマ処理時に保護しておくことにより、疎水性のままにしておくことができる。こうして、疎水性領域6が一部に形成された親水性の流路3を有する基板2を形成することができる。このような樹脂材料で基板2を形成することにより、加工が簡単である利点を有する。   The substrate 2 is made of, for example, a resin material, and materials such as silicone rubber, acrylic, and PET (polyethylene terephthalate) are conceivable. In this embodiment, the substrate 2 is formed of PDMS (polydimethylsiloxane) (the substrate 2 is also referred to as a PDMS substrate). In this case, the surface of the PDMS substrate near the position facing the working electrode 4 can be kept hydrophobic by protecting it during the oxygen plasma treatment. Thus, the substrate 2 having the hydrophilic flow path 3 in which the hydrophobic region 6 is partially formed can be formed. By forming the substrate 2 with such a resin material, there is an advantage that the processing is simple.

なお、基板2をガラス等の他の材料により形成することもできる。この場合、PDMS基板のときの加工処理とは逆に、親水性にすべきところをポジ型フォトレジスト等で保護しておき、保護していないところをジメチルクロロシラン等の疎水性部位を有するシランカップリング剤で処理すればよい。こうして、同様に、疎水性領域6が一部に形成された親水性の流路3を有する基板2を形成することができる。   In addition, the board | substrate 2 can also be formed with other materials, such as glass. In this case, contrary to the processing for the PDMS substrate, the portion that should be made hydrophilic is protected with a positive photoresist, and the portion that is not protected is a silane cup having a hydrophobic site such as dimethylchlorosilane. What is necessary is just to process with a ring agent. Thus, similarly, the substrate 2 having the hydrophilic flow path 3 in which the hydrophobic region 6 is partially formed can be formed.

図2(a)に示される、流路部13や液溜め部10が形成された基板2の面2aが、ひっくり返され、図2(b)に示される、電極が形成されたガラス基板1の面1aと、対向される。この際、基板2の流路面3とガラス基板1との間は距離を有して配置される。本実施例では、流路面3とガラス基板1との間は所定の距離hを保って配置される。こうして送液装置11が組み立てられ完成される(図2(c)(d)参照)。流路面3とガラス基板1との間が距離を有して配置されることにより、送液装置11には、流路面3と、ガラス基板1との間に、つまり具体的には、流路面3と、この流路面3に対向する位置にあるガラス基板1上の親水性の領域及びこの親水性の領域と並んで設けられている作用電極4との間に、流路空間15が形成されることとなる。   The surface 2a of the substrate 2 on which the flow path portion 13 and the liquid reservoir portion 10 are formed as shown in FIG. 2A is turned over, and the glass substrate 1 on which the electrode is formed as shown in FIG. It faces the surface 1a. At this time, the flow path surface 3 of the substrate 2 and the glass substrate 1 are arranged with a distance. In this embodiment, the flow path surface 3 and the glass substrate 1 are arranged with a predetermined distance h. Thus, the liquid feeding device 11 is assembled and completed (see FIGS. 2C and 2D). By disposing the flow path surface 3 and the glass substrate 1 at a distance, the liquid delivery device 11 has a space between the flow path surface 3 and the glass substrate 1, that is, specifically, the flow path surface. 3 and a hydrophilic region on the glass substrate 1 at a position facing the flow channel surface 3 and a working electrode 4 provided in parallel with the hydrophilic region, a flow channel space 15 is formed. The Rukoto.

なお、実際には、図2(a)の基板2の面2aがひっくり返されて、図2(b)のガラス基板1の面1aと向かい合わせられることにより、送液装置11が形成されると、送液装置11の上から見た平面図では、基板2の面2aは見えない。しかし、送液装置11の構造の理解を容易にするため、図2(c)では、ガラス基板1の面1aに加えて、流路面3が形成された基板2の面2aが見えるものとして仮想的に表示している。   Actually, when the liquid feeding device 11 is formed by turning the surface 2a of the substrate 2 in FIG. 2A upside down and facing the surface 1a of the glass substrate 1 in FIG. 2B. In the plan view seen from above the liquid delivery device 11, the surface 2a of the substrate 2 cannot be seen. However, in order to facilitate understanding of the structure of the liquid delivery device 11, in FIG. 2C, in addition to the surface 1a of the glass substrate 1, it is assumed that the surface 2a of the substrate 2 on which the flow path surface 3 is formed is visible. Is displayed.

ガラス基板1上には、作用電極4と対極5と参照電極7とが形成され、3電極方式(3電極系)が採用されている。3電極方式は、作用電極4と参照電極7との間に電位差を印加しつつ、作用電極4と対極5との間に流れる電流を測定する方式である。作用電極4は、電圧を印加する電極であり、送液のための駆動力を発生させる電極である。参照電極7は、電位の基準となる電極である。3電極方式を採用することにより参照電極7に電流が流れないようにして、電位の基準となる参照電極7の電位が電流等の影響を受けてずれないようにされるので、作用電極4と参照電極7との間に正確に電位差を印加することができる。   A working electrode 4, a counter electrode 5, and a reference electrode 7 are formed on the glass substrate 1, and a three-electrode system (three-electrode system) is adopted. The three-electrode method is a method of measuring a current flowing between the working electrode 4 and the counter electrode 5 while applying a potential difference between the working electrode 4 and the reference electrode 7. The working electrode 4 is an electrode for applying a voltage, and is an electrode for generating a driving force for liquid feeding. The reference electrode 7 is an electrode serving as a potential reference. By adopting the three-electrode method, the current does not flow through the reference electrode 7 so that the potential of the reference electrode 7 serving as a potential reference is not shifted due to the influence of the current or the like. A potential difference can be accurately applied to the reference electrode 7.

なお、本実施例では3電極方式を採用したが、対極5を有しない(対極5と参照電極7とが一体化した)、作用電極4及び参照電極7のみの2電極方式(2電極系)を採用しても良い。   In the present embodiment, the three-electrode system is adopted, but the counter electrode 5 is not provided (the counter electrode 5 and the reference electrode 7 are integrated), and the working electrode 4 and the reference electrode 7 only (two-electrode system). May be adopted.

作用電極4及び対極5は、例えば金で形成されている。なお、作用電極4及び対極5は、金の他、カーボン又はビスマスで形成しても良い。特に、作用電極4は金、カーボン、又はビスマスで形成されることが望ましい。作用電極4に電圧を印加したとき、水素等が発生せず、劣化しにくいからである。参照電極7は、銀から成る電極基板と、この電極基板上に形成された塩化銀から成る膜層と、(以下、銀/塩化銀、又は、Ag/AgClという)から形成される。このように、参照電極7は、銀/塩化銀で形成されることが望ましい。参照電極7を銀/塩化銀で形成することにより、電流を流しても参照電極7の電位があまり変化しないという利点がある。   The working electrode 4 and the counter electrode 5 are made of gold, for example. The working electrode 4 and the counter electrode 5 may be made of carbon or bismuth in addition to gold. In particular, the working electrode 4 is preferably formed of gold, carbon, or bismuth. This is because when a voltage is applied to the working electrode 4, hydrogen or the like is not generated and is not easily deteriorated. The reference electrode 7 is formed of an electrode substrate made of silver, a film layer made of silver chloride formed on the electrode substrate, and (hereinafter referred to as silver / silver chloride or Ag / AgCl). Thus, the reference electrode 7 is preferably formed of silver / silver chloride. By forming the reference electrode 7 with silver / silver chloride, there is an advantage that the potential of the reference electrode 7 does not change much even when a current is passed.

既に述べたように、作用電極4は、ガラス基板1上において、基板2の流路面3の疎水性領域6と対向する位置に形成されている。さらに、この疎水性領域6及び作用電極4は、液溜め部10の近傍に位置する。液溜め部10は、流路部13の端部3dに隣接して形成され、疎水性領域6及び作用電極4は液溜め部10の近傍に位置しているので、液溜め部10に送液すべき流体14が溜められた状態では、流路部13の端部3d、さらには疎水性領域6の末端部6aと作用電極4の末端部4aとが、液溜め部10に溜められた流体14と接触した状態となる(図3(a)(c)参照)。   As already described, the working electrode 4 is formed on the glass substrate 1 at a position facing the hydrophobic region 6 of the flow path surface 3 of the substrate 2. Further, the hydrophobic region 6 and the working electrode 4 are located in the vicinity of the liquid reservoir 10. The liquid reservoir 10 is formed adjacent to the end 3 d of the flow path 13, and the hydrophobic region 6 and the working electrode 4 are located in the vicinity of the liquid reservoir 10, so that the liquid is supplied to the liquid reservoir 10. In a state where the fluid 14 to be stored is stored, the end 3d of the flow path portion 13, and further the end 6a of the hydrophobic region 6 and the end 4a of the working electrode 4 are stored in the liquid storage 10. 14 (see FIGS. 3A and 3C).

参照電極7及び対極5は、図2(c)に示されるように、ガラス基板1上であって、基板2に形成された液溜め部10と対向する位置に形成されている。したがって、参照電極7及び対極5は、流体(溶液、液滴、サンプル)14を導入する導入口8付近に位置することとなる。これにより、導入口8から導入された流体14が液溜め部10に溜められたときに、流体14が参照電極7と対極5とに接触される状態になる。   As shown in FIG. 2C, the reference electrode 7 and the counter electrode 5 are formed on the glass substrate 1 at positions facing the liquid reservoir 10 formed on the substrate 2. Therefore, the reference electrode 7 and the counter electrode 5 are located in the vicinity of the introduction port 8 through which the fluid (solution, droplet, sample) 14 is introduced. As a result, when the fluid 14 introduced from the introduction port 8 is stored in the liquid reservoir 10, the fluid 14 comes into contact with the reference electrode 7 and the counter electrode 5.

なお、本実施例では参照電極7や対極5をガラス基板1上に形成しているが、液溜め部10に溜められた送液されるべき流体14が接触できれば、参照電極7や対極5は、必ずしもガラス基板1上に形成されなくてもよく、例えば、基板2、又は、ガラス基板1及び基板2以外の外部に形成することも考えられる。より詳しくは、例えば参照電極7を第2の基板であるガラス基板1上に形成し、対極5をガラス基板1以外の場所に設けてもよいし、参照電極7及び対極5の両方をガラス基板1以外の場所に設けてもよい。これは、対極5を有しない2電極方式の場合も同様で、参照電極7をガラス基板1上に形成せずにガラス基板1以外の場所に設けてもよい。   In the present embodiment, the reference electrode 7 and the counter electrode 5 are formed on the glass substrate 1. However, if the fluid 14 to be fed stored in the liquid reservoir 10 can contact the reference electrode 7 and the counter electrode 5, However, it may not necessarily be formed on the glass substrate 1. For example, it may be formed on the substrate 2 or outside the glass substrate 1 and the substrate 2. More specifically, for example, the reference electrode 7 may be formed on the glass substrate 1 as the second substrate, the counter electrode 5 may be provided at a place other than the glass substrate 1, or both the reference electrode 7 and the counter electrode 5 may be provided on the glass substrate. You may provide in places other than one. This is the same in the case of the two-electrode system without the counter electrode 5, and the reference electrode 7 may be provided at a place other than the glass substrate 1 without being formed on the glass substrate 1.

なお、ガラス基板1において、上述したように、流路面3と対向する位置は、親水性となっているが、少なくともこの流路面3に対向する位置の周辺部18は、疎水性の膜層が形成されてもよい。本実施例では、ガラス基板1において、液溜め部10と対向する位置を除き、作用電極4及び流路面3に対向する位置を取り囲む、周辺部18には、疎水性の膜層が形成されている。ガラス基板1上において、作用電極4を超えて流路空間15中を移動する流体14が、作用電極14や流路面3に対向する位置以外の外部へ流出することを確実に防ぐためである。   In the glass substrate 1, as described above, the position facing the flow path surface 3 is hydrophilic, but at least the peripheral portion 18 at the position facing the flow path surface 3 has a hydrophobic film layer. It may be formed. In the present embodiment, a hydrophobic film layer is formed on the peripheral portion 18 surrounding the position facing the working electrode 4 and the flow path surface 3 except for the position facing the liquid reservoir 10 in the glass substrate 1. Yes. This is because the fluid 14 that moves in the flow path space 15 beyond the working electrode 4 on the glass substrate 1 is reliably prevented from flowing outside the position facing the working electrode 14 and the flow path surface 3.

本発明の本実施例に係る送液装置11では、上述のような構成の疎水性領域6が一部に形成された親水性の流路面3を有する基板2と、作用電極4等が形成されたガラス基板1とが、夫々別々に作製される。そして、既に述べたように、作用電極4等が形成されたガラス基板1の面1aと、流路部13等が形成された基板2の面2aとを対向させて、組み立てられ完成される。このとき、送液装置11では、基板2の流路部13が凹上に形成されていることにより、図2(d)に示されるように、流路面3とガラス基板1との間、より正確には流路面3とガラス基板1の面1aとの間は距離を有して、具体的には、所定の間隔(距離)hを保って配置されることになる。なお、図2(d)では、作用電極4の厚みを誇張して図示しているが、実際には、作用電極4の厚みは考慮しなくてもよいほど薄いので、流路面3とガラス基板1の面1aとの間の所定の間隔(距離)hは、流路面3とガラス基板1上に形成された作用電極4の上面との間の間隔(距離)と、同じと考えられる。また、たとえ作用電極4等のガラス基板1上に形成された電極の厚みを考慮する必要がある場合でも、ガラス基板1の面1a(上面)と流路面3との間の距離が決まれば、ガラス基板1上で所定の厚みを有する電極の上面と流路面3との間の距離は自ずと決まるため、本明細書では、ガラス基板1の上面と流路面3との間の距離を基準にしている。   In the liquid delivery device 11 according to this embodiment of the present invention, the substrate 2 having the hydrophilic flow path surface 3 partially formed with the hydrophobic region 6 having the above-described configuration, the working electrode 4 and the like are formed. The glass substrate 1 is manufactured separately. As described above, the surface 1a of the glass substrate 1 on which the working electrode 4 and the like are formed and the surface 2a of the substrate 2 on which the flow path portion 13 and the like are opposed are assembled and completed. At this time, in the liquid delivery device 11, since the flow path portion 13 of the substrate 2 is formed in a concave shape, as shown in FIG. 2D, between the flow path surface 3 and the glass substrate 1, more More precisely, there is a distance between the flow path surface 3 and the surface 1a of the glass substrate 1, and specifically, they are arranged with a predetermined distance (distance) h. In FIG. 2 (d), the thickness of the working electrode 4 is exaggerated, but in reality, the thickness of the working electrode 4 is so thin that it is not necessary to consider it. The predetermined distance (distance) h between the first surface 1 a and the surface 1 a is considered to be the same as the distance (distance) between the flow path surface 3 and the upper surface of the working electrode 4 formed on the glass substrate 1. Moreover, even when it is necessary to consider the thickness of the electrode formed on the glass substrate 1 such as the working electrode 4, if the distance between the surface 1a (upper surface) of the glass substrate 1 and the flow path surface 3 is determined, Since the distance between the upper surface of the electrode having a predetermined thickness on the glass substrate 1 and the flow path surface 3 is naturally determined, in this specification, the distance between the upper surface of the glass substrate 1 and the flow path surface 3 is used as a reference. Yes.

本実施例では、流路面3とガラス基板1との間に間隔(距離)を有して配置するために、基板2の流路部13が凹状に形成された。一方、流路部を平坦又は凸状に形成してもよい。つまり、平坦な流路部の平面、又は凸状に形成された流路部の上面が流路面となるように、基板を形成してもよい。この場合、この流路部が形成された基板とガラス基板1との間に例えばスペーサーを挿入することにより、流路面とガラス基板1との間に間隔(距離)を有して、送液装置11が組み立てられる。スペーサーを用いる構成では、上記間隔(距離)を容易に調節することができる利点がある。   In the present example, the channel portion 13 of the substrate 2 was formed in a concave shape so as to be disposed with a gap (distance) between the channel surface 3 and the glass substrate 1. On the other hand, the channel portion may be formed flat or convex. That is, the substrate may be formed so that the flat surface of the flow path portion or the upper surface of the flow path portion formed in a convex shape becomes the flow path surface. In this case, for example, a spacer is inserted between the substrate on which the flow path portion is formed and the glass substrate 1, so that there is a space (distance) between the flow path surface and the glass substrate 1. 11 is assembled. The configuration using the spacer has an advantage that the interval (distance) can be easily adjusted.

このようにして、流路面3とガラス基板1との間に距離を有することにより、流路空間15が形成される。なお、本実施例では、流路面3とガラス基板1との間は、所定の距離hが保たれているが、流路面3とガラス基板1との間は、流路空間が形成されるように距離を有すればよく、所定の距離hを保っている場合に限られない。例えば徐々に流路面3とガラス基板1との間の距離が小さくなって流路空間が狭まっていくような場合、又は、徐々に流路面3とガラス基板1との間の距離が大きくなって流路空間が広がっていくような場合等でもよい。このように、流路面とガラス基板等の第2の基板との間に流路空間が形成されるように距離を有すれば足りることは、後述する他の実施例においても同様である。   Thus, the flow path space 15 is formed by having a distance between the flow path surface 3 and the glass substrate 1. In the present embodiment, a predetermined distance h is maintained between the flow path surface 3 and the glass substrate 1, but a flow path space is formed between the flow path surface 3 and the glass substrate 1. Need only have a distance, and is not limited to the case where the predetermined distance h is maintained. For example, when the distance between the flow path surface 3 and the glass substrate 1 is gradually decreased and the flow path space is narrowed, or the distance between the flow path surface 3 and the glass substrate 1 is gradually increased. For example, the flow path space may expand. As described above, it is sufficient to have a distance so that a flow path space is formed between the flow path surface and the second substrate such as a glass substrate.

作用電極4に電圧を印加していない状態では、作用電極4の末端部4aと疎水性領域6の末端部6aとに接触した状態の流体14は、作用電極4と疎水性領域6とで挟まれた流路空間15を超えることはできず、留まったままである。ここで、作用電極4に電圧を印加すると、作用電極4は、既に上述の原理で述べたように、濡れやすくなり、末端部4aに接触した流体14が作用電極4を越えて広がる。そして、作用電極4を超えた流体14は、さらに凹状の流路部13に形成された親水性の流路面3とガラス基板1の親水性の領域とで囲まれた流路空間15を、毛管現象により進んで移動し送液されることとなる。   When no voltage is applied to the working electrode 4, the fluid 14 in contact with the end portion 4 a of the working electrode 4 and the end portion 6 a of the hydrophobic region 6 is sandwiched between the working electrode 4 and the hydrophobic region 6. The flow path space 15 that has been created cannot be exceeded and remains. Here, when a voltage is applied to the working electrode 4, the working electrode 4 becomes easily wetted as already described in the above principle, and the fluid 14 in contact with the end portion 4 a spreads beyond the working electrode 4. Then, the fluid 14 that exceeds the working electrode 4 passes through the channel space 15 surrounded by the hydrophilic channel surface 3 formed in the concave channel part 13 and the hydrophilic region of the glass substrate 1 into the capillary. Due to the phenomenon, the liquid moves and is fed.

このようにして、参照電極7と作用電極4との間に電位差を生じさせることにより、流体14が流路空間15を移動することについて制御を行うことができる。なお、流路面3とガラス基板1との間の距離、本実施例では所定の距離hは、流体14が移動し送液される流路の高さ(流路高、流路間隔)となる。   In this way, by causing a potential difference between the reference electrode 7 and the working electrode 4, it is possible to control the movement of the fluid 14 through the flow path space 15. In addition, the distance between the flow path surface 3 and the glass substrate 1, in this embodiment, the predetermined distance h is the height of the flow path (flow path height, flow path interval) through which the fluid 14 moves and is fed. .

本実施例のように、エレクトロウエッティングにより送液を行う本発明の送液装置では、送液のための駆動力を発生させる電極、即ち、作用電極(作用極、駆動用電極)4を、送液する流体についての親水性の流路面3の一部に形成された疎水性領域6と対向する位置に設ける。このように形成することで、電圧をかけていない状態では疎水性の作用電極4と、疎水性領域6とにより、流体を一旦留めておくことができる。一方、作用電極4に電圧をかけることにより、作用電極4を濡れやすくして、作用電極4を超えて流体を濡れ広がらせることができ、さらには、毛管現象と合わせて、親水性の流路面3とガラス基板1の親水性の領域とに沿って流路空間中の流体の送液を、容易に制御することが可能である。   As in this embodiment, in the liquid feeding device of the present invention for feeding liquid by electrowetting, an electrode for generating a driving force for liquid feeding, that is, a working electrode (working electrode, driving electrode) 4 is provided. It is provided at a position facing the hydrophobic region 6 formed in a part of the hydrophilic flow path surface 3 for the fluid to be fed. By forming in this way, the fluid can be temporarily retained by the hydrophobic working electrode 4 and the hydrophobic region 6 when no voltage is applied. On the other hand, by applying a voltage to the working electrode 4, the working electrode 4 can be easily wetted, and the fluid can be wetted and spread beyond the working electrode 4. 3 and the hydrophilic region of the glass substrate 1 can be easily controlled to feed the fluid in the flow path space.

(作用)
次に、本実施例に係る送液装置11の作用について説明する。送液装置11において、基板2に設けられた導入口8から送液させるべき流体14を導入する。本実施例では、流体14として例えばKCl溶液が使用される。導入された流体14は、基板2とガラス基板1との間、具体的には、基板2に形成された液溜め部10とガラス基板1との間に配置される。このとき、液溜め部10に留められている流体14は、ガラス基板1上の対極5、参照電極7、及び作用電極4、具体的には作用電極4の末端部4aに接触された状態である。このとき、基板2上の疎水性領域6の末端部6aにも流体14が接触するが、流体14は、この疎水性領域6と作用電極4とで挟まれた流路空間15を超えられずに、留まっている。(図3(a)(c)参照)。
(Function)
Next, the operation of the liquid delivery device 11 according to the present embodiment will be described. In the liquid feeding device 11, a fluid 14 to be fed is introduced from an introduction port 8 provided in the substrate 2. In this embodiment, for example, a KCl solution is used as the fluid 14. The introduced fluid 14 is disposed between the substrate 2 and the glass substrate 1, specifically, between the liquid reservoir 10 formed on the substrate 2 and the glass substrate 1. At this time, the fluid 14 retained in the liquid reservoir 10 is in contact with the counter electrode 5, the reference electrode 7, and the working electrode 4 on the glass substrate 1, specifically, the end portion 4 a of the working electrode 4. is there. At this time, the fluid 14 also contacts the end portion 6 a of the hydrophobic region 6 on the substrate 2, but the fluid 14 cannot pass through the flow path space 15 sandwiched between the hydrophobic region 6 and the working electrode 4. Stays on. (See FIGS. 3A and 3C).

この状態で、作用電極4に電圧を印加して、参照電極7と作用電極4との間に電位差を生じさせる。作用電極4の電位は、流体14中のイオンの吸着、より望ましくは、陽イオンの吸着により界面張力の変化が引き起こされる電位の範囲内に設定される。界面張力の変化が引き起こされる電位の範囲は、送液装置11の流路面3とガラス基板1との間の距離(本実施例では所定の間隔h)、ガラス基板1や基板2の材料及び疎水性の度合い、流路面3及び作用電極4の表面状態等により異なる。   In this state, a voltage is applied to the working electrode 4 to generate a potential difference between the reference electrode 7 and the working electrode 4. The potential of the working electrode 4 is set within a range of potentials at which changes in the interfacial tension are caused by adsorption of ions in the fluid 14, more preferably by adsorption of cations. The range of potential that causes the change in the interfacial tension includes the distance between the flow path surface 3 of the liquid delivery device 11 and the glass substrate 1 (predetermined interval h in this embodiment), the material of the glass substrate 1 and the substrate 2, and the hydrophobicity. It depends on the degree of the property, the surface state of the flow path surface 3 and the working electrode 4 and the like.

作用電極4の電位を、界面張力の変化が引き起こされる電位の範囲内の例えば負の適切な値に変化させる。すると、作用電極4は、濡れやすくなる結果、流体14は、作用電極4を超えて広がり、疎水性領域6と作用電極4とで挟まれた流路空間15中およびその先の親水性流路内、つまり、流路面3とガラス基板1の親水性の領域とで挟まれた流路空間15を、毛管現象により移動する(進む)。このようにして流体14が送液される(図3(b)(d)参照)。   The potential of the working electrode 4 is changed to, for example, an appropriate negative value within the range of potential at which the change in interfacial tension is caused. Then, as a result of the working electrode 4 becoming easily wetted, the fluid 14 spreads beyond the working electrode 4, and the hydrophilic flow path in the flow path space 15 sandwiched between the hydrophobic region 6 and the working electrode 4 and beyond. Inside, that is, the flow path space 15 sandwiched between the flow path surface 3 and the hydrophilic region of the glass substrate 1 moves (advances) by capillary action. In this way, the fluid 14 is fed (see FIGS. 3B and 3D).

上記のように疎水性領域6と作用電極4とで挟まれた流路空間15を流体14が送液されるのは、既に述べたように、作用電極4に電圧を印加すると、作用電極4と流体14との間(作用電極4−流体14界面)の界面張力が低下し、流体14は作用電極4上で濡れやすくなることによる。そして、上記のように毛管現象を合わせて利用することにより、さらに、流路面3とガラス基板1の親水性の領域とで挟まれた流路空間15を、送液できるのである。   As described above, the fluid 14 is sent through the flow path space 15 sandwiched between the hydrophobic region 6 and the working electrode 4 as described above when the voltage is applied to the working electrode 4. This is because the interfacial tension between the fluid 14 and the fluid 14 (working electrode 4 -fluid 14 interface) is lowered, and the fluid 14 is easily wetted on the working electrode 4. Further, by using the capillary phenomenon together as described above, the flow path space 15 sandwiched between the flow path surface 3 and the hydrophilic region of the glass substrate 1 can be fed.

流体14と作用電極4を始めとする電極との間(流体14−電極界面)の界面張力に影響を及ぼしているのは、イオンの電極表面への吸着である。作用電極4をより負の電位に変化させる場合は、電極表面への陽イオンの吸着が、作用電極4をより正の電位に変化させる場合は、電極表面への陰イオンの吸着が支配的になる。   It is the adsorption of ions on the electrode surface that affects the interfacial tension between the fluid 14 and the electrode including the working electrode 4 (fluid 14-electrode interface). When the working electrode 4 is changed to a more negative potential, adsorption of cations on the electrode surface is dominant, and when the working electrode 4 is changed to a more positive potential, adsorption of anions on the electrode surface is dominant. Become.

前者の場合、即ち、作用電極4をより負の電位に変化させて電極表面に陽イオンが吸着する場合には、イオンの種類により作用電極4と流体14界面での界面張力に大きな影響はでない。参照電極7等を含む電極に影響はでない(イオンの種類により依存しない)。   In the former case, that is, when the working electrode 4 is changed to a more negative potential and the cation is adsorbed on the electrode surface, the interface tension at the interface between the working electrode 4 and the fluid 14 is not greatly affected by the type of ions. . The electrodes including the reference electrode 7 and the like are not affected (does not depend on the type of ions).

一方、後者の場合、即ち、作用電極4をより正の電位に変化させて電極表面に陰イオンが吸着する場合には、イオンの種類により作用電極4と流体14界面での界面張力に大きな影響が出る。したがって、再現性良く送液を行うためには、作用電極4に負の電圧(電位)を印加するのが好ましい。   On the other hand, in the latter case, that is, when the working electrode 4 is changed to a more positive potential and an anion is adsorbed on the electrode surface, the interfacial tension at the interface between the working electrode 4 and the fluid 14 is greatly affected by the type of ions. coming out. Therefore, it is preferable to apply a negative voltage (potential) to the working electrode 4 in order to perform liquid feeding with high reproducibility.

また、本発明によれば、作用電極4への電圧の印加により発生する電流値は、典型的にはμAのオーダーであり、消費電力値もμWのオーダーであるが、これらは作用電極4の微小化を進めることにより、さらに小さくすることができる。これらの電流値や消費電力値は、従来のマイクロポンプ等を用いる場合に比べて非常に小さい。電流値の発生源は酸素の還元等に伴うファラデー(Faraday)電流や電気二重層の充電電流であり、流路の高さ(流路高、流路間隔、流路面3とガラス基板1との間の距離、本実施例の場合は所定の間隔h)を調節して駆動電位を下げることによっても、低消費電力化を実現することができる。   Further, according to the present invention, the current value generated by applying a voltage to the working electrode 4 is typically on the order of μA, and the power consumption value is also on the order of μW. By further miniaturization, it can be further reduced. These current values and power consumption values are very small compared to the case of using a conventional micropump or the like. The source of the current value is the Faraday current accompanying the reduction of oxygen or the like, or the charging current of the electric double layer. The height of the flow path (flow path height, flow path spacing, flow path surface 3 and glass substrate 1 The power consumption can also be reduced by adjusting the distance between them, in the case of this embodiment, the predetermined interval h) to lower the drive potential.

本発明の実施例2に係る送液装置61は、実施例1の送液装置11の構成と類似し、実施例1の送液装置11と同一の構成要素については同一の参照符号を付し、図示及び説明を省略する。また、実施例1と同様の作用、効果についても記載を省略する。   The liquid feeding device 61 according to the second embodiment of the present invention is similar to the configuration of the liquid feeding device 11 of the first embodiment, and the same components as those of the liquid feeding device 11 of the first embodiment are denoted by the same reference numerals. The illustration and description are omitted. Also, description of the same operations and effects as those of the first embodiment is omitted.

図4(a)(b)は、本発明の実施例2に係る送液装置61を分解した平面図である。図4(b)に示される、流路面3等が形成された基板2の面2aが、ひっくり返され、図4(a)に示される、ガラス基板1の面1aと対向される。こうして送液装置61が組み立てられ完成される。図4(c)は、完成された送液装置61について、図4(a)(b)のX―X’で切断した流路近傍の拡大断面図である。また、図4(d)(e)は、夫々ガラス基板1について、図4(a)のX−X’、Y−Y’で切断した流路近傍の拡大断面図である。   4A and 4B are plan views of the liquid feeding device 61 according to the second embodiment of the present invention. The surface 2a of the substrate 2 on which the flow path surface 3 and the like shown in FIG. 4 (b) are formed is turned over so as to face the surface 1a of the glass substrate 1 shown in FIG. 4 (a). Thus, the liquid feeding device 61 is assembled and completed. FIG. 4C is an enlarged cross-sectional view of the completed liquid delivery device 61 in the vicinity of the flow path cut by X-X ′ in FIGS. 4A and 4B. 4D and 4E are enlarged cross-sectional views of the glass substrate 1 in the vicinity of the flow path cut along X-X ′ and Y-Y ′ in FIG.

図5(a)(b)は、図4で示される送液装置61内に、送液される流体が配置されている状態を示す模式的な平面図である。図5においても、送液装置61の構造の理解を容易にするため、ガラス基板1の面1aが見えるものとして仮想的に表示している。なお、図5において、送液される流体は夫々、斜線で示されている。   FIGS. 5A and 5B are schematic plan views showing a state in which the fluid to be fed is arranged in the liquid feeding device 61 shown in FIG. Also in FIG. 5, in order to facilitate understanding of the structure of the liquid feeding device 61, the surface 1 a of the glass substrate 1 is virtually displayed as being visible. In FIG. 5, fluids to be sent are indicated by hatching.

実施例2に係る送液装置61が実施例1の送液装置11と異なる特徴の一つは、流路空間15を移動する流体を、混合させるための混合電極62が設けられていることである。混合電極62は、実施例1で説明した作用電極4と同じ機能を有する電極であるが、複数の異なる流体を混合させる目的で用いられる電極である。   One of the features that the liquid feeding device 61 according to the second embodiment is different from the liquid feeding device 11 according to the first embodiment is that a mixing electrode 62 for mixing the fluid moving in the flow path space 15 is provided. is there. The mixed electrode 62 is an electrode having the same function as the working electrode 4 described in the first embodiment, but is an electrode used for mixing a plurality of different fluids.

送液装置61では、ガラス基板1上に、親水性の複数の流路、本実施例では、2つの流路64a、64bが形成されている。これらの流路64a、64bは、基板2上の流路面3と対向する位置にある親水性の領域である。各流路64a、64bの端部には夫々、流体を注入する導入口8が設けられている。また、実施例1と同様に、参照電極7や対極5(図4には図示せず。いずれも図2(c)参照)が、形成されている。参照電極7や対極5は、流体と接触する場所であれば、ガラス基板1上の任意の場所、又はガラス基板1以外の場所に設けられても良い。また、実施例1で述べたのと同様に、対極5と参照電極7とを一体化して、2電極方式(2電極系)を採用しても良い。   In the liquid delivery device 61, a plurality of hydrophilic flow paths, in this embodiment, two flow paths 64a and 64b are formed on the glass substrate 1. These flow paths 64 a and 64 b are hydrophilic regions at positions facing the flow path surface 3 on the substrate 2. An inlet 8 for injecting fluid is provided at each end of each flow path 64a, 64b. Further, as in the first embodiment, the reference electrode 7 and the counter electrode 5 (not shown in FIG. 4, both refer to FIG. 2C) are formed. The reference electrode 7 and the counter electrode 5 may be provided at any place on the glass substrate 1 or at a place other than the glass substrate 1 as long as the place is in contact with the fluid. Further, as described in the first embodiment, the counter electrode 5 and the reference electrode 7 may be integrated to adopt a two-electrode system (two-electrode system).

ガラス基板1上において、夫々並行に伸びる流路64a、64bが交わるところには、細長く伸びる長方形状の混合電極62が形成されている(図4(a)参照)。一方、基板2は、実施例1と同様に、例えばPDMSから成り、その一部に疎水性領域6が形成されている(図4(b)参照)。なお、基板2は、実施例1で述べたのと同様に、PDMS以外の材料、例えばガラスから形成することも可能である。混合電極62は、基板2の流路面3の一部に形成された疎水性領域6に対向する、ガラス基板1上の位置に配置されている。(図4(c)参照)。従って、夫々の流路64a、64bと流路面3とで挟まれた各流路空間15が合流する位置であって、ガラス基板1上に混合電極62は、配置される。なお、混合のしやすさを調節するために、基板2上の疎水性領域6を周囲から突出させたり、逆に凹ませたりすることができる。   On the glass substrate 1, elongated mixed electrodes 62 are formed where the channels 64 a and 64 b extending in parallel intersect each other (see FIG. 4A). On the other hand, the substrate 2 is made of PDMS, for example, similarly to the first embodiment, and a hydrophobic region 6 is formed in a part thereof (see FIG. 4B). The substrate 2 can be formed of a material other than PDMS, for example, glass, as described in the first embodiment. The mixed electrode 62 is disposed at a position on the glass substrate 1 facing the hydrophobic region 6 formed in a part of the flow path surface 3 of the substrate 2. (See FIG. 4 (c)). Accordingly, the mixed electrode 62 is disposed on the glass substrate 1 at a position where the flow passage spaces 15 sandwiched between the flow passages 64 a and 64 b and the flow passage surface 3 meet. In order to adjust the ease of mixing, the hydrophobic region 6 on the substrate 2 can be protruded from the surroundings, or conversely recessed.

なお、ガラス基板1において、流路面3に対向する位置は、親水性にされているが、少なくとも流路面3に対向する位置の周辺部18は、疎水性の膜層が形成され、疎水性領域にされる。本実施例では、ガラス基板1において、導入口8、流路64a、64b、及び混合用電極62を取り囲む、周辺部18には、疎水性の膜層が形成された疎水性領域にされる(図4(a)(d)(e)参照)。ガラス基板1上において、作用電極4を超えて流路空間15中を移動する流体が、流路64a、64bや混合電極62以外の外部へ流出することを確実に防ぐためである。   In the glass substrate 1, the position facing the flow path surface 3 is made hydrophilic, but at least the peripheral portion 18 at the position facing the flow path surface 3 is formed with a hydrophobic film layer to form a hydrophobic region. To be. In the present embodiment, in the glass substrate 1, the peripheral portion 18 surrounding the introduction port 8, the flow paths 64 a and 64 b, and the mixing electrode 62 is formed into a hydrophobic region in which a hydrophobic film layer is formed ( (See FIGS. 4A, 4D, and 4E). This is because the fluid that moves in the flow path space 15 beyond the working electrode 4 on the glass substrate 1 is surely prevented from flowing outside the flow paths 64 a and 64 b and the mixing electrode 62.

本実施例の送液装置61において、流路64a、64bと流路面3とで挟まれる流路空間15に流体を送液するしくみや駆動方法は、実施例1の送液装置11と同様である。   In the liquid feeding device 61 of the present embodiment, the mechanism and driving method for feeding fluid to the flow path space 15 sandwiched between the flow paths 64a and 64b and the flow path surface 3 are the same as those of the liquid feeding apparatus 11 of the first embodiment. is there.

つまり、混合電極62は、作用電極4(例えば、実施例1の図3参照)と同様に、電圧を印加して流体を送液させる駆動電極としての役割を有し、例えば作用電極4と同様の材料から成る。このような混合電極62は、ガラス基板1に用いるフォトマスクのパターンを変更するだけで、実施例1と同様に、容易に形成することができる。   That is, the mixed electrode 62 has a role as a drive electrode that applies a voltage and feeds fluid, similarly to the working electrode 4 (for example, see FIG. 3 of the first embodiment). Made of material. Such a mixed electrode 62 can be easily formed in the same manner as in the first embodiment only by changing the pattern of the photomask used for the glass substrate 1.

送液装置61では、複数の流体が夫々の導入口8から導入されると、流路64a、64bは親水性であるため、毛管現象により、各流体は、各流路64a、64b中を自発的に広がって進む。そして、各流体が混合電極62の両周辺端部に接触する(図5(a)参照)。混合電極62に電圧を印加していない状態では、混合電極62の両周辺端部に各流体が接触した状態のまま、留まっている。ここで、混合電極62に電圧を印加すると、混合電極62は濡れやすくなり、混合電極62の両周辺端部に夫々接触して留まっていた各流体は、混合電極62上に広がり、混ざり合う(図5(b)参照)。このように、各流体を混合電極62上に送液して、混合電極62上でこれらの各流体を混合させることができる。   In the liquid feeding device 61, when a plurality of fluids are introduced from the respective inlets 8, the flow paths 64a and 64b are hydrophilic. Therefore, each fluid spontaneously passes through the flow paths 64a and 64b due to capillary action. Spread and proceed. Each fluid comes into contact with both peripheral ends of the mixing electrode 62 (see FIG. 5A). In a state where no voltage is applied to the mixed electrode 62, the fluid remains in contact with both peripheral ends of the mixed electrode 62. Here, when a voltage is applied to the mixed electrode 62, the mixed electrode 62 is easily wetted, and each fluid that has been in contact with both peripheral ends of the mixed electrode 62 spreads and mixes on the mixed electrode 62 ( (Refer FIG.5 (b)). In this way, each fluid can be fed onto the mixing electrode 62 and can be mixed on the mixing electrode 62.

なお、本実施例と実施例1とを組み合わせて実施することも可能である。その際、実施例1で述べたような作用電極4用に、液溜め部10近傍に設けられた、参照電極7と対極5とを、混合電極62上に流体を送液して混合させるために用いることもできる。この場合、参照電極7と対極5とは、一旦留めていた流体を、作用電極4を超えて送液させるために用いられているが、混合電極62上で流体を混合させる際に、混合電極62用に切り替えて用いられる。または、混合電極62の近傍に、別途、混合電極62用の参照電極と対極とを形成することにしてもよい。また、作用電極のときと同様に、混合電極62においても、参照電極と対極とが一体化した2電極方式を採用してもよいことはもちろんである。   It should be noted that the present embodiment and the first embodiment can be implemented in combination. At that time, for the working electrode 4 as described in the first embodiment, the reference electrode 7 and the counter electrode 5 provided in the vicinity of the liquid reservoir 10 are fed to the mixing electrode 62 to be mixed. It can also be used. In this case, the reference electrode 7 and the counter electrode 5 are used to send the fluid once retained beyond the working electrode 4. When the fluid is mixed on the mixing electrode 62, the mixing electrode 62 is used. 62 is used by switching. Alternatively, a reference electrode and a counter electrode for the mixed electrode 62 may be separately formed in the vicinity of the mixed electrode 62. Further, as with the working electrode, the mixed electrode 62 may of course employ a two-electrode system in which the reference electrode and the counter electrode are integrated.

(作用)
実施例2の作用について図5を参照しつつ簡単に説明する。送液装置61の各導入口8から、例えば異なる種類の流体が注入されると、注入された各流体は、毛管現象により、親水性の各流路64a、64bを自発的に広がって進む。こうして、各流体は、混合電極62付近に送液される。送液されてきた各流体は、混合電極62の両周辺端部に接触して留まる(図5(a))。
(Function)
The operation of the second embodiment will be briefly described with reference to FIG. When, for example, different types of fluids are injected from the introduction ports 8 of the liquid feeding device 61, the injected fluids spontaneously spread through the hydrophilic flow paths 64a and 64b by capillary action. In this way, each fluid is sent to the vicinity of the mixing electrode 62. Each fluid that has been sent remains in contact with both peripheral ends of the mixing electrode 62 (FIG. 5A).

この状態で、混合電極62に電位(電圧)を印加すると、混合電極62の両周辺端部に接触して留まっていた各流体は、混合電極62上を濡れ広がり、混ざり合う。図5(b)には、混ざり合った流体64が示されている。   In this state, when a potential (voltage) is applied to the mixed electrode 62, the fluids that remain in contact with both peripheral ends of the mixed electrode 62 spread and mix on the mixed electrode 62. FIG. 5B shows a mixed fluid 64.

本発明の実施例3に係る送液装置91は、実施例1の送液装置11の原理と共通し、実施例1の送液装置11と同一の構成要素については同一の参照符号を付し、図示及び説明を省略する。また、実施例1、2と同様の作用、効果についても記載を省略する。図6(a)は、本発明の実施例3に係る送液装置91を構成する基板81の平面図であり、図6(b)は、本発明の実施例3に係る送液装置91の部分的な側断面図である。   The liquid feeding device 91 according to the third embodiment of the present invention is common to the principle of the liquid feeding device 11 of the first embodiment, and the same components as those of the liquid feeding device 11 of the first embodiment are denoted by the same reference numerals. The illustration and description are omitted. Also, the description of the same operation and effect as those in Examples 1 and 2 is omitted. FIG. 6A is a plan view of a substrate 81 constituting a liquid feeding device 91 according to Embodiment 3 of the present invention, and FIG. 6B is a plan view of the liquid feeding device 91 according to Embodiment 3 of the present invention. It is a partial sectional side view.

実施例3に係る送液装置91が、実施例1、2の送液装置11、61と異なる特徴の一つは、流路空間15を移動する流体を排出させるための流体排出部92が設けられることである。流体排出部92は、第2の基板である基板81に形成された貫通孔93と、少なくとも貫通孔93の側壁93aに設けられた作用電極94とを具備する。より好ましくは、流体排出部92は、第2の基板である基板81に形成された貫通孔93と、基板81の下部に設けられる流体を吸収する手段、具体的には、基板81の下部に密着させた多孔性物質95と、少なくとも貫通孔93の側壁93aに設けられた作用電極94とを具備する。本実施例では、作用電極94は、貫通孔93の側壁93aと、基板81の下面81aとに、設けられている。   One of the features of the liquid feeding device 91 according to the third embodiment which is different from the liquid feeding devices 11 and 61 of the first and second embodiments is that a fluid discharge portion 92 for discharging the fluid moving in the flow path space 15 is provided. Is to be. The fluid discharge unit 92 includes a through hole 93 formed in the substrate 81 which is the second substrate, and a working electrode 94 provided at least on the side wall 93 a of the through hole 93. More preferably, the fluid discharge unit 92 has a through-hole 93 formed in the substrate 81 as the second substrate and means for absorbing fluid provided in the lower portion of the substrate 81, specifically, in the lower portion of the substrate 81. A porous material 95 that is in close contact, and a working electrode 94 provided on at least the side wall 93a of the through-hole 93 are provided. In this embodiment, the working electrode 94 is provided on the side wall 93 a of the through hole 93 and the lower surface 81 a of the substrate 81.

多孔性物質95は、基板81の下部において、容器96に収容することができる。多孔性物質95としては、例えば、親水性メッシュ、濾紙等が挙げられる。なお、多孔性物質95は、流体を吸い取るために用いられるものであり、流体を吸い取る手段としての役割を果たせば、必ずしも多孔性物質のみには、限られない。容器96は、例えば、プラスチック、ガラス、アクリル、PET、シリコーンゴム、ポリエチレン等で形成される。   The porous material 95 can be accommodated in the container 96 below the substrate 81. Examples of the porous substance 95 include a hydrophilic mesh and filter paper. The porous material 95 is used for sucking a fluid, and is not necessarily limited to a porous material as long as it plays a role as a means for sucking a fluid. The container 96 is made of, for example, plastic, glass, acrylic, PET, silicone rubber, polyethylene, or the like.

第2の基板である基板81の上面81bには、対極5及び参照電極7が設けられる(図6(a)(b)参照)。一方、第1の基板である基板2は、実施例1と同様にして、例えばPDMSから成り、凹状の流路部13(ただし、流路部13は、図6には図示せず。同様の構成である実施例1の図2の流路部13参照)が形成されている。なお、流路空間15において、基板81の上面81bと対向する基板2の表面、つまり、凹状の流路部13の底面である流路面は、親水性にされている。流体排出部92が設けられた基板81の上面81bに、実施例1と同様にして、流路部13が形成された面を対向させて、基板2が組み合わせられ、送液装置91が完成する。   The counter electrode 5 and the reference electrode 7 are provided on the upper surface 81b of the substrate 81, which is the second substrate (see FIGS. 6A and 6B). On the other hand, the substrate 2, which is the first substrate, is made of, for example, PDMS in the same manner as in the first embodiment, and has a concave flow path portion 13 (however, the flow path portion 13 is not shown in FIG. 6). The flow path part 13 of FIG. 2 of Example 1 which is a structure is formed. In the channel space 15, the surface of the substrate 2 facing the upper surface 81 b of the substrate 81, that is, the channel surface that is the bottom surface of the concave channel part 13 is made hydrophilic. In the same manner as in the first embodiment, the substrate 2 is combined with the upper surface 81b of the substrate 81 provided with the fluid discharge portion 92 so that the surface on which the flow path portion 13 is formed, and the liquid feeding device 91 is completed. .

送液装置91では、第2の基板として、ガラス基板1(実施例1、2参照)の代わりに、アクリル板を用いて基板81を作製する。アクリル板を用いると貫通孔を容易に形成できるという利点がある。なお、本実施例では、基板81は、アクリル板を用いて作製しているが、親水性で(又は親水性にでき)貫通孔が形成できる基板であれば、アクリル板には限られない。本実施例においても、基板81は、実施例1、2と同様に、例えばガラスを用いて作製してもよいし、表面にガラス(SiO)層を形成した基板を作製してもよい。図7に、基板81の作製工程が示される。 In the liquid feeding device 91, a substrate 81 is produced using an acrylic plate as the second substrate instead of the glass substrate 1 (see Examples 1 and 2). The use of an acrylic plate has the advantage that the through holes can be easily formed. In this embodiment, the substrate 81 is manufactured using an acrylic plate. However, the substrate 81 is not limited to the acrylic plate as long as it is hydrophilic (or can be made hydrophilic) and can form a through hole. Also in the present embodiment, the substrate 81 may be manufactured using glass, for example, as in the first and second embodiments, or a substrate having a glass (SiO 2 ) layer formed on the surface thereof. FIG. 7 shows a manufacturing process of the substrate 81.

図7を参照しつつ、基板81の作製工程について説明する。
(1)まず、アクリルから成る基板81に貫通孔93を形成する(図7(a))。貫通孔93は、例えば直径約0.5mmであり、その後、基板81をアセトン中で洗浄する。
(2)基板81に例えば膜厚40nmのクロム層、例えば膜厚200nmの金層をスパッタリングにて形成する。これにより、貫通孔93内の側壁93aにも金層の薄膜が形成される。
(3)金層を形成した基板81上にポジ型フォトレジストをスピンコーティングし、80℃でベーキングを30分行う。
(4)フォトマスクを通し、マスクアライナーで露光後、現像、リンスを行う。
(5)基板81を金のエッチング液に浸漬して、露出した部分の金層を除去する。純水で洗浄、乾燥後、基板81をアセトン中に浸漬し、フォトレジストを溶解、除去し、アセトンで洗浄する。
(6)基板81をクロムのエッチング液に浸漬して、露出した部分のクロム層を除去する。その後、純水で洗浄・乾燥する。こうして、作用電極94が形成される(図7(b))。
(7)上記と同様にして、基板81の上面81bにも参照電極7の下地、及び対極5を構成する金層を形成する。
(8)基板81の上面81bに、上記と同様にして、ポジ型フォトレジストをスピンコーティングし、80℃でベーキングを30分行った後、フォトマスクを通し、マスクアライナーで露光を行う。
(9)基板81をトルエン中に浸漬し、ポストベークを行った後、露光したフォトレジストを現像液中で現像後、純水でリンスし、乾燥させる。
(10)(9)の基板81上に例えば膜厚400nmの銀層をスパッタリングにて形成する。
(11)基板81をアセトン中に浸漬し、フォトレジストを溶解、除去し、アセトンで洗浄する。これにより、基板81の上面81bに、参照電極7が形成される。
A manufacturing process of the substrate 81 will be described with reference to FIGS.
(1) First, a through hole 93 is formed in a substrate 81 made of acrylic (FIG. 7A). The through hole 93 has a diameter of about 0.5 mm, for example, and then the substrate 81 is cleaned in acetone.
(2) A chromium layer having a thickness of 40 nm, for example, a gold layer having a thickness of 200 nm is formed on the substrate 81 by sputtering. Thereby, a thin film of a gold layer is also formed on the side wall 93 a in the through hole 93.
(3) A positive photoresist is spin-coated on the substrate 81 on which the gold layer is formed, and baking is performed at 80 ° C. for 30 minutes.
(4) Through a photomask, after exposure with a mask aligner, development and rinsing are performed.
(5) The substrate 81 is immersed in a gold etching solution to remove the exposed gold layer. After washing with pure water and drying, the substrate 81 is immersed in acetone to dissolve and remove the photoresist, and then washed with acetone.
(6) The substrate 81 is immersed in a chromium etching solution to remove the exposed portion of the chromium layer. Then, it is washed and dried with pure water. Thus, the working electrode 94 is formed (FIG. 7B).
(7) Similarly to the above, the base layer of the reference electrode 7 and the gold layer constituting the counter electrode 5 are formed on the upper surface 81 b of the substrate 81.
(8) A positive photoresist is spin-coated on the upper surface 81b of the substrate 81 in the same manner as described above, followed by baking at 80 ° C. for 30 minutes, and then passing through a photomask and exposing with a mask aligner.
(9) The substrate 81 is immersed in toluene and post-baked, and then the exposed photoresist is developed in a developer, rinsed with pure water, and dried.
(10) A silver layer having a thickness of, for example, 400 nm is formed on the substrate 81 of (9) by sputtering.
(11) The substrate 81 is immersed in acetone, the photoresist is dissolved and removed, and washed with acetone. As a result, the reference electrode 7 is formed on the upper surface 81 b of the substrate 81.

本実施例の構成においては、既に述べた本発明の原理を利用して、流路空間15中を送液される流体104を、流体排出部92を用いて排出することができる。つまり、流路空間15中に流体104が存在する場合において、作用電極94に電圧を印加していない状態では、貫通孔93の側壁93aは疎水性であるため、流体104は貫通孔93から排出されず、流路空間15内に留まったままである。ここで、作用電極94に電圧を印加すると、作用電極94は濡れやすくなる。流体104は、濡れやすくなった作用電極94、言い換えれば、濡れやすくなった貫通孔93aの側壁93aに濡れ広がり、貫通孔93から基板81の下部に流出される。そして、基板81の下部に密着した多孔性物質95により、流出した流体104は吸い取られ、流体104を排出することができる。   In the configuration of this embodiment, the fluid 104 fed through the flow path space 15 can be discharged using the fluid discharge portion 92 by using the principle of the present invention described above. That is, when the fluid 104 is present in the flow path space 15, the fluid 104 is discharged from the through hole 93 because the side wall 93 a of the through hole 93 is hydrophobic when no voltage is applied to the working electrode 94. Instead, it remains in the flow path space 15. Here, when a voltage is applied to the working electrode 94, the working electrode 94 is easily wetted. The fluid 104 wets and spreads on the working electrode 94 that is easily wetted, in other words, the side wall 93a of the through hole 93a that is easily wetted, and flows out from the through hole 93 to the lower portion of the substrate 81. The fluid 104 that has flowed out is sucked by the porous material 95 that is in close contact with the lower portion of the substrate 81, and the fluid 104 can be discharged.

図8は、送液装置91の側断面図であり、流体104が排出される様子を示す。図8を参照しつつ、簡単に本実施例の作用について説明する。送液装置91の流路空間15には、流体104が満たされた状態にある(図8(a))。作用電極94が印加されていない状態では、貫通孔93の側壁93aは疎水性の状態にあるため、流体104は、貫通孔93から流出できず、流路空間15に留まったままである。   FIG. 8 is a side cross-sectional view of the liquid feeding device 91 and shows a state where the fluid 104 is discharged. The operation of the present embodiment will be briefly described with reference to FIG. The flow path space 15 of the liquid delivery device 91 is in a state of being filled with the fluid 104 (FIG. 8A). In a state where the working electrode 94 is not applied, the side wall 93a of the through hole 93 is in a hydrophobic state, so that the fluid 104 cannot flow out of the through hole 93 and remains in the flow path space 15.

次に、作用電極94に電圧を印加する。すると、貫通孔93の側壁93aが濡れやすくなり、流路空間15内の流体104は、側壁93aを濡れ広がって、貫通孔93を通過し、基板81の下部に密着して設けられた多孔性物質95内にしみ出す(図8(b))。   Next, a voltage is applied to the working electrode 94. As a result, the side wall 93a of the through hole 93 is easily wetted, and the fluid 104 in the flow path space 15 wets and spreads the side wall 93a, passes through the through hole 93, and is provided in close contact with the lower portion of the substrate 81. The substance 95 oozes out (FIG. 8B).

多孔性物質95は勢いよく流体104を吸引し、流路空間15内の流体104は、多孔性物質95により吸い取られていく。こうして、流路空間15から流体104が排出される(図8(c))。   The porous substance 95 vigorously sucks the fluid 104, and the fluid 104 in the flow path space 15 is sucked by the porous substance 95. Thus, the fluid 104 is discharged from the flow path space 15 (FIG. 8C).

本実施例では、参照電極7と対極5とを、作用電極94とは異なる面(上面81b)に形成している。これにより、流路空間15中を基板81の上面81bに沿って進む流体の送液に、悪影響が出ない利点がある。一方、本実施例とは異なり、参照電極7と対極5、及び作用電極94を同じ面に形成する構成にすることもできる。この場合、作用電極94は貫通孔93の側壁93aの領域のみに形成するようにする。これにより、流体が流路空間15中を送液される際に悪影響がでないようにできる。   In the present embodiment, the reference electrode 7 and the counter electrode 5 are formed on a surface (upper surface 81 b) different from the working electrode 94. As a result, there is an advantage that no adverse effect is exerted on the liquid feeding of the fluid traveling in the flow path space 15 along the upper surface 81 b of the substrate 81. On the other hand, unlike the present embodiment, the reference electrode 7, the counter electrode 5, and the working electrode 94 may be formed on the same surface. In this case, the working electrode 94 is formed only in the region of the side wall 93 a of the through hole 93. Thereby, when a fluid is sent in the flow path space 15, it can be made not to have a bad influence.

なお、本実施例では、流体排出部92の構成として多孔性物質95を基板81の下部に密着させる構成としたが、これは流体を排出する一例にすぎず、流体を排出できれば、このような構成には限られない。   In this embodiment, the porous material 95 is in close contact with the lower portion of the substrate 81 as the structure of the fluid discharge portion 92. However, this is only an example of discharging the fluid. The configuration is not limited.

(変形例)
実施例3で説明した送液装置91を複数組み合わせることも可能である。図9は、実施例3の送液装置91の変形例に係る送液装置101の模式的な平面図である。図9においても、送液装置101の構造の理解を容易にするため、対極5や参照極7や貫通孔93が形成された第2の基板が見える状態が、仮想的に示されている。
(Modification)
It is also possible to combine a plurality of liquid feeding devices 91 described in the third embodiment. FIG. 9 is a schematic plan view of a liquid feeding device 101 according to a modification of the liquid feeding device 91 according to the third embodiment. Also in FIG. 9, in order to facilitate understanding of the structure of the liquid delivery device 101, a state where the second substrate on which the counter electrode 5, the reference electrode 7, and the through-hole 93 are formed is virtually shown.

送液装置101は、実施例3の送液装置91と同様の送液装置部91a〜91cが複数組み合わせられて接続されており、各送液装置部91a〜91cの一方の端部には、実施例1で説明したような流体の導入口8が設けられている。さらに、送液装置部91a〜91cのもう一方の端部、つまり、導入口8とは反対側の各送液装置部91a〜91cの端部には、複数の流体を混合させる反応用区画102が形成されている。さらに具体的には、反応用区画102は、各送液装置部91a〜91cが接続される箇所、言い換えれば、各送液装置部91a〜91cで送液されてきた各流体が出会う箇所に、形成されている。   The liquid feeding device 101 is connected by combining a plurality of liquid feeding device portions 91a to 91c similar to the liquid feeding device 91 of the third embodiment, and at one end of each of the liquid feeding device portions 91a to 91c, The fluid inlet 8 as described in the first embodiment is provided. Furthermore, the reaction compartment 102 in which a plurality of fluids are mixed at the other end of the liquid delivery device portions 91a to 91c, that is, the end of each of the liquid delivery device portions 91a to 91c on the side opposite to the introduction port 8. Is formed. More specifically, the reaction compartment 102 is provided at a location where each of the liquid delivery device portions 91a to 91c is connected, in other words, at a location where each fluid sent by each of the liquid delivery device portions 91a to 91c meets, Is formed.

送液装置部91a〜91cの作用、効果については、実施例3の送液装置91と同様のため、説明を省略する。このような構成の送液装置101を用いれば、複数の流体を順次、導入口8から注入し、例えば毛管現象により送液装置部91a〜91cの流路を送液し、貫通孔93から排出し、必要な流体のみを反応用区画102に送液することができる。さらには、反応用区画102で混合した後の不要な流体を貫通孔93から排出することができ、流体の注入から送液、排出を含めた、一連の送液システムを容易に構築することができる。   About the effect | action and effect of liquid feeding apparatus part 91a-91c, since it is the same as that of the liquid feeding apparatus 91 of Example 3, description is abbreviate | omitted. If the liquid feeding device 101 having such a configuration is used, a plurality of fluids are sequentially injected from the introduction port 8, for example, are fed through the flow paths of the liquid feeding device portions 91 a to 91 c by capillary action, and are discharged from the through holes 93. In addition, only the necessary fluid can be sent to the reaction compartment 102. Furthermore, unnecessary fluid after mixing in the reaction compartment 102 can be discharged from the through-hole 93, and a series of liquid supply systems including liquid injection, liquid supply, and discharge can be easily constructed. it can.

また、上記変形例に加えて、上述した実施例1〜3を適宜組み合わせた送液装置を作製することも、もちろん可能である。   In addition to the above-described modification, it is of course possible to manufacture a liquid feeding device in which the above-described first to third embodiments are appropriately combined.

なお、上記各実施例や変形例では、金等の金属から成る作用電極上に直接、流体を接触させているが、上記各実施例や変形例においても、原理(図1参照)で既述したように作用電極上に絶縁層を設けた構成にし、絶縁層に流体を接触させても同様の効果を得ることが出来る。また、本明細書では、作用電極に流体を接触させるという意味は、作用電極に流体を直接接触させる場合の他、作用電極上に設けた絶縁層を介して間接的に作用電極に流体を接触させる場合も含まれる。本発明の作用・効果が同様に生じるからである。   In each of the above embodiments and modifications, the fluid is brought into direct contact with the working electrode made of metal such as gold. However, in each of the above embodiments and modifications, the principle (see FIG. 1) is already described. As described above, the same effect can be obtained even when the insulating layer is provided on the working electrode and a fluid is brought into contact with the insulating layer. In addition, in this specification, the meaning of bringing fluid into contact with the working electrode means that the fluid is brought into contact with the working electrode indirectly through an insulating layer provided on the working electrode, as well as when the fluid is brought into direct contact with the working electrode. It is also included in the case of This is because the actions and effects of the present invention are similarly generated.

本発明によれば、作用電極に電位を印加することにより、流体の界面張力を利用して、容易に流体の移動を制御し、スムーズに送液、排出させることができる。このため、従来の機械的なマイクロポンプ、マイクロバルブを用いて送液する場合に必要であった、流体の逆流を防止するための逆止弁(チェックバルブ)も不要となり、従来の複雑であった送液装置の構造を簡単化することができる。   According to the present invention, by applying a potential to the working electrode, it is possible to easily control the movement of the fluid using the interfacial tension of the fluid, and to smoothly feed and discharge the fluid. This eliminates the need for a check valve (check valve) to prevent the backflow of fluid, which was necessary when liquid was fed using a conventional mechanical micropump or microvalve, and was complicated in the past. In addition, the structure of the liquid delivery device can be simplified.

なお、本発明の上記各実施例では、第2の基板であるガラス基板1又は基板81と、第1の基板である基板2に形成された凹状の流路部13が有する流路面3とで挟まれる流路空間15を、流体が送液され又は排出される流路として用いた。一方、既に述べたように、第1の基板において流路部13が必ずしも凹状に形成される場合に限られない。例えば第1の基板上の平面を流路面とする構成にすることも可能である。この場合、平面状の流路面を有する第1の基板と、作用電極等が形成された第2の基板とで、送液装置が構成される。また、流路部を凸状に形成しその上面を流路面とする第1の基板と、作用電極等が形成された第2の基板とで、送液装置を構成することも考えられる。   In each of the above embodiments of the present invention, the glass substrate 1 or the substrate 81 as the second substrate and the flow path surface 3 of the concave flow path portion 13 formed on the substrate 2 as the first substrate. The sandwiched channel space 15 was used as a channel through which fluid was sent or discharged. On the other hand, as already described, the flow path portion 13 is not necessarily formed in a concave shape in the first substrate. For example, a plane on the first substrate may be used as the flow path surface. In this case, a liquid feeding device is configured by the first substrate having a planar flow path surface and the second substrate on which the working electrode and the like are formed. It is also conceivable to form a liquid feeding device with a first substrate having a channel portion formed in a convex shape and having an upper surface as a channel surface, and a second substrate on which a working electrode and the like are formed.

以上、本発明に係る送液装置の最良の形態を実施例に基づいて説明したが、本発明は特にこのような実施例に限定されることなく、特許請求の範囲記載の技術的事項の範囲内でいろいろな実施例があることはいうまでもない。   The best mode of the liquid delivery device according to the present invention has been described based on the embodiments. However, the present invention is not particularly limited to such embodiments, and the scope of the technical matters described in the claims. It goes without saying that there are various embodiments within.

本発明の活用例として、対象物を局所に注入する等の医学、生物学の基礎研究、DNA、タンパク質等の微小分析システムや、細胞培養・分離検出等の実験室を微小化して集積化させた実験室チップや、センサ、マイクロリアクター等が挙げられる。   Examples of the use of the present invention include miniaturization and integration of laboratories for medical and basic research such as local injection of objects, microanalysis systems such as DNA and proteins, and cell culture / separation detection. Laboratory chips, sensors, microreactors and the like.

エレクトロウェッティングの原理を示す模式的な図である。It is a schematic diagram which shows the principle of electrowetting. 図2(a)(b)は、本発明の実施例1に係る送液装置を分解した平面図であり、図2(c)は、図2(a)の基板2と図2(b)のガラス基板1とを組み合わせた場合における、上から見た仮想的な平面図であり、図2(d)は、図2(c)の送液装置11を、X―X’で切断した流路部近傍の拡大断面図である。FIGS. 2A and 2B are exploded plan views of the liquid delivery device according to the first embodiment of the present invention, and FIG. 2C shows the substrate 2 in FIG. 2A and FIG. 2B. FIG. 2D is a virtual plan view seen from above when combined with the glass substrate 1 of FIG. 2. FIG. 2D is a flow obtained by cutting the liquid delivery device 11 of FIG. It is an expanded sectional view near a road part. 図3(a)(b)は、図2(c)で示される送液装置11内に、送液される流体が配置されている状態が示されており、図3(c)(d)は、実施例1に係る送液装置の側断面図である。3 (a) and 3 (b) show a state in which the fluid to be fed is arranged in the liquid feeding device 11 shown in FIG. 2 (c). FIGS. 3 (c) and 3 (d) These are sectional side views of the liquid feeding apparatus which concerns on Example 1. FIG. 図4(a)(b)は、本発明の実施例2に係る送液装置を分解した平面図であり、図4(c)は、完成された送液装置について、図4(b)のX―X’で切断した流路近傍の拡大断面図であり、図4(d)(e)は、夫々ガラス基板1について、図4(a)のX−X’、Y−Y’で切断した流路近傍の拡大断面図である。4 (a) and 4 (b) are exploded plan views of the liquid feeding device according to the second embodiment of the present invention, and FIG. 4 (c) shows the completed liquid feeding device in FIG. 4 (b). 4D is an enlarged cross-sectional view of the vicinity of the flow path cut along XX ′. FIGS. 4D and 4E show the glass substrate 1 cut along XX ′ and YY ′ in FIG. It is an expanded sectional view of the flow path vicinity. 図5(a)(b)は、図4で示される送液装置内に、送液される流体が配置されている状態を示す模式的な平面図である。FIGS. 5A and 5B are schematic plan views showing a state in which the fluid to be fed is arranged in the liquid feeding device shown in FIG. 図6(a)は、本発明の実施例3に係る送液装置を構成する基板の平面図であり、図6(b)は、本発明の実施例3に係る送液装置の部分的な側断面図である。FIG. 6A is a plan view of a substrate constituting the liquid feeding device according to the third embodiment of the present invention, and FIG. 6B is a partial view of the liquid feeding device according to the third embodiment of the present invention. It is a sectional side view. 実施例3に係る送液装置の基板の作製工程を示す図である。It is a figure which shows the preparation process of the board | substrate of the liquid feeding apparatus which concerns on Example 3. FIG. 流体が排出される様子を示す、実施例3に係る送液装置の部分的な側断面図である。It is a partial sectional side view of the liquid feeding apparatus which concerns on Example 3 which shows a mode that a fluid is discharged | emitted. 実施例3の変形例に係る送液装置の模式的な平面図である。10 is a schematic plan view of a liquid delivery device according to a modification of Example 3. FIG.

符号の説明Explanation of symbols

1 ガラス基板
1a、2a 面
2、34、81 基板
3 流路面
3d 端部
4a、6a 末端部
4、94 作用電極
5 対極
6 疎水性領域
7、33 参照電極
8 導入口
10 液溜め部(リザーバー)
11、61、91、101 送液装置
13 流路部
14、64、104 流体
15 流路空間
18 周辺部
31 液滴
33a、33b、33c 矢印
34a 金属基板
34b 膜層
62 混合電極
63 親水性の領域
64a、64b 流路
81a 下面
81b 上面
91a、91b、91c 送液装置部
93 貫通孔
93a 側壁
95 多孔性物質
102 反応用区画
DESCRIPTION OF SYMBOLS 1 Glass substrate 1a, 2a surface 2, 34, 81 board | substrate 3 flow-path surface 3d end part 4a, 6a terminal part 4, 94 working electrode 5 counter electrode 6 hydrophobic region 7, 33 reference electrode 8 introduction port 10 liquid reservoir part (reservoir)
DESCRIPTION OF SYMBOLS 11, 61, 91, 101 Liquid sending apparatus 13 Flow path part 14, 64, 104 Fluid 15 Flow path space 18 Peripheral part 31 Droplet 33a, 33b, 33c Arrow 34a Metal substrate 34b Film layer 62 Mixed electrode 63 Hydrophilic area | region 64a, 64b Flow path 81a Lower surface 81b Upper surface 91a, 91b, 91c Liquid feeding device part 93 Through-hole 93a Side wall 95 Porous substance 102 Reaction compartment

Claims (7)

疎水性領域が一部に形成された親水性の流路面を有する、第1の基板と、
前記流路面と対向する位置は親水性にされており、前記疎水性領域に対向する位置に作用電極が形成された第2の基板と、
参照電極と、を具備し、前記流路面と前記第2の基板との間は距離を有して配置されることにより、前記流路面と前記第2の基板との間に、流路空間が形成される送液装置であって、
流体を前記第1の基板と前記第2の基板との間に配置し、かつ、該流体を、前記参照電極と前記作用電極とに接触させた状態で、前記参照電極と前記作用電極との間に電位差を生じさせることにより、前記流体が前記流路空間を移動することについて制御を行うことを特徴とする送液装置。
A first substrate having a hydrophilic channel surface partially formed with a hydrophobic region;
A position facing the flow path surface is made hydrophilic; a second substrate having a working electrode formed at a position facing the hydrophobic region;
A flow path space between the flow path surface and the second substrate by disposing a distance between the flow path surface and the second substrate. A liquid delivery device to be formed,
A fluid is disposed between the first substrate and the second substrate, and the fluid is in contact with the reference electrode and the working electrode. A liquid feeding device characterized by controlling the movement of the fluid in the flow path space by generating a potential difference therebetween.
疎水性領域が一部に形成された親水性の流路面を有する、第1の基板と、
参照電極が形成され、前記流路面と対向する位置は親水性にされており、前記疎水性領域に対向する位置に作用電極が形成された第2の基板と、を具備し、前記流路面と前記第2の基板との間は距離を有して配置されることにより、前記流路面と前記第2の基板との間に、流路空間が形成される送液装置であって、
流体を前記第1の基板と前記第2の基板との間に配置し、かつ、該流体を、前記参照電極と前記作用電極とに接触させた状態で、前記参照電極と前記作用電極との間に電位差を生じさせることにより、前記流体が前記流路空間を移動することについて制御を行うことを特徴とする送液装置。
A first substrate having a hydrophilic channel surface partially formed with a hydrophobic region;
A second electrode on which a reference electrode is formed, a position facing the flow path surface is made hydrophilic, and a working electrode is formed at a position facing the hydrophobic region, and the flow path surface A liquid feeding device in which a flow path space is formed between the flow path surface and the second substrate by being disposed at a distance from the second substrate,
A fluid is disposed between the first substrate and the second substrate, and the fluid is in contact with the reference electrode and the working electrode. A liquid feeding device characterized by controlling the movement of the fluid in the flow path space by generating a potential difference therebetween.
疎水性領域が一部に形成された親水性の流路面を有する、第1の基板と、
参照電極と対極とが形成され、前記流路面と対向する位置は親水性にされており、前記疎水性領域に対向する位置に作用電極が形成された第2の基板と、を具備し、前記流路面と前記第2の基板との間は距離を有して配置されることにより、前記流路面と前記第2の基板との間に、流路空間が形成される送液装置であって、
流体を前記第1の基板と前記第2の基板との間に配置し、かつ、該流体を、前記参照電極と前記対極と前記作用電極とに接触させた状態で、前記参照電極と前記作用電極との間に電位差を生じさせることにより、前記流体が前記流路空間を移動することについて制御を行うことを特徴とする送液装置。
A first substrate having a hydrophilic channel surface partially formed with a hydrophobic region;
A second electrode on which a reference electrode and a counter electrode are formed, a position facing the channel surface is made hydrophilic, and a working electrode is formed at a position facing the hydrophobic region, and A liquid delivery device in which a flow path space is formed between the flow path surface and the second substrate by disposing the flow path surface and the second substrate with a distance. ,
In a state where a fluid is disposed between the first substrate and the second substrate, and the fluid is in contact with the reference electrode, the counter electrode, and the working electrode, the reference electrode and the action A liquid feeding device that controls the movement of the fluid in the flow path space by generating a potential difference with an electrode.
前記作用電極上に絶縁層が設けられることを特徴とする請求項1から3のいずれかに記載の送液装置。   The liquid feeding device according to claim 1, wherein an insulating layer is provided on the working electrode. 前記第2の基板には、前記流路空間を移動する前記流体を混合させるための混合電極が設けられることを特徴とする請求項1から4のいずれかに記載の送液装置。   5. The liquid feeding device according to claim 1, wherein a mixing electrode for mixing the fluid moving in the flow path space is provided on the second substrate. 6. 前記第2の基板には、前記流路空間を移動する前記流体を排出させるための流体排出部が設けられることを特徴とする請求項1から5のいずれかに記載の送液装置。   6. The liquid feeding device according to claim 1, wherein the second substrate is provided with a fluid discharge portion for discharging the fluid moving through the flow path space. 前記流体中の陽イオンの吸着により界面張力の変化が引き起こされる電位の範囲内に前記作用電極の電位が設定されることを特徴とする請求項1から6のいずれかに記載の送液装置。   The liquid feeding device according to any one of claims 1 to 6, wherein the potential of the working electrode is set within a potential range in which a change in interfacial tension is caused by adsorption of cations in the fluid.
JP2005036152A 2005-02-14 2005-02-14 Liquid feeding device Expired - Fee Related JP4632300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005036152A JP4632300B2 (en) 2005-02-14 2005-02-14 Liquid feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005036152A JP4632300B2 (en) 2005-02-14 2005-02-14 Liquid feeding device

Publications (2)

Publication Number Publication Date
JP2006220606A true JP2006220606A (en) 2006-08-24
JP4632300B2 JP4632300B2 (en) 2011-02-16

Family

ID=36983024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005036152A Expired - Fee Related JP4632300B2 (en) 2005-02-14 2005-02-14 Liquid feeding device

Country Status (1)

Country Link
JP (1) JP4632300B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080684A (en) * 2006-09-28 2008-04-10 Brother Ind Ltd Liquid transfer device
KR100826584B1 (en) 2007-04-24 2008-04-30 한국생산기술연구원 Fluidic channeling actuator for the biochip analysis
WO2009034706A1 (en) * 2007-09-10 2009-03-19 Riso Kagaku Corporation Liquid feeding device, and liquid-feed controlling method
JP2010085334A (en) * 2008-10-01 2010-04-15 Sharp Corp Liquid feeding structure with electrowetting valve, microanalyzing chip using the same and analysis device
JP2010085333A (en) * 2008-10-01 2010-04-15 Sharp Corp Liquid feeding structure, microanalyzing chip using the same and analysis device
JP2010151683A (en) * 2008-12-25 2010-07-08 Sharp Corp Micro-analysis chip
JP2010208062A (en) * 2009-03-09 2010-09-24 Riso Kagaku Corp Printer and printing control method
JP2011027717A (en) * 2009-06-30 2011-02-10 Nippon Dempa Kogyo Co Ltd Sensing device
JP2011058943A (en) * 2009-09-09 2011-03-24 Univ Of Tsukuba Liquid feeding device
JP2011169695A (en) * 2010-02-17 2011-09-01 Sharp Corp Liquid feeder
JP2011174949A (en) * 2011-06-15 2011-09-08 Sharp Corp Micro-analysis chip
JP2012008029A (en) * 2010-06-25 2012-01-12 Nippon Dempa Kogyo Co Ltd Sensing device
JP2012021956A (en) * 2010-07-16 2012-02-02 Sharp Corp Flow channel structure and method for manufacturing the same, and analysis chip and analyzer
WO2012111429A1 (en) 2011-02-16 2012-08-23 Canon Kabushiki Kaisha Flow passage device and method of transporting liquid using the same
JP2012172994A (en) * 2011-02-17 2012-09-10 Hamamatsu Photonics Kk Surface processing method and surface processing device of specimen operating element
US9086338B2 (en) 2010-06-25 2015-07-21 Nihon Dempa Kogyo Co., Ltd. Sensing device
JP2017504002A (en) * 2013-10-23 2017-02-02 ザ ガバニング カウンシル オブ ザ ユニバーシティ オブ トロント Printed digital microfluidic device, method of use and manufacturing thereof
JP2017519618A (en) * 2014-04-25 2017-07-20 バークレー ライツ,インコーポレイテッド Providing DEP manipulation devices and controllable electrowetting devices in the same microfluidic device
JP2019002935A (en) * 2011-09-21 2019-01-10 サクラ ファインテック ユー.エス.エー., インコーポレイテッド Automatic dye system and reaction chamber
US10232374B2 (en) 2010-05-05 2019-03-19 Miroculus Inc. Method of processing dried samples using digital microfluidic device
US10464067B2 (en) 2015-06-05 2019-11-05 Miroculus Inc. Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling
US10596572B2 (en) 2016-08-22 2020-03-24 Miroculus Inc. Feedback system for parallel droplet control in a digital microfluidic device
US10695762B2 (en) 2015-06-05 2020-06-30 Miroculus Inc. Evaporation management in digital microfluidic devices
CN111630395A (en) * 2018-01-19 2020-09-04 日东电工株式会社 Flow path, measuring tape, and measuring device
US10799865B2 (en) 2015-10-27 2020-10-13 Berkeley Lights, Inc. Microfluidic apparatus having an optimized electrowetting surface and related systems and methods
US11007520B2 (en) 2016-05-26 2021-05-18 Berkeley Lights, Inc. Covalently modified surfaces, kits, and methods of preparation and use
US11192107B2 (en) 2014-04-25 2021-12-07 Berkeley Lights, Inc. DEP force control and electrowetting control in different sections of the same microfluidic apparatus
US11253860B2 (en) 2016-12-28 2022-02-22 Miroculus Inc. Digital microfluidic devices and methods
US11311882B2 (en) 2017-09-01 2022-04-26 Miroculus Inc. Digital microfluidics devices and methods of using them
US11365381B2 (en) 2015-04-22 2022-06-21 Berkeley Lights, Inc. Microfluidic cell culture
US11413617B2 (en) 2017-07-24 2022-08-16 Miroculus Inc. Digital microfluidics systems and methods with integrated plasma collection device
US11524298B2 (en) 2019-07-25 2022-12-13 Miroculus Inc. Digital microfluidics devices and methods of use thereof
US11623219B2 (en) 2017-04-04 2023-04-11 Miroculus Inc. Digital microfluidics apparatuses and methods for manipulating and processing encapsulated droplets
US11738345B2 (en) 2019-04-08 2023-08-29 Miroculus Inc. Multi-cartridge digital microfluidics apparatuses and methods of use
US11772093B2 (en) 2022-01-12 2023-10-03 Miroculus Inc. Methods of mechanical microfluidic manipulation
JP7458872B2 (en) 2020-04-13 2024-04-01 株式会社日立ハイテク Droplet transport device, analysis system and analysis method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6496111B2 (en) * 2014-09-04 2019-04-03 国立大学法人 筑波大学 Liquid feed control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142198A (en) * 1991-04-26 1993-06-08 Shimadzu Corp Sample injection device of capillary electrophoretic apparatus
JPH10267801A (en) * 1997-03-24 1998-10-09 Advance Co Ltd Handling apparatus for liqiud fine particle
JP2004000935A (en) * 2002-04-01 2004-01-08 Xerox Corp Apparatus for moving fluid by using electrostatic force
JP2004216899A (en) * 2003-01-15 2004-08-05 Samsung Electronics Co Ltd Ink discharging method and inkjet printing head adopting the same
JP2005510347A (en) * 2001-11-26 2005-04-21 ケック グラデュエイト インスティテュート Methods, devices, and objects for microfluidic control via electrowetting for chemical, biochemical, biological assays, etc.
JP2005199231A (en) * 2004-01-19 2005-07-28 Tsukuba Technology Seed Kk Liquid sending apparatus and driving method therefor
JP2006500596A (en) * 2002-09-24 2006-01-05 デューク・ユニバーシティ Method and apparatus for manipulating droplets using electrowetting technology
WO2006003293A2 (en) * 2004-06-04 2006-01-12 Universite Des Sciences Et Technologies De Lille Device for handling drops for biochemical analysis, method for producing said device and a system for microfludic analysis

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142198A (en) * 1991-04-26 1993-06-08 Shimadzu Corp Sample injection device of capillary electrophoretic apparatus
JPH10267801A (en) * 1997-03-24 1998-10-09 Advance Co Ltd Handling apparatus for liqiud fine particle
JP2005510347A (en) * 2001-11-26 2005-04-21 ケック グラデュエイト インスティテュート Methods, devices, and objects for microfluidic control via electrowetting for chemical, biochemical, biological assays, etc.
JP2004000935A (en) * 2002-04-01 2004-01-08 Xerox Corp Apparatus for moving fluid by using electrostatic force
JP2006500596A (en) * 2002-09-24 2006-01-05 デューク・ユニバーシティ Method and apparatus for manipulating droplets using electrowetting technology
JP2004216899A (en) * 2003-01-15 2004-08-05 Samsung Electronics Co Ltd Ink discharging method and inkjet printing head adopting the same
JP2005199231A (en) * 2004-01-19 2005-07-28 Tsukuba Technology Seed Kk Liquid sending apparatus and driving method therefor
WO2006003293A2 (en) * 2004-06-04 2006-01-12 Universite Des Sciences Et Technologies De Lille Device for handling drops for biochemical analysis, method for producing said device and a system for microfludic analysis
JP2008502882A (en) * 2004-06-04 2008-01-31 ユニベールシテ・デ・スジャンス・エ・テクノロジー・ドゥ・リル Apparatus for handling droplets for biochemical analysis, method for manufacturing said apparatus and microfluidic analysis

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080684A (en) * 2006-09-28 2008-04-10 Brother Ind Ltd Liquid transfer device
KR100826584B1 (en) 2007-04-24 2008-04-30 한국생산기술연구원 Fluidic channeling actuator for the biochip analysis
US8356631B2 (en) 2007-09-10 2013-01-22 Riso Kagaku Corporation Fluid transport device and fluid transport control method
WO2009034706A1 (en) * 2007-09-10 2009-03-19 Riso Kagaku Corporation Liquid feeding device, and liquid-feed controlling method
JP2010085334A (en) * 2008-10-01 2010-04-15 Sharp Corp Liquid feeding structure with electrowetting valve, microanalyzing chip using the same and analysis device
JP2010085333A (en) * 2008-10-01 2010-04-15 Sharp Corp Liquid feeding structure, microanalyzing chip using the same and analysis device
JP4762303B2 (en) * 2008-12-25 2011-08-31 シャープ株式会社 Micro analysis chip
JP2010151683A (en) * 2008-12-25 2010-07-08 Sharp Corp Micro-analysis chip
JP2010208062A (en) * 2009-03-09 2010-09-24 Riso Kagaku Corp Printer and printing control method
JP2011027717A (en) * 2009-06-30 2011-02-10 Nippon Dempa Kogyo Co Ltd Sensing device
US8377380B2 (en) 2009-06-30 2013-02-19 Nihon Dempa Kogyo Co., Ltd. Sensing device
JP2011058943A (en) * 2009-09-09 2011-03-24 Univ Of Tsukuba Liquid feeding device
JP2011169695A (en) * 2010-02-17 2011-09-01 Sharp Corp Liquid feeder
US11000850B2 (en) 2010-05-05 2021-05-11 The Governing Council Of The University Of Toronto Method of processing dried samples using digital microfluidic device
US10232374B2 (en) 2010-05-05 2019-03-19 Miroculus Inc. Method of processing dried samples using digital microfluidic device
JP2012008029A (en) * 2010-06-25 2012-01-12 Nippon Dempa Kogyo Co Ltd Sensing device
US9086338B2 (en) 2010-06-25 2015-07-21 Nihon Dempa Kogyo Co., Ltd. Sensing device
JP2012021956A (en) * 2010-07-16 2012-02-02 Sharp Corp Flow channel structure and method for manufacturing the same, and analysis chip and analyzer
WO2012111429A1 (en) 2011-02-16 2012-08-23 Canon Kabushiki Kaisha Flow passage device and method of transporting liquid using the same
EP2676145A4 (en) * 2011-02-16 2017-09-27 C/o Canon Kabushiki Kaisha Flow passage device and method of transporting liquid using the same
JP2012172994A (en) * 2011-02-17 2012-09-10 Hamamatsu Photonics Kk Surface processing method and surface processing device of specimen operating element
JP2011174949A (en) * 2011-06-15 2011-09-08 Sharp Corp Micro-analysis chip
JP2019002935A (en) * 2011-09-21 2019-01-10 サクラ ファインテック ユー.エス.エー., インコーポレイテッド Automatic dye system and reaction chamber
JP2017504002A (en) * 2013-10-23 2017-02-02 ザ ガバニング カウンシル オブ ザ ユニバーシティ オブ トロント Printed digital microfluidic device, method of use and manufacturing thereof
JP2017519618A (en) * 2014-04-25 2017-07-20 バークレー ライツ,インコーポレイテッド Providing DEP manipulation devices and controllable electrowetting devices in the same microfluidic device
US11192107B2 (en) 2014-04-25 2021-12-07 Berkeley Lights, Inc. DEP force control and electrowetting control in different sections of the same microfluidic apparatus
US11365381B2 (en) 2015-04-22 2022-06-21 Berkeley Lights, Inc. Microfluidic cell culture
US10464067B2 (en) 2015-06-05 2019-11-05 Miroculus Inc. Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling
US11471888B2 (en) 2015-06-05 2022-10-18 Miroculus Inc. Evaporation management in digital microfluidic devices
US11944974B2 (en) 2015-06-05 2024-04-02 Miroculus Inc. Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling
US11097276B2 (en) 2015-06-05 2021-08-24 mirOculus, Inc. Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling
US10695762B2 (en) 2015-06-05 2020-06-30 Miroculus Inc. Evaporation management in digital microfluidic devices
US11890617B2 (en) 2015-06-05 2024-02-06 Miroculus Inc. Evaporation management in digital microfluidic devices
US11964275B2 (en) 2015-10-27 2024-04-23 Berkeley Lights, Inc. Microfluidic apparatus having an optimized electrowetting surface and related systems and methods
US10799865B2 (en) 2015-10-27 2020-10-13 Berkeley Lights, Inc. Microfluidic apparatus having an optimized electrowetting surface and related systems and methods
US11801508B2 (en) 2016-05-26 2023-10-31 Berkeley Lights, Inc. Covalently modified surfaces, kits, and methods of preparation and use
US11007520B2 (en) 2016-05-26 2021-05-18 Berkeley Lights, Inc. Covalently modified surfaces, kits, and methods of preparation and use
US10596572B2 (en) 2016-08-22 2020-03-24 Miroculus Inc. Feedback system for parallel droplet control in a digital microfluidic device
US11298700B2 (en) 2016-08-22 2022-04-12 Miroculus Inc. Feedback system for parallel droplet control in a digital microfluidic device
US11253860B2 (en) 2016-12-28 2022-02-22 Miroculus Inc. Digital microfluidic devices and methods
US11833516B2 (en) 2016-12-28 2023-12-05 Miroculus Inc. Digital microfluidic devices and methods
US11623219B2 (en) 2017-04-04 2023-04-11 Miroculus Inc. Digital microfluidics apparatuses and methods for manipulating and processing encapsulated droplets
US11413617B2 (en) 2017-07-24 2022-08-16 Miroculus Inc. Digital microfluidics systems and methods with integrated plasma collection device
US11857969B2 (en) 2017-07-24 2024-01-02 Miroculus Inc. Digital microfluidics systems and methods with integrated plasma collection device
US11311882B2 (en) 2017-09-01 2022-04-26 Miroculus Inc. Digital microfluidics devices and methods of using them
CN111630395A (en) * 2018-01-19 2020-09-04 日东电工株式会社 Flow path, measuring tape, and measuring device
US11738345B2 (en) 2019-04-08 2023-08-29 Miroculus Inc. Multi-cartridge digital microfluidics apparatuses and methods of use
US11524298B2 (en) 2019-07-25 2022-12-13 Miroculus Inc. Digital microfluidics devices and methods of use thereof
JP7458872B2 (en) 2020-04-13 2024-04-01 株式会社日立ハイテク Droplet transport device, analysis system and analysis method
US11772093B2 (en) 2022-01-12 2023-10-03 Miroculus Inc. Methods of mechanical microfluidic manipulation
US11857961B2 (en) 2022-01-12 2024-01-02 Miroculus Inc. Sequencing by synthesis using mechanical compression

Also Published As

Publication number Publication date
JP4632300B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4632300B2 (en) Liquid feeding device
Kohlheyer et al. Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes
JP5027070B2 (en) Micro chamber
JP4256270B2 (en) Liquid feeding device and driving method thereof
JP5762389B2 (en) Microfluidic system with metering fluid loading system for microfluidic devices
US8834695B2 (en) Droplet manipulations on EWOD microelectrode array architecture
US6568910B1 (en) Micropump
US9086371B2 (en) Fluidics devices
Banerjee et al. Reconfigurable virtual electrowetting channels
JP5902426B2 (en) Liquid feeding device and liquid feeding method
JP4808406B2 (en) Method and apparatus for flowing liquid over a surface
US20100120130A1 (en) Droplet Actuator with Droplet Retention Structures
CN108291924B (en) Microfluidic device and method of filling fluid therein
EP1664725B1 (en) Electroosmotic injector pump and micro-assay device
JP2011506939A (en) Microfluidic cartridge with solution reservoir-pump chamber
Tsouris et al. Electrohydrodynamic mixing in microchannels
JP4410040B2 (en) Microfluidic control mechanism and microchip
JP2004033919A (en) Micro fluid control mechanism and microchip
KR100826584B1 (en) Fluidic channeling actuator for the biochip analysis
JP4942135B2 (en) Liquid feeding device
JP6665226B2 (en) Spacers for side-loaded EWOD devices
US20200269243A1 (en) Programmable hydraulic resistor array for microfluidic chips
JP4949506B2 (en) Channel structure, method for manufacturing the same, analysis chip, and analysis apparatus
JP2004157097A (en) Liquid control mechanism
JP5610258B2 (en) Liquid feeding device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees