JP2006213577A - Inorganic particulate agglomerate and its producing method - Google Patents

Inorganic particulate agglomerate and its producing method Download PDF

Info

Publication number
JP2006213577A
JP2006213577A JP2005029823A JP2005029823A JP2006213577A JP 2006213577 A JP2006213577 A JP 2006213577A JP 2005029823 A JP2005029823 A JP 2005029823A JP 2005029823 A JP2005029823 A JP 2005029823A JP 2006213577 A JP2006213577 A JP 2006213577A
Authority
JP
Japan
Prior art keywords
inorganic fine
inorganic
fine particles
fine particle
particle aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005029823A
Other languages
Japanese (ja)
Inventor
Teisho Ri
庭昌 李
Kunihiko Takeda
邦彦 武田
Mitsuru Tanahashi
満 棚橋
Naoki Kanayama
直樹 金山
Narihiro Matsuda
成広 松田
Maki Hirose
真樹 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Chemours Mitsui Fluoroproducts Co Ltd
Original Assignee
Nagoya University NUC
Du Pont Mitsui Fluorochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Du Pont Mitsui Fluorochemicals Co Ltd filed Critical Nagoya University NUC
Priority to JP2005029823A priority Critical patent/JP2006213577A/en
Publication of JP2006213577A publication Critical patent/JP2006213577A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic particulate agglomerate where inorganic particulates can be dispersed in a resin to a primary particle level. <P>SOLUTION: The inorganic particulate agglomerate is obtained by the steps of obtaining a solidified product by drying a mixed liquid of the inorganic particulates and an inorganic salt, removing the inorganic salt from the solidified product by using a solvent, and drying the resulted product. The inorganic particulate agglomerate is formed by coagulation force between the inorganic particulates where the coagulation force is generated by the drying performed at a temperature that surface fusion between the inorganic particulates is not caused. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、無機微粒子が表面で実質的に融着することなく無機微粒子同士の凝集力によって形成された、強度が低い無機微粒子凝集体およびその製造方法に関する。さらに詳しくは、本発明は、樹脂と溶融混合したときに、無機微粒子を物理的に一次粒子レベルまで分散させうる無機微粒子凝集体であって、無機微粒子がナノレベルで分散した、樹脂ナノコンポジットの提供が可能な無機微粒子凝集体およびその製造方法に関する。   The present invention relates to an inorganic fine particle aggregate having a low strength, which is formed by an aggregation force between inorganic fine particles without substantially fusing the inorganic fine particles on the surface, and a method for producing the same. More specifically, the present invention relates to an inorganic fine particle aggregate capable of physically dispersing inorganic fine particles to the primary particle level when melt-mixed with a resin, wherein the inorganic fine particles are dispersed at the nano level. The present invention relates to an inorganic fine particle aggregate that can be provided and a method for producing the same.

従来、様々な分野においてより高い性能を有する樹脂組成物が必要とされており、樹脂に充填剤を分散させることで物性や成型性などを改善することが行われている。
特に、特開2001−152030号公報には、多孔質ガラス或いは平均1次粒径12nmのシリカ微粒子からなる多孔体凝集体を600℃以上の温度で焼成した平均粒径100nm〜1000nmのシリカ多孔質体に金属、金属塩、無機化合物から選択される添加剤または難燃剤をあらかじめ担持させておき、樹脂と溶融混合して無機多孔質体が破砕され、平均粒径が10nm〜100nmで、前記添加剤または難燃剤を担持した粒子が樹脂中に粉砕された樹脂複合組成物とその製造方法が記載されている。
Conventionally, a resin composition having higher performance is required in various fields, and physical properties and moldability are improved by dispersing a filler in the resin.
In particular, Japanese Patent Application Laid-Open No. 2001-152030 discloses a porous silica material having an average particle size of 100 nm to 1000 nm obtained by firing a porous aggregate composed of porous glass or silica fine particles having an average primary particle size of 12 nm at a temperature of 600 ° C. or higher. An additive selected from metals, metal salts, and inorganic compounds or a flame retardant is previously supported on the body, melted and mixed with the resin, the inorganic porous body is crushed, and the average particle size is 10 nm to 100 nm. A resin composite composition in which particles carrying an agent or a flame retardant are pulverized in a resin and a method for producing the same are described.

しかし、上記公報に記載された多孔質ガラスの構造は、通常1200℃以上の高温で製造されるため、ケイ素と酸素の共有結合となっており、多孔質ガラスを破砕することは共有結合を切ることに相当し、大きなエネルギーが必要なため、樹脂との溶融混合で多孔質ガラスを破砕・分散することは極めて難しい。   However, since the structure of the porous glass described in the above publication is usually produced at a high temperature of 1200 ° C. or higher, it is a covalent bond between silicon and oxygen, and crushing the porous glass breaks the covalent bond. In particular, since large energy is required, it is extremely difficult to crush and disperse the porous glass by melt mixing with the resin.

また、平均1次粒径12nmのシリカ微粒子からなる無機微粒子の凝集体を600℃〜700℃で焼成して得られた平均粒径100nm〜1000nmの無機多孔質体は、焼成でシリカ粒子(もしくはシリカ粒子の凝集体)の表面融解によって表層だけが少し融解してお互いに融着して強固な結合を有する骨格に固化されているため、多孔質体の強度が高く(資源と素材、Vol 118,P202、2002)、溶融混合装置で樹脂と溶融混合しても、ポリスチレン(PS)と溶融混合後の無機多孔質体の平均粒径は290nmになり、無機多孔質はポリスチレン中に40nm〜100000nm(100μm)の広い分布をもち、もとの1次粒子までの破砕には成功してない(第13回高分子材料シンポジウム予稿集,P10、2003)。そのため、ポリスチレン樹脂中にある平均粒径10μm以上の多くの無機微粒子凝集焼結体の存在によって力学物性の著しい低下が現れる。   An inorganic porous body having an average particle size of 100 nm to 1000 nm obtained by firing an aggregate of inorganic fine particles composed of silica fine particles having an average primary particle size of 12 nm at 600 ° C. to 700 ° C. Since only the surface layer is slightly melted by the surface melting of the silica particle aggregate) and fused to each other and solidified into a skeleton having a strong bond, the strength of the porous body is high (resource and material, Vol 118). , P202, 2002), even if melt-mixed with a resin in a melt-mixing device, the average particle size of polystyrene (PS) and the inorganic porous material after melt-mixing is 290 nm, and the inorganic porous is 40 nm to 100,000 nm in polystyrene. It has a wide distribution of (100 μm) and has not been successfully crushed to the original primary particles (Proceedings of the 13th Symposium on Polymer Materials, P10, 2003) . For this reason, the mechanical properties remarkably deteriorate due to the presence of many inorganic fine particle aggregated sintered bodies having an average particle size of 10 μm or more in the polystyrene resin.

一方、無機微粒子或いは無機ナノ粒子(ナノメートルレベルの微粒子)を樹脂に溶融混合する場合、単位体積当たりの微粒子の凝集力は粒径が小さくなるほど大きくなるので、微粒子同士の再凝集が起こる。そのため、ナノ粒子を樹脂と直接溶融混合してもナノ粒子をそのまま樹脂中にナノ分散させることは極めて難しい。   On the other hand, when inorganic fine particles or inorganic nanoparticles (fine particles of nanometer level) are melt-mixed in a resin, the agglomeration force of fine particles per unit volume increases as the particle size decreases, so that the fine particles reaggregate. Therefore, even if the nanoparticles are directly melt-mixed with the resin, it is extremely difficult to nano-disperse the nanoparticles in the resin as they are.

更に、最近高分子材料にカーボンナノチューブ、カーボンナノファイバーのようなナノフィラーを入れて溶融混合過程でこれらナノフィラーを樹脂中に分散させた高分子ナノコンポジットにおいては、使用する樹脂の極性によってナノフィラーの分散状態が変化し、二トリルゴム(NBR)のような極性樹脂にはある程度ナノフィラーの均一分散ができるが、エチレンプロピレンゴム(EPDM)のような疎水性樹脂にカーボンナノチューブを均一に分散させるのは難しい(Polymer Preprints,Japan,Vol 52、P1785、2003)。従って、無機微粒子或いは無機ナノ粒子の種類や表面性質だけではなく、分散させる樹脂の種類や疎水性・親水性によっても無機微粒子或いは無機ナノ粒子の分散状態が大きく変化する。   Furthermore, recently, in polymer nanocomposites in which nanofillers such as carbon nanotubes and carbon nanofibers are added to polymer materials and these nanofillers are dispersed in the resin during the melt mixing process, the nanofillers depend on the polarity of the resin used. The dispersion state of the polymer changes, and nano fillers can be uniformly dispersed to some extent in polar resins such as nitrile rubber (NBR), but carbon nanotubes can be uniformly dispersed in hydrophobic resins such as ethylene propylene rubber (EPDM). Is difficult (Polymer Preprints, Japan, Vol 52, P1785, 2003). Accordingly, the dispersion state of the inorganic fine particles or inorganic nanoparticles varies greatly depending not only on the kind and surface properties of the inorganic fine particles or inorganic nanoparticles but also on the kind of the resin to be dispersed and the hydrophobicity / hydrophilicity.

特開2001−152030号公報JP 2001-152030 A 第13回高分子材料シンポジウム予稿集,P10、200313th Symposium on Polymer Materials, P10, 2003

そこで本発明者らは、無機微粒子を樹脂に無機微粒子の1次粒子レベルまで分散させることができる無機微粒子凝集体の開発に鋭意研究した結果、本発明に到達した。
本発明は、樹脂に無機微粒子の1次粒子レベルまで分散させることができる、無機微粒子凝集体を提供する。
本発明は、無機微粒子が表面で実質的に融着することなく、無機微粒子同士の凝集力によって形成された強度の低い無機微粒子凝集体を提供する。
Accordingly, the inventors of the present invention have arrived at the present invention as a result of earnestly researching the development of an inorganic fine particle aggregate capable of dispersing inorganic fine particles in a resin to the primary particle level of the inorganic fine particles.
The present invention provides an inorganic fine particle aggregate that can be dispersed in a resin up to the primary particle level of inorganic fine particles.
The present invention provides an inorganic fine particle aggregate with low strength formed by the cohesive force between inorganic fine particles without the inorganic fine particles being substantially fused on the surface.

本発明は、無機微粒子と無機塩との混合液から乾燥によって固化物を得て、該固化物から溶剤を用いて無機塩を除去し乾燥して得られる、無機微粒子凝集体であって、該乾燥が無機微粒子同士の表面融着が実質的に起こらない温度で行うことにより得られる、無機微粒子同士の凝集力によって形成された無機微粒子凝集体を提供する。   The present invention is an inorganic fine particle aggregate obtained by drying from a mixed solution of inorganic fine particles and an inorganic salt by drying, removing the inorganic salt from the solidified material using a solvent and drying, Provided is an inorganic fine particle aggregate formed by agglomeration force between inorganic fine particles obtained by drying at a temperature at which surface fusion between the inorganic fine particles does not substantially occur.

前記無機微粒子凝集体の圧壊強度が4.50MPa以下である、前記した無機微粒子は本発明の好ましい態様である。   The inorganic fine particles described above in which the crushing strength of the inorganic fine particle aggregate is 4.50 MPa or less is a preferred embodiment of the present invention.

前記無機微粒子の平均1次粒径が1μm以下である、前記した無機微粒子凝集体は本発明の好ましい態様である。   The above-mentioned inorganic fine particle aggregate in which the average primary particle size of the inorganic fine particles is 1 μm or less is a preferred embodiment of the present invention.

前記無機微粒子凝集体の圧縮荷重が110mN以下である、前記したいずれかの無機微粒子は本発明の好ましい態様である。   Any of the inorganic fine particles described above in which the compressive load of the inorganic fine particle aggregate is 110 mN or less is a preferred embodiment of the present invention.

前記無機微粒子が酸化ケイ素、酸化チタン、酸化アルミニウム、または酸化亜鉛と五酸化アンチモンの複合酸化物からなる、前記した無機微粒子凝集体は本発明の好ましい態様である。   The above-mentioned inorganic fine particle aggregate in which the inorganic fine particles are composed of silicon oxide, titanium oxide, aluminum oxide, or a composite oxide of zinc oxide and antimony pentoxide is a preferred embodiment of the present invention.

前記無機塩がハロゲン化水素酸、燐酸、硫酸、硝酸およびモリブデン酸のアルカリ金属塩、アルカリ土類金属塩またはアンモニウム塩から選ばれた少なくとも1種である、前記した無機微粒子凝集体は本発明の好ましい態様である。   The inorganic fine particle aggregate described above, wherein the inorganic salt is at least one selected from alkali metal salts, alkaline earth metal salts or ammonium salts of hydrohalic acid, phosphoric acid, sulfuric acid, nitric acid and molybdic acid. This is a preferred embodiment.

前記無機塩が臭化カリウム、塩化カリウム、モリブデン酸アンモニウム、リン酸ニ水素ナトリウム、塩化カルシウムおよび臭化アンモニウムから選ばれた少なくとも1種である、前記した無機微粒子凝集体は本発明の好ましい態様である。 The inorganic fine particle aggregate described above is a preferred embodiment of the present invention, wherein the inorganic salt is at least one selected from potassium bromide, potassium chloride, ammonium molybdate, sodium dihydrogen phosphate, calcium chloride, and ammonium bromide. is there.

前記乾燥が無機微粒子同士の表面融着が起こらない温度で行われる前記した低強度無機微粒子凝集体は本発明の好ましい態様である。   The low-strength inorganic fine particle aggregate described above, which is dried at a temperature at which surface fusion between the inorganic fine particles does not occur, is a preferred embodiment of the present invention.

前記乾燥が絶対温度で示した乾燥の温度(T)と無機微粒子の融点(T)の比(T/T)が0.23以下で行われる、前記した無機微粒子凝集体は本発明の好ましい態様である。 The above-mentioned inorganic fine particle aggregate is obtained by performing the drying at a ratio (T 0 / T m ) of the drying temperature (T 0 ) indicated by the absolute temperature and the melting point (T m ) of the inorganic fine particles to 0.23 or less. This is a preferred embodiment of the invention.

本発明はさらに、無機微粒子と無機塩との混合液から乾燥によって固化物を得て、該固化物から溶剤を用いて無機塩を除去した後に乾燥する方法であって、該乾燥が無機微粒子同士の表面融着が実質的に起こらない温度で行われる前記したいずれかの無機微粒子凝集体の製造方法を提供する。   The present invention further provides a method of obtaining a solidified product by drying from a mixed liquid of inorganic fine particles and an inorganic salt, and removing the inorganic salt from the solidified product using a solvent, followed by drying. There is provided a method for producing any one of the above-mentioned inorganic fine particle aggregates, which is carried out at a temperature at which surface fusion does not substantially occur.

本発明により、無機微粒子が表面で実質的に融着することなく、無機微粒子同士の凝集力によって形成された無機微粒子凝集体が提供される。
本発明によれば、各種樹脂の充填材として用いて溶融混合したときに、物理的にナノレベルまで破砕・分散しうる無機微粒子凝集体が提供される。
本発明によって提供される無機微粒子凝集体は、各種樹脂と溶融混合したときに、物理的にナノレベルまで破砕・分散することができるので、樹脂をいわゆるナノコンポジット化することができる。
本発明により、上記した特徴的な無機微粒子凝集体の製造方法が提供される。
本発明により提供が可能となる樹脂ナノコンポジットの成形品は、力学物性、寸法安定性、難燃性のほか溶融成型性、耐摩擦・磨耗特性などに優れているので、各種成形品に応用できるものである。
According to the present invention, an inorganic fine particle aggregate formed by the cohesive force between inorganic fine particles is provided without the inorganic fine particles being substantially fused on the surface.
ADVANTAGE OF THE INVENTION According to this invention, the inorganic fine particle aggregate which can be crushed and disperse | distributed physically to a nano level when it melt-mixes using it as a filler of various resin is provided.
The inorganic fine particle aggregate provided by the present invention can be physically crushed and dispersed to the nano level when melt-mixed with various resins, so that the resin can be made into a so-called nanocomposite.
The present invention provides a method for producing the above-described characteristic inorganic fine particle aggregate.
The resin nanocomposite molded product that can be provided by the present invention is excellent in mechanical properties, dimensional stability, flame retardancy, melt moldability, friction resistance and wear characteristics, and can be applied to various molded products. Is.

本発明は、無機微粒子と無機塩との混合液から乾燥によって固化物を得て、該固化物から溶剤を用いて無機塩を除去し乾燥して得られる、無機微粒子凝集体であって、該乾燥が無機微粒子同士の表面融着が実質的に起こらない温度で行うことにより得られる、無機微粒子同士の凝集力によって形成された無機微粒子凝集体を提供する。   The present invention is an inorganic fine particle aggregate obtained by drying from a mixed solution of inorganic fine particles and an inorganic salt by drying, removing the inorganic salt from the solidified material using a solvent and drying, Provided is an inorganic fine particle aggregate formed by agglomeration force between inorganic fine particles obtained by drying at a temperature at which surface fusion between the inorganic fine particles does not substantially occur.

本発明はまた、無機微粒子と無機塩との混合液から乾燥によって固化物を得て、該固化物から溶剤を用いて無機塩を除去した後に乾燥する方法であって、該乾燥が無機微粒子同士の表面融着が実質的に起こらない温度で行われる無機微粒子凝集体の製造方法を提供する。   The present invention is also a method for obtaining a solidified product by drying from a mixed solution of inorganic fine particles and an inorganic salt, and removing the inorganic salt from the solidified product using a solvent, followed by drying. The present invention provides a method for producing an inorganic fine particle agglomerate which is carried out at a temperature at which substantially no surface fusion occurs.

本発明における無機微粒子同士の凝集力によって形成された無機微粒子凝集体とは、無機微粒子が表面で実質的に融着することなく、無機微粒子同士の凝集力よって形成されている凝集体である。   The inorganic fine particle aggregate formed by the cohesive force between the inorganic fine particles in the present invention is an aggregate formed by the cohesive force between the inorganic fine particles without the inorganic fine particles being substantially fused on the surface.

本発明の無機微粒子凝集体は、無機微粒子同士の比較的弱い凝集力よって形成されているので、低強度の無機微粒子凝集体であり、樹脂に無機微粒子の1次粒子レベルまで分散させることができるという従来技術では到達できなかった特徴を有するものである。   Since the inorganic fine particle aggregate of the present invention is formed by a relatively weak cohesive force between the inorganic fine particles, it is a low-strength inorganic fine particle aggregate and can be dispersed in the resin to the primary particle level of the inorganic fine particles. It has a feature that could not be achieved by the prior art.

本発明では、予め無機微粒子同士が比較的弱い隣接粒子との凝集力によって構造が形成された強度が低い無機微粒子の凝集体を調製するが、無機微粒子としては、酸化ケイ素、酸化チタン、ゼオライト、酸化ジルコニウム、アルミナ、五酸化アンチモン、炭化ケイ素、窒化アルミニウム、窒化ケイ素、チタン酸バリウム、ホウ酸アルミニウム、ボロンナイト、酸化鉛、酸化亜鉛、酸化すず、酸化セリウム、酸化マグネシウム、セリウムジルコネイト、カルシウムシリケート、ジルコニウムシリケートなどのナノ無機微粒子の分散液(以下、ゾルと言うことが有る)などを挙げることができる。これら無機微粒子は単独でまたは二種以上を組み合わせて使用することができる。   In the present invention, an inorganic fine particle aggregate having a low strength, in which a structure is formed in advance by the cohesive force between adjacent inorganic fine particles, the inorganic fine particles include silicon oxide, titanium oxide, zeolite, Zirconium oxide, alumina, antimony pentoxide, silicon carbide, aluminum nitride, silicon nitride, barium titanate, aluminum borate, boronite, lead oxide, zinc oxide, tin oxide, cerium oxide, magnesium oxide, cerium zirconate, calcium silicate And a dispersion of nano-inorganic fine particles such as zirconium silicate (hereinafter sometimes referred to as sol). These inorganic fine particles can be used alone or in combination of two or more.

本発明の無機微粒子の凝集体は、無機微粒子と無機塩との混合液から得られる無機微粒子と無機塩の固化物から、無機塩を溶出させる溶剤を用いて無機塩を除去し、続いて乾燥して得ることができる。   The aggregate of inorganic fine particles of the present invention is obtained by removing inorganic salt from a solidified product of inorganic fine particles and inorganic salt obtained from a mixture of inorganic fine particles and inorganic salt using a solvent that elutes the inorganic salt, followed by drying. Can be obtained.

本発明の無機微粒子凝集体は、樹脂と溶融混合したときに、無機微粒子を物理的に一次粒子レベルまで分散させうるものである。無機微粒子がナノ無機微粒子であるとき、本発明の無機微粒子凝集体は、樹脂中に無機微粒子がナノレベルで分散した樹脂ナノコンポシットの提供を可能とする。したがって、ナノ無機微粒子は本発明の無機微粒子として好適なものである。   The inorganic fine particle aggregate of the present invention is capable of physically dispersing inorganic fine particles to the primary particle level when melt-mixed with a resin. When the inorganic fine particles are nano inorganic fine particles, the inorganic fine particle aggregate of the present invention can provide a resin nano composite in which the inorganic fine particles are dispersed at the nano level in the resin. Therefore, the nano inorganic fine particles are suitable as the inorganic fine particles of the present invention.

無機微粒子と無機塩の固化物は、無機微粒子のゾルと無機塩とを混合して、混合液を乾燥して得られる無機微粒子と無機塩の固化物が好ましい。固化物を得るための乾燥は、無機微粒子同士の表面融着が実質的に起こらない温度、好ましくは後述するネックの形成が起こらない温度で行われる。   The solidified product of inorganic fine particles and inorganic salt is preferably a solidified product of inorganic fine particles and inorganic salt obtained by mixing a sol of inorganic fine particles and an inorganic salt and drying the mixed solution. Drying for obtaining a solidified product is performed at a temperature at which surface fusion between the inorganic fine particles does not substantially occur, preferably at a temperature at which the formation of a neck described later does not occur.

ナノ無機微粒子と無機塩の固化物から、無機塩を溶出させる溶剤を用いて、無機塩を除去してから無機微粒子同士の表面融着が実質的に起こらない温度で乾燥して得られる無機微粒子凝集体は本発明の凝集体の好ましい態様である。
無機微粒子同士の表面融着が実質的に起こっていないことは、得られる凝集体の電子顕微鏡写真観察において表面融着が実質的な割合で観察されないことによって確認することができる。
Inorganic fine particles obtained by removing inorganic salt from a solidified product of nano-inorganic fine particles and inorganic salt and then drying at a temperature at which surface fusion between the inorganic fine particles does not occur substantially after removing the inorganic salt Aggregates are a preferred embodiment of the aggregates of the present invention.
It can be confirmed that surface fusion between the inorganic fine particles is not substantially caused by the fact that surface fusion is not observed at a substantial ratio in the observation of the obtained aggregate by electron micrograph.

本発明の無機微粒子凝集体は、無機微粒子同士の凝集力により形成された凝集体であるため、無機微粒子と無機塩との混合体を高温で焼成して無機微粒子同士を融着させて作製した無機微粒子の凝集体(特開2001−152030号公報)よりも強度が低い無機微粒子凝集体になる。   Since the inorganic fine particle aggregate of the present invention is an aggregate formed by the cohesive force between the inorganic fine particles, a mixture of the inorganic fine particles and the inorganic salt is fired at a high temperature to fuse the inorganic fine particles. The inorganic fine particle aggregate is lower in strength than the inorganic fine particle aggregate (Japanese Patent Laid-Open No. 2001-152030).

本発明で無機塩を溶剤で除去し、無機微粒子同士の表面融着が実質的に起こらない温度で乾燥して得られる無機微粒子凝集体は、通常は平均粒径が大きい粗粒子または塊状の凝集体が得られるが、必要に応じて適当に粉砕し、分級を行ってもよい。本発明の無機微粒子の凝集体の平均粒径は、押出機のホッパーでの食い込みの観点から、平均粒径が50μm〜400μmの範囲、好ましくは70μm〜300μmの範囲が好ましい。凝集体を粉砕し、分級する場合には、平均粒径が上記範囲になるように行うのが好ましい。   In the present invention, the inorganic fine particle aggregate obtained by removing the inorganic salt with a solvent and drying at a temperature at which surface fusion between the inorganic fine particles does not substantially occur is usually coarse particles or massive aggregates having a large average particle size. Aggregates are obtained, but may be appropriately pulverized and classified as necessary. The average particle size of the aggregate of inorganic fine particles of the present invention is preferably in the range of 50 μm to 400 μm, preferably in the range of 70 μm to 300 μm, from the viewpoint of biting in the hopper of the extruder. When the aggregates are pulverized and classified, it is preferable that the average particle diameter be in the above range.

無機微粒子と無機塩の固化物から無機塩を溶出するための溶剤は、無機微粒子と無機塩との混合液に用いる溶剤と同じでも異なっていてもよいが、無機微粒子に対して不活性であることが好ましい。このような溶剤としては、極性溶剤であって、無機微粒子に対しては貧溶媒で、無機塩に対しては良溶媒であるものから適宜選択して使用することができる。水はこのような溶剤の好適な例の一つである。無機塩は、固化物から無機塩を溶出させる溶剤を用いて溶出・除去されるので、得られる凝集体に対して一種の孔形成剤の役割をする。   The solvent for eluting the inorganic salt from the solidified product of the inorganic fine particles and the inorganic salt may be the same as or different from the solvent used for the mixed liquid of the inorganic fine particles and the inorganic salt, but is inert to the inorganic fine particles. It is preferable. As such a solvent, a polar solvent which is a poor solvent for inorganic fine particles and a good solvent for inorganic salts can be appropriately selected and used. Water is one suitable example of such a solvent. Since the inorganic salt is eluted and removed using a solvent that elutes the inorganic salt from the solidified product, it acts as a kind of pore-forming agent for the resulting aggregate.

本発明の凝集体を得る好ましい形態としては、無機微粒子としてシリカゾル、酸化チタンゾル、アルミナゾル、五酸化アンチモンゾル、酸化亜鉛ゾル、酸化亜鉛と五酸化アンチモンとの複合酸化物のゾルおよびゼオライトゾルから選ばれる少なくとも1種を用い、溶剤として水を用い、無機塩として水溶性の無機塩を用いる形態を挙げることができる。水溶性の無機塩としては、ハロゲン化水素酸、燐酸、硫酸、硝酸およびモリブデン酸のアルカリ金属塩、アルカリ土類金属塩、またはアンモニウム塩から選ばれた少なくとも1種を挙げることができる。好ましくは、硝酸カリウム、ヨウ化カリウム、モリブデン酸アンモニウム、リン酸ニ水素ナトリウム、臭化カリウム、臭化アンモニウム、塩化カリウム、塩化カルシウム、硝酸カルシウムなどが挙げられる。これら無機塩は、単独でもまたは二種以上の組み合わせでも使用することができる。上記の形態の中でも、無機微粒子としてシリカゾルを使用した形態がより好ましい。   The preferred form for obtaining the aggregate of the present invention is selected from silica sol, titanium oxide sol, alumina sol, antimony pentoxide sol, zinc oxide sol, composite oxide sol of zinc oxide and antimony pentoxide and zeolite sol as the inorganic fine particles. The form which uses water-soluble inorganic salt as an inorganic salt using at least 1 sort (s), water as a solvent can be mentioned. Examples of the water-soluble inorganic salt include at least one selected from alkali metal salts, alkaline earth metal salts, or ammonium salts of hydrohalic acid, phosphoric acid, sulfuric acid, nitric acid, and molybdic acid. Preferably, potassium nitrate, potassium iodide, ammonium molybdate, sodium dihydrogen phosphate, potassium bromide, ammonium bromide, potassium chloride, calcium chloride, calcium nitrate and the like can be mentioned. These inorganic salts can be used alone or in combination of two or more. Among the above forms, a form using silica sol as the inorganic fine particles is more preferable.

また、溶剤として純度の高い溶剤を使用すると得られる無機微粒子凝集体として、純度の高い無機微粒子凝集体を得ることができる。例えば、純水を用いて繰り返して残留無機塩の溶出を行うと、極めて純度が高い無機微粒子凝集体を得ることができる。シリカゾルを原料としてシリカ粒子からなる凝集体を得る際に、この方法を適用するとシリカ粒子からなる高純度の凝集体を得ることができる。このようにして得られる高純度凝集体は、半導体製造装置などに用いられる純粋性が要求される部品用として好適に用いられる。   Moreover, a high-purity inorganic fine particle aggregate can be obtained as an inorganic fine particle aggregate obtained when a high-purity solvent is used as the solvent. For example, when the residual inorganic salt is eluted repeatedly using pure water, an inorganic fine particle aggregate with extremely high purity can be obtained. When this method is applied to obtain an aggregate composed of silica particles using silica sol as a raw material, a high-purity aggregate composed of silica particles can be obtained. The high-purity agglomerates thus obtained are suitably used for parts that require purity, such as those used in semiconductor manufacturing equipment.

本発明の凝集体を樹脂と溶融混合すると、溶融混合装置で生じるせん断応力によって、物理的に1次粒子のレベルまで分散させることができるので、無機微粒子としてナノ無機微粒子を用いるとき、樹脂中に無機微粒子をナノレベルまで分散させることが可能となる。   When the aggregate of the present invention is melt-mixed with the resin, it can be physically dispersed to the level of primary particles by the shear stress generated in the melt-mixing device. Therefore, when nano-inorganic particles are used as the inorganic particles, It becomes possible to disperse the inorganic fine particles to the nano level.

本発明で得られる、無機微粒子同士が比較的弱い隣接粒子との凝集力によって構造が形成された強度が低い無機微粒子凝集体の強度は、無機微粒子ゾルの種類および粒径、無機微粒子ゾルのpH、無機塩の種類および含量、乾燥温度などによって変化するので、これらの条件を選択することによって無機微粒子凝集体の強度を制御することができる。   The strength of the inorganic fine particle aggregate having a low strength formed by the cohesive force between adjacent inorganic fine particles obtained by the present invention is low. Since it changes depending on the kind and content of the inorganic salt, the drying temperature, etc., the strength of the inorganic fine particle aggregate can be controlled by selecting these conditions.

また、本発明の無機微粒子凝集体を樹脂と溶融混合して、樹脂中に無機微粒子を分散させる場合、溶融混合する樹脂の種類や使用する溶融混合装置の構造(スクリューの構造および組み合わせ)、溶融混合条件(温度およびスクリュー回転数)などによって、樹脂中に分散された無機微粒子凝集体の平均粒径および分散状態が変わる。したがって、樹脂と無機微粒子凝集体を熱溶融性脂中に物理的にもとの1次粒子のレベルまで均一に破砕・分散させるために、使用する無機微粒子凝集体および樹脂の種類に応じて、溶融混合の条件を選択することが必要である。   In addition, when the inorganic fine particle aggregate of the present invention is melt-mixed with the resin to disperse the inorganic fine particles in the resin, the type of resin to be melt-mixed, the structure of the melt-mixing device to be used (screw structure and combination), melting The average particle size and dispersion state of the inorganic fine particle aggregates dispersed in the resin vary depending on the mixing conditions (temperature and screw rotation speed). Therefore, in order to uniformly crush and disperse the resin and the inorganic fine particle aggregate in the heat-meltable fat uniformly to the original primary particle level, depending on the type of the inorganic fine particle aggregate and the resin used, It is necessary to select the conditions for melt mixing.

シリカ多孔体の場合、強度は多孔体を形成する多数のシリカ1次粒子間の接触点に働く粒子間付着力の和であるため、主にシリカ多孔体の空孔率とシリカ平均1次粒径によって決まり、(Chemie Ingenieur Technik,vol 42,p538,1970)、強度が低い無機微粒子凝集体としてシリカ多孔体を作製するためには、無機塩の含量を増やして空孔率を大きくするか、シリカ平均1次粒径が大きいものを使用することが好ましい。従って、平均1次粒径が50nm以上、好ましくは90nm以上、更に好ましくは110nm以上であることがよい。空孔率が同じ場合には凝集体の強度は1次粒子径に反比例する関係があり、平均1次粒径が小さくなると凝集体の強度が大きくなり、溶融混合過程で破砕され難くなる。また、同じ強度の無機微粒子の凝集体を用いる場合は、より強いせん断応力で溶融混合した方が、無機微粒子の凝集体が樹脂中にナノ無機微粒子が均一に破砕・分散される。   In the case of a porous silica material, the strength is the sum of the interparticle adhesion forces acting at the contact points between a large number of primary silica particles forming the porous material. Depending on the diameter (Chemie Ingenieur Technik, vol 42, p538, 1970), in order to produce a porous silica as an inorganic fine particle aggregate having low strength, increase the porosity by increasing the content of inorganic salt, It is preferable to use a silica having a large average primary particle size. Therefore, the average primary particle size is preferably 50 nm or more, preferably 90 nm or more, and more preferably 110 nm or more. When the porosity is the same, the strength of the aggregate is inversely proportional to the primary particle size. When the average primary particle size is small, the strength of the aggregate is increased and it is difficult to be crushed in the melt mixing process. Further, in the case of using an aggregate of inorganic fine particles having the same strength, the nano-inorganic fine particles are uniformly crushed and dispersed in the resin when the fine particles are melt-mixed with a stronger shear stress.

本発明に使用する無機塩は、無機微粒子の凝集体に対して一種の孔形成剤の役割をするため、無機塩の含量によっても無機微粒子凝集体の強度が変化する。無機微粒子に対する無機塩の含量が増えるほど、ナノ無機微粒子凝集体の強度が低くなる。しかし、無機塩の含量が多すぎると、無機微粒子凝集体が計量工程などで簡単に破砕され、1次粒子に戻ってしまう。従って、無機塩の含量は1〜90体積%、好ましくは50〜85体積%、更に好ましくは60〜80体積%であることが望ましい。   Since the inorganic salt used in the present invention serves as a kind of pore-forming agent for the aggregate of inorganic fine particles, the strength of the inorganic fine particle aggregate varies depending on the content of the inorganic salt. As the content of the inorganic salt relative to the inorganic fine particles increases, the strength of the nano inorganic fine particle aggregate decreases. However, if the content of the inorganic salt is too large, the inorganic fine particle aggregates are easily crushed in a measuring step or the like and returned to primary particles. Therefore, the content of the inorganic salt is 1 to 90% by volume, preferably 50 to 85% by volume, more preferably 60 to 80% by volume.

水分散の無機微粒子ゾルと無機塩とを混合してから、混合液を乾燥して無機微粒子と無機塩の固化物を作製する際の乾燥温度、および無機微粒子と無機塩の固化物から無機塩を溶出させる溶剤を用いて、無機塩を除去してから乾燥を行う乾燥温度は、前記したとおり無機微粒子同士の表面融着が実質的に起こらない温度、好ましくはネックの形成が起こらない温度が望ましい。無機微粒子の表面での融点は内部(バルク状態)の融点より低いため、乾燥温度が高くなると無機微粒子の表面の一部が融解し、隣接無機微粒子同士の融着によって無機微粒子の凝集体の強度が強くなる。また、無機微粒子は一般に生成された時に粒子表面に結晶構造の欠陥を持っており、このような欠陥はいづれも熱的に不安定であるため、加熱すると急速に回復したり移動したりし、隣接無機微粒子の接触部に結合部(ネック)が形成する。このネックの形成によっても無機微粒子の凝集体の強度は強くなる。ネックの形成の主要因は、隣接無機微粒子同士の表面融着であると考えられる。ネックの形成は、絶対温度で示した乾燥の温度(T)と無機微粒子の融点(T)の比(T/T)が0.23のころから始まるため、絶対温度で示した乾燥の温度と無機微粒子の融点の比が0.23以下、好ましくは0.21以下が好ましい。よって、例えば、無機微粒子がシリカである場合の乾燥は、150℃以下、好ましくは120℃以下の温度で行うのが望ましい。 After mixing the water-dispersed inorganic fine particle sol and the inorganic salt, the mixed solution is dried to produce a solidified product of the inorganic fine particles and the inorganic salt, and the inorganic salt from the solidified solid of the inorganic fine particles and the inorganic salt. As described above, the drying temperature at which drying is performed after removing the inorganic salt using a solvent that elutes the solvent is such that the surface fusion between the inorganic fine particles does not substantially occur, preferably the temperature at which neck formation does not occur. desirable. Since the melting point on the surface of the inorganic fine particles is lower than the melting point in the interior (bulk state), when the drying temperature is increased, a part of the surface of the inorganic fine particles melts, and the strength of the aggregates of the inorganic fine particles due to fusion between adjacent inorganic fine particles Becomes stronger. In addition, inorganic fine particles generally have defects in the crystal structure on the particle surface when they are generated, and since these defects are all thermally unstable, they can be rapidly recovered or moved when heated, A connecting portion (neck) is formed at a contact portion between adjacent inorganic fine particles. The formation of this neck also increases the strength of the aggregate of inorganic fine particles. The main cause of the formation of the neck is considered to be surface fusion between adjacent inorganic fine particles. The formation of the neck is indicated by the absolute temperature because the ratio (T 0 / T m ) of the drying temperature (T 0 ) indicated by the absolute temperature and the melting point (T m ) of the inorganic fine particles starts from 0.23. The ratio between the drying temperature and the melting point of the inorganic fine particles is 0.23 or less, preferably 0.21 or less. Therefore, for example, when the inorganic fine particles are silica, drying is desirably performed at a temperature of 150 ° C. or lower, preferably 120 ° C. or lower.

本発明の無機微粒子凝集体の強度は、圧縮荷重(Compressive Load)が110mN以下、好ましくは40mN以下であることが好ましい。   As for the strength of the inorganic fine particle aggregate of the present invention, the compressive load is 110 mN or less, preferably 40 mN or less.

また、本発明の無機微粒子凝集体は、圧壊強度Sが4.50MPa以下,好ましくは1.50MPa以下であることが好ましい。圧壊強度Sは、後述するとおり粒径の違いの効果が補正された強度の尺度である。 The inorganic particulate aggregate of the present invention, crush strength S t is 4.50MPa or less, preferably at most 1.50MPa. Crush strength S t is a measure of the effect was corrected intensity difference in particle size as described below.

本発明は、無機微粒子と無機塩との混合液を乾燥して得られる固化物から、該無機塩を溶出させる溶剤を用いて無機塩を除去し、続いて乾燥し、該乾燥を無機微粒子同士の表面融着が実質的に起こらない温度で行うことによって前記した無機微粒子同士の凝集力によって形成された低強度無機微粒子凝集体を製造する方法を提供する。   The present invention removes an inorganic salt from a solidified product obtained by drying a mixed liquid of inorganic fine particles and an inorganic salt using a solvent that elutes the inorganic salt, followed by drying. The present invention provides a method for producing a low-strength inorganic fine particle aggregate formed by the agglomeration force between the inorganic fine particles described above by carrying out at a temperature at which surface fusion does not substantially occur.

本発明の低強度無機微粒子凝集体を各種樹脂の充填材として用いて溶融混合する場合、溶融混合装置で発生するせん断応力により共に混ぜ合わせた強度が低い無機微粒子の凝集体が物理的にナノスケールまで破砕・分散させることによって、樹脂をいわゆるナノコンポジット化することができる。溶融混合する方法には特に限定がなく、当該樹脂について通常溶融混合するのに用いられる装置および条件を適用することができる。   When the low-strength inorganic fine particle aggregates of the present invention are melt-mixed using fillers of various resins, the aggregates of inorganic fine particles having low strength that are mixed together by the shear stress generated by the melt-mixing device are physically nanoscale. The resin can be made into a so-called nanocomposite by crushing and dispersing to the maximum. There is no particular limitation on the method of melt mixing, and the apparatus and conditions usually used for melt mixing of the resin can be applied.

このようにして得られる樹脂ナノコンポジットから製造される成形品は、力学物性、寸法安定性、難燃性のほか溶融成型性、耐摩擦・磨耗特性などにすぐれているので、各種成形品に応用できる。応用できる成形品の例を挙げれば、例えばチューブ類、シート類、棒類、繊維類、パッキング類、ライニング類、電線被覆などがある。   Molded products made from resin nanocomposites obtained in this way are excellent in mechanical properties, dimensional stability, flame retardancy, melt moldability, friction resistance, and wear characteristics, so they can be applied to various molded products. it can. Examples of the molded products that can be applied include tubes, sheets, rods, fibers, packings, linings, and wire coating.

以下に本発明を、実施例および比較例を挙げてさらに具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。   The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.

本発明において各物性の測定は、下記の方法によって行った。
(1)無機微粒子凝集体の圧縮荷重および圧壊強度
微小圧縮試験機(MCT―W500,株式会社島津製作所製)を用いて、高剛性ステージに試料を約100mg散布し、試料一粒ずつ粒径Dを測定してから荷重を与え、実験力P(Compressive Load)と圧縮変位を測定し、下記の式で試料の圧壊強度S(または 破壊強度)を求めた(日本鉱業会誌、vol.81,p24,1965参照)。実験力Pを圧縮荷重とした。
圧壊強度は、各試料につき5回測定しその平均値を圧壊強度(MPa)にした。本発明の無機微粒子凝集体は、平均粒径が約150μmの大きさのものを選んで圧壊強度を測定した。但し、比較例として用いた市販のシリカの平均粒径は本発明の試料より小さいので、実験力Pの値は小さくなるが、粒径の違いの効果が補正された圧壊強度Sは大きくなる。
=2.8P/(πD
(MPa):試料の圧壊強度(または 破壊強度)
P(N):微小圧縮試験機で測定した実験力(Compressive Load)
D(mm):試料の粒径
In the present invention, each physical property was measured by the following method.
(1) Compressive load and crushing strength of inorganic fine particle aggregates Using a micro compression tester (MCT-W500, manufactured by Shimadzu Corporation), about 100 mg of a sample is sprayed on a high-rigidity stage, and the particle size D of each sample is measured. Was measured, experimental force P (Compressive Load) and compressive displacement were measured, and the crushing strength S t (or breaking strength) of the sample was obtained by the following formula (Japan Mining Association, vol. 81, p24, 1965). The experimental force P was a compression load.
The crushing strength was measured five times for each sample, and the average value was made the crushing strength (MPa). The inorganic fine particle aggregate of the present invention was selected to have an average particle size of about 150 μm and the crushing strength was measured. However, the average particle size of commercially available silica used as a comparative example is smaller than that of the sample of the present invention, although smaller values of the experimental force P, crushing strength S t to the particle size effect of differences in is corrected becomes larger .
S t = 2.8P / (πD 2 )
S t (MPa): Crushing strength (or breaking strength) of the sample
P (N): Experimental force measured with a micro compression tester (Compressive Load)
D (mm): Sample particle size

本発明の実施例、比較例および参考例で用いた原料は下記の通りである。
(1)シリカゾル
日産化学工業製
スノーテックス MP2040(シリカ平均1次粒径:190nm)、
スノーテックス MP1040(シリカ平均1次粒径:110nm)、
スノーテックス ST−YL(シリカ平均1次粒径:57nm)、
スノーテックス 30(シリカ平均1次粒径:12nm)
(2)多孔体シリカ
富士シリシア化学製、C−1504(平均粒径:4μm)
(3)溶融シリカ
電気化学工業製、FB−74(平均粒径:32μm)
(4)ポリスチレン(PS)
旭化成製、スタイロン685
The raw materials used in Examples, Comparative Examples and Reference Examples of the present invention are as follows.
(1) Silica sol Snowtex MP2040 (silica average primary particle size: 190 nm) manufactured by Nissan Chemical Industries,
Snowtex MP1040 (silica average primary particle size: 110 nm),
Snowtex ST-YL (silica average primary particle size: 57 nm),
Snowtex 30 (silica average primary particle size: 12 nm)
(2) Porous silica manufactured by Fuji Silysia Chemical, C-1504 (average particle size: 4 μm)
(3) Fused silica, FB-74 (average particle size: 32 μm), manufactured by Denki Kagaku Kogyo
(4) Polystyrene (PS)
Asahi Kasei, Stylon 685

(実施例1)
ビーカーに水1L、表1に示した平均粒径(1次粒径)のシリカ微粒子が水中に分散したシリカゾル245.7g(シリカ粒子40重量%)、臭化カリウム(KBr)を292.3gを順に加えてKBrが全て溶解するまで攪拌し、シリカ微粒子の凝集を促すために硝酸をpH4.0程度となるように加えた。次に、攪拌した混合液をフッ素樹脂製容器に移し、80℃の乾燥機で重量変化がなくなるまで乾燥を行った。乾燥した試料を粉砕し、目開き300μmと75μmのふるいで分級して平均粒径75μm〜300μmの固化物を作った。そして、分級後の試料100gと純水2.5Lをビーカーに入れ、80℃で加熱しながら200rpmで30分間攪拌した後、静置して固化物を沈殿させ、溶出されたKBrを含む上澄み液を取り除いた。上澄み液を取り除いた後、120℃の乾燥機で約10時間試料を乾燥させ、更に120℃で3時間真空乾燥を行い、KBrが除去され、SiOの骨格のみが残ったシリカ微粒子凝集体試料S1を得た。得られた試料の圧壊強度を表1に示す。
Example 1
In a beaker, 1 L of water, 245.7 g of silica sol in which silica fine particles having the average particle size (primary particle size) shown in Table 1 were dispersed in water (silica particles 40 wt%), and 292.3 g of potassium bromide (KBr). In order, it stirred until all the KBr melt | dissolved, and in order to accelerate | stimulate aggregation of a silica particle, nitric acid was added so that it might become pH 4.0. Next, the stirred mixed solution was transferred to a fluororesin container and dried with a dryer at 80 ° C. until there was no change in weight. The dried sample was pulverized and classified with a sieve having openings of 300 μm and 75 μm to produce a solidified product having an average particle size of 75 μm to 300 μm. Then, 100 g of the sample after classification and 2.5 L of pure water are placed in a beaker, stirred at 200 rpm for 30 minutes while heating at 80 ° C., and then allowed to stand to precipitate a solidified product, which contains the eluted KBr. Removed. After removing the supernatant, the sample is dried for about 10 hours with a dryer at 120 ° C., and further vacuum-dried at 120 ° C. for 3 hours to remove KBr and leave only the SiO 2 skeleton. S1 was obtained. The crushing strength of the obtained sample is shown in Table 1.

(実施例2)
平均1次粒径が0.110μmのシリカ粒子が水溶液中に分散されたシリカゾル(40重量%)を用いた以外は、実施例1同じ方法で試料S2を得た。得られた試料の圧壊強度を表1に示す。
(Example 2)
Sample S2 was obtained in the same manner as in Example 1, except that silica sol (40% by weight) in which silica particles having an average primary particle size of 0.110 μm were dispersed in an aqueous solution was used. The crushing strength of the obtained sample is shown in Table 1.

(実施例3)
平均1次粒径が0.057μmのシリカ粒子が水溶液中に分散されたシリカゾル(40重量%)を用いた以外は、実施例1同じ方法で試料S3を得た。得られた試料の圧壊強度を表1に示す。
(Example 3)
Sample S3 was obtained in the same manner as in Example 1, except that silica sol (40% by weight) in which silica particles having an average primary particle size of 0.057 μm were dispersed in an aqueous solution was used. The crushing strength of the obtained sample is shown in Table 1.

(実施例4)
平均1次粒径が0.012μmのシリカ粒子が水溶液中に分散されたシリカゾル(シリカ粒子30重量%)327.6gを用いた以外は、実施例1同じ方法で試料集体S4を得た。得られた試料の圧壊強度を表1に示す。また、試料S4の電子顕微鏡写真を図1に示す。
Example 4
Sample aggregate S4 was obtained in the same manner as in Example 1, except that 327.6 g of silica sol (silica particles 30 wt%) in which silica particles having an average primary particle size of 0.012 μm were dispersed in an aqueous solution was used. The crushing strength of the obtained sample is shown in Table 1. Moreover, the electron micrograph of sample S4 is shown in FIG.

(比較例1)
ビーカーに水1L、表1に示した平均粒径(0.012μm)のシリカ微粒子が水中に分散したシリカゾル327.6g(シリカ微粒子30重量%)とKBrを292.3gを順に加え攪拌し、微粒子の凝集を促すために硝酸をpH4.0程度となるように加えた。次に、攪拌した混合液をフッ素樹脂製容器に移し、80℃の乾燥機で重量変化がなくなるまで乾燥を行った。乾燥後粉砕し、目開き300μmと75μmのふるいで分級して平均粒径75μm〜300μmの固化物を得た。得られた固化物を焼成皿にのせ、全自動開閉式管状炉(ISUZU製、EKRO−23)にて、表1に示した温度600℃で2時間焼成した。焼成した固化物100gと純水2.5Lをビーカーに入れ、80℃で加熱しながら攪拌した後、静置して固化物を沈殿させ、溶出されたKBrを含む上澄み液を取り除いた。上澄み液を取り除いた後、120℃の乾燥機で約10時間乾燥し、更に120℃で3時間真空乾燥を行い、KBrが除去され、SiOの骨格のみが残ったシリカ微粒子凝集体試料S5を得た。得られた試料の圧壊強度を表1に示す。また、電子顕微鏡写真を図2に示す。
(Comparative Example 1)
Into a beaker, add 1 L of water, 327.6 g of silica sol (silica fine particles 30 wt%) in which silica fine particles having an average particle size (0.012 μm) shown in Table 1 are dispersed in water, and 292.3 g of KBr in this order, and stir the fine particles. In order to promote the aggregation of the nitric acid, nitric acid was added so as to have a pH of about 4.0. Next, the stirred mixed solution was transferred to a fluororesin container and dried with a dryer at 80 ° C. until there was no change in weight. After drying, the mixture was pulverized and classified with a sieve having openings of 300 μm and 75 μm to obtain a solidified product having an average particle diameter of 75 μm to 300 μm. The obtained solidified product was placed on a baking dish and baked at a temperature of 600 ° C. shown in Table 1 for 2 hours in a fully automatic open / close tubular furnace (manufactured by ISUZU, EKRO-23). 100 g of the fired solidified product and 2.5 L of pure water were placed in a beaker and stirred while heating at 80 ° C., and then allowed to stand to precipitate the solidified product, and the supernatant liquid containing the eluted KBr was removed. After removing the supernatant, it is dried for about 10 hours with a dryer at 120 ° C., and further vacuum-dried at 120 ° C. for 3 hours to remove a silica fine particle aggregate sample S5 from which KBr is removed and only the skeleton of SiO 2 remains. Obtained. The crushing strength of the obtained sample is shown in Table 1. An electron micrograph is shown in FIG.

(参考例1)
市販の多孔体シリカ試料R1(平均粒径:4μm)の圧壊強度を表1に示す。
(Reference Example 1)
Table 1 shows the crushing strength of a commercially available porous silica sample R1 (average particle diameter: 4 μm).

(参考例2)
市販の溶融シリカ試料R2(平均粒径:32μm)の圧壊強度を表1に示す。
(Reference Example 2)
Table 1 shows the crushing strength of a commercially available fused silica sample R2 (average particle size: 32 μm).

(参考例3)
ポリスチレン59.51gとシリカ微粒子凝集体(S1)3.13g(5重量%)を溶融混合装置(東洋精機製作所製 KF−70V小型セグメントミキサー)、5枚のKneading discの位相を0.5pitchずらした高せん断の組み合わせを用い180℃、200rpmで1分20秒間溶融混合し、ポリスチレンにシリカ微粒子が分散された複合体組成物を得た。得られた複合体組成物破断面の電子顕微鏡観察結果を図3に示す。
(Reference Example 3)
59.51 g of polystyrene and 3.13 g (5% by weight) of silica fine particle aggregate (S1) were melt-mixed by a KF-70V small segment mixer manufactured by Toyo Seiki Seisakusho Co., Ltd. The phases of five Kneading discs were shifted by 0.5 pitch. Using a combination of high shear, melt mixing was performed at 180 ° C. and 200 rpm for 1 minute and 20 seconds to obtain a composite composition in which silica fine particles were dispersed in polystyrene. An electron microscope observation result of the obtained composite composition fracture surface is shown in FIG.

Figure 2006213577
Figure 2006213577

表1から、焼成していない乾燥のみ行ったシリカ微粒子凝集体(実施例1〜4)の方が焼成したシリカ微粒子凝集焼成体(比較例1)より圧壊強度が低いことが分かる。これは、本発明のシリカ微粒子凝集体(実施例1〜4)では、シリカ微粒子の凝集力のみで骨格が形成されたため、圧壊強度が低い無機微粒子凝集体になる。しかし、焼成したシリカ微粒子凝集焼成体(比較例1)は、焼成過程でシリカ微粒子の表面融解によって表層が融解して互いに融着して、もしくはネックが形成されて強固な結合を有する骨格を形成した強度が高い無機微粒子凝集体になったためである。   From Table 1, it can be seen that the silica fine particle aggregates (Examples 1 to 4) which were only dried without firing were lower in crushing strength than the fired silica fine particle aggregated fired bodies (Comparative Example 1). This is because in the silica fine particle aggregates of the present invention (Examples 1 to 4), the skeleton was formed only by the cohesive force of the silica fine particles, and thus the inorganic fine particle aggregates having low crushing strength. However, the fired silica fine particle agglomerated fired body (Comparative Example 1) forms a skeleton having a strong bond by melting the surface layers of the silica fine particles by the surface melting of the fine particles during the firing process and fusing them together. This is because the resulting inorganic fine particle aggregate has high strength.

焼成してない乾燥のみ行ったシリカ微粒子凝集体(実施例1〜4)では、シリカ平均1次粒径が大きい程圧壊強度が弱いことが分かる。これは、シリカ1次粒子の平均粒径が大きくなるにしたがって隣接粒子との凝集力が弱くなり、シリカ微粒子凝集体の圧壊強度も低くなるためである。   It can be seen that in the silica fine particle aggregates (Examples 1 to 4) which were only dried without firing, the crushing strength was weaker as the silica average primary particle size was larger. This is because as the average particle size of the silica primary particles becomes larger, the cohesive force with the adjacent particles becomes weaker, and the crushing strength of the silica fine particle aggregates also becomes lower.

また、市販多孔体シリカR1(参考例1)および市販溶融シリカR2(参考例2)は、圧壊強度が本発明のシリカ微粒子凝集体(実施例1〜4)は勿論、焼成を行ったシリカ微粒子凝集体(比較例1)よりも圧壊強度が高い。特に、少なくとも1200℃以上の温度で製造された市販溶融シリカR2(参考例2)は、高温でシリカが完全溶融されたため、骨格がケイ素(Si)と酸素(O)の共有結合となっており、この構造を破砕することは共有結合を切ることに相当し、大きなエネルギーが必要なため、圧壊強度が実施例1のもっとも圧壊強度が低いシリカ微粒子凝集体の1800倍も大きかった。   In addition, the commercially available porous silica R1 (Reference Example 1) and the commercially available fused silica R2 (Reference Example 2) are not only the silica fine particle aggregates of the present invention (Examples 1 to 4) but also baked silica fine particles. The crushing strength is higher than that of the aggregate (Comparative Example 1). In particular, commercially available fused silica R2 (Reference Example 2) produced at a temperature of at least 1200 ° C. has a skeleton having a covalent bond between silicon (Si) and oxygen (O) because the silica is completely melted at a high temperature. The crushing of this structure corresponds to breaking a covalent bond and requires a large amount of energy, so that the crushing strength was 1800 times larger than that of the silica fine particle aggregate having the lowest crushing strength in Example 1.

したがって、図3から、本発明の実施例1で得られたシリカ微粒子凝集体は、市販の溶融シリカより圧壊強度が1800倍も低く、市販の汎用樹脂であるポリスチレンと溶融混合を行うとせん断応力により容易にもとのシリカ1次粒子(シリカナノ粒子)まで均一に破砕・分散され、いわゆる高分子ナノコンポジットを作ることができたことが分かる。
なお、本発明に用いるシリカ凝集体の作製手順と乾燥・焼成温度によるシリカ微粒子からなる骨格構造の違いを説明する概念を図4に示す。
Therefore, from FIG. 3, the silica fine particle aggregate obtained in Example 1 of the present invention has a crushing strength 1800 times lower than that of commercially available fused silica. As a result, it was found that even the primary silica particles (silica nanoparticles) were easily crushed and dispersed, and so-called polymer nanocomposites could be made.
FIG. 4 shows the concept for explaining the difference between the preparation procedure of the silica aggregate used in the present invention and the skeleton structure composed of silica fine particles depending on the drying / calcination temperature.

図4は、本発明における無機微粒子凝集体の製造方法の好ましい実施態様を示している概念図である。図4の(1)は容器に入ったシリカゾルが攪拌子4によって攪拌されており、シリカ微粒子1は分散状態にある。(2)は臭化カリウム(KBr)の水溶液である。シリカゲルとKBr水溶液を混合して攪拌すると(3)に示すようにシリカが強制分散した混合液が得られる。この混合物は(4)に示すように、攪拌を停止するとKBrにシリカゲルが凝集すると思われるが、凝集物が沈殿してくる状態となる。(4)の混合物から水分を蒸発させて乾燥することによってシリカゲル微粒子と晶出したKBrからなる固化物(5)が得られる。固化物(5)からKBrを溶出させると孔空間3を有するシリカ微粒子凝集体(6)が得られる。微粒子凝集体(6)をシリカ微粒子同士の表面融着が起こらない温度で乾燥することによって、シリカ微粒子同士の凝集力によって形成された無機微粒子凝集体(7)を得ることができる。   FIG. 4 is a conceptual diagram showing a preferred embodiment of the method for producing an inorganic fine particle aggregate in the present invention. In FIG. 4 (1), the silica sol contained in the container is stirred by the stirring bar 4, and the silica fine particles 1 are in a dispersed state. (2) is an aqueous solution of potassium bromide (KBr). When silica gel and an aqueous KBr solution are mixed and stirred, a mixed liquid in which silica is forcibly dispersed is obtained as shown in (3). As shown in (4), when the stirring is stopped, the mixture seems to aggregate silica gel on KBr, but the aggregate is precipitated. Water is evaporated from the mixture of (4) and dried to obtain a solidified product (5) composed of silica gel fine particles and crystallized KBr. When KBr is eluted from the solidified product (5), a silica fine particle aggregate (6) having pore spaces 3 is obtained. By drying the fine particle aggregate (6) at a temperature at which surface fusion between the silica fine particles does not occur, the inorganic fine particle aggregate (7) formed by the cohesive force between the silica fine particles can be obtained.

図4の微粒子凝集体(6)を焼成すると、シリカ微粒子の表面融解によって表層が融解してお互いに融着するため、強固な結合を有する骨格を形成した強度が高いシリカ微粒子凝集体(8)になってしまう。   When the fine particle aggregate (6) of FIG. 4 is baked, the surface layers of the silica fine particles are melted and fused to each other, so that the high-strength silica fine particle aggregate (8) having a skeleton having a strong bond is formed. Become.

本発明においては、予めナノ無機微粒子同士が比較的弱い隣接粒子との凝集力によって形成された強度が低い無機微粒子の凝集体と熱可塑性樹脂を溶融混合して、溶融混合装置で発生するせん断応力により共に混ぜ合わせた強度が低い無機微粒子の凝集体を物理的にもとのナノ無機微粒子までに破砕・分散させることができることが示された。   In the present invention, the shear stress generated in the melt mixing device by melting and mixing the aggregate of the inorganic fine particles having low strength and the thermoplastic resin previously formed by the cohesion force between the nano inorganic fine particles and the relatively weak adjacent particles. It was shown that the aggregates of inorganic fine particles with low strength mixed together can be physically crushed and dispersed to the original nano inorganic fine particles.

本発明によれば、各種樹脂と溶融混合したとき、溶融混合装置で発生するせん断応力によって、物理的にナノスケールまで破砕・分散しうる無機微粒子凝集体が提供される。
本発明によって提供される無機微粒子凝集体は、各種樹脂と溶融混合したときに、物理的にナノスケールまで破砕・分散するので、樹脂をいわゆるナノコンポジット化することができ、樹脂用の充填材として好適なものである。
本発明により提供が可能となる樹脂ナノコンポシットの成形品は、力学物性、寸法安定性、難燃性などに優れているので、粒子がナノレベルに均一に分散されることで期待できるあらゆる分野に応用することができる。
本発明によって提供される低強度無機微粒子凝集体が応用可能な成形品としては、例えば、チューブ類、シート類、棒類、繊維類、パッキング類、ライニング類、電線被覆などがある。
ADVANTAGE OF THE INVENTION According to this invention, the inorganic fine particle aggregate which can be physically crushed and disperse | distributed to nanoscale by the shear stress which generate | occur | produces with a melt mixing apparatus when it melt-mixes with various resin is provided.
The inorganic fine particle aggregate provided by the present invention physically crushes and disperses to the nanoscale when melt-mixed with various resins, so that the resin can be made into a so-called nanocomposite and used as a filler for the resin. Is preferred.
The resin nanocomposite molded product that can be provided by the present invention is excellent in mechanical properties, dimensional stability, flame retardancy, etc., and can be expected in all fields where particles can be uniformly dispersed at the nano level. It can be applied to.
Examples of molded articles to which the low-strength inorganic fine particle aggregates provided by the present invention can be applied include tubes, sheets, rods, fibers, packings, linings, and wire coatings.

実施例4に使用したシリカ微粒子凝集体(焼成なし)の電子顕微鏡写真。The electron micrograph of the silica fine particle aggregate (no baking) used for Example 4. FIG. 比較例1に使用した600℃で焼成したシリカ微粒子凝集焼成体の電子顕微鏡写真。4 is an electron micrograph of the silica fine particle aggregated fired body fired at 600 ° C. used in Comparative Example 1. FIG. ポリスチレン中にシリカ微粒子凝集体がシリカ1次粒子までに破砕・分散されている参考例3試料の電子顕微鏡写真。The electron micrograph of the reference example 3 sample by which the silica fine particle aggregate is crushed and disperse | distributed to the silica primary particle in polystyrene. 本発明に用いるシリカ微粒子凝集体の作製手順と乾燥・焼成温度によるシリカ微粒子からなる骨格構造の違いを説明する概念図。The conceptual diagram explaining the difference in the preparation structure of the silica fine particle aggregate used for this invention, and the skeleton structure which consists of silica fine particle by drying and baking temperature.

符号の説明Explanation of symbols

(1):シリカゾル
(2):臭化カリウム(KBr)の水溶液
(3):シリカゾルとKBrの混合液で、シリカが攪拌下に強制分散している状態
(4):シリカゾルとKBrの混合液で、攪拌停止後シリカとKBrが凝集し沈殿してくる状態
(5):混合液から得られた固化物
(6):KBrを溶出させて除去したシリカ微粒子凝集体
(7):シリカ微粒子の凝集力のみで骨格が形成された本発明の無機微粒子凝集体。
(8):焼成過程でシリカ微粒子の表面融解によって表層が融解してお互いに融着して強固な結合を有する骨格を形成した強度が高い無機微粒子凝集体。
1:シリカ1次粒子
2:KBr
3:KBrが除去された空間(孔)
4:攪拌子
(1): Silica sol (2): Aqueous solution of potassium bromide (KBr) (3): Silica sol and KBr mixed solution in which silica is forcibly dispersed with stirring (4): Silica sol and KBr mixed solution Then, after the stirring is stopped, the silica and KBr aggregate and precipitate (5): the solidified product obtained from the mixed solution (6): the silica fine particle aggregate removed by eluting KBr (7): the silica fine particle The inorganic fine particle aggregate of the present invention in which a skeleton is formed only by a cohesive force.
(8): A high-strength inorganic fine particle aggregate in which the surface layer is melted by the surface melting of the silica fine particles in the firing process and fused together to form a skeleton having a strong bond.
1: Silica primary particles 2: KBr
3: Space from which KBr is removed (hole)
4: Stir bar

Claims (9)

無機微粒子と無機塩との混合液から乾燥によって固化物を得て、該固化物から溶剤を用いて無機塩を除去し乾燥して得られる無機微粒子凝集体であって、該乾燥が無機微粒子同士の表面融着が起こらない温度で行うことにより得られる、無機微粒子同士の凝集力によって形成された無機微粒子凝集体。   An inorganic fine particle aggregate obtained by obtaining a solidified product by drying from a mixed liquid of inorganic fine particles and an inorganic salt, removing the inorganic salt from the solidified product using a solvent and drying, wherein the drying is performed between the inorganic fine particles. An inorganic fine particle aggregate formed by the cohesive force of inorganic fine particles, obtained by performing at a temperature at which no surface fusion occurs. 前記無機微粒子凝集体が、圧壊強度が4.5MPa以下であることを特徴とする請求項1に記載の無機微粒子凝集体。   The inorganic fine particle aggregate according to claim 1, wherein the inorganic fine particle aggregate has a crushing strength of 4.5 MPa or less. 無機微粒子の平均1次粒径が、1μm以下である請求項1または2に記載の無機微粒子凝集体。   The inorganic fine particle aggregate according to claim 1 or 2, wherein the average primary particle size of the inorganic fine particles is 1 µm or less. 前記無機微粒子凝集体の圧壊荷重が、110mN以下であることを特徴とする請求項1〜3に記載の無機微粒子凝集体。   The inorganic fine particle aggregate according to claim 1, wherein a crushing load of the inorganic fine particle aggregate is 110 mN or less. 前記無機微粒子が酸化ケイ素、酸化チタン、酸化アルミニウム、または酸化亜鉛と五酸化アンチモンの複合酸化物からなることを特徴とする請求項1〜4のいずれかに記載の無機微粒子凝集体。   The inorganic fine particle aggregate according to any one of claims 1 to 4, wherein the inorganic fine particles comprise silicon oxide, titanium oxide, aluminum oxide, or a composite oxide of zinc oxide and antimony pentoxide. 前記無機塩がハロゲン化水素酸、燐酸、硫酸、硝酸およびモリブデン酸のアルカリ金属塩、アルカリ土類金属塩またはアンモニウム塩から選ばれた少なくとも1種であることを特徴とする請求項1〜5のいずれかに記載の無機微粒子凝集体。   The inorganic salt is at least one selected from alkali metal salts, alkaline earth metal salts or ammonium salts of hydrohalic acid, phosphoric acid, sulfuric acid, nitric acid and molybdic acid. The inorganic fine particle aggregate according to any one of the above. 前記無機塩が臭化カリウム、塩化カリウム、モリブデン酸アンモニウム、リン酸ニ水素ナトリウム、塩化カルシウムおよび臭化アンモニウムから選ばれた少なくとも1種であることを特徴とする請求項6に記載の無機微粒子凝集体。   The inorganic fine particle aggregate according to claim 6, wherein the inorganic salt is at least one selected from potassium bromide, potassium chloride, ammonium molybdate, sodium dihydrogen phosphate, calcium chloride, and ammonium bromide. Aggregation. 前記乾燥が、絶対温度で示した乾燥の温度(T)と無機微粒子の融点(T)の比(T/T)が0.23以下で行われることを特徴とする請求項1〜7のいずれかに記載の無機微粒子凝集体。 2. The drying is performed at a ratio (T 0 / T m ) of a drying temperature (T 0 ) expressed as an absolute temperature to a melting point (T m ) of the inorganic fine particles of 0.23 or less. The inorganic fine particle aggregate in any one of -7. 無機微粒子と無機塩との混合液から乾燥によって固化物を得て、該固形物から溶剤を用いて無機塩を除去した後に乾燥する方法であって、該乾燥が無機微粒子同士の表面融着が実質的に起こらない温度で行われる請求項1〜8のいずれかに記載の無機微粒子凝集体の製造方法。   A solidified product is obtained by drying from a mixed liquid of inorganic fine particles and an inorganic salt, and the inorganic salt is removed from the solid using a solvent, followed by drying. The method for producing an inorganic fine particle aggregate according to any one of claims 1 to 8, which is carried out at a temperature that does not substantially occur.
JP2005029823A 2005-02-04 2005-02-04 Inorganic particulate agglomerate and its producing method Pending JP2006213577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005029823A JP2006213577A (en) 2005-02-04 2005-02-04 Inorganic particulate agglomerate and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005029823A JP2006213577A (en) 2005-02-04 2005-02-04 Inorganic particulate agglomerate and its producing method

Publications (1)

Publication Number Publication Date
JP2006213577A true JP2006213577A (en) 2006-08-17

Family

ID=36977112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005029823A Pending JP2006213577A (en) 2005-02-04 2005-02-04 Inorganic particulate agglomerate and its producing method

Country Status (1)

Country Link
JP (1) JP2006213577A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213870A (en) * 2005-02-04 2006-08-17 Du Pont Mitsui Fluorochem Co Ltd Thermoplastic resin composite composition and method for producing the same
JP2011011929A (en) * 2009-06-30 2011-01-20 Taiheiyo Cement Corp Ceramic porous sintered compact, component for semiconductor manufacturing apparatus and shower plate, and method of producing porous sintered compact
JP2015051924A (en) * 2010-06-30 2015-03-19 株式会社トクヤマ Surface-treated inorganic oxide particle
JP2017082042A (en) * 2015-10-23 2017-05-18 三菱レイヨン株式会社 Method for producing (meth)acrylic resin composite composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122173A (en) * 1984-11-15 1986-06-10 旭化成株式会社 Inorganic porous body and manufacture
JPH0427424A (en) * 1990-05-22 1992-01-30 Nippon Kayaku Co Ltd Microbead and its production
JP2001152030A (en) * 1999-11-30 2001-06-05 Shibaura Institute Of Technology Composite resin composition, flame-retarding material and their production
JP2006077172A (en) * 2004-09-10 2006-03-23 Sumitomo Bakelite Co Ltd Insulating resin composition, manufacturing method therefor and electronic part
JP2006199566A (en) * 2004-12-24 2006-08-03 Fuji Kagaku Kk Method for manufacturing soluble component-containing silica, soluble component-containing silicate and porous silica

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122173A (en) * 1984-11-15 1986-06-10 旭化成株式会社 Inorganic porous body and manufacture
JPH0427424A (en) * 1990-05-22 1992-01-30 Nippon Kayaku Co Ltd Microbead and its production
JP2001152030A (en) * 1999-11-30 2001-06-05 Shibaura Institute Of Technology Composite resin composition, flame-retarding material and their production
JP2006077172A (en) * 2004-09-10 2006-03-23 Sumitomo Bakelite Co Ltd Insulating resin composition, manufacturing method therefor and electronic part
JP2006199566A (en) * 2004-12-24 2006-08-03 Fuji Kagaku Kk Method for manufacturing soluble component-containing silica, soluble component-containing silicate and porous silica

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213870A (en) * 2005-02-04 2006-08-17 Du Pont Mitsui Fluorochem Co Ltd Thermoplastic resin composite composition and method for producing the same
JP2011011929A (en) * 2009-06-30 2011-01-20 Taiheiyo Cement Corp Ceramic porous sintered compact, component for semiconductor manufacturing apparatus and shower plate, and method of producing porous sintered compact
JP2015051924A (en) * 2010-06-30 2015-03-19 株式会社トクヤマ Surface-treated inorganic oxide particle
JP2017082042A (en) * 2015-10-23 2017-05-18 三菱レイヨン株式会社 Method for producing (meth)acrylic resin composite composition

Similar Documents

Publication Publication Date Title
US7495049B2 (en) Melt processible fluoropolymer composition containing nano particles
JP5252612B2 (en) Resin composite composition and method for producing the same
CN101309957B (en) A polymer composition with uniformly distributed nano-sized inorganic particles
Mirjalili et al. Mechanical and morphological properties of polypropylene/nano α-Al 2 O 3 composites
KR101418983B1 (en) Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles
KR101686973B1 (en) Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles
US7985354B1 (en) Carbon nanomaterials dispersion and stabilization
TWI818901B (en) Hexagonal boron nitride powder and manufacturing method thereof
JP2008115336A (en) Adhesive fluororesin composite composition
JP2006213870A (en) Thermoplastic resin composite composition and method for producing the same
JP2006213577A (en) Inorganic particulate agglomerate and its producing method
TWI403551B (en) Melt processible fluoropolymer composition containing nano particles
Pal et al. Fly ash-reinforced polypropylene composites
CN101336269B (en) Melt processible fluoropolymer composition containing nano particles
JP2008013610A (en) Molded article composed of fluororesin composite composition
JP6647052B2 (en) Rubber composition and tire
JP5062978B2 (en) Manufacturing method of inorganic film
JP2008088305A (en) Perfluorofluororesin composite composition
JP2008115335A (en) Transparent member comprising fluororesin composite composition
JP2008088306A (en) Perfluorofluororesin composite composition
JP4776221B2 (en) Method for producing the composition
JP6544194B2 (en) Method for producing (meth) acrylic resin composite composition
TW202302448A (en) Hexagonal boron nitride aggregate particle and hexagonal boron nitride powder, resin composition, resin sheet
Pal et al. PK Manna 4, and Kamal K. Kar 5,* 1Dr. APJ Abdul Kalam Technical University, Lucknow, India, 2Department of Mechanical Engineering, SRM Institute of Science and Technology, Chennai, India, 3Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of
KR20110033335A (en) Perfluroro fluororesin composite

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011