JP2006210135A - Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device - Google Patents

Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device Download PDF

Info

Publication number
JP2006210135A
JP2006210135A JP2005020516A JP2005020516A JP2006210135A JP 2006210135 A JP2006210135 A JP 2006210135A JP 2005020516 A JP2005020516 A JP 2005020516A JP 2005020516 A JP2005020516 A JP 2005020516A JP 2006210135 A JP2006210135 A JP 2006210135A
Authority
JP
Japan
Prior art keywords
catalyst
electrode
oxide
support material
catalyst electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005020516A
Other languages
Japanese (ja)
Inventor
Hiroyuki Morioka
宏之 守岡
Seisho Tsun
世昌 鍾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005020516A priority Critical patent/JP2006210135A/en
Publication of JP2006210135A publication Critical patent/JP2006210135A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst electrode material capable of furthering catalyst efficiency and of realizing high durability by eliminating dissolution of the support itself; to provide a catalyst electrode formed of the catalyst electrode material; to provide manufacturing methods for them; to provide a support material for forming the catalyst electrode material; and to provide an electrochemical device using the catalyst electrode. <P>SOLUTION: This support material for an electrode catalyst is mainly formed of an oxide such as titanium dioxide. This electrochemical device, in particular, a fuel cell is composed of a plurality of electrodes 5 and 7 and a proton conductor 3 sandwiched between the electrodes, wherein at least one of the plurality electrodes, in particular, an oxygen electrode 7 is formed of this catalyst electrode material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、触媒電極材料、触媒電極、及びこれらの製造方法、電極触媒用の担体材料、並びに燃料電池等の電気化学デバイスに関するものである。   The present invention relates to a catalyst electrode material, a catalyst electrode, a method for producing the same, a support material for an electrode catalyst, and an electrochemical device such as a fuel cell.

代表的な高分子電解質型燃料電池は、プロトン伝導性の固体高分子電解質膜の両面に一対の電極を接合し、一方の電極(燃料極)には純水素又は改質水素ガスやメタノールなどのアルコールを燃料として供給し、他方の電極(酸素極)には酸素ガス又は空気を酸化剤として供給し、起電力を得るものである。燃料電池の燃料極では燃料の酸化反応が行われ、酸素極では酸素の還元が行われる。ここで、水素を燃料とし、酸性の電解質を用いる場合の理想的な反応式は、下記のように表される。   A typical polymer electrolyte fuel cell has a pair of electrodes joined to both sides of a proton conductive solid polymer electrolyte membrane, and one electrode (fuel electrode) is made of pure hydrogen or reformed hydrogen gas or methanol. Alcohol is supplied as a fuel, and oxygen gas or air is supplied as an oxidant to the other electrode (oxygen electrode) to obtain an electromotive force. A fuel oxidation reaction is performed at the fuel electrode of the fuel cell, and oxygen is reduced at the oxygen electrode. Here, an ideal reaction formula when hydrogen is used as a fuel and an acidic electrolyte is used is expressed as follows.

燃料(水素、負)極 :H2→2H++2e-
酸素(正)極 :O2+4H++4e-→2H2
Fuel (hydrogen, negative) electrode: H 2 → 2H + + 2e
Oxygen (positive) electrode: O 2 + 4H + + 4e → 2H 2 O

図10は、こうした燃料電池セルの構造例を示す。図中の触媒層1は、触媒材料の他、場合によっては、イオン伝導体、撥水性樹脂(例えばフッ素系)及び造孔剤(CaCO3)と混合して触媒電極を形成してよい。この触媒電極は、例えば白金(Pt)をカーボンに担持した触媒からなる触媒層1と、多孔性のガス拡散性集電体としての例えばカーボンシート2とからなる多孔性のガス拡散性触媒電極であるが、狭義には、触媒層1のみをガス拡散性触媒電極と称してもよい。 FIG. 10 shows an example of the structure of such a fuel battery cell. The catalyst layer 1 in the figure may be mixed with an ion conductor, a water-repellent resin (for example, a fluorine-based resin), and a pore-forming agent (CaCO 3 ) in addition to the catalyst material to form a catalyst electrode. This catalyst electrode is a porous gas diffusive catalyst electrode comprising, for example, a catalyst layer 1 made of a catalyst in which platinum (Pt) is supported on carbon and, for example, a carbon sheet 2 as a porous gas diffusible current collector. However, in a narrow sense, only the catalyst layer 1 may be referred to as a gas diffusive catalyst electrode.

そして、端子4付きの触媒電極からなる負極(燃料極又は水素極)5と、端子6付きの触媒電極からなる正極(酸素極)7とが対向して配置され、これらの両極間にナフィオン(登録商標)(デュポン社製のパーフルオロスルホン酸樹脂)等からなるプロトン伝導部3が挟着されている。   A negative electrode (fuel electrode or hydrogen electrode) 5 composed of a catalyst electrode with a terminal 4 and a positive electrode (oxygen electrode) 7 composed of a catalyst electrode with a terminal 6 are arranged to face each other, and Nafion ( A proton conducting portion 3 made of (registered trademark) (perfluorosulfonic acid resin manufactured by DuPont) or the like is sandwiched.

この燃料電池の動作時には、負極5側ではH2流路8中に水素ガスが通され、流路8を通過する間に触媒層1の触媒の作用で水素イオンを発生する。この水素イオンはプロトン伝導部3を通って正極7側へ移動し、そこでO2流路9を通る酸素(又は空気)が触媒層1の触媒の作用で発生した酸素イオンと反応し、これにより所望の起電力が取出される。 During the operation of the fuel cell, hydrogen gas is passed through the H 2 flow path 8 on the negative electrode 5 side, and hydrogen ions are generated by the action of the catalyst of the catalyst layer 1 while passing through the flow path 8. The hydrogen ions move to the positive electrode 7 side through the proton conducting portion 3, where oxygen (or air) passing through the O 2 flow path 9 reacts with oxygen ions generated by the action of the catalyst of the catalyst layer 1, thereby A desired electromotive force is taken out.

こうした燃料電池において触媒電極を形成するPt等の貴金属の担体として、炭素材料が広く用いられている。また、炭素材料の担体に少量のTiO2等のチタン酸化物を添加する例も報告されている(後述の非特許文献1参照)。 In such a fuel cell, a carbon material is widely used as a support for a noble metal such as Pt that forms a catalyst electrode. In addition, an example in which a small amount of titanium oxide such as TiO 2 is added to a carbon material carrier has been reported (see Non-Patent Document 1 described later).

ここで、酸素極における反応について詳細に述べると、図11に示すように、炭素担体に付着した触媒金属(Pt)粒子に酸素分子(O2)が吸着され、分解されて生じる解離物が燃料極側から移動してきたプロトン(H+)と反応して水を生成する。 Here, the reaction at the oxygen electrode will be described in detail. As shown in FIG. 11, the dissociation product generated by adsorbing oxygen molecules (O 2 ) to the catalytic metal (Pt) particles adhering to the carbon support and decomposing them is the fuel. It reacts with protons (H + ) that have moved from the pole side to produce water.

この場合、燃料電池(FC)の出力の向上を図るには、反応抵抗を低減させることが重要であるが、図12に示すように、発電時の最も大きな抵抗は酸素極側での酸素の解離反応である。即ち、酸素の解離反応(還元反応)に必要な電圧は破線で表わす理想的な変化曲線(O2−ideal)であるが、これは実際には実線で表わす変化曲線(O2−real)となり、燃料極側での水素の分解反応に必要な電圧の変化曲線(H2−real:H2−idealとあまり変わらない)との差を実効電圧EH2-PEFC(PEFC:Polymer electrolyte(固体電解質)型燃料電池)としたときに、この実効電圧がO2−realによる電圧低下のために低くなってしまう。理想的な稼動条件下では、出力電圧の全損失量の70%以上が酸素極側での酸素還元反応が遅いことによって生じる。なお、燃料としてメタノールを用いるダイレクトメタノール(DM)方式とした場合は、燃料極側での必要電圧(CH3OH−real)が上昇するために、実効電圧EDMFCが一層低下する。 In this case, in order to improve the output of the fuel cell (FC), it is important to reduce the reaction resistance. However, as shown in FIG. 12, the largest resistance during power generation is the oxygen resistance on the oxygen electrode side. It is a dissociation reaction. That is, the voltage required for the oxygen dissociation reaction (reduction reaction) is an ideal change curve (O 2 -ideal) represented by a broken line, but this is actually a change curve (O 2 -real) represented by a solid line. The difference from the change curve of the voltage required for the hydrogen decomposition reaction on the fuel electrode side (H 2 -real: not much different from H 2 -ideal) is expressed as the effective voltage E H2-PEFC (PEFC: Polymer electrolyte (solid electrolyte) ) Type fuel cell), the effective voltage is lowered due to a voltage drop due to O 2 -real. Under ideal operating conditions, 70% or more of the total output voltage loss is caused by the slow oxygen reduction reaction on the oxygen electrode side. In the case of the direct methanol (DM) system using methanol as the fuel, the effective voltage E DMFC further decreases because the required voltage (CH 3 OH-real) on the fuel electrode side increases.

そして、図13に示すように、このような実効電圧の低下が触媒活性の優勢な領域(触媒活性優勢領域)で主として酸素極側の反応抵抗によって生じ、更に電解質(プロトン伝導部)内をプロトンが移動する際に膜抵抗の優勢な領域(膜抵抗優勢領域)での抵抗過電圧、更には物質の移動が優勢な領域(物質移動優勢領域)での濃度分極によって、実効電圧が更に低下する。   As shown in FIG. 13, such a decrease in effective voltage is mainly caused by the reaction resistance on the oxygen electrode side in the region where the catalytic activity is dominant (catalytic activity dominant region). The effective voltage further decreases due to the resistance overvoltage in the region where the membrane resistance is dominant (membrane resistance dominant region) and the concentration polarization in the region where the substance is dominant (mass transfer dominant region).

Electrochimica Acta 49(2004)4163-4170“Synthesis characterization of methanol tolerant Pt/TiOx/C nanocomposites for oxygen reduction in direct methanol fuel cells”Electrochimica Acta 49 (2004) 4163-4170 “Synthesis characterization of methanol tolerant Pt / TiOx / C nanocomposites for oxygen reduction in direct methanol fuel cells”

上記したことから、特に酸素極側での反応抵抗を抑え、触媒効率を高めることによって、燃料電池の出力特性を向上させることが望まれる。   From the above, it is desired to improve the output characteristics of the fuel cell by suppressing the reaction resistance particularly on the oxygen electrode side and increasing the catalyst efficiency.

しかしながら、上記した触媒電極において金属触媒の担体として用いる炭素材料は、多くの場合、触媒重量の約半分をも占めるが、この担体材料には触媒機能が無い。つまり、燃料電池の電極に用いられる触媒中の半分は、高表面積で電子伝導を示すだけの担体材料としての炭素材料が占めている。近年、こうした炭素材料に関して改良を含む検討が開始されているが、その検討は炭素材料の形態変化や高表面積化等であり、炭素材料の範疇を脱却していない。   However, the carbon material used as the support for the metal catalyst in the catalyst electrode described above often occupies about half of the catalyst weight, but this support material has no catalytic function. In other words, half of the catalyst used for the electrode of the fuel cell is occupied by a carbon material as a carrier material that has a high surface area and only exhibits electron conduction. In recent years, studies including improvements on such carbon materials have been started. However, the studies have included changes in the shape of the carbon materials, an increase in surface area, and the like, and have not left the category of carbon materials.

また、燃料電池の高耐久化の観点から、炭素材料の使用について問題が投げかけられている。その問題点とは、発電時に酸素極で生成する微量の過酸化水素(図10参照)が、担体である炭素材料を酸化し、炭素材料が溶出してしまうことである。現時点では、この問題点に関する対策は存在せず、燃料電池の長期安定性を考えた場合、大きな課題となりうる可能性がある。   In addition, from the viewpoint of increasing the durability of fuel cells, problems have been raised regarding the use of carbon materials. The problem is that a small amount of hydrogen peroxide (see FIG. 10) generated at the oxygen electrode during power generation oxidizes the carbon material as a carrier and the carbon material is eluted. At present, there is no countermeasure for this problem, and there is a possibility that it may become a big problem when considering the long-term stability of the fuel cell.

つまり、これまで広く用いられている触媒担体としての炭素材料は、次のような課題を有している。
(1)炭素材料自体には、触媒機能が無く、また、触媒能を増加する助触媒機能も確認 されていない。
(2)燃料電池の長期安定性を考慮すると、炭素材料の溶出が懸念される。
That is, the carbon material as a catalyst carrier widely used until now has the following problems.
(1) The carbon material itself has no catalytic function, and no cocatalyst function that increases catalytic ability has been confirmed.
(2) Considering the long-term stability of the fuel cell, there is a concern about the elution of the carbon material.

このような問題は、上記した非特許文献1に示された少量のチタン酸化物添加の炭素材料においても同様に生じる。即ち、この担体材料、例えばTiO2/Cは、触媒金属であるPtが20質量%の割合で炭素に担持された状態でPt:Tiの原子数の比が1:1であるとしていることから、炭素に対するTiの割合は約5.6質量%程度にすぎない。言い換えれば、Tiの添加量は少量であるにすぎず、担体の大部分は炭素からなっているので、担体材料としてみたときに上記したように触媒機能が実質的に無く、炭素の溶出による耐久性の低下が生じ易く、実際には燃料電池の高出力化、安定性を実現することができない。 Such a problem also occurs in the carbon material added with a small amount of titanium oxide shown in Non-Patent Document 1 described above. That is, this support material, for example, TiO 2 / C, has a Pt: Ti atom number ratio of 1: 1 in a state where Pt as a catalyst metal is supported on carbon at a ratio of 20% by mass. The ratio of Ti to carbon is only about 5.6% by mass. In other words, the addition amount of Ti is only a small amount, and most of the support is made of carbon. Therefore, when viewed as a support material, there is substantially no catalytic function as described above, and durability due to elution of carbon. The performance of the fuel cell is likely to deteriorate, and in reality, the high output and stability of the fuel cell cannot be realized.

また、図10に示したように、炭素担体に付着しているPt粒子の粒径が小さく、散在していることから、Pt粒子にO2分子が吸着されてから解離→反応→水の生成及び脱離に至るまでの流れが各Pt粒子を経由して進行するときに、この流れがスムーズではなく、反応が遅い上に触媒効率が悪い。 Further, as shown in FIG. 10, since the Pt particles adhering to the carbon support are small in size and scattered, the dissociation → reaction → water generation after the O 2 molecules are adsorbed on the Pt particles. When the flow up to desorption proceeds via each Pt particle, the flow is not smooth, the reaction is slow, and the catalyst efficiency is poor.

本発明の目的は、従来の触媒担体の問題点を克服して、触媒効率を助長し、担体自体の溶出をなくして高耐久化も実現できる触媒電極材料と、この触媒電極材料からなる触媒電極、及びこれらの製造方法、更には触媒電極材料を形成する担体材料、並びに触媒電極を用いた電気化学デバイスを提供することにある。   An object of the present invention is to overcome the problems of the conventional catalyst carrier, promote catalyst efficiency, eliminate elution of the carrier itself, and realize high durability, and a catalyst electrode comprising this catalyst electrode material And a manufacturing method thereof, a support material for forming a catalyst electrode material, and an electrochemical device using the catalyst electrode.

即ち、本発明は、主として二酸化チタン等の酸化物からなる電極触媒用の担体材料、この担体材料に、白金等の触媒材料が担持されてなる触媒電極材料、及びこの触媒電極材料によって形成された触媒電極に係るものである。   That is, the present invention is formed by a support material for an electrode catalyst mainly composed of an oxide such as titanium dioxide, a catalyst electrode material in which a catalyst material such as platinum is supported on the support material, and the catalyst electrode material. This relates to the catalyst electrode.

本発明はまた、複数の電極と、これらの電極の間に挟持されたイオン伝導体とによって構成され、前記複数の電極の少なくとも1つ、特に酸素極が、本発明の触媒電極材料からなる電気化学デバイス、特に燃料電池に係るものである。   The present invention is also constituted by a plurality of electrodes and an ionic conductor sandwiched between these electrodes, and at least one of the plurality of electrodes, particularly the oxygen electrode, is an electric electrode comprising the catalyst electrode material of the present invention. It relates to chemical devices, in particular fuel cells.

本発明はまた、主として二酸化チタン等の酸化物からなる電極触媒用の担体材料を作製する工程と、この担体材料の分散液に塩化白金酸等の電極触媒の前駆体を添加する工程と、アルコール等による還元処理によって前記前駆体中の触媒材料を前記担体材料に付着させる工程とを有する、触媒電極材料の製造方法、更には、前記触媒材料が前記担体材料に付着してなる触媒電極材料によって触媒電極を形成する工程を付加した、触媒電極の製造方法も提供するものである。   The present invention also includes a step of producing a support material for an electrode catalyst mainly composed of an oxide such as titanium dioxide, a step of adding a precursor of an electrode catalyst such as chloroplatinic acid to a dispersion of the support material, and an alcohol. The catalyst material in the precursor is attached to the support material by a reduction treatment such as by a catalyst, and further, by the catalyst electrode material formed by attaching the catalyst material to the support material The present invention also provides a method for producing a catalyst electrode, to which a process for forming a catalyst electrode is added.

本発明によれば、触媒電極を構成する担体材料が主として酸化物からなっているので、従来の炭素材料の担体と比べて、材質が全く異なると共に、次のような優れた作用効果を奏することができる。
(a)酸化物が示す助触媒機能を効果的に生かして触媒効率を向上させ、これによって 出力特性等の性能を向上させることができ、特に低電流、高電圧領域での性能向上を実 現することができる。
(b)しかも、酸化物の助触媒機能による触媒効率の向上によって、貴金属触媒の使用 量を低減することができ、低コスト化を図れる。
(c)また、炭素材料を実質的に用いないため、酸化による溶出が生じることはなく、 デバイスの高耐久化による長期安定性を実現することができる。
(d)更に、高価な機能性炭素材料を用いることを要しないので、この点でも低コスト 化を図れる。
According to the present invention, since the support material constituting the catalyst electrode is mainly made of an oxide, the material is completely different from that of the conventional carbon material support and has the following excellent effects. Can do.
(A) Utilizing the cocatalyst function exhibited by oxides to improve the catalyst efficiency and thereby improve the performance such as output characteristics, etc., especially in the low current and high voltage range. can do.
(B) In addition, the amount of noble metal catalyst used can be reduced and the cost can be reduced by improving the catalyst efficiency due to the oxide cocatalyst function.
(C) In addition, since no carbon material is used, elution due to oxidation does not occur, and long-term stability can be realized by enhancing the durability of the device.
(D) Furthermore, since it is not necessary to use an expensive functional carbon material, the cost can be reduced also in this respect.

本発明において、上記した作用効果を顕著に奏するには、前記担体材料が前記酸化物のみからなるのが望ましい。但し、前記担体材料は、前記酸化物のみからなり、炭素材料が無添加であっても十分に動作可能であるが、伝導助剤として炭素材料を少量添加しても問題はない。また、前記酸化物が、チタン酸化物の中で例えばTin2n-1(n=4〜9)のマグネリ相をなすものであれば、温度によっては導電性も有しているため、この場合は酸化物のみで導電性の担体材料を構成することができる。 In the present invention, it is desirable that the carrier material is composed of only the oxide in order to achieve the above-described effects. However, the carrier material is composed of only the oxide and can operate sufficiently even when no carbon material is added, but there is no problem even if a small amount of carbon material is added as a conduction aid. In addition, if the oxide has a magnetic phase of, for example, Ti n O 2n-1 (n = 4 to 9) among titanium oxides, it has conductivity depending on the temperature. In some cases, the conductive carrier material can be composed of only oxides.

また、前記酸化物は、通常の酸化物と比較して、高表面積であること、耐酸性が十分であること、及び酸素等の解離反応において吸着能等の助触媒機能を有するのが望ましい。   Further, it is desirable that the oxide has a high surface area, sufficient acid resistance, and a cocatalyst function such as adsorption ability in a dissociation reaction of oxygen or the like as compared with a normal oxide.

こうした酸化物としては、TiO2等のチタン酸化物、V25又はVOX等のバナジウム酸化物、Ta25等のタンタル酸化物、H2WO4又はWO3等のタングステン酸化物、SbO2等のアンチモン酸化物、MoO2等のモリブデン酸化物、SnO2等のスズ酸化物、Er23等のエルビウム酸化物、CeO2等のセリウム酸化物、ZrO2等のジルコニウム酸化物、SiO2等のシリコン酸化物、ZnO等の亜鉛酸化物、MgO等のマグネシウム酸化物、Nb25等のニオブ酸化物及びAl23等のアルミニウム酸化物からなる群より選ばれた少なくとも1種が使用可能である。 Such oxides include titanium oxides such as TiO 2 , vanadium oxides such as V 2 O 5 or VO x , tantalum oxides such as Ta 2 O 5 , tungsten oxides such as H 2 WO 4 or WO 3 , Antimony oxide such as SbO 2 , molybdenum oxide such as MoO 2 , tin oxide such as SnO 2 , erbium oxide such as Er 2 O 3 , cerium oxide such as CeO 2 , zirconium oxide such as ZrO 2 , At least one selected from the group consisting of silicon oxides such as SiO 2 , zinc oxides such as ZnO, magnesium oxides such as MgO, niobium oxides such as Nb 2 O 5 and aluminum oxides such as Al 2 O 3. Species can be used.

この中で、ナノスケールの二酸化チタンが好適であり、径がnmスケールのナノワイヤー又はナノチューブ化されたTiO2が挙げられる。 Among these, nanoscale titanium dioxide is preferable, and nanowires with a diameter of nm scale or TiO 2 that has been converted into a nanotube can be used.

また、前記触媒材料は貴金属、例えば白金からなるのがよく、白金合金(Pt−Ti、Pt−Cr、Pt−Co、Pt−Ni等)であってもよい。   The catalyst material may be made of a noble metal, such as platinum, and may be a platinum alloy (Pt—Ti, Pt—Cr, Pt—Co, Pt—Ni, etc.).

本発明の担体材料、触媒電極材料又は触媒電極は、前記電気化学デバイスの電極の少なくとも1つ、特に燃料電池における酸素極を構成するのに好適である。   The support material, catalyst electrode material or catalyst electrode of the present invention is suitable for constituting at least one of the electrodes of the electrochemical device, particularly an oxygen electrode in a fuel cell.

また、本発明の製造方法において、前記担体材料として、請求項11〜14のいずれか1項に記載した担体材料を使用し、この担体材料に、請求項15又は16に記載した電極触媒材料を付着させるのがよい。   In the production method of the present invention, the carrier material described in any one of claims 11 to 14 is used as the carrier material, and the electrode catalyst material described in claim 15 or 16 is used as the carrier material. It is good to attach.

この場合、前記担体材料としてナノスケールの二酸化チタンを使用し、前記電極触媒として白金を使用するとき、前記二酸化チタンの分散液に塩化白金酸を前記前駆体として添加することが、高出力を安定して得る上で望ましい。   In this case, when nanoscale titanium dioxide is used as the support material and platinum is used as the electrode catalyst, adding chloroplatinic acid as a precursor to the titanium dioxide dispersion can stabilize the output. It is desirable to obtain it.

以下、本発明の好ましい実施の形態を図面参照下に説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

酸化物担体と触媒金属の役割
図1には、本発明に基づいて、酸化物担体としてチタン酸化物、例えばTiO2又はTin2n-1(n=4〜9)のナノワイヤーを用い、この酸化物担体に触媒金属としての例えばPt粒子を付着させた触媒電極材料を示す。
Role of Oxide Support and Catalytic Metal FIG. 1 uses titanium oxide, for example, TiO 2 or Ti n O 2n-1 (n = 4-9) nanowires as the oxide support according to the present invention, A catalyst electrode material in which, for example, Pt particles as a catalyst metal are attached to this oxide carrier is shown.

この酸化物担体は、通常の酸化物よりも高表面積であり、耐酸性を有する上に、それ自体が酸素解離反応時の助触媒機能を有しているので、燃料電池の酸素極を構成する場合、酸素分子を担体表面に十分に吸着する作用がある。そして、吸着された酸素分子は、図11に示した炭素担体上のPt粒子とは異なって比較的大きな粒径、例えば140nmのPt粒子に接触すると、このPt粒子の表面上で解離反応を生じ、更に同表面上で燃料極側からのプロトンと反応して水を生成し、脱離させるものと考えられる。この場合、電子の供給は、電気伝導性の良好なPt粒子同士の接触によってPt粒子を介して行われる。   This oxide carrier has a surface area higher than that of a normal oxide, has acid resistance, and also has a cocatalyst function during an oxygen dissociation reaction, and thus constitutes an oxygen electrode of a fuel cell. In this case, there is an effect of sufficiently adsorbing oxygen molecules on the surface of the carrier. When the adsorbed oxygen molecules come into contact with Pt particles having a relatively large particle size, for example, 140 nm, unlike the Pt particles on the carbon support shown in FIG. 11, a dissociation reaction occurs on the surface of the Pt particles. Further, it is considered that water reacts with protons from the fuel electrode side on the same surface to generate and desorb water. In this case, the supply of electrons is performed through the Pt particles by the contact between the Pt particles having good electrical conductivity.

このようにして、酸化物担体の助触媒機能によって担体表面に酸素分子が吸着され、この酸素分子が粒径の大きなPt粒子の表面上で解離反応及び水生成反応を順次生じるため、触媒効率の向上による高出力化が可能となる。   In this way, oxygen molecules are adsorbed on the surface of the support by the cocatalyst function of the oxide support, and this oxygen molecule sequentially causes a dissociation reaction and a water generation reaction on the surface of the Pt particles having a large particle size. High output can be achieved by improvement.

酸化物担体を用いた場合の発電効果
図2には、担体にPt又はその合金を付着させてなる触媒材料によって形成した触媒電極を図10に示した燃料電池に用い、得られた発電特性を示す。この場合の燃料電池の各部の調製条件と測定条件は図2中に示した(ここで、TKK社:田中貴金属社、CCM:Catalyst-Coated Membrane法、Ti−NW又はTiO2−NW:酸化チタンのナノワイヤー、H2PtCl6・6H2O:後述のPtの前駆体)。
FIG. 2 shows the power generation effect when the oxide support is used . FIG. 2 shows the power generation characteristics obtained by using the catalyst electrode formed of the catalyst material in which Pt or an alloy thereof is adhered to the support for the fuel cell shown in FIG. Show. The preparation conditions and measurement conditions of each part of the fuel cell in this case are shown in FIG. 2 (where TKK: Tanaka Kikinzoku, CCM: Catalyst-Coated Membrane method, Ti—NW or TiO 2 —NW: titanium oxide) Nanowire, H 2 PtCl 6 .6H 2 O: Pt precursor described later).

この結果から、本発明に基づいて酸化チタンを担体とする触媒(Pt/TiO2−NW)を用いると、炭素担体を用いる場合(Pt/C)と比べて、特に0〜350mA/cm2の低電流領域において実効電圧が向上することが分る。即ち、低電流領域で高電圧が得られ、低電流、高電圧駆動が可能となり、その領域で駆動するのに好適な燃料電池となる。 From this result, when using the catalyst (Pt / TiO 2 -NW) using titanium oxide as a carrier based on the present invention, it is particularly 0 to 350 mA / cm 2 as compared with the case of using a carbon carrier (Pt / C). It can be seen that the effective voltage is improved in the low current region. That is, a high voltage can be obtained in a low current region, and a low current and high voltage drive is possible, and a fuel cell suitable for driving in that region is obtained.

こうした低電流・高電圧領域での駆動が重要である理由を図3について説明する。   The reason why driving in such a low current / high voltage region is important will be described with reference to FIG.

図3において、Pt/Cを用いたときの発電特性を□、出力特性を■とすると、燃料電池の高出力化についてのこれまでの検討は、限界電流を増加させる方向で広く行われてきた。実際に限界電流が増加した発電特性を△、出力特性を▲とすると、明らかに最高出力の増加(約117mW/cm2→約175mW/cm2)が確認できる。しかし、この最高出力を発生する際の実効電圧値を比較すると、意外なことに、次のようにほとんど変わらない。
116.8mW/cm20.345V×338.5mA/cm2
175.2mW/cm20.345V×507.7mA/cm2
In FIG. 3, when the power generation characteristics when Pt / C is used are □ and the output characteristics are ■, the investigation of increasing the output of the fuel cell has been widely conducted in the direction of increasing the limit current. . If the power generation characteristic in which the limit current has actually increased is Δ and the output characteristic is ▲, it can be clearly confirmed that the maximum output is increased (about 117 mW / cm 2 → about 175 mW / cm 2 ). However, surprisingly, when the effective voltage value at the time of generating the maximum output is compared, surprisingly, it hardly changes as follows.
116.8 mW / cm 2 = 0.345 V × 338.5 mA / cm 2
175.2 mW / cm 2 = 0.345 V × 507.7 mA / cm 2

ここで、燃料電池の問題点の一つである「駆動電圧の低さ」が挙げられる。一般的な電池類と比べ、燃料電池に関する駆動電圧の低さが指摘されており、最高出力が上昇してもその際に使用する実効電圧の上昇を伴わなければ、大部分は抵抗になってしまうことも同時に考えられる。実際に使用する際は、最高出力で駆動するということは抵抗(ロス)の観点からありえなく、ロスの少ない高電圧・低電流側での使用が期待される。燃料電池の実用化の時点では、DC−DCコンバーターによる昇圧が考えられるが、この際にも基本となる燃料電池の電圧が高いことが、昇圧時の変換ロスの低減に繋がる。   Here, “low drive voltage”, which is one of the problems of fuel cells, can be mentioned. It has been pointed out that the drive voltage for fuel cells is low compared to general batteries, and even if the maximum output rises, if it does not increase the effective voltage used at that time, most of the resistance becomes resistance. It can be considered at the same time. In actual use, driving at the maximum output is impossible from the viewpoint of resistance (loss), and use on the high voltage / low current side with less loss is expected. At the time of commercialization of the fuel cell, boosting by a DC-DC converter is conceivable, but the basic fuel cell voltage is high at this time as well, leading to a reduction in conversion loss during boosting.

そこで、本発明者は、燃料電池開発の方針として、限界電流の上昇のみにとらわれず、高電圧で使用できる領域、つまり、高電圧・低電流領域の駆動こそが燃料電池開発の大きな指針になると考え、これを本発明に基づく担体の使用によって実現したのである。この場合、限界電流が上記の例と変わらないとしたときの一例を示す。発電特性を○、出力特性を●とすると、
229.1mW/cm20.550V×416.5mA/cm2
となり、上記の例と比べると、限界電流の上昇なしに最高出力及び電圧が上昇することが分る。このことは、本発明に基づく酸化物担体を用いると、低電流領域で高電圧駆動が可能であり、極めて有用な性能が得られることを意味する。
Therefore, the present inventor believes that the fuel cell development policy is not limited only to the increase of the limit current, but the region that can be used at a high voltage, that is, the driving in the high voltage / low current region is a big guideline for fuel cell development. This has been realized by the use of a carrier according to the invention. In this case, an example when the limit current is not different from the above example is shown. If the power generation characteristics are ○ and the output characteristics are ●,
229.1 mW / cm 2 = 0.550 V × 416.5 mA / cm 2
Compared with the above example, it can be seen that the maximum output and voltage increase without increasing the limit current. This means that when the oxide support according to the present invention is used, high voltage driving is possible in a low current region, and extremely useful performance can be obtained.

酸化物担体の合成と触媒金属の担持
次に、チタン酸化物担体の調製方法及び触媒金属(Pt)の担持方法を説明する。
Supported synthesis and catalytic metal oxide support will now be described a supported method of preparing a titanium oxide support process and catalyst metal (Pt).

まず、デガッサ社製の酸化チタン粉末(P−25)を図4に示す条件で、オートクレーブ中において高濃度のアルカリ溶液(KOH水溶液)によって処理し、得られた酸化チタンスラリーを濾過洗浄後、加熱乾燥又は凍結乾燥(FD)する。その後、必要に応じて300〜800℃、60〜160分間、加熱処理して結晶化させ、層状構造の化合物に近い高表面積化されたナノワイヤー状の二酸化チタンを得る。なお、乾燥後に焼成した場合、結晶化が進みすぎて比表面積(BET値)が低下する。   First, titanium oxide powder (P-25) manufactured by Degasser is treated with a high-concentration alkaline solution (KOH aqueous solution) in an autoclave under the conditions shown in FIG. 4, and the resulting titanium oxide slurry is filtered, washed, and heated. Dry or freeze-dry (FD). Then, if necessary, heat treatment is performed at 300 to 800 ° C. for 60 to 160 minutes for crystallization to obtain nanowire-like titanium dioxide having a high surface area close to a compound having a layered structure. In addition, when baking after drying, crystallization progresses too much and a specific surface area (BET value) falls.

こうして凍結乾燥され、高表面積化された二酸化チタンのナノワイヤーの分散液に、白金前駆体としてのH2PtCl6・6H2O(塩化白金酸)又はPt(NH32(NO22を添加し、更にエタノール等のアルコールを添加して還元処理を行い、二酸化チタンの表面にPt粒子を堆積(担持)させた。 The titanium dioxide nanowire dispersion liquid freeze-dried and increased in surface area in this manner was added to a platinum precursor such as H 2 PtCl 6 .6H 2 O (chloroplatinic acid) or Pt (NH 3 ) 2 (NO 2 ) 2. In addition, an alcohol such as ethanol was added for reduction treatment to deposit (carry) Pt particles on the surface of titanium dioxide.

図5に示す結果は、本発明に基づいてP−25を出発原料とする二酸化チタン担体にH2PtCl6・6H2Oを前駆体としてPtを堆積させた場合には、ばらつきはあるものの発電特性が得られるのに対し、前駆体をPt(NH32(NO22としたときには殆ど性能が得られないことを示している。 The results shown in FIG. 5 show that, according to the present invention, when Pt is deposited on a titanium dioxide support using P-25 as a starting material with H 2 PtCl 6 .6H 2 O as a precursor, there is variation, but there is variation. While the characteristics are obtained, the performance is hardly obtained when the precursor is Pt (NH 3 ) 2 (NO 2 ) 2 .

触媒物性と活性
図6には、従来のPt/C触媒、本発明に基づくPt/TiO2−NW触媒について、透過型電子顕微鏡(TEM)による観察結果を示す。
The catalytic properties and activity Figure 6, conventional Pt / C catalyst, the Pt / TiO 2 -NW catalyst according to the present invention, showing the observation result using a transmission electron microscope (TEM).

これによれば、本発明に基づく触媒では、前駆体をH2PtCl6・6H2OとしたときにはPtの平均粒子径が140.6nmとなり、前駆体をPt(NH32(NO22としたときよりもずっと大きく、また従来の触媒のPtの平均粒子径よりもはるかに大きいことが分る。 According to this, in the catalyst based on the present invention, when the precursor is H 2 PtCl 6 .6H 2 O, the average particle diameter of Pt is 140.6 nm, and the precursor is Pt (NH 3 ) 2 (NO 2 ). much greater than when the 2, also it can be seen that much larger than the average particle diameter of Pt conventional catalyst.

そこで、こうしたPt粒径による触媒活性について比較したところ、図7に示すように、Pt粒径によって活性が左右されることはないことが分る。   Thus, when the catalyst activity due to such Pt particle size is compared, it can be seen that the activity is not influenced by the Pt particle size, as shown in FIG.

触媒中の触媒金属(Pt)とTiの状態
図8には、触媒中のPtの4fスペクトルとTiの2pスペクトルを示すが、本発明に基づいて前駆体にH2PtCl6・6H2Oを用いてTiO2−NWに担持させた場合、他の前駆体を用いるときに比べてPt4fのスペクトルがより4f7/2側へシフトしており、Ptの金属性が増していることが分る。これは、前駆体の種類により活性が向上(発電特性が向上)することと関連があるものと思われる。Tiについては、スペクトルに差異がない。
The catalytic metal (Pt) and Ti phase diagram 8 in the catalyst shows a 2p spectra of 4f spectra and Ti of Pt in the catalyst, the H 2 PtCl 6 · 6H 2 O in the precursor in accordance with the present invention When it is used and supported on TiO 2 -NW, the spectrum of Pt4f is shifted to the 4f 7/2 side more than when other precursors are used, and it can be seen that the metallicity of Pt is increased. . This seems to be related to the improvement in activity (improves power generation characteristics) depending on the type of precursor. For Ti, there is no difference in the spectrum.

触媒中の担持体の耐酸性
従来、触媒の担持体として広く用いられてきた炭素担体は、酸化による溶出が懸念されている。そこで図9について、従来用いられてきた炭素担体に替わり本例において担持体として用いたTiOの耐酸性をpH−電位図によって説明する。
Acid resistance of carrier in catalyst Conventionally, carbon carriers that have been widely used as catalyst carriers are concerned about elution due to oxidation. Therefore, with reference to FIG. 9, the acid resistance of TiO 2 used as a support in this example in place of the conventionally used carbon support will be described with reference to a pH-potential diagram.

燃料電池に用いられる電極触媒材料は、プロトン伝導体に起因する超強酸(pH=0)や高温条件下で、カソード電位(標準水素電極に対して約1V)やアノード電位(標準水素電極に対して約0V)において溶出せずに安定であることが不可欠である。その点で触媒担体として広く用いられる炭素は熱力学的に不安定な材料であり、特に高電位においてその安定性が懸念される。これに対し、図9から、熱力学的にTiはTiO2の形で安定に存在し、燃料電池における諸条件においても溶出しないことが予想される。 Electrocatalyst materials used in fuel cells are cathodic potential (about 1 V for standard hydrogen electrode) and anode potential (about standard hydrogen electrode) under super strong acid (pH = 0) due to proton conductor and high temperature conditions. It is essential that it is stable without eluting at about 0V). In this respect, carbon widely used as a catalyst carrier is a thermodynamically unstable material, and there is a concern about its stability particularly at a high potential. On the other hand, from FIG. 9, it is expected that Ti thermodynamically exists stably in the form of TiO 2 and does not elute even under various conditions in the fuel cell.

電気化学デバイスの作製
上記したように、本発明に基づくPt担持の酸化チタンからなる触媒材料を作製した後、図10に示した構造と同様に、集電体上に塗布によって成膜或いはプレス成形したシート状触媒材料を挟持し、燃料電池セルを作製する。
Production of Electrochemical Device As described above, after producing a catalyst material made of Pt-supported titanium oxide based on the present invention, film formation or press molding is performed on the current collector by coating, as in the structure shown in FIG. The fuel cell is produced by sandwiching the sheet-shaped catalyst material.

この触媒材料は、単独で触媒電極を形成する以外にも、場合によっては、イオン伝導体、撥水性樹脂(例えばフッ素系)及び造孔剤(CaCO3)と混合して触媒電極を形成してよい。この触媒電極は、例えば白金(Pt)を二酸化チタンに担持した触媒からなる触媒層1と、多孔性のガス拡散性集電体としての例えばカーボンシート2とからなる多孔性のガス拡散性触媒電極を酸素極とするが、この触媒層1のみをガス拡散性触媒電極としてもよい。燃料極は、通常のPt担持の炭素材料で形成してよい。 In addition to forming a catalyst electrode alone, this catalyst material may be mixed with an ion conductor, a water-repellent resin (for example, fluorine-based) and a pore-forming agent (CaCO 3 ) in some cases to form a catalyst electrode. Good. This catalyst electrode is a porous gas diffusive catalyst electrode comprising, for example, a catalyst layer 1 made of a catalyst in which platinum (Pt) is supported on titanium dioxide and, for example, a carbon sheet 2 as a porous gas diffusible current collector. Is an oxygen electrode, but only this catalyst layer 1 may be a gas diffusive catalyst electrode. The fuel electrode may be formed of a normal Pt-supported carbon material.

そして、端子4付きの触媒電極からなる負極(燃料極又は水素極)5と、端子6付きの触媒電極からなる正極(酸素極)7とが対向して配置され、これらの両極間にナフィオン(登録商標)(デュポン社製のパーフルオロスルホン酸樹脂)等からなるプロトン伝導部3が挟持される。この燃料電池の動作は、既述した通りである。   A negative electrode (fuel electrode or hydrogen electrode) 5 composed of a catalyst electrode with a terminal 4 and a positive electrode (oxygen electrode) 7 composed of a catalyst electrode with a terminal 6 are arranged to face each other, and Nafion ( A proton conducting portion 3 made of (registered trademark) (perfluorosulfonic acid resin manufactured by DuPont) or the like is sandwiched. The operation of this fuel cell is as described above.

以上に説明した実施の形態は、本発明の技術的思想に基づいて種々に変形が可能である。   The embodiment described above can be variously modified based on the technical idea of the present invention.

例えば、本発明に基づく電気化学デバイスが燃料電池として構成されている場合、少なくとも酸素極に対して本発明に基づく触媒電極が用いられていることが好ましいが、燃料極側に対しても用いられてよい。   For example, when the electrochemical device according to the present invention is configured as a fuel cell, the catalyst electrode according to the present invention is preferably used at least for the oxygen electrode, but it is also used for the fuel electrode side. It's okay.

また、本発明の電気化学デバイスとしてプロトン伝導タイプの燃料電池を説明したが、プロトン以外のイオンを伝導するタイプのデバイスとしてもよい。また、前記燃料電池の逆反応を利用した水素製造装置にも応用できる。また、金属−酸素電池や電解槽などへの適用も可能である。   In addition, although the proton conduction type fuel cell has been described as the electrochemical device of the present invention, a device that conducts ions other than protons may be used. Further, it can be applied to a hydrogen production apparatus using the reverse reaction of the fuel cell. Moreover, application to a metal-oxygen battery, an electrolytic cell, etc. is also possible.

本発明の触媒電極材料及び触媒電極は、燃料電池等の電気化学デバイスの出力特性及び耐久性を効果的に向上させ、また低コスト化にも寄与する。   The catalyst electrode material and catalyst electrode of the present invention effectively improve the output characteristics and durability of electrochemical devices such as fuel cells, and contribute to cost reduction.

本発明の実施の形態による酸化物担体と触媒金属の役割を示す概略原理図である。It is a general | schematic principle figure which shows the role of the oxide support | carrier and catalyst metal by embodiment of this invention. 同、酸化物担体を用いた場合の発電結果を示すグラフである。3 is a graph showing the power generation results when using an oxide carrier. 同、低電流・高電圧領域が重要である理由を説明する発電特性を示すグラフである。It is a graph which shows the electric power generation characteristic explaining the reason why the low current / high voltage region is important. 同、酸化物担体(TiO2)を高表面積化するための処理条件を示す表である。3 is a table showing processing conditions for increasing the surface area of the oxide support (TiO 2 ). 同、酸化物担体の合成条件に関する検討結果を示すグラフである。FIG. 6 is a graph showing the results of studies on the synthesis conditions for oxide carriers. 同、各種触媒材料の透過型電子顕微鏡写真である。It is a transmission electron micrograph of various catalyst materials. 同、触媒物性と活性との関係についての検討結果を示す概略図である。It is the schematic which shows the examination result about the relationship between a catalyst physical property and activity similarly. 同、触媒中の触媒金属(Pt)とTiの状態を示すスペクトル図である。It is a spectrum figure which shows the state of the catalyst metal (Pt) and Ti in a catalyst similarly. 同、TiO2触媒担体の耐酸性を示すグラフである。3 is a graph showing the acid resistance of the TiO 2 catalyst carrier. 従来例(又は本発明)に基づく電気化学デバイス(燃料電池)の概略断面図である。It is a schematic sectional drawing of the electrochemical device (fuel cell) based on a prior art example (or this invention). 従来の炭素担体に担持された触媒金属(Pt)の役割を示す概略原理図である。It is a general | schematic principle figure which shows the role of the catalyst metal (Pt) carry | supported by the conventional carbon support | carrier. 一般の燃料電池の発電特性を示すグラフである。It is a graph which shows the electric power generation characteristic of a general fuel cell. 同、電流−電圧特性と各成分の優勢領域との関係を示すグラフである。It is a graph which shows the relationship between a current-voltage characteristic and the predominance area | region of each component similarly.

符号の説明Explanation of symbols

1…触媒層、2…ガス透過性集電体、3…イオン(プロトン)伝導部、4、6…端子、5…負極(燃料極)、7…正極(酸素極)、8…水素ガス流路、9…酸素(空気)流路
DESCRIPTION OF SYMBOLS 1 ... Catalyst layer, 2 ... Gas permeable collector, 3 ... Ion (proton) conduction part, 4, 6 ... Terminal, 5 ... Negative electrode (fuel electrode), 7 ... Positive electrode (oxygen electrode), 8 ... Hydrogen gas flow Road, 9 ... oxygen (air) flow path

Claims (30)

主として酸化物からなる担体材料に、触媒材料が担持されてなる触媒電極材料。   A catalyst electrode material in which a catalyst material is supported on a support material mainly composed of an oxide. 前記担体材料が前記酸化物のみからなる、請求項1に記載した触媒電極材料。   The catalyst electrode material according to claim 1, wherein the support material is composed of only the oxide. 前記酸化物が高表面積、耐酸性及び助触媒機能を有する、請求項1に記載した触媒電極材料。   The catalyst electrode material according to claim 1, wherein the oxide has a high surface area, acid resistance, and a promoter function. 前記酸化物が、チタン酸化物、バナジウム酸化物、タンタル酸化物、タングステン酸化物、アンチモン酸化物、モリブデン酸化物、スズ酸化物、エルビウム酸化物、セリウム酸化物、ジルコニウム酸化物、シリコン酸化物、亜鉛酸化物、マグネシウム酸化物、ニオブ酸化物及びアルミニウム酸化物からなる群より選ばれた少なくとも1種からなる、請求項3に記載した触媒電極材料。   The oxide is titanium oxide, vanadium oxide, tantalum oxide, tungsten oxide, antimony oxide, molybdenum oxide, tin oxide, erbium oxide, cerium oxide, zirconium oxide, silicon oxide, zinc The catalyst electrode material according to claim 3, comprising at least one selected from the group consisting of oxides, magnesium oxides, niobium oxides, and aluminum oxides. 前記チタン酸化物が、ナノスケールの二酸化チタンである、請求項4に記載した触媒電極材料。   The catalyst electrode material according to claim 4, wherein the titanium oxide is nanoscale titanium dioxide. 前記触媒材料が貴金属からなる、請求項1に記載した触媒電極材料。   The catalyst electrode material according to claim 1, wherein the catalyst material is made of a noble metal. 前記触媒材料が白金又は白金合金からなる、請求項1に記載した触媒電極材料。   The catalyst electrode material according to claim 1, wherein the catalyst material is made of platinum or a platinum alloy. 複数の電極と、これらの電極の間に挟持されたイオン伝導体とからなる電気化学デバイスにおいて、前記複数の電極の少なくとも1つを構成するのに用いられる、請求項1に記載した触媒電極材料。   2. The catalyst electrode material according to claim 1, which is used to constitute at least one of the plurality of electrodes in an electrochemical device including a plurality of electrodes and an ionic conductor sandwiched between the electrodes. . 前記電気化学デバイスとしての燃料電池において、酸素極を構成するのに用いられる、請求項8に記載した触媒電極材料。   The catalyst electrode material according to claim 8, which is used to constitute an oxygen electrode in a fuel cell as the electrochemical device. 主として酸化物からなる電極触媒用の担体材料。   A support material for an electrocatalyst mainly composed of an oxide. 前記酸化物のみからなる、請求項10に記載した担体材料。   The support material according to claim 10, comprising only the oxide. 前記酸化物が高表面積、耐酸性及び助触媒機能を有する、請求項10に記載した担体材料。   The support material according to claim 10, wherein the oxide has a high surface area, acid resistance and a promoter function. 前記酸化物が、チタン酸化物、バナジウム酸化物、タンタル酸化物、タングステン酸化物、アンチモン酸化物、モリブデン酸化物、スズ酸化物、エルビウム酸化物、セリウム酸化物、ジルコニウム酸化物、シリコン酸化物、亜鉛酸化物、マグネシウム酸化物、ニオブ酸化物及びアルミニウム酸化物からなる群より選ばれた少なくとも1種からなる、請求項12に記載した担体材料。   The oxide is titanium oxide, vanadium oxide, tantalum oxide, tungsten oxide, antimony oxide, molybdenum oxide, tin oxide, erbium oxide, cerium oxide, zirconium oxide, silicon oxide, zinc The carrier material according to claim 12, comprising at least one selected from the group consisting of oxides, magnesium oxides, niobium oxides and aluminum oxides. 前記チタン酸化物が、ナノスケールの二酸化チタンである、請求項13に記載した担体材料。   The carrier material according to claim 13, wherein the titanium oxide is nanoscale titanium dioxide. 電極触媒材料が貴金属からなる、請求項10に記載した担体材料。   The support material according to claim 10, wherein the electrode catalyst material is made of a noble metal. 電極触媒材料が白金又は白金合金からなる、請求項10に記載した担体材料。   The support material according to claim 10, wherein the electrode catalyst material is made of platinum or a platinum alloy. 複数の触媒電極と、これらの触媒電極の間に挟持されたイオン伝導体とからなる電気化学デバイスにおいて、前記複数の触媒電極の少なくとも1つを構成するのに用いられる、請求項10に記載した担体材料。   The electrochemical device comprising a plurality of catalyst electrodes and an ionic conductor sandwiched between the catalyst electrodes is used for constituting at least one of the plurality of catalyst electrodes. Carrier material. 前記電気化学デバイスとしての燃料電池において、酸素極の触媒電極を構成するのに用いられる、請求項17に記載した担体材料。   The support material according to claim 17, which is used for constituting a catalyst electrode of an oxygen electrode in a fuel cell as the electrochemical device. 請求項1〜7のいずれか1項に記載した触媒電極材料によって形成された触媒電極。   The catalyst electrode formed with the catalyst electrode material of any one of Claims 1-7. 複数の電極と、これらの電極の間に挟持されたイオン伝導体とからなる電気化学デバイスにおいて、前記複数の電極の少なくとも1つを構成するのに用いられる、請求項19に記載した触媒電極。   20. The catalyst electrode according to claim 19, which is used to constitute at least one of the plurality of electrodes in an electrochemical device comprising a plurality of electrodes and an ionic conductor sandwiched between the electrodes. 前記電気化学デバイスとしての燃料電池において、酸素極を構成するのに用いられる、請求項20に記載した触媒電極。   The catalyst electrode according to claim 20, which is used to constitute an oxygen electrode in a fuel cell as the electrochemical device. 複数の電極と、これらの電極の間に挟持されたイオン伝導体とによって構成され、前記複数の電極の少なくとも1つが、請求項1〜7のいずれか1項に記載した触媒電極材料からなる電気化学デバイス。   It is comprised by the some electrode and the ionic conductor pinched | interposed between these electrodes, and at least one of the said several electrode consists of the catalyst electrode material of any one of Claims 1-7. Chemical device. 酸素極が前記触媒電極材料からなる燃料電池として構成された、請求項22に記載した電気化学デバイス。   The electrochemical device according to claim 22, wherein the oxygen electrode is configured as a fuel cell made of the catalyst electrode material. 主として酸化物からなる電極触媒用の担体材料を作製する工程と、この担体材料の分散液に電極触媒の前駆体を添加する工程と、還元処理によって前記前駆体中の触媒材料を前記担体材料に付着させる工程とを有する、触媒電極材料の製造方法。   A step of producing a support material for an electrode catalyst mainly composed of an oxide, a step of adding a precursor of an electrode catalyst to a dispersion of the support material, and a catalyst material in the precursor to the support material by reduction treatment A method for producing a catalyst electrode material. 前記担体材料として、請求項11〜14のいずれか1項に記載した担体材料を使用し、この担体材料に、請求項15又は16に記載した電極触媒材料を付着させる、請求項24に記載した触媒電極材料の製造方法。   The support material according to any one of claims 11 to 14 is used as the support material, and the electrode catalyst material according to claim 15 or 16 is attached to the support material. A method for producing a catalyst electrode material. 前記担体材料としてナノスケールの二酸化チタンを使用し、前記電極触媒として白金を使用するとき、前記二酸化チタンの分散液に塩化白金酸を前記前駆体として添加する、請求項25に記載した触媒電極材料の製造方法。   26. The catalyst electrode material according to claim 25, wherein, when nanoscale titanium dioxide is used as the support material and platinum is used as the electrode catalyst, chloroplatinic acid is added as the precursor to the titanium dioxide dispersion. Manufacturing method. 複数の電極と、これらの電極の間に挟持されたイオン伝導体とからなる電気化学デバイスにおいて、前記複数の電極の少なくとも1つを構成するのに用いられる触媒電極を製造する方法であって、
主として酸化物からなる電極触媒用の担体材料を作製する構成と、
この担体材料の分散液に電極触媒の前駆体を添加する工程と、
還元処理によって前記前駆体中の触媒材料を前記担体材料に付着させる工程と、
前記触媒材料が前記担体材料に付着してなる触媒電極材料によって触媒電極を形成す る工程と
を有する、触媒電極の製造方法。
In an electrochemical device comprising a plurality of electrodes and an ionic conductor sandwiched between these electrodes, a method for producing a catalyst electrode used to constitute at least one of the plurality of electrodes,
A structure for producing a support material for an electrocatalyst mainly composed of an oxide;
Adding an electrocatalyst precursor to the carrier material dispersion;
Attaching the catalyst material in the precursor to the support material by reduction treatment;
Forming a catalyst electrode with a catalyst electrode material formed by adhering the catalyst material to the carrier material.
前記担体材料として、請求項11〜14のいずれか1項に記載した担体材料を使用し、この担体材料上に、請求項15又は16に記載した電極触媒を付着させる、請求項27に記載した触媒電極の製造方法。   The support material according to any one of claims 11 to 14 is used as the support material, and the electrode catalyst according to claim 15 or 16 is attached to the support material. A method for producing a catalyst electrode. 前記担体材料としてナノスケールの二酸化チタンを使用し、前記電極触媒として白金を使用するとき、前記二酸化チタンの分散液に塩化白金酸を前記前駆体として添加する、請求項27に記載した触媒電極の製造方法。   28. The catalyst electrode according to claim 27, wherein, when nanoscale titanium dioxide is used as the support material and platinum is used as the electrode catalyst, chloroplatinic acid is added as a precursor to the titanium dioxide dispersion. Production method. 前記電気化学デバイスとしての燃料電池において、酸素極を構成するのに用いられる触媒電極を製造する、請求項27に記載した触媒電極の製造方法。
28. The method for producing a catalyst electrode according to claim 27, wherein a catalyst electrode used for constituting an oxygen electrode is produced in the fuel cell as the electrochemical device.
JP2005020516A 2005-01-28 2005-01-28 Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device Pending JP2006210135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020516A JP2006210135A (en) 2005-01-28 2005-01-28 Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020516A JP2006210135A (en) 2005-01-28 2005-01-28 Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device

Publications (1)

Publication Number Publication Date
JP2006210135A true JP2006210135A (en) 2006-08-10

Family

ID=36966737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020516A Pending JP2006210135A (en) 2005-01-28 2005-01-28 Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device

Country Status (1)

Country Link
JP (1) JP2006210135A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048573A (en) * 2005-08-09 2007-02-22 Canon Inc Membrane electrode assembly for fuel cell, its manufacturing method, and fuel cell
JP2009054289A (en) * 2007-08-23 2009-03-12 National Institute For Materials Science Anode material, its manufacturing method, and fuel cell using anode material
WO2011004703A1 (en) * 2009-07-07 2011-01-13 日本電気株式会社 Oxygen reduction catalyst
WO2011061941A1 (en) * 2009-11-18 2011-05-26 国立大学法人信州大学 (metal oxide)-platinum composite catalyst, and process for production thereof
WO2011065471A1 (en) * 2009-11-27 2011-06-03 国立大学法人山梨大学 Oxide-based stable high-potential carrier for solid polymer fuel cell
WO2011108121A1 (en) 2010-03-05 2011-09-09 Toyota Jidosha Kabushiki Kaisha Fuel cell electrocatalyst
JP2013502682A (en) * 2009-08-20 2013-01-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Catalyst layer
WO2014017447A1 (en) * 2012-07-25 2014-01-30 昭和電工株式会社 Membrane electrode assembly and fuel cell provided with same
JP2014522375A (en) * 2011-03-03 2014-09-04 ウィシス テクノロジー ファウンデーション,インコーポレイティド Thermodynamic solutions of metal oxides, metal chalcogenides, mixed metal oxides, and chalcogenides
WO2018159420A1 (en) * 2017-03-01 2018-09-07 堺化学工業株式会社 Electrically conductive material and electrode material
JP2022514043A (en) * 2018-12-19 2022-02-09 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー Fuel cell or electrolytic cell
US11563219B2 (en) 2017-07-25 2023-01-24 University Of Yamanashi Carrier powder, method for producing same, carrier metal catalyst, and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303541A (en) * 1989-05-17 1990-12-17 Tanaka Kikinzoku Kogyo Kk Production of high-surface area metal-deposited catalyst
JPH078797A (en) * 1994-03-10 1995-01-13 Agency Of Ind Science & Technol Oxidation catalyst, reduction catalyst and catalyst for combustible gas sensor element and electrode which consist of titanium-based metallic oxide containing superfine particle of gold immobilized thereon
JPH11246986A (en) * 1998-03-03 1999-09-14 Choichi Furuya Gas diffusion electrode
JP2002246033A (en) * 2001-02-14 2002-08-30 Toshiba Corp Electrode, electrode composition, fuel cell using the same and electrode producing method
JP2003502827A (en) * 1999-06-17 2003-01-21 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Gas diffusion substrates and electrodes
JP2003080085A (en) * 2001-06-01 2003-03-18 Sony Corp Conductive catalyst particle and method for manufacturing the same, gas diffusive catalyst electrode and electrochemical device
JP2003080077A (en) * 2001-06-29 2003-03-18 Denso Corp Catalyst particle and method for manufacturing the same
JP2003272660A (en) * 2002-03-18 2003-09-26 Ngk Insulators Ltd Electrochemical element, electrochemical device, method of restraining poisoning of proton-generating catalyst and complex catalyst
JP2004342505A (en) * 2003-05-16 2004-12-02 Cataler Corp Membrane electrode assembly

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303541A (en) * 1989-05-17 1990-12-17 Tanaka Kikinzoku Kogyo Kk Production of high-surface area metal-deposited catalyst
JPH078797A (en) * 1994-03-10 1995-01-13 Agency Of Ind Science & Technol Oxidation catalyst, reduction catalyst and catalyst for combustible gas sensor element and electrode which consist of titanium-based metallic oxide containing superfine particle of gold immobilized thereon
JPH11246986A (en) * 1998-03-03 1999-09-14 Choichi Furuya Gas diffusion electrode
JP2003502827A (en) * 1999-06-17 2003-01-21 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Gas diffusion substrates and electrodes
JP2002246033A (en) * 2001-02-14 2002-08-30 Toshiba Corp Electrode, electrode composition, fuel cell using the same and electrode producing method
JP2003080085A (en) * 2001-06-01 2003-03-18 Sony Corp Conductive catalyst particle and method for manufacturing the same, gas diffusive catalyst electrode and electrochemical device
JP2003080077A (en) * 2001-06-29 2003-03-18 Denso Corp Catalyst particle and method for manufacturing the same
JP2003272660A (en) * 2002-03-18 2003-09-26 Ngk Insulators Ltd Electrochemical element, electrochemical device, method of restraining poisoning of proton-generating catalyst and complex catalyst
JP2004342505A (en) * 2003-05-16 2004-12-02 Cataler Corp Membrane electrode assembly

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048573A (en) * 2005-08-09 2007-02-22 Canon Inc Membrane electrode assembly for fuel cell, its manufacturing method, and fuel cell
JP2009054289A (en) * 2007-08-23 2009-03-12 National Institute For Materials Science Anode material, its manufacturing method, and fuel cell using anode material
WO2011004703A1 (en) * 2009-07-07 2011-01-13 日本電気株式会社 Oxygen reduction catalyst
JP2013502682A (en) * 2009-08-20 2013-01-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Catalyst layer
WO2011061941A1 (en) * 2009-11-18 2011-05-26 国立大学法人信州大学 (metal oxide)-platinum composite catalyst, and process for production thereof
JP4919309B2 (en) * 2009-11-18 2012-04-18 国立大学法人信州大学 Metal oxide platinum composite catalyst for oxygen reduction and production method thereof
WO2011065471A1 (en) * 2009-11-27 2011-06-03 国立大学法人山梨大学 Oxide-based stable high-potential carrier for solid polymer fuel cell
WO2011108121A1 (en) 2010-03-05 2011-09-09 Toyota Jidosha Kabushiki Kaisha Fuel cell electrocatalyst
DE112010005356T5 (en) 2010-03-05 2013-01-03 Toyota Jidosha Kabushiki Kaisha Electrocatalyst for a fuel cell
JP2014522375A (en) * 2011-03-03 2014-09-04 ウィシス テクノロジー ファウンデーション,インコーポレイティド Thermodynamic solutions of metal oxides, metal chalcogenides, mixed metal oxides, and chalcogenides
US10112156B2 (en) 2011-03-03 2018-10-30 Wisys Technology Foundation, Inc. Thermodynamic solutions of metal chalcogenides and mixed metal oxides and chalcogenides
WO2014017447A1 (en) * 2012-07-25 2014-01-30 昭和電工株式会社 Membrane electrode assembly and fuel cell provided with same
CN104488119A (en) * 2012-07-25 2015-04-01 昭和电工株式会社 Membrane electrode assembly and fuel cell provided with same
JPWO2014017447A1 (en) * 2012-07-25 2016-07-11 昭和電工株式会社 Membrane electrode assembly and fuel cell including the same
WO2018159420A1 (en) * 2017-03-01 2018-09-07 堺化学工業株式会社 Electrically conductive material and electrode material
JP2018147569A (en) * 2017-03-01 2018-09-20 堺化学工業株式会社 Conductive material and electrode material
CN110383394A (en) * 2017-03-01 2019-10-25 堺化学工业株式会社 Conductive material and electrode material
US11094944B2 (en) 2017-03-01 2021-08-17 Sakai Chemical Industry Co., Ltd. Electrically conductive material and electrode material
US11563219B2 (en) 2017-07-25 2023-01-24 University Of Yamanashi Carrier powder, method for producing same, carrier metal catalyst, and method for producing same
JP2022514043A (en) * 2018-12-19 2022-02-09 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー Fuel cell or electrolytic cell
JP7254933B2 (en) 2018-12-19 2023-04-10 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー fuel cell or electrolyser

Similar Documents

Publication Publication Date Title
JP5322110B2 (en) Manufacturing method of cathode electrode material for fuel cell, cathode electrode material for fuel cell, and fuel cell using the cathode electrode material
JP4971898B2 (en) Supported catalyst for fuel cell and method for producing the same, electrode for fuel cell including the supported catalyst, membrane electrode assembly including the electrode, and fuel cell including the membrane electrode assembly
JP2006210135A (en) Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
JP5209474B2 (en) Electrode catalyst, method for producing electrode catalyst, and method for suppressing coarsening of catalyst particles
JP4656572B2 (en) ELECTRODE FOR FUEL CELL, METHOD FOR PRODUCING ELECTRODE FOR FUEL CELL, AND FUEL CELL
CN101306377B (en) Catalyst for fuel cell and its preparation method, membrane-electrode assembly for fuel cell including the same and fuel cell system including the same
JP2002100373A (en) Manufacturing method of catalyzed porous carbon electrode for fuel cell
JP2006260844A (en) Catalyst for fuel cell electrode, fuel cell electrode, membrane electrode assembly, and fuel cell
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
KR20120026041A (en) Anode-side catalyst composition for fuel cell and membrane electrode assembly (mea) for solid polymer-type fuel cell
JP2018528570A (en) Electrocatalyst
JP2013154346A (en) Composite material, catalyst containing the same, fuel cell and lithium air cell containing the same
JP4276035B2 (en) Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP4999418B2 (en) ELECTRODE CATALYST FOR DIRECT FUEL CELL, FUEL DIRECT FUEL CELL USING THE SAME, AND ELECTRONIC DEVICE
JP5555615B2 (en) Fuel cell supported catalyst and fuel cell
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP7340831B2 (en) Anode catalyst for hydrogen starvation tolerant fuel cells
JP2009080967A (en) Membrane electrode assembly and fuel cell
JP2006224095A (en) Electrode catalyst for fuel cell
KR20060104821A (en) Catalyst for fuel cell, preparation method thereof, and fuel cell system comprising the same
JP4992185B2 (en) Catalyst for fuel cell, membrane electrode composite, and solid polymer electrolyte fuel cell
JP6727266B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
KR101955666B1 (en) Catalyst electrode of three-phase sepatation and manufacturing method for the same
JP2020047430A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP2006294601A (en) Electrocatalyst for fuel cell

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20070125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914