JP2006067783A - Dc-dc converter - Google Patents

Dc-dc converter Download PDF

Info

Publication number
JP2006067783A
JP2006067783A JP2005219100A JP2005219100A JP2006067783A JP 2006067783 A JP2006067783 A JP 2006067783A JP 2005219100 A JP2005219100 A JP 2005219100A JP 2005219100 A JP2005219100 A JP 2005219100A JP 2006067783 A JP2006067783 A JP 2006067783A
Authority
JP
Japan
Prior art keywords
capacitors
phase
switches
converter
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005219100A
Other languages
Japanese (ja)
Inventor
Takashige Ogata
貴重 尾形
Tatsuya Suzuki
達也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005219100A priority Critical patent/JP2006067783A/en
Publication of JP2006067783A publication Critical patent/JP2006067783A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To reduce cost by reducing the number of capacitors of a step-down type DC-DC converter. <P>SOLUTION: The DC-DC converter is provided with switches SWA1 to SWAn-1 and SWC1 to SWCn-2, connecting (n-1) pieces of capacitors C1 to Cn-1 in parallel with each other, and with switches SWB1 to SWBn-2 connecting the capacitors C1 to Cn-1 in series. In a phase 1, switches S4, S5, SWA1 to SWAn-1 and SWC1 to SWCn-2 are turned on, to connect the capacitors C1 to Cn-1 connected in parallel between the output terminal 2 and the ground voltage Vss to be charged. In a phase 2, switches S1, S6, SWAn-1 and SWB1 to SWBn-1 are turned on to connect the capacitors C1 to Cn-1, connected in series between the output terminal 2 and the input voltage vin (input terminal 1) to be discharged. The phase 1 and the phase 2 are repeated, until the phases become stable to supply the output voltage Vout wherein the input voltage Vin is stepped down by 1/n times. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、DC−DCコンバータに関し、特に入力電圧を降圧する機能を備えたDC−DCコンバータに関する。   The present invention relates to a DC-DC converter, and more particularly to a DC-DC converter having a function of stepping down an input voltage.

DC−DCコンバータは、ある入力直流電圧をそれと異なる直流電圧に変換する回路であり、LSIの電源回路などに用いられる。DC−DCコンバータの中で、特に入力電圧を降圧する機能を備えた降圧型DC−DCコンバータが知られている。   The DC-DC converter is a circuit that converts a certain input DC voltage into a different DC voltage, and is used in an LSI power supply circuit or the like. Among DC-DC converters, a step-down DC-DC converter having a function of stepping down an input voltage is known.

この種のDC−DCコンバータについて図4を参照しながら説明する。C1〜Cnは、スイッチングにより直列接続と並列接続に切り換え可能なn個のコンデンサである。Coutは出力コンデンサ(平滑用コンデンサ)である。このDC−DCコンバータでは、n個のコンデンサC1〜Cnを、図4(a)に示すような直列に接続した状態と、図4(b)に示すような並列に接続した状態とに、不図示のスイッチング回路により、交互に切換えることができるように構成する。以下、図4(a)の状態を相1、図4(b)の状態を相2と称する。尚、コンデンサC1〜Cnは全て同じ容量値を有するものとする。   This type of DC-DC converter will be described with reference to FIG. C1 to Cn are n capacitors that can be switched between series connection and parallel connection by switching. Cout is an output capacitor (smoothing capacitor). In this DC-DC converter, n capacitors C1 to Cn are not connected in series as shown in FIG. 4 (a) and in parallel as shown in FIG. 4 (b). The switching circuit is configured so that it can be switched alternately. Hereinafter, the state of FIG. 4A is referred to as phase 1 and the state of FIG. 4B is referred to as phase 2. Note that the capacitors C1 to Cn all have the same capacitance value.

相1では、コンデンサC1〜Cnは直列接続された状態で、入力電圧Vin(直流電圧)と接地電圧の間に直列接続されている。このとき、コンデンサC1〜Cnにはそれぞれ、Vinが1/n倍された電圧1/n・Vinに応じた電荷が充電される。一方、相2では、コンデンサC1〜Cnは並列接続された状態で、接地電圧Vss(0V)と出力端子の間に接続され、コンデンサC1〜Cnに充電された電荷が出力端子に放電される。出力端子から得られる出力電圧をVoutとすると、Vout=1/n・Vinとなり、入力電圧Vinの1/nの電圧が出力端子から得られる。したがって、相1と相2を交互に切り換えることによって、出力電圧Voutとして入力電圧を1/nに降圧した電圧が得られる。
特開平9−163719号公報
In phase 1, capacitors C1 to Cn are connected in series, and are connected in series between input voltage Vin (DC voltage) and ground voltage. At this time, each of the capacitors C1 to Cn is charged with a charge corresponding to the voltage 1 / n · Vin obtained by multiplying Vin by 1 / n. On the other hand, in the phase 2, the capacitors C1 to Cn are connected in parallel and connected between the ground voltage Vss (0V) and the output terminal, and the charges charged in the capacitors C1 to Cn are discharged to the output terminal. When the output voltage obtained from the output terminal is Vout, Vout = 1 / n · Vin, and a voltage 1 / n of the input voltage Vin is obtained from the output terminal. Therefore, by alternately switching between phase 1 and phase 2, a voltage obtained by stepping down the input voltage to 1 / n can be obtained as the output voltage Vout.
JP-A-9-163719

しかしながら、上述したDC−DCコンバータでは、入力電圧Vinを1/n倍するためにn個のコンデンサが必要であり、コストが高いという問題を有していた。   However, the above-described DC-DC converter has a problem in that n capacitors are required to increase the input voltage Vin by 1 / n, and the cost is high.

そこで本発明は、n−1個のコンデンサをスイッチにより直列接続と並列接続に切換えることができるように構成し、互いに並列に接続されたn−1個のコンデンサを出力端子と接地電圧の間に接続された状態と、直列に接続されたn−1個のコンデンサを入力電圧Vinと出力端子の間に接続された状態を繰返すことにより、上述したDC−DCコンバータより少ないコンデンサ数で入力電圧Vinを1/n倍にした出力電圧Voutを得る。   Therefore, the present invention is configured so that n-1 capacitors can be switched between a series connection and a parallel connection by a switch, and n-1 capacitors connected in parallel are connected between the output terminal and the ground voltage. By repeating the connected state and the state in which n-1 capacitors connected in series are connected between the input voltage Vin and the output terminal, the input voltage Vin is smaller in number of capacitors than the DC-DC converter described above. The output voltage Vout is obtained by multiplying 1 / n times.

本発明のDC−DCコンバータによれば、(n−1)個のコンデンサを用いて、入力電圧Vinを1/n倍に降圧することができる。即ち、従来のDC−DCコンバータよりコンデンサを1個減らすことができ、その分コストダウンが図れる。また、本発明のDC−DCコンバータによれば、(n−1)個のコンデンサを用いて、入力電圧Vinを(n−1)/n倍に降圧することも可能である。   According to the DC-DC converter of the present invention, the input voltage Vin can be stepped down 1 / n times by using (n−1) capacitors. That is, one capacitor can be reduced from the conventional DC-DC converter, and the cost can be reduced accordingly. Further, according to the DC-DC converter of the present invention, it is possible to step down the input voltage Vin by (n−1) / n times using (n−1) capacitors.

以下、本発明の実施形態に係るDC−DCコンバータについて、図面を参照しながら説明する。図1及び図2はこのDC−DCコンバータを示す回路図であり、図1は、入力電圧Vinを1/n倍に降圧する回路の構成及び動作を説明する図である。図2は、入力電圧Vinを(n−1)/n倍に降圧する回路の構成及び動作を説明する図である。ここで、nは3以上の自然数である。図1と図2の回路は、同じ回路構成を有しており、スイッチの切り換え方法だけが異なっている。   Hereinafter, a DC-DC converter according to an embodiment of the present invention will be described with reference to the drawings. 1 and 2 are circuit diagrams showing the DC-DC converter. FIG. 1 is a diagram for explaining the configuration and operation of a circuit that steps down the input voltage Vin by 1 / n times. FIG. 2 is a diagram illustrating the configuration and operation of a circuit that steps down the input voltage Vin by (n−1) / n times. Here, n is a natural number of 3 or more. The circuits of FIGS. 1 and 2 have the same circuit configuration, and only the switch switching method is different.

図1、図2において、C1〜Cn−1はスイッチSWA1〜SWAn−1,SWB1〜SWBn−2,SWC1〜SWCn−2によって直列又は並列に切換え可能な(n−1)個のコンデンサである。これらのコンデンサC1〜Cn−1はスイッチSWA1〜SWAn−1及びSWC1〜SWCn−2をオン、SWB1〜SWBn−2をオフにすると、互いに並列接続となり、またスイッチSWAn−1,SWB1〜SWBn−2をオン、SWA1〜SWAn−2及びSWC1〜SWCn−2をオフにすると直列接続となる。尚、コンデンサC1〜Cn−1の有する容量値は、どのような値でも良く、全て同一でもよい。また、コンデンサC1〜Cn−1のうち、少なくとも1つのコンデンサが残りのコンデンサと異なる容量値を有していてもよい。即ち、コンデンサC1〜Cn−1の容量値が全て異なっていても良いし、幾つかのコンデンサの容量値がいずれも同じで、他のコンデンサの容量値は異なっていても良い。   1 and 2, C1 to Cn-1 are (n-1) capacitors that can be switched in series or in parallel by switches SWA1 to SWAn-1, SWB1 to SWBn-2, SWC1 to SWCn-2. These capacitors C1 to Cn-1 are connected in parallel when the switches SWA1 to SWAn-1 and SWC1 to SWCn-2 are turned on and SWB1 to SWBn-2 are turned off, and the switches SWAn-1, SWB1 to SWBn-2 are also connected. When SW is turned on and SWA1 to SWAn-2 and SWC1 to SWCn-2 are turned off, a series connection is established. Note that the capacitance values of the capacitors C1 to Cn-1 may be any value, or all may be the same. Further, at least one of the capacitors C1 to Cn-1 may have a capacitance value different from that of the remaining capacitors. That is, the capacitance values of the capacitors C1 to Cn-1 may all be different, the capacitance values of some capacitors may be the same, and the capacitance values of other capacitors may be different.

また、S1は入力電圧VinとコンデンサC1の一端との間に設けられたスイッチ、S2は入力電圧Vinが印加される入力端子1とコンデンサC1の他端との間に設けられたスイッチ、S3はコンデンサC1の一端と接地電圧Vss(0V)との間に設けられたスイッチ、S4はコンデンサC1の他端と接地電圧Vssとの間に設けられたスイッチ、S5はスイッチSWCn−2と出力電圧Voutが得られる出力端子2との間に設けられたスイッチ、S6はスイッチSWAn−1と出力端子2との間に設けられたスイッチであり、Coutは出力端子2と接地電圧Vssの間に接続された出力コンデンサ(平滑用コンデンサ)である。尚、全てのスイッチはMOSトランジスタで構成することができる。   S1 is a switch provided between the input voltage Vin and one end of the capacitor C1, S2 is a switch provided between the input terminal 1 to which the input voltage Vin is applied and the other end of the capacitor C1, and S3 is A switch provided between one end of the capacitor C1 and the ground voltage Vss (0 V), S4 is a switch provided between the other end of the capacitor C1 and the ground voltage Vss, and S5 is a switch SWCn-2 and the output voltage Vout. , S6 is a switch provided between the switch SWAn-1 and the output terminal 2, and Cout is connected between the output terminal 2 and the ground voltage Vss. Output capacitor (smoothing capacitor). All the switches can be composed of MOS transistors.

次に、図1、図3を参照しながら、上述した構成のDC−DCコンバータの第1の動作例を説明する。尚、コンデンサC1〜Cn−1は全て同じ容量値を有するものとする。図3はDC−DCコンバータのスイッチ切換え図であり、○印はスイッチがオン、×印はスイッチがオフであることを表している。以下、図1(a)の状態を相1、図1(b)の状態を相2と称する。また、図1(a),(b)の中の矢印は電流を示している。   Next, a first operation example of the DC-DC converter having the above-described configuration will be described with reference to FIGS. 1 and 3. Note that the capacitors C1 to Cn-1 all have the same capacitance value. FIG. 3 is a switch switching diagram of the DC-DC converter, where a circle indicates that the switch is on and a cross indicates that the switch is off. Hereinafter, the state of FIG. 1A is referred to as phase 1 and the state of FIG. Moreover, the arrow in FIG. 1 (a), (b) has shown the electric current.

相1では、図3のスイッチ切換え図に示されるように、スイッチSWA1〜SWAn−1,SWC1〜SWCn−2をオン、スイッチSWB1〜SWBn−2をオフにする。また、スイッチS4,S5をオン、スイッチS1,S2,S3,S6をオフにする。すると、(n−1)個のコンデンサC1〜Cn−1は互いに並列接続された状態で、出力端子2と接地電圧Vssの間に接続される。これにより、出力コンデンサCoutから出力電圧Voutの電圧に応じた電荷が放電されると共に、各コンデンサC1〜Cn−1には、出力電圧Voutに応じた電荷が充電される。   In phase 1, as shown in the switch switching diagram of FIG. 3, switches SWA1 to SWAn-1 and SWC1 to SWCn-2 are turned on, and switches SWB1 to SWBn-2 are turned off. Further, the switches S4 and S5 are turned on, and the switches S1, S2, S3 and S6 are turned off. Then, (n-1) capacitors C1 to Cn-1 are connected between the output terminal 2 and the ground voltage Vss while being connected in parallel to each other. Thereby, the electric charge according to the voltage of the output voltage Vout is discharged from the output capacitor Cout, and the electric charge according to the output voltage Vout is charged in each of the capacitors C1 to Cn-1.

また、相2では、図3のスイッチ切換え図に示されるように、スイッチSWAn−1,SWB1〜SWBn−2をオン、スイッチSWA1〜SWAn−2,SWC1〜SWCn−2をオフにする。また、スイッチS1,S6をオン、スイッチS2,S3,S4,S5をオフにする。すると、各コンデンサC1〜Cn−1は直列接続された状態で、入力電圧Vin(即ち、入力電圧Vinが印加された入力端子1)と出力電圧Voutの間に接続される。これにより、出力コンデンサCoutには出力電圧Voutに応じた電荷が充電され、コンデンサCn−1から電圧値Vin−Vout×(n−1)に応じた電荷が放電される。   In phase 2, as shown in the switch switching diagram of FIG. 3, the switches SWAn-1, SWB1 to SWBn-2 are turned on, and the switches SWA1 to SWAn-2, SWC1 to SWCn-2 are turned off. Further, the switches S1 and S6 are turned on, and the switches S2, S3, S4 and S5 are turned off. Then, the capacitors C1 to Cn-1 are connected between the input voltage Vin (that is, the input terminal 1 to which the input voltage Vin is applied) and the output voltage Vout while being connected in series. Thereby, the electric charge according to the output voltage Vout is charged in the output capacitor Cout, and the electric charge according to the voltage value Vin−Vout × (n−1) is discharged from the capacitor Cn−1.

相1と相2を安定するまで繰り返すことにより、Vin−Vout×(n−1)=Voutが成り立つ。この式から、Vout=1/n ・ Vinとなり、入力電圧Vinの1/n倍に降圧された出力電圧Voutを得ることができる。   By repeating phase 1 and phase 2 until stable, Vin−Vout × (n−1) = Vout is established. From this equation, Vout = 1 / n · Vin, and an output voltage Vout that is stepped down to 1 / n times the input voltage Vin can be obtained.

また、相1と相2におけるスイッチS1〜S6の切換えは変更せず、スイッチSWA1〜SWAn−1、SWB1〜SWBn−2、SWC1〜SWCn−2の個々の切換えを変更することより、直並列切換えされるコンデンサの数を減少させることができる。よって、同一の回路構成のまま、入力電圧Vinの1/n,1/(n−1),1/(n−2),…,1/2の、(n−1)通りの出力電圧Voutを得ることも可能である。   Further, the switching of the switches S1 to S6 in the phase 1 and the phase 2 is not changed, and the series switching is performed by changing the individual switching of the switches SWA1 to SWAn-1, SWB1 to SWBn-2, SWC1 to SWCn-2. The number of capacitors that are played can be reduced. Therefore, (n−1) output voltages Vout of 1 / n, 1 / (n−1), 1 / (n−2),..., 1/2 of the input voltage Vin are maintained with the same circuit configuration. It is also possible to obtain

次に、図2を参照しながら、上述した構成のDC−DCコンバータの第2の動作例を説明する。尚、コンデンサC1〜Cn−1は全て同じ容量値を有するものとする。以下、図2(a)の状態を相1、図2(b)の状態を相2と称する。また、図2(a),(b)の中の矢印は電流を示している。   Next, a second operation example of the DC-DC converter having the above-described configuration will be described with reference to FIG. Note that the capacitors C1 to Cn-1 all have the same capacitance value. Hereinafter, the state of FIG. 2A is referred to as phase 1 and the state of FIG. Moreover, the arrow in FIG. 2 (a), (b) has shown the electric current.

相1では、図3のスイッチ切換え図に示されるように、スイッチSWAn−1,SWB1〜SWBn−2をオン、スイッチSWA1〜SWAn−2,SWC1〜SWCn−2をオフにする。また、スイッチS3,S6をオン、スイッチS1,S2,S4,S5をオフにする。すると、各コンデンサC1〜Cn−1は直列接続された状態で、出力電圧Voutと接地電圧Vssの間に接続される。これにより、出力コンデンサCoutから出力電圧Voutに応じた電荷が放電され、各コンデンサC1〜Cn−1には電圧 Vout/(n−1)に応じた電荷が充電される。   In phase 1, as shown in the switch switching diagram of FIG. 3, switches SWAn-1, SWB1-SWBn-2 are turned on, and switches SWA1-SWAn-2, SWC1-SWCn-2 are turned off. Further, the switches S3 and S6 are turned on, and the switches S1, S2, S4 and S5 are turned off. Then, the capacitors C1 to Cn-1 are connected in series and connected between the output voltage Vout and the ground voltage Vss. Thereby, the electric charge according to the output voltage Vout is discharged from the output capacitor Cout, and the electric charge according to the voltage Vout / (n−1) is charged in each of the capacitors C1 to Cn−1.

また、相2では、図3のスイッチ切換え図に示されるように、スイッチSWA1〜SWAn−1,SWC1〜SWCn−2をオン、スイッチSWB1〜SWBn−2をオフにする。また、スイッチS2,S5をオン、スイッチS1,S3,S4,S6をオフにする。すると、各コンデンサC1〜Cn−1は並列接続された状態で、入力電圧Vinと出力電圧Voutの間に接続される。これにより、出力コンデンサCoutには出力電圧Voutに応じた電荷が充電され、各コンデンサC1〜Cn−1から電圧 Vin−[Vout/(n−1)]に応じた電荷が放電される。   In phase 2, as shown in the switch switching diagram of FIG. 3, the switches SWA1 to SWAn-1 and SWC1 to SWCn-2 are turned on, and the switches SWB1 to SWBn-2 are turned off. Further, the switches S2 and S5 are turned on, and the switches S1, S3, S4 and S6 are turned off. Then, each capacitor | condenser C1-Cn-1 is connected between the input voltage Vin and the output voltage Vout in the state connected in parallel. Thereby, the electric charge according to the output voltage Vout is charged in the output capacitor Cout, and the electric charge according to the voltage Vin− [Vout / (n−1)] is discharged from each of the capacitors C1 to Cn−1.

相1と相2を安定するまで繰り返すことにより、Vin−[Vout/(n−1)]=Voutが成り立つ。この式から、Vout=(n−1)/n ・ Vinとなり、入力電圧Vinの(n−1)/n倍に降圧された出力電圧Voutを得ることができる。   By repeating phase 1 and phase 2 until they become stable, Vin− [Vout / (n−1)] = Vout is established. From this equation, Vout = (n−1) / n · Vin, and the output voltage Vout that is stepped down to (n−1) / n times the input voltage Vin can be obtained.

また、第1の実施例と同様、相1と相2におけるスイッチS1〜S6の切換えは変更せず、スイッチSWA1〜SWAn−1、SWB1〜SWBn−2、SWC1〜SWCn−2の個々の切換えを変更することより、直並列されるコンデンサの数を減少させることができる。よって、同一の回路構成のまま、入力電圧Vinの1/2,2/3,…,(n−1)/nの、(n−1)通りの出力電圧Voutを得ることも可能である。   Further, as in the first embodiment, the switching of the switches S1 to S6 in the phase 1 and the phase 2 is not changed, and the individual switching of the switches SWA1 to SWAn-1, SWB1 to SWBn-2, SWC1 to SWCn-2 is performed. By changing, the number of capacitors in series and parallel can be reduced. Therefore, (n-1) output voltages Vout of 1/2, 2/3, ..., (n-1) / n of the input voltage Vin can be obtained with the same circuit configuration.

本発明の実施形態に係るDC−DCコンバータを示す回路図である。It is a circuit diagram showing a DC-DC converter concerning an embodiment of the present invention. 本発明の実施形態に係るDC−DCコンバータを示す回路図である。It is a circuit diagram showing a DC-DC converter concerning an embodiment of the present invention. 本発明の実施形態に係るDC−DCコンバータのスイッチ切換え図である。It is a switch change figure of a DC-DC converter concerning an embodiment of the present invention. 従来例に係るDC−DCコンバータを示す回路図である。It is a circuit diagram which shows the DC-DC converter which concerns on a prior art example.

符号の説明Explanation of symbols

1 入力端子
2 出力端子
S1〜S6 スイッチ
SWA1〜SWAn−1 スイッチ
SWB1〜SWBn−2 スイッチ
SWC1〜SWCn−2 スイッチ
C1〜Cn コンデンサ
Cout 出力容量



DESCRIPTION OF SYMBOLS 1 Input terminal 2 Output terminal S1-S6 Switch SWA1-SWAn-1 Switch SWB1-SWBn-2 Switch SWC1-SWCn-2 Switch C1-Cn Capacitor Cout Output capacity



Claims (5)

複数のコンデンサと、第1の相において前記複数のコンデンサを出力端子と接地電圧との間に互いに並列に接続して充電し、第2の相において前記複数のコンデンサを前記出力端子と入力電圧との間に直列に接続して放電する第1のスイッチング回路を備えることを特徴とするDC−DCコンバータ。 In the first phase, the plurality of capacitors are charged in parallel with each other between the output terminal and the ground voltage, and in the second phase, the plurality of capacitors are connected to the output terminal and the input voltage. A DC-DC converter comprising a first switching circuit that is connected in series between the two and discharging. 第1の相において前記複数のコンデンサを前記出力端子と接地電圧との間に互いに直列に接続して充電し、第2の相において前記複数のコンデンサを前記出力端子と前記入力電圧との間に並列に接続して放電する第2のスイッチング回路を備えることを特徴とする請求項1に記載のDC−DCコンバータ。 In the first phase, the plurality of capacitors are connected in series with each other between the output terminal and the ground voltage for charging, and in the second phase, the plurality of capacitors are connected between the output terminal and the input voltage. The DC-DC converter according to claim 1, further comprising a second switching circuit connected in parallel to discharge. 前記複数のコンデンサは全て同じ容量値を有することを特徴とする請求項1又は請求項2に記載のDC−DCコンバータ。 The DC-DC converter according to claim 1 or 2, wherein the plurality of capacitors all have the same capacitance value. 前記複数のコンデンサのうち、少なくとも1つのコンデンサが残りの
コンデンサと異なる容量値を有することを特徴とする請求項1又は請求項2に記載のDC−DCコンバータ。
3. The DC-DC converter according to claim 1, wherein at least one of the plurality of capacitors has a capacitance value different from that of the remaining capacitors. 4.
前記スイッチング回路はMOSトランジスタから成る複数のスイッチを含むことを特徴とする請求項1又は請求項2に記載のDC−DCコンバータ。








3. The DC-DC converter according to claim 1, wherein the switching circuit includes a plurality of switches made of MOS transistors.








JP2005219100A 2004-07-29 2005-07-28 Dc-dc converter Pending JP2006067783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005219100A JP2006067783A (en) 2004-07-29 2005-07-28 Dc-dc converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004221437 2004-07-29
JP2005219100A JP2006067783A (en) 2004-07-29 2005-07-28 Dc-dc converter

Publications (1)

Publication Number Publication Date
JP2006067783A true JP2006067783A (en) 2006-03-09

Family

ID=36113742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005219100A Pending JP2006067783A (en) 2004-07-29 2005-07-28 Dc-dc converter

Country Status (1)

Country Link
JP (1) JP2006067783A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125145A (en) * 2006-11-08 2008-05-29 Mcm Japan Kk Voltage step-up circuit and voltage step-down circuit
JP2008125269A (en) * 2006-11-14 2008-05-29 Mcm Japan Kk Voltage step-up circuit and voltage step-down circuit
JP2009219328A (en) * 2008-03-12 2009-09-24 Taiyo Yuden Co Ltd Dc-dc converter
JP2010074931A (en) * 2008-09-18 2010-04-02 Sumitomo Electric Ind Ltd Voltage conversion circuit
JP2010074929A (en) * 2008-09-18 2010-04-02 Sumitomo Electric Ind Ltd Voltage conversion circuit
JP2010074930A (en) * 2008-09-18 2010-04-02 Sumitomo Electric Ind Ltd Voltage conversion circuit
WO2012002007A1 (en) * 2010-07-02 2012-01-05 オムロン株式会社 Voltage conversion circuit and electronic equipment
JP2014239649A (en) * 2006-12-22 2014-12-18 ウルフソン マイクロエレクトロニクス ピーエルシーWolfson Microelectronics Plc Charge pump circuit and operation method thereof
WO2015138547A1 (en) * 2014-03-14 2015-09-17 Arctic Sand Technologies, Inc. Charge pump stability control
WO2015138378A1 (en) * 2014-03-14 2015-09-17 Arctic Sand Technologies, Inc. Charge balanced charge pump control
JP2016517166A (en) * 2013-03-15 2016-06-09 インテル・コーポレーション Integrated capacitor-based power distribution
US10686367B1 (en) 2019-03-04 2020-06-16 Psemi Corporation Apparatus and method for efficient shutdown of adiabatic charge pumps
US10693368B2 (en) 2014-03-14 2020-06-23 Psemi Corporation Charge pump stability control
US11901817B2 (en) 2013-03-15 2024-02-13 Psemi Corporation Protection of switched capacitor power converter

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125145A (en) * 2006-11-08 2008-05-29 Mcm Japan Kk Voltage step-up circuit and voltage step-down circuit
JP2008125269A (en) * 2006-11-14 2008-05-29 Mcm Japan Kk Voltage step-up circuit and voltage step-down circuit
JP2014239649A (en) * 2006-12-22 2014-12-18 ウルフソン マイクロエレクトロニクス ピーエルシーWolfson Microelectronics Plc Charge pump circuit and operation method thereof
JP2009219328A (en) * 2008-03-12 2009-09-24 Taiyo Yuden Co Ltd Dc-dc converter
JP2010074931A (en) * 2008-09-18 2010-04-02 Sumitomo Electric Ind Ltd Voltage conversion circuit
JP2010074930A (en) * 2008-09-18 2010-04-02 Sumitomo Electric Ind Ltd Voltage conversion circuit
JP2010074929A (en) * 2008-09-18 2010-04-02 Sumitomo Electric Ind Ltd Voltage conversion circuit
WO2012002007A1 (en) * 2010-07-02 2012-01-05 オムロン株式会社 Voltage conversion circuit and electronic equipment
JP2012016225A (en) * 2010-07-02 2012-01-19 Omron Corp Voltage conversion circuit, and electronic device
KR101360667B1 (en) 2010-07-02 2014-02-07 오므론 가부시키가이샤 Voltage conversion circuit and electronic equipment
US9143050B2 (en) 2010-07-02 2015-09-22 Omron Corporation Voltage converting circuit and electronic device
US11901817B2 (en) 2013-03-15 2024-02-13 Psemi Corporation Protection of switched capacitor power converter
JP2016517166A (en) * 2013-03-15 2016-06-09 インテル・コーポレーション Integrated capacitor-based power distribution
US9887622B2 (en) 2014-03-14 2018-02-06 Peregrine Semiconductor Corporation Charge pump stability control
US11031864B2 (en) 2014-03-14 2021-06-08 Psemi Corporation Charge pump stability control
GB2538664A (en) * 2014-03-14 2016-11-23 Arctic Sand Technologies Inc Charge balanced charge pump control
WO2015138378A1 (en) * 2014-03-14 2015-09-17 Arctic Sand Technologies, Inc. Charge balanced charge pump control
US10027224B2 (en) 2014-03-14 2018-07-17 Psemi Corporation Charge pump stability control
US10128745B2 (en) 2014-03-14 2018-11-13 Psemi Corporation Charge balanced charge pump control
US10348195B2 (en) 2014-03-14 2019-07-09 Psemi Corporation Charge balanced charge pump control
US10454368B2 (en) 2014-03-14 2019-10-22 Psemi Corporation Charge pump stability control
US10574140B2 (en) 2014-03-14 2020-02-25 Psemi Corporation Charge balanced charge pump control
WO2015138547A1 (en) * 2014-03-14 2015-09-17 Arctic Sand Technologies, Inc. Charge pump stability control
US10693368B2 (en) 2014-03-14 2020-06-23 Psemi Corporation Charge pump stability control
GB2538665A (en) * 2014-03-14 2016-11-23 Arctic Sand Technologies Inc Charge pump stability control
US11784561B2 (en) 2014-03-14 2023-10-10 Psemi Corporation Charge pump stability control
GB2538665B (en) * 2014-03-14 2021-11-10 Arctic Sand Technologies Inc Charge pump stability control
US11177735B2 (en) 2014-03-14 2021-11-16 Psemi Corporation Charge pump stability control
US11336175B2 (en) 2014-03-14 2022-05-17 Psemi Corporation Charge balanced charge pump control
US11496046B2 (en) 2014-03-14 2022-11-08 Psemi Corporation Charge pump stability control
US11527952B2 (en) 2014-03-14 2022-12-13 Psemi Corporation Charge pump stability control
US11671004B2 (en) 2019-03-04 2023-06-06 Psemi Corporation Power converter with multi-level topology
US11075576B2 (en) 2019-03-04 2021-07-27 Psemi Corporation Apparatus and method for efficient shutdown of adiabatic charge pumps
US10686367B1 (en) 2019-03-04 2020-06-16 Psemi Corporation Apparatus and method for efficient shutdown of adiabatic charge pumps

Similar Documents

Publication Publication Date Title
KR100682006B1 (en) Dc-dc converter
JP2006067783A (en) Dc-dc converter
US8295064B2 (en) Operation control method of charge pump circuit
JP3557186B2 (en) DC-DC converter
US20200177082A1 (en) Power Converter With Capacitive Energy Transfer And Fast Dynamic Response
EP3425784B1 (en) Dc-dc converter with modular stages
KR100516084B1 (en) Method of controlling dc-dc converter
JP5397067B2 (en) Charge pump circuit and operation control method thereof
US20060244513A1 (en) Charge pump
EP2136459A1 (en) Charge pump circuit
WO2006043479A1 (en) Switching power supply and electronic apparatus employing the same
CN112821757B (en) Power converter
JP2014212654A (en) Switched capacitor converter capable of PWM control
US8742832B2 (en) Multi-step charge pump and method for producing multi-step charge pumping
TWI605676B (en) Switched capacitor dc-dc convertor circuit and generating method thereof
JP6526507B2 (en) Step-down circuit and step-down charging circuit using the same
JPH08205524A (en) Voltage converter
JP2011072094A (en) Switched capacitor power supply
JP6863789B2 (en) Switching regulator
JP3480423B2 (en) Power circuit
JP6721754B2 (en) Step-down circuit and step-down charging circuit using the same
JP2001268894A (en) Booster circuit
JP2005117830A (en) Charge pump circuit
JPH10117474A (en) Switching capacitor power source
JPH11299226A (en) Dc voltage converter

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20051227

Free format text: JAPANESE INTERMEDIATE CODE: A7421