JP2005327489A - Positive electrode for power storage element - Google Patents

Positive electrode for power storage element Download PDF

Info

Publication number
JP2005327489A
JP2005327489A JP2004142039A JP2004142039A JP2005327489A JP 2005327489 A JP2005327489 A JP 2005327489A JP 2004142039 A JP2004142039 A JP 2004142039A JP 2004142039 A JP2004142039 A JP 2004142039A JP 2005327489 A JP2005327489 A JP 2005327489A
Authority
JP
Japan
Prior art keywords
battery
layer
positive electrode
capacitor
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004142039A
Other languages
Japanese (ja)
Inventor
Hideaki Fujita
秀明 藤田
Takeshi Hatanaka
剛 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004142039A priority Critical patent/JP2005327489A/en
Publication of JP2005327489A publication Critical patent/JP2005327489A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode for power storage element used in a hybrid automobile for example capable of making compatible high capacity and high output performance. <P>SOLUTION: The positive electrode for the power storage element has a battery mix layer and a capacitor layer on a current collector, the battery mix layer contains a positive active material mainly comprising a lithium-containing composite oxide, the capacitor layer contains activated carbon, the battery mix layer is placed on the current collector, and the capacitor layer is placed on the battery mix layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蓄電素子用正極に関するものである。   The present invention relates to a positive electrode for a power storage element.

近年、電子機器の小型化、軽量化が急速に進み、その電源としての電池に対しても小型、軽量化、さらに高容量化の要望が高まっており、高エネルギー密度の蓄電素子が実用化されている。また、自動車分野においても、電気自動車、あるいはエンジンと蓄電素子との併用によるハイブリッド自動車の開発が活発であり、一部実用化に至っている。   In recent years, electronic devices are rapidly becoming smaller and lighter, and there is an increasing demand for smaller, lighter, and higher capacity batteries as power sources, and high energy density energy storage devices have been put to practical use. ing. Also in the automobile field, development of an electric vehicle or a hybrid vehicle using an engine and a power storage element in combination is active, and some of them have been put into practical use.

ハイブリッド自動車などに用いられる蓄電素子には、始動、発進、加速時にパワーアシストをするためにある一定時間に大きな出力、すなわち大電流放電特性が要求されている。また減速時の大きな回生エネルギーについても効率的に回収可能な入力特性が要求されている。このような高負荷パルス特性が高いレベルで要求される。   A power storage element used in a hybrid vehicle or the like is required to have a large output, that is, a large current discharge characteristic, for a certain period of time in order to perform power assist during starting, starting and acceleration. In addition, there is a demand for input characteristics that enable efficient recovery even for large regenerative energy during deceleration. Such high load pulse characteristics are required at a high level.

さらに世界各地で使用されることが想定されるため、使用環境温度は高温から低温まで幅広く、これら広域温度帯での安定した良好な電池特性が必要となり、低温域においては−10℃あるいは−30℃といった極めて低温状態での厳しい環境下における高いレベルの入出力特性が必要とされる。   Furthermore, since it is assumed that it will be used in various parts of the world, the usage environment temperature is wide from high to low, and stable and good battery characteristics are required in these wide temperature ranges. A high level input / output characteristic is required in a severe environment at an extremely low temperature such as ° C.

また、蓄電素子として二次電池とキャパシタが比較されることが多いが、自動車用パワーアシスト源の観点から考慮した場合、一般に電池は高いエネルギー量が得られるが、電池反応を伴うため高出力には不向きであり、キャパシタは小さなエネルギーしか蓄えられないが、高出力が得られるという一長一短の特徴を持つものとされていることから、これまでに二次電池と電気二重層キャパシタの共有化を図った複合素子などが提案されている。   In addition, secondary batteries and capacitors are often compared as power storage elements, but when considering from the viewpoint of a power assist source for automobiles, batteries generally provide a high amount of energy, but are accompanied by a battery reaction, resulting in high output. The capacitor can store only a small amount of energy, but it has the advantages and disadvantages of being able to obtain high output.So far, secondary batteries and electric double layer capacitors have been shared. Composite elements have been proposed.

特許文献1には、電機二重層キャパシタとリチウム二次電池の複合化素子を用い、共有集電箔の一方の面に電池合剤層を設け、もう一方の面にキャパシタ層をそれぞれに設け、それらが並列接続されている複合素子、あるいは電池合剤とキャパシタ材料を混合した層を集電箔両面に配した素子が示されている
特開2001−351688号公報
In Patent Document 1, a composite element of an electric double layer capacitor and a lithium secondary battery is used, a battery mixture layer is provided on one side of the shared current collector foil, and a capacitor layer is provided on the other side. A composite element in which they are connected in parallel, or an element in which a layer in which a battery mixture and a capacitor material are mixed is arranged on both sides of the current collector foil is shown.
JP 2001-351688 A

しかしながら、特許文献1に記載されている事項では、集電箔の片面にのみ電池合剤層を形成するため、集電箔の両面に電池合剤層を形成したものと同じ電池容量を得るためには、集電箔片面への電池合剤層の厚みを2倍に形成する必要がある。その結果、合剤厚みが厚くなり電子伝導性が悪くなるため、電池抵抗が高くなり、出力性能が充分向上せず、さらには電池合剤層の厚み増加により寿命特性が悪くなる。   However, in the matter described in Patent Document 1, in order to form the battery mixture layer only on one side of the current collector foil, in order to obtain the same battery capacity as that obtained by forming the battery mixture layer on both sides of the current collector foil Therefore, it is necessary to double the thickness of the battery mixture layer on one surface of the current collector foil. As a result, the mixture thickness is increased and the electron conductivity is deteriorated, so that the battery resistance is increased, the output performance is not sufficiently improved, and the life characteristics are deteriorated due to the increase in the thickness of the battery mixture layer.

また、キャパシタ材料として活性炭が示されているが、電池材料とキャパシタ材料の混合層を形成した場合、活性炭のプレス充填性が悪いため、電池材料の高充填化が困難となり、高エネルギー密度化の達成が難しくなる。
本発明ではこれらの課題を解決し、高容量であり、かつ高出力性能が両立可能である蓄電素子用正極を提供することを目的とする。
In addition, activated carbon is shown as the capacitor material. However, when a mixed layer of battery material and capacitor material is formed, the press filling property of the activated carbon is poor, so that it is difficult to achieve high filling of the battery material, which increases the energy density. It becomes difficult to achieve.
An object of the present invention is to solve these problems and to provide a positive electrode for a storage element that has a high capacity and is compatible with a high output performance.

上記目的を達成するために、本発明は、電池合剤層とキャパシタ層を集電体上に有してなる蓄電素子用正極であって、前記電池合剤層がリチウム含有複合酸化物を主体とした正極活物質を含み、前記キャパシタ層が活性炭を含み、前記集電体上に前記電池合剤層を有し、さらに前記電池合剤層上に前記キャパシタ層を有していることを特徴とするものである。   In order to achieve the above object, the present invention provides a positive electrode for a storage element comprising a battery mixture layer and a capacitor layer on a current collector, wherein the battery mixture layer mainly comprises a lithium-containing composite oxide. The capacitor layer includes activated carbon, has the battery mixture layer on the current collector, and further has the capacitor layer on the battery mixture layer. It is what.

本発明の蓄電素子用正極は上記構成を有することにより、集電箔の両面に電池合剤層およびキャパシタ層が構成されるため電池抵抗を増加させることなくキャパシタ成分の付与による高出力性能が得られ、さらには電池層とキャパシタ層とを積層化させるため、電池層のプレスによる高充填化が可能であり、高容量、高エネルギー密度が達成可能な蓄電素子を得ることができる。   Since the positive electrode for a storage element of the present invention has the above-described configuration, a battery mixture layer and a capacitor layer are formed on both sides of the current collector foil, so that high output performance can be obtained by applying a capacitor component without increasing battery resistance. In addition, since the battery layer and the capacitor layer are laminated, the battery layer can be highly filled by pressing, and an energy storage device capable of achieving high capacity and high energy density can be obtained.

本発明は、電池合剤層とキャパシタ層を集電体上に有してなる蓄電素子用正極であって、前記電池合剤層がリチウム含有複合酸化物を主体とした正極活物質を含み、前記キャパシタ層が活性炭を含み、前記集電体上に前記電池合剤層を有し、さらに前記電池合剤層上に前記キャパシタ層を有していることを特徴とするものであり、高容量かつ高出力性能を有した蓄電素子用正極を得ることができる。   The present invention is a positive electrode for a storage element having a battery mixture layer and a capacitor layer on a current collector, the battery mixture layer comprising a positive electrode active material mainly composed of a lithium-containing composite oxide, The capacitor layer includes activated carbon, has the battery mixture layer on the current collector, and further has the capacitor layer on the battery mixture layer, and has a high capacity. And the positive electrode for electrical storage elements which has high output performance can be obtained.

また、前記集電体上に前記キャパシタ層を有し、さらに前記キャパシタ層上に前記電池合剤層を有する構成においても同様の効果を得ることができる。   Further, the same effect can be obtained even in a configuration having the capacitor layer on the current collector and further having the battery mixture layer on the capacitor layer.

さらに、前記電池合剤層およびキャパシタ層が塗布されていることによって、均一な正極を得ることができる。するものである。   Furthermore, a uniform positive electrode can be obtained by applying the battery mixture layer and the capacitor layer. To do.

なお、蓄電素子の出入力特性の向上には抵抗の低減および電気二重層容量の増加が重要であり、これらの改良によって大きな出入力が可能となる。   Note that reduction in resistance and increase in electric double layer capacity are important for improving the input / output characteristics of the power storage element, and these improvements enable large input / output.

ここで電池およびキャパシタについて詳しく説明する。図1は電池反応の基本等価回路であって、電池は図1に示されるように、電池の充放電により変化する電池の起電力Eと、集電箔や集電部品等の部品抵抗Rbp、極板合剤層の電子抵抗Rbe、電解液抵抗Rbs、そして極板材料と電解液界面に生じる電気二重層容量Cbと、電池反応抵抗Rbctの六成分に分割される。この基本等価回路により、電池は正極および負極活物質における電気化学反応による蓄電現象を利用した充放電を行う。 Here, the battery and the capacitor will be described in detail. FIG. 1 is a basic equivalent circuit of a battery reaction. As shown in FIG. 1, a battery is an electromotive force E of a battery that changes due to charging / discharging of the battery, and a component resistance R bp such as a collector foil or a collector component. The electrode resistance layer is divided into six components: the electronic resistance R be of the electrode mixture layer, the electrolyte resistance R bs , the electric double layer capacity C b generated at the electrode plate / electrolyte interface, and the battery reaction resistance R bct . With this basic equivalent circuit, the battery is charged and discharged using a storage phenomenon caused by an electrochemical reaction in the positive and negative electrode active materials.

次いで、図2にキャパシタの基本等価回路を示す。キャパシタは図2に示されるように、
集電箔や集電部品等の部品抵抗Rcp、合剤層の電子抵抗Rce、電解液抵抗Rcs、そしてキャパシタ容量Ccの四成分に分割される。なお、キャパシタは対向する2つの電極の間に誘電体を挟んだ形が一般的に用いられるが、電気二重層キャパシタは誘電体ではなく、界面電気二重層を誘電体機能として利用したものであり、このキャパシタは正負極ともに使用する活性炭の電極表面に形成されるイオン吸着層、すなわち電気二重層の吸脱着反応により生じる蓄電現象を利用したデバイスである。
Next, FIG. 2 shows a basic equivalent circuit of the capacitor. The capacitor is shown in FIG.
It is divided into four components: component resistance R cp of current collector foil and current collector component, electronic resistance R ce of the mixture layer, electrolyte resistance R cs , and capacitor capacitance C c . Capacitors generally have a shape in which a dielectric is sandwiched between two opposing electrodes, but an electric double layer capacitor is not a dielectric, but uses an interface electric double layer as a dielectric function. This capacitor is a device that utilizes an electricity storage phenomenon caused by an adsorption / desorption reaction of an ion adsorption layer formed on the surface of an activated carbon electrode used for both positive and negative electrodes, that is, an electric double layer.

ここで図3(a)に集電箔の一方の面に電池合剤層を、もう一方の面にキャパシタ層を形成した場合の正極板断面図を示す。これらの層に対向して負極が構成されており、集電箔片側に電池合剤層、そして反対面のキャパシタ層による並列接続構成になっている。   Here, FIG. 3A shows a cross-sectional view of the positive electrode plate when the battery mixture layer is formed on one surface of the current collector foil and the capacitor layer is formed on the other surface. A negative electrode is formed so as to face these layers, and a battery mixture layer is provided on one side of the current collector foil, and a capacitor layer on the opposite side is connected in parallel.

一方、図4(a)には本発明の集電箔の両面にそれぞれ電池合剤層とキャパシタ層を積
層状に構成した正極板断面図を示す。これら積層された層に対向して負極が構成されており、集電箔両面の積層された電池層とキャパシタ層による並列接続構成になっている。ここで図3と図4の電池容量を同一にするためには極板長さを同じにした場合、図3(a)の正極板は図4(a)の正極板片側の電池合剤層の2倍の厚み分の電池合剤層を形成する必要がある。またキャパシタ層も同じキャパシタ容量を得るためには同様に2倍の厚みを形成する必要がある。その場合の正極の合剤部等価回路を図4(b)に示す。
On the other hand, FIG. 4A shows a cross-sectional view of a positive electrode plate in which a battery mixture layer and a capacitor layer are laminated on both surfaces of the current collector foil of the present invention. A negative electrode is configured to face these stacked layers, and is configured to be connected in parallel by stacked battery layers and capacitor layers on both sides of the current collector foil. Here, in order to make the battery capacity of FIG. 3 and FIG. 4 the same, when the electrode plate length is the same, the positive electrode plate of FIG. 3 (a) is the battery mixture layer on one side of the positive electrode plate of FIG. 4 (a). It is necessary to form a battery mixture layer having a thickness twice as large as the above. Similarly, in order to obtain the same capacitor capacity, the capacitor layer also needs to be formed twice as thick. FIG. 4B shows a positive electrode mixture portion equivalent circuit in that case.

ここで図3と図4の電池容量を同一にするためには極板長さを同じにした場合、蓄電素子全体での電池合剤層の量が同じであったとしても、図3(a)の正極板では図4(a)の正極板片側の電池合剤層の2倍の厚み分の電池合剤層を形成する必要がある。またキャパシタ層も同じキャパシタ容量を得るためには同様に2倍の厚みを形成する必要がある。そのため図4(a)の層の厚みを基本とした場合、図3(a)の正極の合剤部等価回路は図3(b)に示すように電池合剤層とキャパシタ層の厚みが2倍となるため電池層とキャパシタ層の電子抵抗成分Rbe、Rceが直列構成された等価回路となり、正極合剤部回路インピーダンスが図4の構成と比較して増加する。その結果、図3に示すような素子においては充分な出力性能が得られない、さらにはサイクルによる電池合剤層およびキャパシタ層の電子抵抗成分の増加が電池インピーダンス増加に与える影響が大きくなり、寿命特性の悪化、すなわちサイクルによる出力性能の低下などの問題が生じる。 Here, in order to make the battery capacities of FIG. 3 and FIG. 4 the same, even if the electrode plate length is the same, even if the amount of the battery mixture layer in the entire power storage element is the same, FIG. 4), it is necessary to form a battery mixture layer having a thickness twice that of the battery mixture layer on one side of the positive electrode plate in FIG. Similarly, in order to obtain the same capacitor capacity, the capacitor layer also needs to be formed twice as thick. Therefore, when the thickness of the layer shown in FIG. 4A is used as a basis, the positive electrode mixture portion equivalent circuit of FIG. 3A has a battery mixture layer and capacitor layer thickness of 2 as shown in FIG. 3B. Thus, an equivalent circuit is formed in which the electronic resistance components R be and R ce of the battery layer and the capacitor layer are configured in series, and the positive electrode mixture circuit impedance increases as compared with the configuration of FIG. As a result, in the element as shown in FIG. 3, sufficient output performance cannot be obtained, and further, the influence of the increase in the electronic resistance component of the battery mixture layer and the capacitor layer due to the cycle on the increase in the battery impedance is increased, resulting in a lifetime. Problems such as deterioration of characteristics, that is, deterioration of output performance due to cycles occur.

それに対し図4(a)に示されるような本発明の構成の場合、各抵抗成分は並列接続を基本とするため素子のインピーダンスは図3(a)に示されるような構成と比較して低下し、出力性能が向上する。ここでキャパシタ容量Cc成分は電池合剤層の電子抵抗Rbeを導電パスとして集電可能であるため積層構成によりキャパシタ機能が付与される。またサイクルによる各抵抗成分の増加も並列回路を基本としているため回路全体の抵抗増加が小さくおさえられるため図3(a)の構成と比較し良好な寿命特性を示す。 On the other hand, in the case of the configuration of the present invention as shown in FIG. 4A, each resistance component is based on parallel connection, so that the impedance of the element is lower than that in the configuration shown in FIG. And output performance is improved. Here capacitance C c component capacitor function is given by the lamination structure because it is the current collector allows the electronic resistance R BE of the battery mixture layer as a conductive path. In addition, the increase in each resistance component due to the cycle is based on a parallel circuit, so that the increase in resistance of the entire circuit can be suppressed. Therefore, the lifetime characteristic is better than that in the configuration of FIG.

図5は本発明の正極を用いて作製した蓄電素子の断面図であり、正極、負極、セパレータ、非水電解液などにより構成される。以下、各要素について詳しく説明する。   FIG. 5 is a cross-sectional view of a power storage device manufactured using the positive electrode of the present invention, and is composed of a positive electrode, a negative electrode, a separator, a non-aqueous electrolyte, and the like. Hereinafter, each element will be described in detail.

正極の製造方法はまず正極活物質、導電剤、結着剤、そして溶媒、さらには必要に応じて増粘剤とを混練した電池機能を持つ電池合剤ペーストと、活性炭、導電剤、結着剤、そして溶媒とを混練したキャパシタ機能を持つキャパシタ合剤ペーストを作製する。例えば、まず電池合剤ペーストをアルミニウム箔の集電箔両面に塗布、乾燥させ、必要に応じてプレスにより所定厚みに圧延する。その後、その電池合剤層の上に上記キャパシタ合剤ペーストを塗布、乾燥させ、必要に応じてプレスし所定厚みに圧延し、電池合剤層とキャパシタ層を集電箔両面に積層状に構成する。その後必要に応じてスリット加工することにより所定の寸法に加工し、シート状の正極板を作製する。   The positive electrode manufacturing method starts with a positive electrode active material, a conductive agent, a binder, a solvent, and further a battery mixture paste having a battery function kneaded with a thickener as necessary, and activated carbon, a conductive agent, a binder. A capacitor mixture paste having a capacitor function in which an agent and a solvent are kneaded is prepared. For example, first, a battery mixture paste is applied to both sides of an aluminum foil current collector foil, dried, and rolled to a predetermined thickness by pressing as necessary. Thereafter, the capacitor mixture paste is applied onto the battery mixture layer, dried, pressed as necessary, and rolled to a predetermined thickness, and the battery mixture layer and the capacitor layer are laminated on both sides of the current collector foil. To do. Thereafter, the sheet is processed into a predetermined size by slitting as necessary to produce a sheet-like positive electrode plate.

上記正極活物質にはリチウムを吸蔵・放出可能な物質を使用する。例えば、LiCoO2、LiNiO2またはLiMn24で表されるリチウム金属複合酸化物が使用される。なお上記Co、NiまたはMnの一部をさらにCo、Mn、Al等で置換したもの、Liで置換したものなど、他元素置換タイプのものも使用することが可能であり、これら正極活物質はリチウムを吸蔵、放出可能であって、充放電反応が可能である活物質であれば上記に限定されるものではない。 As the positive electrode active material, a material capable of inserting and extracting lithium is used. For example, a lithium metal composite oxide represented by LiCoO 2 , LiNiO 2 or LiMn 2 O 4 is used. It is also possible to use other element substitution types such as those in which a part of the above Co, Ni or Mn is further substituted with Co, Mn, Al, etc., or those substituted with Li. It is not limited to the above as long as it is an active material capable of inserting and extracting lithium and capable of charge / discharge reaction.

導電剤は、正極合剤の充放電反応を効率的に行うために電気伝導性を高めるためのものであり、例えば、アセチレンブラック(AB)、ケッチェンブラック(KB)、または黒鉛等の炭素材料を単体、もしくは複合して用いることができる。   The conductive agent is for increasing electrical conductivity in order to efficiently perform the charge / discharge reaction of the positive electrode mixture. For example, carbon materials such as acetylene black (AB), ketjen black (KB), or graphite Can be used alone or in combination.

結着剤は、合剤同士の接着、また合剤と芯材の間の接着機能を持たせるものである。例
えば、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVdF)などを用いる。水を溶媒とする場合にはPTFEの水溶性ディスパージョンが特に用いられる。
The binder has a bonding function between the mixture and an adhesion function between the mixture and the core material. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or the like is used. When water is used as a solvent, a water-soluble dispersion of PTFE is particularly used.

増粘剤としては、溶媒に水を使用する場合カルボキシメチルセルロース(CMC)等の水溶性高分子が用いられる。   As the thickener, a water-soluble polymer such as carboxymethyl cellulose (CMC) is used when water is used as a solvent.

一方、正極のキャパシタ層に使用する活性炭については原料は椰子殻、石炭、フェノール等有機原料などを使用し、炭化、賦活(アルカリ、水蒸気賦活など)した材料を電池の適性に応じて使用し、その比表面積は1000〜3000m2/gである。 On the other hand, for the activated carbon used for the positive electrode capacitor layer, the raw material is an organic raw material such as coconut shell, coal, phenol, etc., and carbonized and activated (alkali, steam activated, etc.) materials are used according to the suitability of the battery, Its specific surface area is 1000 to 3000 m 2 / g.

なお、これら材料を混練して合剤ペーストが作製されるが、合剤混合比は電池の使用適性に応じて任意に調整することが可能である。   A mixture paste is prepared by kneading these materials, but the mixture mixture ratio can be arbitrarily adjusted according to the suitability of the battery.

一方、負極は集電体である銅箔上に負極活物質、結着剤などからなる負極合剤層によって構成されており、正極と同様に合剤ペーストを作製し、その合剤ペーストを銅箔に塗布、乾燥させ、その後必要に応じてプレス、スリット加工することにより所定の寸法に加工し、シート状の負極を得る。   On the other hand, the negative electrode is composed of a negative electrode mixture layer composed of a negative electrode active material, a binder and the like on a copper foil as a current collector, and a mixture paste is prepared in the same manner as the positive electrode. It is applied to a foil, dried, and then processed into a predetermined size by pressing and slitting as necessary to obtain a sheet-like negative electrode.

負極活物質にはリチウムイオンを吸蔵、放出可能な材料が用いられ、例えば、天然黒鉛、人造黒鉛、コークス等の炭素材料を用いることができる。結着剤としては、PVdFやスチレンブタジエンゴム(SBR)等を用い、これら活物質および結着剤を分散させる溶媒にはN−メチル−2−ピロリドン(NMP)等の有機溶媒もしくは水を用いることができる。   As the negative electrode active material, a material capable of inserting and extracting lithium ions is used. For example, a carbon material such as natural graphite, artificial graphite, or coke can be used. As the binder, PVdF, styrene butadiene rubber (SBR) or the like is used, and an organic solvent such as N-methyl-2-pyrrolidone (NMP) or water is used as a solvent for dispersing these active materials and the binder. Can do.

セパレータは正極と負極間の絶縁、さらには電解液を保持するなどの機能を持つものであり、このセパレータにはポリエチレン(PE)、ポリプロピレン(PP)、あるいはそれら積層品等の薄い微多孔膜を用いることができ、その必要機能を得るものであればこれらに限定されるものではない。   The separator has a function of insulating between the positive electrode and the negative electrode and further holding an electrolyte solution. The separator is made of a thin microporous film such as polyethylene (PE), polypropylene (PP), or a laminate thereof. However, the present invention is not limited to these as long as the necessary functions can be obtained.

電解液はリチウム塩を有機溶媒に溶解したものであり、有機溶媒としては、エチレンカーボネート(EC)やプロピレンカーボネート(PC)等の環状カーボネート、また、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等の鎖状カーボネートなどの単独もしくは混合系が用いられる。また、リチウム塩としては、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)等が用いられる。 The electrolytic solution is obtained by dissolving a lithium salt in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), A chain carbonate such as ethyl methyl carbonate (EMC) or the like alone or in a mixed system is used. As the lithium salt, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), or the like is used.

また、構成される蓄電素子の形状は円筒型、角型、あるいは積層型などのいずれの形状であってもよく、正極および負極をセパレータを介して積層させて電極群を作製し、正極集電体および負極集電体に外部への集電端子を接続して、電池外装ケースに挿入し、電解液を注入し、密閉して電池を作製する。   In addition, the shape of the power storage element configured may be any of a cylindrical shape, a square shape, or a stacked shape, and a positive electrode and a negative electrode are stacked via a separator to produce an electrode group, and a positive current collector A current collecting terminal is connected to the body and the negative electrode current collector, inserted into the battery outer case, injected with an electrolyte, and sealed to produce a battery.

本発明の実施例について、実際に種々の極板を作製し、その極板を用いて構成した17500型円筒電池について説明する。   Examples of the present invention will be described with respect to a 17500 type cylindrical battery in which various electrode plates are actually produced and configured using the electrode plates.

(実施例1)
正極活物質には組成式LiNi0.7Co0.2Al0.12で表されるリチウムニッケル複合酸化物を用いた。NiSO4水溶液に、所定比率のCoおよびAlの硫酸塩を加え、飽和水溶液を調製した。この飽和水溶液を撹拌しながら水酸化ナトリウムを溶解したアルカリ
溶液をゆっくりと滴下し中和することによって三元系の水酸化ニッケルNi0.7Co0.2Al0.1(OH)2の沈殿物を共沈法により生成させた。この沈殿物をろ過、水洗し、80℃で乾燥を行った。得られた水酸化ニッケルは平均粒径10μmであった。
(Example 1)
As the positive electrode active material, a lithium nickel composite oxide represented by a composition formula LiNi 0.7 Co 0.2 Al 0.1 O 2 was used. A predetermined ratio of Co and Al sulfate was added to the NiSO 4 aqueous solution to prepare a saturated aqueous solution. While stirring this saturated aqueous solution, an alkaline solution in which sodium hydroxide is dissolved is slowly added dropwise and neutralized to neutralize a ternary nickel hydroxide Ni 0.7 Co 0.2 Al 0.1 (OH) 2 precipitate by a coprecipitation method. Generated. The precipitate was filtered, washed with water, and dried at 80 ° C. The obtained nickel hydroxide had an average particle size of 10 μm.

その後、得られたNi0.7Co0.2Al0.1(OH)2を大気中900℃で10時間の熱処理を行い、酸化ニッケルNi0.7Co0.2Al0.1Oを得た。得られた酸化物は粉末X線回折により単一相の酸化ニッケルであることを確認した。そして、Ni、Co、Alの原子数の和とLiの原子数が等量になるように水酸化リチウム1水和物を加え、乾燥空気中800℃で10時間の熱処理を行うことにより、目的とするLiNi0.7Co0.2Al0.12を得た。得られたリチウムニッケル複合酸化物は粉末X線回折により単一相の六方晶層状構造であると共に、CoおよびAlが固溶していることを確認した。そして粉砕、分級の処理を経て正極活物質粉末とした。平均粒径9.5μm、BET法による比表面積は0.4m2/gであった。 Thereafter, the obtained Ni 0.7 Co 0.2 Al 0.1 (OH) 2 was heat-treated in the atmosphere at 900 ° C. for 10 hours to obtain nickel oxide Ni 0.7 Co 0.2 Al 0.1 O. The obtained oxide was confirmed to be single phase nickel oxide by powder X-ray diffraction. Then, lithium hydroxide monohydrate was added so that the sum of the number of atoms of Ni, Co, and Al and the number of atoms of Li were equal, and heat treatment was performed at 800 ° C. in dry air for 10 hours. LiNi 0.7 Co 0.2 Al 0.1 O 2 was obtained. The obtained lithium nickel composite oxide was confirmed by powder X-ray diffraction to have a single-phase hexagonal layered structure and that Co and Al were dissolved. Then, a positive electrode active material powder was obtained through pulverization and classification. The average particle size was 9.5 μm, and the specific surface area by the BET method was 0.4 m 2 / g.

導電剤には比表面積68m2/gのABを用いた。結着剤としてはPTFE水溶性ディスパージョン液を、増粘剤としてCMCを用いた。これら活物質、AB、PTFE、CMCを固形分比率で100:5:2:1重量比で調整し、水を溶媒として混練して正極合剤ペーストを作製した。 AB having a specific surface area of 68 m 2 / g was used as the conductive agent. PTFE water-soluble dispersion liquid was used as the binder, and CMC was used as the thickener. These active materials, AB, PTFE, and CMC were adjusted at a solid content ratio of 100: 5: 2: 1 weight ratio, and kneaded with water as a solvent to prepare a positive electrode mixture paste.

次にキャパシタ用合剤を作製した。活性炭には関西熱化学(株)製を使用した。導電剤にはABを用い、結着剤にはPTFE水溶性ディスパージョン液を、増粘剤としてCMCを用いた。これら活性炭、AB、PTFE、CMCを固形分比率で100:10:2:2重量比で調整し、水を溶媒として混練してキャパシタ合剤ペーストを作製した。   Next, a capacitor mixture was prepared. The activated carbon used was manufactured by Kansai Thermal Chemical Co., Ltd. AB was used as the conductive agent, PTFE water-soluble dispersion liquid was used as the binder, and CMC was used as the thickener. These activated carbon, AB, PTFE, and CMC were adjusted at a solid content ratio of 100: 10: 2: 2 weight ratio, and kneaded with water as a solvent to prepare a capacitor mixture paste.

正極用集電箔には合金1N30、調質H18、厚み20μmのアルミ箔を使用し、その両面に正極合剤ペーストを塗布、乾燥させた後、電池合剤層を厚み60μmにプレスした。その合剤層の両面上に積層状にキャパシタ合剤ペーストを塗布、乾燥させ、キャパシタ層を厚み20μm形成した後、スリット加工を施し、厚み100μm、幅37mm、長さ440mmの正極板を作製した。   The positive electrode current collector foil was alloy 1N30, tempered H18, and 20 μm thick aluminum foil. The positive electrode mixture paste was applied to both sides and dried, and then the battery mixture layer was pressed to a thickness of 60 μm. A capacitor mixture paste was applied on both sides of the mixture layer in a laminated manner and dried to form a capacitor layer having a thickness of 20 μm, and then slit processing was performed to produce a positive electrode plate having a thickness of 100 μm, a width of 37 mm, and a length of 440 mm. .

負極は活物質として人造黒鉛を用い、結着剤にはSBR水溶性ディスパージョンを用いた。増粘剤にはCMCを用い、活物質、結着剤、増粘剤とをそれぞれ固形分比率で96:3:1重量%の割合で調整して、水を溶媒として混練して負極合剤ペーストを作製した。これを厚み10μmの銅箔の両面に塗布し、乾燥した後、圧延、スリット加工を施し、厚み77μm、合剤幅39mm、長さ460mmの負極板を作製した。   For the negative electrode, artificial graphite was used as the active material, and SBR water-soluble dispersion was used as the binder. CMC is used as the thickener, and the active material, the binder, and the thickener are each adjusted to a solid content ratio of 96: 3: 1% by weight, and kneaded using water as a solvent to mix the negative electrode A paste was prepared. This was applied to both sides of a 10 μm thick copper foil, dried, and then rolled and slitted to produce a negative electrode plate having a thickness of 77 μm, a mixture width of 39 mm, and a length of 460 mm.

以上の正極および負極にアルミおよびニッケルの集電リードを接合した後、残存水分の除去を目的として、それぞれ乾燥雰囲気中で100℃10時間、80℃10時間乾燥炉で乾燥させた。その後厚み25μmのポリエチレン製セパレータを介して正極と負極を捲回した群を作製した。その群を電池ケースに挿入し、負極リードをケース底部に抵抗溶接し、正極リードを封口板にレーザー溶接した。そしてケース内に電解液を注入後、封口板でケースを封口し電池Aを作製した。電解液にはECとEMCを体積比1:3の配合比で混合した混合溶媒に、溶質としてLiPF6を1mol/dm3の濃度に溶解したものを用いた。 After the aluminum and nickel current collector leads were joined to the positive electrode and the negative electrode described above, they were dried in a drying furnace at 100 ° C. for 10 hours and 80 ° C. for 10 hours, respectively, for the purpose of removing residual moisture. Thereafter, a group in which the positive electrode and the negative electrode were wound through a 25 μm thick polyethylene separator was produced. The group was inserted into the battery case, the negative electrode lead was resistance welded to the bottom of the case, and the positive electrode lead was laser welded to the sealing plate. And after inject | pouring electrolyte solution in a case, the case was sealed with the sealing board and the battery A was produced. As the electrolytic solution, a solution obtained by dissolving LiPF 6 as a solute at a concentration of 1 mol / dm 3 in a mixed solvent in which EC and EMC were mixed at a mixing ratio of 1: 3 by volume was used.

(実施例2)
キャパシタ層を厚み40μm形成した以外は電池Aと同じ構成とし、電池Bを作製した。
(Example 2)
A battery B was fabricated in the same configuration as the battery A except that the capacitor layer was formed to a thickness of 40 μm.

(実施例3)
キャパシタ層を厚み60μm形成した以外は電池Aと同じ構成とし、電池Cを作製した。
(Example 3)
A battery C was fabricated in the same configuration as the battery A except that the capacitor layer was formed to a thickness of 60 μm.

(実施例4)
キャパシタ層を厚み80μm形成した以外は電池Aと同じ構成とし、電池Dを作製した。
Example 4
A battery D was fabricated in the same configuration as the battery A except that the capacitor layer was formed with a thickness of 80 μm.

(実施例5)
キャパシタ層をアルミ集電箔両面に厚み40μm形成し、そのキャパシタ層の上に積層状に合剤層を形成した後プレス加工を施した以外は電池Aと同じ構成とし、電池Eを作製した。
(Example 5)
A battery E was produced in the same configuration as the battery A except that a capacitor layer was formed on both surfaces of the aluminum current collector foil with a thickness of 40 μm, a mixture layer was formed on the capacitor layer in a laminated shape, and then pressed.

(比較例1)
キャパシタ層を形成しないこと以外は電池Aと同じ構成とし、電池Fを作製した。
(Comparative Example 1)
A battery F was fabricated in the same configuration as the battery A except that no capacitor layer was formed.

(比較例2)
アルミ集電箔の片面に合剤層を60μm形成し、集電箔の反対面にキャパシタ層を40μm形成した正極に対し、正極合剤層に対する負極受入負荷を電池Aのそれと同じにするため負極厚みを144μmに構成したこと以外は電池Aと同じ構成とし、電池Gを作製した。
(Comparative Example 2)
In order to make the negative electrode receiving load for the positive electrode mixture layer the same as that of the battery A with respect to the positive electrode in which the mixture layer is formed on one side of the aluminum current collector foil and 60 μm is formed on the opposite surface of the current collector foil, the negative electrode A battery G was manufactured in the same configuration as the battery A except that the thickness was 144 μm.

上記電池A〜Gについて、25℃の環境下において、50mAの定電流で充電上限電圧4.2V、放電下限電圧3.0Vの条件下で充放電を行い、容量試験を行った。その結果、容量はいずれも250mAh程度であった。   The batteries A to G were charged and discharged under a condition of a charge upper limit voltage of 4.2 V and a discharge lower limit voltage of 3.0 V at a constant current of 50 mA in an environment of 25 ° C., and a capacity test was performed. As a result, the capacity was about 250 mAh.

その後、25℃の出力を以下の手順にて測定した。25℃の環境下でそれぞれの電池を50%の充電状態まで定電流で充電を行い、25℃の環境下で1時間放置した後、250〜2500mAの範囲で電流値を増加させながら定電流で10秒間充電および放電パルスを電池に印加し、各パルス印加後の10秒目の電圧を測定し、電流値に対してプロットした。放電側の電池電圧3.0Vをまたぐ2区間のデータから3.0V時の電流を算出し、3.0Vとその電流値の積によって出力値を算出する出力試験を行った。   Thereafter, the output at 25 ° C. was measured by the following procedure. Each battery is charged at a constant current up to 50% charge in an environment of 25 ° C., left for 1 hour in an environment of 25 ° C., and then at a constant current while increasing the current value in the range of 250 to 2500 mA. Charge and discharge pulses were applied to the battery for 10 seconds, the voltage at 10 seconds after each pulse application was measured, and plotted against the current value. An output test was performed in which the current at 3.0 V was calculated from the data of two sections across the battery voltage 3.0 V on the discharge side, and the output value was calculated by the product of 3.0 V and the current value.

また、25℃の環境下で500mAの定電流で4.2〜3.0Vの電圧範囲にて充放電サイクル試験を実施し、100サイクル毎に上述した容量試験および出力試験を行い、充放電サイクルに伴う容量および出力変化を確認する寿命試験を行った。   In addition, a charge / discharge cycle test is performed in a voltage range of 4.2 to 3.0 V at a constant current of 500 mA under an environment of 25 ° C., and the capacity test and output test described above are performed every 100 cycles. A life test was conducted to confirm the change in capacity and output accompanying the test.

以上の試験から得られた各種電池の出力値一覧を表1に示す。なお電池Fの出力値を100とした比率で示す   Table 1 shows a list of output values of various batteries obtained from the above tests. In addition, the output value of the battery F is shown as a ratio with 100.

Figure 2005327489

表1に示すように電池A〜Dはキャパシタ層を形成していない電池Fと比較して、キャパシタ層形成厚みを厚くすることにより、電気二重層容量が増加し、出力値が増加していることがわかる。また電池Bと電池Eのように積層する電池合剤層とキャパシタ層の順番が逆であっても同様な効果が得られていることがわかる。それに対し電池Gは図2に示されるような構成であり、電池容量を確保するために合剤層の厚みを他の電池の集電箔片側形成厚みの2倍の厚みで形成している。そのため直列接続による抵抗増加のため、同じ層厚みを集電箔両面に分配している電池Bと比較し、出力値が低下していることがわかる。
Figure 2005327489

As shown in Table 1, the batteries A to D increase the electric double layer capacity and increase the output value by increasing the capacitor layer formation thickness compared to the battery F in which the capacitor layer is not formed. I understand that. Moreover, it turns out that the same effect is acquired even if the order of the battery mixture layer and capacitor layer which are laminated | stacked like the battery B and the battery E is reverse. On the other hand, the battery G has a configuration as shown in FIG. 2, and the thickness of the mixture layer is formed to be twice the thickness of the current collector foil formed on the other battery in order to ensure the battery capacity. Therefore, it can be seen that the output value is lower than that of the battery B in which the same layer thickness is distributed on both sides of the current collector foil because of the increase in resistance due to series connection.

図6〜図12に、100サイクル毎の初期の容量に対する容量維持率および初期の出力に対する出力減少率でプロットした各電池の寿命試験結果を示す。ここで、図12に示されるように電池Gは容量、出力ともに他の電池と比較して減少傾向にあり、これは充放電サイクルに伴う合剤抵抗の増加が直列化されるため顕著に電池抵抗の増加として現れ、結果として容量および出力の低下が生じているものと推測される。   6 to 12 show the life test results of the respective batteries plotted with the capacity maintenance ratio with respect to the initial capacity and the output decrease ratio with respect to the initial output every 100 cycles. Here, as shown in FIG. 12, the battery G has a tendency to decrease in capacity and output as compared with other batteries, and this is remarkably battery because the increase in the mixture resistance accompanying the charge / discharge cycle is serialized. It appears that resistance increases and as a result, capacity and output decrease.

以上の結果から、本発明はリチウム含有複合酸化物を主体とした正極活物質を含む合剤層と活性炭を含むキャパシタ層とが集電箔の両面それぞれに積層状態に構成されている蓄電素子用正極により、電池容量を維持しつつ高出力であり、さらには良好な寿命特性を示す蓄電素子を得ることが可能となる。   From the above results, the present invention is for a storage element in which a mixture layer containing a positive electrode active material mainly composed of a lithium-containing composite oxide and a capacitor layer containing activated carbon are laminated on both sides of a current collector foil. With the positive electrode, it is possible to obtain a power storage element that has high output while maintaining battery capacity, and further exhibits good life characteristics.

本発明は高出力特性を有した蓄電素子用正極として有用である。   The present invention is useful as a positive electrode for a storage element having high output characteristics.

電池の基本等価回路図Basic equivalent circuit diagram of the battery キャパシタの基本等価回路図Basic equivalent circuit diagram of capacitor (a)従来の正極断面図(b)従来の正極合剤部等価回路図(A) Conventional positive electrode cross-sectional view (b) Conventional positive electrode mixture portion equivalent circuit diagram (a)本発明の正極断面図(b)本発明の正極合剤部等価回路図(A) Positive electrode cross-sectional view of the present invention (b) Positive electrode mixture portion equivalent circuit diagram of the present invention 本実施例の円筒型蓄電素子断面図Cross-sectional view of cylindrical power storage device of this example 電池Aの寿命特性図Life characteristics of battery A 電池Bの寿命特性図Life characteristics of battery B 電池Cの寿命特性図Life characteristics of battery C 電池Dの寿命特性図Life characteristics diagram of battery D 電池Eの寿命特性図Life characteristics of battery E 電池Fの寿命特性図Life characteristics of battery F 電池Gの寿命特性図Life characteristics of battery G

符号の説明Explanation of symbols

1 電池合剤層
2 キャパシタ層
3 正極
4 負極
5 セパレータ
6 ケース
7 封口板
DESCRIPTION OF SYMBOLS 1 Battery mixture layer 2 Capacitor layer 3 Positive electrode 4 Negative electrode 5 Separator 6 Case 7 Sealing plate

Claims (3)

電池合剤層とキャパシタ層を集電体上に有してなる蓄電素子用正極であって、
前記電池合剤層がリチウム含有複合酸化物を主体とした正極活物質を含み、
前記キャパシタ層が活性炭を含み、
前記集電体上に前記電池合剤層を有し、さらに前記電池合剤層上に前記キャパシタ層を有している蓄電素子用正極。
A positive electrode for a storage element having a battery mixture layer and a capacitor layer on a current collector,
The battery mixture layer includes a positive electrode active material mainly composed of a lithium-containing composite oxide,
The capacitor layer includes activated carbon;
A positive electrode for a storage element, comprising: the battery mixture layer on the current collector; and the capacitor layer on the battery mixture layer.
電池合剤層とキャパシタ層を集電体上に有してなる蓄電素子用正極であって、
前記電池合剤層がリチウム含有複合酸化物を主体とした正極活物質を含み、
前記キャパシタ層が活性炭を含み、
前記集電体上に前記キャパシタ層を有し、さらに前記キャパシタ層上に前記電池合剤層を有している蓄電素子用正極。
A positive electrode for a storage element having a battery mixture layer and a capacitor layer on a current collector,
The battery mixture layer includes a positive electrode active material mainly composed of a lithium-containing composite oxide,
The capacitor layer includes activated carbon;
The positive electrode for electrical storage elements which has the said capacitor layer on the said electrical power collector, and also has the said battery mixture layer on the said capacitor layer.
前記電池合剤層およびキャパシタ層が塗布されている請求項1または2に記載の蓄電素子用正極。

The positive electrode for a storage element according to claim 1, wherein the battery mixture layer and the capacitor layer are applied.

JP2004142039A 2004-05-12 2004-05-12 Positive electrode for power storage element Pending JP2005327489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004142039A JP2005327489A (en) 2004-05-12 2004-05-12 Positive electrode for power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004142039A JP2005327489A (en) 2004-05-12 2004-05-12 Positive electrode for power storage element

Publications (1)

Publication Number Publication Date
JP2005327489A true JP2005327489A (en) 2005-11-24

Family

ID=35473679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004142039A Pending JP2005327489A (en) 2004-05-12 2004-05-12 Positive electrode for power storage element

Country Status (1)

Country Link
JP (1) JP2005327489A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273108A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method therefor, and nonaqueous electrolyte secondary battery using the same
WO2008070914A1 (en) * 2006-12-12 2008-06-19 Commonwealth Scientific And Industrial Research Organisation Improved energy storage device
JP2013030275A (en) * 2011-07-26 2013-02-07 Sumitomo Heavy Ind Ltd Electricity storage device and work machine mounted with electricity storage device
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036325A (en) * 1998-07-16 2000-02-02 Asahi Glass Co Ltd Secondary power supply
JP2001110418A (en) * 1999-10-13 2001-04-20 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery and the lithium secondary battery
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036325A (en) * 1998-07-16 2000-02-02 Asahi Glass Co Ltd Secondary power supply
JP2001110418A (en) * 1999-10-13 2001-04-20 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery and the lithium secondary battery
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273108A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method therefor, and nonaqueous electrolyte secondary battery using the same
WO2008070914A1 (en) * 2006-12-12 2008-06-19 Commonwealth Scientific And Industrial Research Organisation Improved energy storage device
JP2010512622A (en) * 2006-12-12 2010-04-22 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Improved energy storage device
AU2007332149B2 (en) * 2006-12-12 2012-09-20 Commonwealth Scientific And Industrial Research Organisation Improved energy storage device
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
JP2013030275A (en) * 2011-07-26 2013-02-07 Sumitomo Heavy Ind Ltd Electricity storage device and work machine mounted with electricity storage device

Similar Documents

Publication Publication Date Title
KR101186425B1 (en) Method for manufacturing secondary battery
Sun et al. (LiNi0. 5Co0. 2Mn0. 3O2+ AC)/graphite hybrid energy storage device with high specific energy and high rate capability
KR101884521B1 (en) Positive electrode material for lithium secondary battery and manufacturing method thereof
JP2010108732A (en) Lithium secondary battery
JP2007335360A (en) Lithium secondary cell
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
KR20110100301A (en) Non-aqueous electrolyte secondary battery, and method for charging same
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
JP2014035963A (en) Positive electrode material, lithium ion power storage device, and method of manufacturing the same
JP2008198408A (en) Nonaqueous electrolyte secondary battery
JP2016152202A (en) Lithium ion secondary battery
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
KR20150016072A (en) Positive electrode for lithium ion capacitor and lithium ion capacitor comprising the same
JP2005327489A (en) Positive electrode for power storage element
JP2005197073A (en) Positive electrode for lithium secondary battery
KR101993034B1 (en) Positive electrode material for nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2010062299A (en) Electricity storage device
JP7147157B2 (en) Storage element
JP5840429B2 (en) Lithium ion capacitor
JP2012028366A (en) Power storage device
JP2018078029A (en) Negative electrode and nonaqueous electrolyte power storage device
JP6139939B2 (en) Non-aqueous electrolyte secondary battery
JP6812928B2 (en) Non-aqueous electrolyte secondary battery
JP6880488B2 (en) Lithium ion secondary battery
KR101102654B1 (en) The Composite Electrode Materials Showing Higher Power and Higher Energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720