JP2005295776A - Pwm inverter control method - Google Patents

Pwm inverter control method Download PDF

Info

Publication number
JP2005295776A
JP2005295776A JP2004111658A JP2004111658A JP2005295776A JP 2005295776 A JP2005295776 A JP 2005295776A JP 2004111658 A JP2004111658 A JP 2004111658A JP 2004111658 A JP2004111658 A JP 2004111658A JP 2005295776 A JP2005295776 A JP 2005295776A
Authority
JP
Japan
Prior art keywords
pwm inverter
phase
voltage
pwm
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004111658A
Other languages
Japanese (ja)
Other versions
JP4846205B2 (en
Inventor
Shinichi Ishii
新一 石井
Yasushi Kondo
靖 近藤
Koichi Tajima
宏一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2004111658A priority Critical patent/JP4846205B2/en
Publication of JP2005295776A publication Critical patent/JP2005295776A/en
Application granted granted Critical
Publication of JP4846205B2 publication Critical patent/JP4846205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method that reduces an internally-generated loss of a PWM inverter. <P>SOLUTION: A control device 10 for the PWM inverter 1 is constituted of V/ω<SB>1</SB>converter 11, a polar coordinate transformer 12, a modulated wave generator 13, a carrier wave generator 14, a modulator 15, an integrator 16, a current detector 17, a vector rotating device 18, a function operating device 19, a voltage detector 20, a vector rotating device 21, a function operating device 22, and an addition operating device 23. An on-off' state fixing period of time in the main circuit of the PWM inverter 1 is made to almost match the section of ±30° of the peak value of each phase output current. At the position where each phase current value is large, the semiconductor switching elements in a main circuit are prevented from operating. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、三相ブリッジ回路の各アームのうち1アームのオン・オフ状態を固定しておき、残りの2アームのみをPWM制御する2アーム変調方式を用いてなるPWMインバータの制御方法に関する。   The present invention relates to a PWM inverter control method using a two-arm modulation system in which one arm of a three-phase bridge circuit is fixed in an on / off state and only the remaining two arms are PWM-controlled.

図8は、この種のPWMインバータの従来例動作を説明するPWMインバータの出力波形図であり、この図において、図示の相電圧vU ,vV ,vW それぞれに対し、例えば、図示の線間電圧vUVは正弦波状になることが知られている。また、このPWMインバータで可変速駆動される誘導電動機での力率角は負荷率により約25°〜約50°(電気角)の範囲で変化することも知られているが、図8では、相電圧vU と相電流iU との力率角、すなわち、位相角が約30°(電気角)のときを示している。 FIG. 8 is an output waveform diagram of a PWM inverter for explaining the operation of a conventional example of this type of PWM inverter. In this figure, for example, for the phase voltages v U , v V , and v W shown in FIG. It is known that the inter-voltage v UV is sinusoidal. Further, it is also known that the power factor angle in the induction motor driven at a variable speed by the PWM inverter changes in the range of about 25 ° to about 50 ° (electrical angle) depending on the load factor. It shows the power factor angle between the phase voltage v U and the phase current i U , that is, when the phase angle is about 30 ° (electrical angle).

このPWMインバータの主回路を構成する半導体スイッチング素子のスイッチング損失は、該素子のオン・オフ時の電圧および電流の大きさで決まり、それぞれが大きい程、前記スイッチング損失も増大することが知られている。   The switching loss of the semiconductor switching element constituting the main circuit of the PWM inverter is determined by the magnitude of the voltage and current when the element is turned on and off, and it is known that the switching loss increases as each increases. Yes.

図9は、図8における相電流iU と相電圧vU を指令する電圧指令値eU ** と三角波状の搬送波との関係を説明する波形図であり、この図からも明らかなように、従来は相電圧vU の波高値を中心に±30°(電気角)の区間に2アーム変調方式におけるオン・オフ状態を固定する期間を発生させるようにしているが、その結果、相電流iU の波高値と前記オン・オフ状態の区間とにずれが生じ、例えば、図9に示すU相のPWM制御結果としてのPWMu* において、相電流iU が大きな値の位置でも前記半導体スイッチング素子のスイッチング動作が行われ、従って、該素子のスイッチング損失が増大するという問題点があった。なお、図9の動作波形例では、その動作を理解し易くするために、前記搬送波の周波数をPWMインバータが出力する基本波周波数の9倍の例を示しているが、一般的に、前記搬送波は前記基本波周波数の30〜数100倍に設定されることから、前記スイッチング損失の増大も無視できない値となり、その結果、PWMインバータ全体を大きくし、価格上昇を招いていた。 FIG. 9 is a waveform diagram for explaining the relationship between the voltage command value e U ** for instructing the phase current i U and the phase voltage v U in FIG. 8 and a triangular wave-shaped carrier wave. Conventionally, a period for fixing the on / off state in the two-arm modulation system is generated in the interval of ± 30 ° (electrical angle) around the peak value of the phase voltage v U , but as a result, the phase current i U lag behind the peak value and the oN-oFF state section of, for example, the semiconductor switching in position in PWMu *, the phase current i U is a large value as a PWM control result of the U-phase shown in FIG. 9 There is a problem that the switching operation of the element is performed, and therefore, the switching loss of the element increases. In the example of the operation waveform of FIG. 9, in order to facilitate understanding of the operation, an example in which the frequency of the carrier wave is nine times the fundamental frequency output from the PWM inverter is shown. Is set to 30 to several hundred times the fundamental frequency, the increase in the switching loss is a value that cannot be ignored. As a result, the entire PWM inverter is enlarged and the price is increased.

上記問題点を解決するPWMインバータの制御方法として、下記特許文献1に記載されているように、負荷力率に応じてPWMインバータの内部損失をより少なくする制御方法が提案されている。
特開平6−233546号公報 (第3〜6頁,第1図)
As a PWM inverter control method for solving the above problems, a control method for reducing the internal loss of the PWM inverter in accordance with the load power factor has been proposed as described in Patent Document 1 below.
JP-A-6-233546 (Pages 3-6, Fig. 1)

上記特許文献1に開示されている制御方法では、PWMインバータが出力する電圧と電流から直接的にその位相角を検出するようにしているが、この検出に手間がかかり、特にマイコン制御を用いてなるPWMインバータの場合、該PWMインバータ全体の回路構成を複雑にし、価格上昇の要因となっていた。   In the control method disclosed in Patent Document 1, the phase angle is detected directly from the voltage and current output from the PWM inverter. However, this detection takes time, especially using microcomputer control. In the case of the PWM inverter, the circuit configuration of the entire PWM inverter is complicated, which causes a price increase.

この発明の目的は、上記問題点を解決し、マイコン制御を用いてなるPWMインバータに好適な制御方法を提供することにある。   An object of the present invention is to solve the above problems and provide a control method suitable for a PWM inverter using microcomputer control.

この第1の発明は、三相ブリッジ回路の各アームのうち1アームのオン・オフ状態を固定しておき、残りの2アームのみをPWM制御する2アーム変調方式を用いてなるPWMインバータの制御方法において、
前記PWMインバータが出力する周波数と電圧と電流とから該PWMインバータの前記電圧と電流の位相角を検出し、この検出した位相角から電気角で90°遅れた位置が前記オン・オフ状態を固定した区間のほぼ中心となるように制御することを特徴とする。
The first invention controls a PWM inverter using a two-arm modulation system in which one arm of a three-phase bridge circuit is fixed in an on / off state and only the remaining two arms are PWM-controlled. In the method
The phase angle of the voltage and current of the PWM inverter is detected from the frequency, voltage, and current output from the PWM inverter, and the on / off state is fixed at a position delayed by 90 ° in electrical angle from the detected phase angle. It is characterized by controlling so that it becomes substantially the center of the section.

また第2の発明は、三相ブリッジ回路の各アームのうち1アームのオン・オフ状態を固定しておき、残りの2アームのみをPWM制御する2アーム変調方式を用いてなるPWMインバータの制御方法において、
前記PWMインバータに指令される周波数指令値と電圧指令値と該PWMインバータが出力する電流とから該PWMインバータが出力する電圧と電流の位相角を推定演算し、この演算した位相角から電気角で90°遅れた位置が前記オン・オフ状態を固定した区間のほぼ中心となるように制御することを特徴とする。
Further, the second invention controls a PWM inverter using a two-arm modulation system in which one arm of the three-phase bridge circuit is fixed in an on / off state and only the remaining two arms are PWM-controlled. In the method
The phase angle of the voltage and current output from the PWM inverter is estimated and calculated from the frequency command value and voltage command value commanded to the PWM inverter and the current output from the PWM inverter, and the electrical angle is calculated from the calculated phase angle. Control is performed so that the position delayed by 90 ° is approximately the center of the section in which the on / off state is fixed.

この発明は、PWMインバータの出力電圧や出力電流を、周知の技術を用いて直交座標系に分解すれば、その位相角が容易に求められることに着目してなされたものであり、その結果、この発明のPWMインバータの制御方法に用いることにより、そのスイッチング損失を低減することが可能になり、従って、該PWMインバータの電流容量を大きくすることができるので、このPWMインバータ全体をより安価に製作することができる。   This invention was made by paying attention to the fact that the phase angle can be easily obtained if the output voltage or output current of the PWM inverter is decomposed into a rectangular coordinate system using a known technique. By using the PWM inverter control method of the present invention, it becomes possible to reduce the switching loss, and therefore the current capacity of the PWM inverter can be increased, so that the entire PWM inverter can be manufactured at a lower cost. can do.

図1は、この発明の第1の実施例を示すPWMインバータの回路構成図であり、この図において、1は図示の如くIGBTとダイオードの逆並列回路を三相ブリッジ接続してなる主回路を有するPWMインバータ、2はPWMインバータ1の負荷として、PWMインバータ1により可変速駆動される誘導電動機などの交流電動機、10はPWMインバータ1を制御する制御装置である。   FIG. 1 is a circuit configuration diagram of a PWM inverter showing a first embodiment of the present invention. In this figure, reference numeral 1 denotes a main circuit formed by connecting a reverse parallel circuit of an IGBT and a diode as shown in a three-phase bridge. A PWM inverter 2 has a load of the PWM inverter 1, an AC motor such as an induction motor driven at a variable speed by the PWM inverter 1, and a control device 10 for controlling the PWM inverter 1.

この制御装置10において、11は外部から指令される周波数指令値としての交流電動機2の一次周波数指令値ω1 *から交流電動機2のトルク成分の一次電圧指令値v1q * を導出するV/ω1 変換器、12は前記一次電圧指令値v1q * と交流電動機2の励磁成分の一次電圧指令値v1d * とに基づく極座標変換を行い、交流電動機2の一次電圧ベクトルの大きさ|V1 *|とその偏角δ* とを出力する極座標変換器、13は前記一次電圧ベクトルの大きさ|V1 *|とその偏角δ* とから正弦波状の三相の電圧指令値eU *,eV *,eW *それぞれを導出し、これらの電圧指令値と加算演算器23から得られる位相角φとから、後述の方法により、2アーム変調方式の三相の電圧指令値eU ** ,eV ** ,eW ** それぞれを導出する変調波発生器、15は搬送波発生器14が出力する搬送波と前記電圧指令値eU ** ,eV ** ,eW ** それぞれとに基づくPWM制御を行い、その演算結果をPWMインバータ1の前記主回路への駆動信号として出力する変調器、17はPWMインバータ1から交流電動機2への各相の電流を検出する電流検出器、18は電流検出器17のそれぞれの検出値に対して前記一次周波数指令値ω1 *を積分器16での積分演算してなる角度値に基づくベクトル回転を行い、交流電動機2のd軸成分の一次電流i1dとq軸成分の一次電流i1qとに分解するベクトル回転器、19はtan-1(i1q/i1d)を演算し、その結果をψ(電気角)として出力する関数演算器、20はPWMインバータ1から交流電動機2へ印加される各相の電圧を検出する電圧検出器、21は電圧検出器20のそれぞれの検出値に対して積分器16からの前記角度値に基づくベクトル回転を行い、交流電動機2のd軸成分の一次電圧v1dとq軸成分の一次電圧v1qとに分解するベクトル回転器、22はtan-1(v1q/v1d)を演算し、その結果をδ(電気角)として出力する関数演算器、23は前記ψから前記δを減算し、その結果を前記位相角φ(電気角)として出力する加算演算器である。 In this control device 10, reference numeral 11 denotes V / ω for deriving the primary voltage command value v 1q * of the torque component of the AC motor 2 from the primary frequency command value ω 1 * of the AC motor 2 as a frequency command value commanded from the outside. 1 converter 12 performs polar coordinate conversion based on the primary voltage command value v 1q * and the primary voltage command value v 1d * of the excitation component of AC motor 2, and the magnitude of the primary voltage vector of AC motor 2 | V 1 * | a polar converter which outputs its argument [delta] *, of the primary voltage vector 13 magnitude | V 1 * | and the voltage command value of the argument [delta] * and the sinusoidal three-phase e U * , E V * , e W * are derived, and from these voltage command values and the phase angle φ obtained from the addition computing unit 23, a three-phase voltage command value e U of the two-arm modulation system is obtained by the method described later. ** , e V ** , e W ** modulation wave generator for deriving each, 15 is a portable PWM control based on the carrier wave output from the transmission generator 14 and each of the voltage command values e U ** , e V ** , e W ** is performed, and the calculation result is sent to the main circuit of the PWM inverter 1. A modulator that outputs as a drive signal, 17 is a current detector that detects the current of each phase from the PWM inverter 1 to the AC motor 2, and 18 is the primary frequency command value ω for each detected value of the current detector 17. A vector rotator that performs vector rotation based on an angle value obtained by integrating 1 * with an integrator 16 and decomposes the AC motor 2 into a primary current i 1d of a d- axis component and a primary current i 1q of a q-axis component. , 19 is a function calculator that calculates tan −1 (i 1q / i 1d ) and outputs the result as ψ (electrical angle), and 20 is the voltage of each phase applied from the PWM inverter 1 to the AC motor 2. Voltage detector to detect, 21 is voltage detection A vector rotation based on the angle value from the integrator 16 is performed with respect to each detected value of the generator 20 to be decomposed into the primary voltage v 1d of the d-axis component and the primary voltage v 1q of the q-axis component of the AC motor 2. A vector rotator 22 calculates a function tan −1 (v 1q / v 1d ) and outputs the result as δ (electrical angle), 23 subtracts the δ from the ψ, It is an adder that outputs as a phase angle φ (electrical angle).

図1に示したPWMインバータ1と制御装置10によるこの発明の動作を、図2〜図6を参照しつつ、以下に説明する。   The operation of the present invention by the PWM inverter 1 and the control device 10 shown in FIG. 1 will be described below with reference to FIGS.

変調波発生器13では、先ず、加算演算器23から得られたPWMインバータ1の出力電圧と出力電流の位相角φに基づいて、PWMインバータ1の前記主回路の前記オン・オフ状態を固定したそれぞれ区間と各相の前記出力電流それぞれの波高値の±30°(電気角)の区間とをほぼ一致させるための補正値φ’を、図2に示す特性式の如く、演算しているが、このとき、前記位相角φが30°未満または150°を越えるときには、2アーム変調方式で所望の前記出力電圧を得るために、前記補正量φ’に制限を行っている。   In the modulation wave generator 13, first, the on / off state of the main circuit of the PWM inverter 1 is fixed based on the output voltage and the phase angle φ of the output current of the PWM inverter 1 obtained from the addition calculator 23. A correction value φ ′ for substantially matching the section and the section of ± 30 ° (electrical angle) of the peak value of each output current of each phase is calculated as in the characteristic equation shown in FIG. At this time, when the phase angle φ is less than 30 ° or exceeds 150 °, the correction amount φ ′ is limited in order to obtain the desired output voltage by the two-arm modulation method.

次に、変調波発生器13では、正弦波状の三相の電圧指令値eU *,eV *,eW *それぞれから、2アーム変調方式の三相の電圧指令値eU ** ,eV ** ,eW ** それぞれを導出するために、図3に示すフローチャートに従い、先述の一次周波数指令値ω1 *に対応した時々刻々の電気角θの推移に基づいて、モード1〜モード6(図4参照)の処理を行っている。 Next, in the modulation wave generator 13, a three-phase voltage command value e U ** , e of the two-arm modulation system is obtained from each of the sinusoidal three-phase voltage command values e U * , e V * , e W *. V **, to derive the respective e W **, in accordance with a flow chart shown in FIG. 3, on the basis of transition of the electrical angle θ momentary corresponding to the foregoing primary frequency command value omega 1 *, modes 1 6 (see FIG. 4) is performed.

図5は、PWMインバータ1の出力電圧と出力電流の位相角φが約30°(電気角)のときに、上述の処理演算により得られた三相の電圧指令値eU ** ,eV ** ,eW ** に基づいて、PWMインバータ1が出力する相電圧vU ,vV ,vW それぞれに対し、例えば、図示の線間電圧vUVは、図8に示した従来例と同様に、正弦波状になることを示した波形図である。 FIG. 5 shows three-phase voltage command values e U ** and e V obtained by the above processing calculation when the phase angle φ of the output voltage and output current of the PWM inverter 1 is about 30 ° (electrical angle). For each of the phase voltages v U , v V , and v W output from the PWM inverter 1 based on ** and e W ** , for example, the illustrated line voltage v UV is the same as that of the conventional example shown in FIG. Similarly, it is a waveform diagram showing a sine wave.

図6(イ)は、この発明によるPWMインバータの制御方法として、図5に示した相電流iU と相電圧vU を指令する電圧指令値eU ** と三角波状の搬送波との関係を説明する波形図であり、この図からも明らかなように、電圧指令値eU ** におけるオン・オフ状態を固定する期間と相電流iU の波高値の±30°の区間とがほぼ一致していることから、U相のPWM制御結果としてのPWMu* においても、相電流iU が大きな値の位置では前記半導体スイッチング素子のスイッチング動作が回避されている。 FIG. 6A shows a relationship between the voltage command value e U ** for instructing the phase current i U and the phase voltage v U shown in FIG. 5 and the triangular wave carrier as a PWM inverter control method according to the present invention. FIG. 6 is a waveform diagram for explanation, and as is clear from this figure, the period during which the on / off state of the voltage command value e U ** is fixed is substantially equal to the interval of ± 30 ° of the peak value of the phase current i U. Therefore, also in PWMu * as the U-phase PWM control result, the switching operation of the semiconductor switching element is avoided at the position where the phase current i U is a large value.

一方、図6(ロ)に示す従来のPWMインバータの制御方法では、電圧指令値eU ** におけるオン・オフ状態を固定する期間と相電流iU の波高値の±30°の区間とにずれが生じており、その結果、U相のPWM制御結果としてのPWMu* において、相電流iU が大きな値の位置でも前記半導体スイッチング素子のスイッチング動作が行われている。 On the other hand, in the conventional PWM inverter control method shown in FIG. 6 (b), the on / off state is fixed in the voltage command value e U ** and the interval of ± 30 ° of the peak value of the phase current i U. shift has occurred, resulting in PWMu * as a PWM control result of the U-phase, the switching operation of the semiconductor switching element is also the phase current i U is at the position of a large value is performed.

なお、図6(イ),(ロ)の動作波形例では、その動作を理解し易くするために、前記搬送波の周波数をPWMインバータが出力する基本波周波数の9倍の例を示しているが、一般的に、前記搬送波は前記基本波周波数の30〜数100倍に設定されることから、この発明のPWMインバータの制御方法による前記スイッチング損失の低減効果が大きいことは明らかである。   In the operation waveform examples in FIGS. 6A and 6B, in order to facilitate understanding of the operation, an example in which the frequency of the carrier wave is nine times the fundamental frequency output from the PWM inverter is shown. In general, since the carrier wave is set to 30 to several hundred times the fundamental frequency, it is clear that the switching loss reduction effect by the PWM inverter control method of the present invention is large.

図7は、この発明の第2の実施例を示すPWMインバータの回路構成図であり、この図において、図1の回路構成と同一機能を有するものには同一符号を付している。   FIG. 7 is a circuit configuration diagram of a PWM inverter showing a second embodiment of the present invention. In this figure, components having the same functions as those of the circuit configuration of FIG.

すなわち、この制御装置10aでは、制御装置10における電圧検出器20,ベクトル回転器21,関数演算器22が省略され、従って、座標変換器12からの偏角δ* と関数演算器19からの前記ψとの減算演算を加算演算器23aに行わせることにより、前記位相角φを推定演算している。 That is, in this control device 10 a, the voltage detector 20, the vector rotator 21, and the function calculator 22 in the control device 10 are omitted. Therefore, the deviation angle δ * from the coordinate converter 12 and the function calculator 19 By causing the addition calculator 23a to perform a subtraction operation with ψ, the phase angle φ is estimated and calculated.

この発明の第1の実施例を示すPWMインバータの制御装置の回路構成図1 is a circuit configuration diagram of a PWM inverter control device showing a first embodiment of the present invention. 図1の動作を説明する特性図Characteristic diagram explaining the operation of FIG. 図1の動作を説明するフローチャートFlowchart for explaining the operation of FIG. 図3の動作を説明する処理内容図Processing contents diagram for explaining the operation of FIG. 図1の動作を説明するPWMインバータの出力波形図Output waveform diagram of PWM inverter for explaining the operation of FIG. 図1の動作を説明するPWM制御の波形図PWM control waveform diagram for explaining the operation of FIG. この発明の第2の実施例を示すPWMインバータの制御装置の回路構成図The circuit block diagram of the control apparatus of the PWM inverter which shows 2nd Example of this invention 従来例の動作を説明するPWMインバータの出力波形図Output waveform diagram of PWM inverter explaining operation of conventional example 従来例の動作を説明するPWM制御の波形図Waveform diagram of PWM control explaining the operation of the conventional example

符号の説明Explanation of symbols

1…PWMインバータ、2…交流電動機、10,10a…制御装置、11…V/ω1 変換器、12…極座標変換器、13…変調波発生器、14…搬送波発生器、15…変調器、16…積分器、17…電流検出器、18…ベクトル回転器、19…関数演算器、20…電圧検出器、21…ベクトル回転器、22…関数演算器、23,23a…加算演算器。

DESCRIPTION OF SYMBOLS 1 ... PWM inverter, 2 ... AC motor, 10, 10a ... Control apparatus, 11 ... V / (omega) 1 converter, 12 ... Polar coordinate converter, 13 ... Modulation wave generator, 14 ... Carrier wave generator, 15 ... Modulator, DESCRIPTION OF SYMBOLS 16 ... Integrator, 17 ... Current detector, 18 ... Vector rotator, 19 ... Function calculator, 20 ... Voltage detector, 21 ... Vector rotator, 22 ... Function calculator, 23, 23a ... Addition calculator.

Claims (2)

三相ブリッジ回路の各アームのうち1アームのオン・オフ状態を固定しておき、残りの2アームのみをPWM制御する2アーム変調方式を用いてなるPWMインバータの制御方法において、
前記PWMインバータが出力する周波数と電圧と電流とから該PWMインバータの前記電圧と電流の位相角を検出し、この検出した位相角から電気角で90°遅れた位置が前記オン・オフ状態を固定した区間のほぼ中心となるように制御することを特徴とするPWMインバータの制御方法。
In the control method of the PWM inverter using the two-arm modulation method in which one arm of the three-phase bridge circuit is fixed in the on / off state and only the remaining two arms are PWM-controlled.
The phase angle of the voltage and current of the PWM inverter is detected from the frequency, voltage, and current output from the PWM inverter, and the on / off state is fixed at a position delayed by 90 ° in electrical angle from the detected phase angle. A control method for a PWM inverter, characterized in that the control is performed so as to be substantially at the center of the section.
三相ブリッジ回路の各アームのうち1アームのオン・オフ状態を固定しておき、残りの2アームのみをPWM制御する2アーム変調方式を用いてなるPWMインバータの制御方法において、
前記PWMインバータに指令される周波数指令値と電圧指令値と該PWMインバータが出力する電流とから該PWMインバータの出力する電圧と電流の位相角を推定演算し、この演算した位相角から電気角で90°遅れた位置が前記オン・オフ状態を固定した区間のほぼ中心となるように制御することを特徴とするPWMインバータの制御方法。

In the control method of the PWM inverter using the two-arm modulation method in which one arm of the three-phase bridge circuit is fixed in the on / off state and only the remaining two arms are PWM-controlled.
The phase angle of the voltage and current output from the PWM inverter is estimated and calculated from the frequency command value and voltage command value commanded to the PWM inverter and the current output from the PWM inverter, and the electrical angle is calculated from the calculated phase angle. A control method for a PWM inverter, wherein control is performed so that a position delayed by 90 ° is substantially the center of a section in which the on / off state is fixed.

JP2004111658A 2004-04-06 2004-04-06 PWM inverter control method Expired - Fee Related JP4846205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004111658A JP4846205B2 (en) 2004-04-06 2004-04-06 PWM inverter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004111658A JP4846205B2 (en) 2004-04-06 2004-04-06 PWM inverter control method

Publications (2)

Publication Number Publication Date
JP2005295776A true JP2005295776A (en) 2005-10-20
JP4846205B2 JP4846205B2 (en) 2011-12-28

Family

ID=35328085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004111658A Expired - Fee Related JP4846205B2 (en) 2004-04-06 2004-04-06 PWM inverter control method

Country Status (1)

Country Link
JP (1) JP4846205B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318956A (en) * 2006-05-29 2007-12-06 Sanken Electric Co Ltd Three phase v-connected inverter
WO2012148512A1 (en) * 2011-01-23 2012-11-01 Alpha Technologies Inc. Switching systems and methods for use in uninterruptible power supplies
WO2012151174A1 (en) 2011-05-02 2012-11-08 Deere & Company An inverter and method for controlling an electric machine
US8575779B2 (en) 2010-02-18 2013-11-05 Alpha Technologies Inc. Ferroresonant transformer for use in uninterruptible power supplies
US9234916B2 (en) 2012-05-11 2016-01-12 Alpha Technologies Inc. Status monitoring cables for generators
US10074981B2 (en) 2015-09-13 2018-09-11 Alpha Technologies Inc. Power control systems and methods
US10381867B1 (en) 2015-10-16 2019-08-13 Alpha Technologeis Services, Inc. Ferroresonant transformer systems and methods with selectable input and output voltages for use in uninterruptible power supplies
US10635122B2 (en) 2017-07-14 2020-04-28 Alpha Technologies Services, Inc. Voltage regulated AC power supply systems and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683331B (en) * 2013-12-26 2015-07-15 电子科技大学 Single-phase inverter control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168895A (en) * 1988-12-21 1990-06-28 Fuji Electric Co Ltd Method of decreasing peak current value of voltage-type pulse width modulation control inverter
JPH0746855A (en) * 1993-08-02 1995-02-14 Toyota Motor Corp Two phase pwm controller for inverter
JPH07147782A (en) * 1993-11-25 1995-06-06 Mitsubishi Electric Corp Inverter device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168895A (en) * 1988-12-21 1990-06-28 Fuji Electric Co Ltd Method of decreasing peak current value of voltage-type pulse width modulation control inverter
JPH0746855A (en) * 1993-08-02 1995-02-14 Toyota Motor Corp Two phase pwm controller for inverter
JPH07147782A (en) * 1993-11-25 1995-06-06 Mitsubishi Electric Corp Inverter device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318956A (en) * 2006-05-29 2007-12-06 Sanken Electric Co Ltd Three phase v-connected inverter
US8575779B2 (en) 2010-02-18 2013-11-05 Alpha Technologies Inc. Ferroresonant transformer for use in uninterruptible power supplies
US9633781B2 (en) 2010-02-18 2017-04-25 Alpha Technologies Inc. Ferroresonant transformer for use in uninterruptible power supplies
US10355521B2 (en) 2011-01-23 2019-07-16 Alpha Technologies Services, Inc. Switching systems and methods for use in uninterruptible power supplies
WO2012148512A1 (en) * 2011-01-23 2012-11-01 Alpha Technologies Inc. Switching systems and methods for use in uninterruptible power supplies
US9030045B2 (en) 2011-01-23 2015-05-12 Alpha Technologies Inc. Switching systems and methods for use in uninterruptible power supplies
US9812900B2 (en) 2011-01-23 2017-11-07 Alpha Technologies Inc. Switching systems and methods for use in uninterruptible power supplies
WO2012151174A1 (en) 2011-05-02 2012-11-08 Deere & Company An inverter and method for controlling an electric machine
EP2705599A4 (en) * 2011-05-02 2015-12-16 Deere & Co An inverter and method for controlling an electric machine
US9234916B2 (en) 2012-05-11 2016-01-12 Alpha Technologies Inc. Status monitoring cables for generators
US10074981B2 (en) 2015-09-13 2018-09-11 Alpha Technologies Inc. Power control systems and methods
US10790665B2 (en) 2015-09-13 2020-09-29 Alpha Technologies Services, Inc. Power control systems and methods
US10381867B1 (en) 2015-10-16 2019-08-13 Alpha Technologeis Services, Inc. Ferroresonant transformer systems and methods with selectable input and output voltages for use in uninterruptible power supplies
US10635122B2 (en) 2017-07-14 2020-04-28 Alpha Technologies Services, Inc. Voltage regulated AC power supply systems and methods

Also Published As

Publication number Publication date
JP4846205B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
CN108123653B (en) Adaptive pulse width modulation for motor control systems
JP4901517B2 (en) AC motor controller
EP3522363B1 (en) Control device for power converter
JP2005218197A (en) Motor control apparatus
JP2008043154A (en) Controller for ac-ac direct converter
JP4674568B2 (en) Motor inverter
JPH05260781A (en) Power conversion apparatus
JP4846205B2 (en) PWM inverter control method
US8749184B2 (en) Control apparatus for electric motor
JP5230682B2 (en) Control device for synchronous motor
US20050062451A1 (en) Stepping motor driver
JP2009124799A (en) Motor controller
JP4779565B2 (en) Inverter control circuit
JP2009284598A (en) Controller for alternating-current motors
JP3738883B2 (en) Voltage type PWM inverter dead time compensation device
JP2020014326A (en) Electric power conversion device
JP2006074951A (en) Controller for ac motor
JP2014036539A (en) Inverter device and switching timing correction method therefor
JP2011155787A (en) Rotating electric control system
JP4446688B2 (en) Multiphase current supply circuit and control method thereof
WO2017122490A1 (en) Motor control system
JP2002051596A (en) Drive controller for ac motor
JP2006081322A (en) Ac motor control unit
US11482963B2 (en) Inverter control device
WO2021224976A1 (en) Power conversion device and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100728

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100820

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4846205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees