JP2005134280A - Testing device for actual equipment connected to power distribution system - Google Patents

Testing device for actual equipment connected to power distribution system Download PDF

Info

Publication number
JP2005134280A
JP2005134280A JP2003371736A JP2003371736A JP2005134280A JP 2005134280 A JP2005134280 A JP 2005134280A JP 2003371736 A JP2003371736 A JP 2003371736A JP 2003371736 A JP2003371736 A JP 2003371736A JP 2005134280 A JP2005134280 A JP 2005134280A
Authority
JP
Japan
Prior art keywords
voltage
current
distribution system
power distribution
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003371736A
Other languages
Japanese (ja)
Other versions
JP4140837B2 (en
Inventor
Kosuke Kurokawa
浩助 黒川
Hirotaka Koizumi
裕孝 小泉
Ippei Takeuchi
一平 竹内
Hiroshi Nagayoshi
浩 永吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003371736A priority Critical patent/JP4140837B2/en
Publication of JP2005134280A publication Critical patent/JP2005134280A/en
Application granted granted Critical
Publication of JP4140837B2 publication Critical patent/JP4140837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To test an actual equipment connected to a power distribution system for use, by a space-saving and inexpensive testing device. <P>SOLUTION: An active power interface unit (API) 3 provided between a power distribution system simulation circuit simulating the power distribution system by an electronic circuit and the actual equipment is constituted of a voltage sensor 13 and a current sensor 19 for detecting a voltage VR and a current IR in an actual equipment side, a voltage control unit 18 for controlling a voltage (n/m) VR obtained by multiplying the voltage VR by n/m and the current (N/M) IR obtained by multiplying the current IR by N/M respectively into a voltage VS and a current IS in a power distribution system simulation circuit side, a voltage sensor 16 and a current sensor 20 for detecting the voltage VS and the current IS in the power distribution system simulation circuit side, and a current control unit 17 for controlling the voltage (m/n) VS obtained by multiplying the voltage VS by m/n and the current (M/N) IS obtained by multiplying the current IS by M/N respectively into the voltage VR and the current IR. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は配電系統に接続して使用される太陽光発電システム等の実機器を試験する試験装置に係り、特に、太陽光発電システム等の実機器を小規模な配電系統模擬回路に接続して試験することができる試験装置に関する。   The present invention relates to a test apparatus for testing an actual device such as a solar power generation system used in connection with a power distribution system, and in particular, by connecting an actual device such as a solar power generation system to a small-scale power distribution system simulation circuit. The present invention relates to a test apparatus capable of testing.

近年、地球環境問題に対する関心の高まりを背景に、一般家庭の屋根に設置する太陽光発電(PV)システムが急速に普及しており、今後も普及し続けることが予想される。家庭等に設置されるPVシステムを電力系統(配電系統)に接続する場合、PVシステム設置前に、PVシステムの単独運転防止機能,電力系統保護機能,THD(Total Harmonic distortion:各高調波の歪み率)機能等を試験する必要がある。   In recent years, against the background of increasing interest in global environmental problems, photovoltaic power generation (PV) systems installed on the roofs of ordinary households are rapidly spreading and are expected to continue to spread in the future. When connecting a PV system installed in a home to a power system (distribution system), the PV system's isolated operation prevention function, power system protection function, THD (Total Harmonic distortion) Rate) function etc. need to be tested.

この試験は、実規模の独立した模擬配電系統を用意し、PVシステムをこの模擬配電系統に接続することで、直接的に行うことが可能である。しかし、実規模の模擬配電系統は、規模的に電力会社など一部の法人のみが用意することができるだけであり、一般的には利用できない。   This test can be carried out directly by preparing a real-scale independent simulated power distribution system and connecting the PV system to this simulated power distribution system. However, a real scale simulated power distribution system can only be prepared by some corporations such as electric power companies in terms of scale, and cannot be generally used.

また、コンピュータシミュレーションによって試験を行うことも可能であるが、コンピュータシミュレーションによる試験は、実際にPVシステムを配電系統に接続して行う試験ではないという問題がある。   Although a test can be performed by computer simulation, there is a problem that the test by computer simulation is not a test that is actually performed by connecting the PV system to the power distribution system.

このため、従来は、下記非特許文献1に記載されているように、配電系統を等価回路に置き換え、抵抗やインダクタで構成される配電系統シミュレータを作成し、PVインバータを試験している。   For this reason, conventionally, as described in Non-Patent Document 1 below, the distribution system is replaced with an equivalent circuit, a distribution system simulator including resistors and inductors is created, and the PV inverter is tested.

しかし、この従来の試験装置は、実規模の配電系統と比べれば小さいが、実規模の電源を直接接続できる抵抗やインダクタンスにより負荷が構成されているため、サイズが大きく,規模や拡張や負荷の変更が困難であり、コストが高いという問題がある。しかも、PVシステムを多数台連係させたときの試験や、系統内相互干渉試験を行うと、試験装置が大型化してしまうという問題もある。   However, this conventional test device is small compared to a real-scale power distribution system, but the load is composed of resistors and inductances that can be directly connected to a real-scale power supply. There is a problem that the change is difficult and the cost is high. Moreover, there is also a problem that the test apparatus becomes large when a test when a large number of PV systems are linked or an inter-system mutual interference test is performed.

Y.Noda,T,Mizuno,H.Koizumi,K.Nagasaka,K.Kurokawa:“The development of a scaled-down simulator for distribution grids and its application for verifying interference behavior among a number of module integrated converters (MIC)”,29 th IEEEPVSC,pp.1545-1548,May 2002Y. Noda, T, Mizuno, H. Koizumi, K. Nagasaka, K. Kurokawa: “The development of a scaled-down simulator for distribution grids and its application for verifying interference behavior among a number of module integrated converters (MIC)” , 29 th IEEEPVSC, pp.1545-1548, May 2002

電力系統に接続して使用する実機器の試験を行う試験装置は、小スペース,低コストで、しかも、電力系統の規模の拡張や負荷の変更が容易に行える構成にすることが望まれる。このため、電子回路で作成した超縮小型の配電系統模擬回路を用意し、この配電系統模擬回路に、PVインバータのような実機器を直接接続して試験できるようにするのが良い。しかし、この場合、配電系統模擬回路(電子回路)の動作電圧と実機器の動作電圧との違いによって、配電系統模擬回路(電子回路)の回路素子が破壊されたりしないようにし、また、配電系統模擬回路の動作電圧が実際の電力系統の系統電圧を忠実に模擬する構造にする必要がある。   It is desired that a test apparatus for testing an actual device that is connected to an electric power system has a small space, low cost, and can easily expand the scale of the electric power system and change the load. For this reason, it is preferable to prepare an ultra-shrinkable distribution system simulation circuit created by an electronic circuit, and to connect the actual device such as a PV inverter directly to the distribution system simulation circuit for testing. However, in this case, the circuit element of the distribution system simulation circuit (electronic circuit) is not destroyed due to the difference between the operation voltage of the distribution system simulation circuit (electronic circuit) and the operation voltage of the actual device. It is necessary to have a structure in which the operating voltage of the simulation circuit faithfully simulates the system voltage of the actual power system.

本発明の目的は、電子回路で構成した配電系統模擬回路に実機器を直接接続して試験を行うことができる、小スペースで低コスト、規模拡張や負荷変更を容易に行うことが可能な試験装置を提供することにある。   The object of the present invention is to perform a test by directly connecting an actual device to a distribution system simulation circuit composed of an electronic circuit, a small space, a low cost, a test capable of easily performing scale expansion and load change. To provide an apparatus.

本発明の試験装置は、配電系統に接続して使用される実機器を試験する試験装置において、前記配電系統を電子回路で模擬した配電系統模擬回路と、前記実機器と前記配電系統模擬回路との間に接続されるアクティブパワーインタフェース装置とを備えることを特徴とする。   The test apparatus of the present invention is a test apparatus for testing an actual device used by being connected to a distribution system, a distribution system simulation circuit simulating the distribution system with an electronic circuit, the actual device, and the distribution system simulation circuit, And an active power interface device connected between the two.

本発明の試験装置のアクティブパワーインタフェース装置は、前記実機器側の電圧をVR,電流をIRとし、前記配電系統模擬回路側の電圧をVS,電流をISとした場合に、前記実機器側の電圧VR,電流IRを夫々常時検出する第1電圧センサ及び第1電流センサと、検出された電圧VR,電流IRをそれぞれn/m倍,N/M倍した電圧(n/m)VR,電流(N/M)IRが前記電圧VS,電流ISとなるように制御する電圧制御ユニットと、前記配電系統模擬回路側の電圧VS,電流ISを夫々常時検出する第2電圧センサ及び第2電流センサと、検出された電圧VS,電流ISをそれぞれm/n倍,M/N倍した電圧(m/n)VS,電流(M/N)ISが前記電圧VR,電流IRとなるように制御する電流制御ユニットとを備えることを特徴とする。尚、n,m,N,Mは任意数である。   The active power interface device of the test apparatus of the present invention is such that when the voltage on the actual device side is VR, the current is IR, the voltage on the distribution system simulation circuit side is VS, and the current is IS, the actual device side A first voltage sensor and a first current sensor that constantly detect the voltage VR and current IR, respectively, and a voltage (n / m) VR and current obtained by multiplying the detected voltage VR and current IR by n / m and N / M, respectively. (N / M) a voltage control unit that controls IR to be the voltage VS and current IS, and a second voltage sensor and a second current sensor that constantly detect the voltage VS and current IS on the side of the distribution system simulation circuit, respectively. Then, the detected voltage VS and current IS are controlled so that the voltage (m / n) VS and current (M / N) IS obtained by multiplying the detected voltage VS and current IS by m / n and M / N become the voltage VR and current IR, respectively. With current control unit And wherein the Rukoto. Note that n, m, N, and M are arbitrary numbers.

本発明によれば、実機器をアクティブパワーインタフェース装置を介して配電系統模擬回路に直接接続して試験することができるため、実機器の試験を容易に行うことが可能となる。また、配電系統模擬回路を電子回路で構成するので、試験装置の小スペース,低コストを実現できる。   According to the present invention, the actual device can be tested by directly connecting to the power distribution system simulation circuit via the active power interface device, so that the actual device can be easily tested. Moreover, since the distribution system simulation circuit is composed of an electronic circuit, a small space and low cost of the test apparatus can be realized.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る試験装置の構成図である。この試験装置は、試験対象とする実機器たとえば太陽光発電システム(PVシステム)1を試験するものであり、PVシステムを実際に接続する配電系統を模擬した電子回路(配電系統模擬回路)2と、この配電系統模擬回路2とPVシステム1との間に介装するアクティブパワーインタフェース装置(API)3とからなり、配電系統模擬回路2には商用電源4から電力が供給される。   FIG. 1 is a configuration diagram of a test apparatus according to an embodiment of the present invention. This test apparatus tests an actual device to be tested, such as a photovoltaic power generation system (PV system) 1, an electronic circuit (distribution system simulation circuit) 2 that simulates a distribution system that actually connects the PV system, and An active power interface device (API) 3 interposed between the distribution system simulation circuit 2 and the PV system 1 is supplied with electric power from a commercial power source 4.

PVシステム1を実際に接続する配電系統は大規模であり試験で使用することはできないため、配電系統を模擬する回路2を、抵抗,コンデンサ,インダクタンス等の素子を電子回路で作成し、構成する。例えば、図2は、単相2線式の低圧配電系統の模擬回路である。この模擬回路2は、商用電源4に接続された線路インピーダンス6と、一般家庭における電気負荷を模擬する並列接続された抵抗R,コンデンサC,インダクタンスLで構成される負荷回路7とから成る。   Since the distribution system that actually connects the PV system 1 is large and cannot be used in the test, the circuit 2 that simulates the distribution system is configured by creating elements such as resistors, capacitors, and inductances by electronic circuits. . For example, FIG. 2 is a simulation circuit of a single-phase two-wire low-voltage distribution system. The simulation circuit 2 includes a line impedance 6 connected to a commercial power supply 4 and a load circuit 7 including a resistor R, a capacitor C, and an inductance L connected in parallel to simulate an electric load in a general household.

図3は、アクティブパワーインタフェース装置(API)3のブロック図であり、図4は、その詳細回路図である。アクティブパワーインタフェース装置3は、一方の接続端子の電圧,電流を忠実に縮小または増幅して、この電圧,電流を他方の接続端子から出力させる機能を有し、パワーレベルの異なる実際のPVシステム1と配電系統模擬回路2とを等価的に接続するものである。即ち、アクティブパワーインタフェース装置3は、両方の接続端子の電圧と電流の関係が、それぞれ常に、m:n、M:Nとなるように制御する様に構成される。   FIG. 3 is a block diagram of the active power interface device (API) 3, and FIG. 4 is a detailed circuit diagram thereof. The active power interface device 3 has a function of faithfully reducing or amplifying the voltage and current of one connection terminal and outputting the voltage and current from the other connection terminal, and an actual PV system 1 having different power levels. Are equivalently connected to the distribution system simulation circuit 2. That is, the active power interface device 3 is configured to control so that the relationship between the voltage and current of both connection terminals is always m: n and M: N, respectively.

図3において、アクティブパワーインタフェース装置3は、PVシステム1が接続されるアース端子11と接続端子12との間の電圧を検出する第1電圧センサ13を備え、配電系統模擬回路2が接続されるアース端子14と接続端子15との間の電圧を検出する第2電圧センサ16を備える。接続端子12には電流制御ユニット17の出力が接続され、接続端子15には電圧制御ユニット18の出力が接続される。   3, the active power interface device 3 includes a first voltage sensor 13 that detects a voltage between the ground terminal 11 and the connection terminal 12 to which the PV system 1 is connected, and the distribution system simulation circuit 2 is connected thereto. A second voltage sensor 16 that detects a voltage between the ground terminal 14 and the connection terminal 15 is provided. The output of the current control unit 17 is connected to the connection terminal 12, and the output of the voltage control unit 18 is connected to the connection terminal 15.

アクティブパワーインタフェース装置3は、更に、接続端子12と電流制御ユニット17とを接続する配線に流れる電流を検出する第1電流センサ19と、接続端子15と電圧制御ユニット18とを接続する配線に流れる電流を検出する第2電流センサ20とが設けられ、両電流センサ19,20の検出値が電流制御ユニット17に出力される。また、第1電圧センサ13の検出電圧値と第2電圧センサ16の検出電圧値が電圧制御ユニット18に出力される。   The active power interface device 3 further flows through a first current sensor 19 that detects a current flowing through a wiring connecting the connection terminal 12 and the current control unit 17, and a wiring connecting the connection terminal 15 and the voltage control unit 18. A second current sensor 20 for detecting current is provided, and the detected values of both current sensors 19, 20 are output to the current control unit 17. Further, the detected voltage value of the first voltage sensor 13 and the detected voltage value of the second voltage sensor 16 are output to the voltage control unit 18.

電流制御ユニット17は、図3に示す様に、オペアンプ21と、オペアンプ21の入力段に設けられた比較器22と、オペアンプ21の出力に接続された抵抗23とからなり、比較器22は、第2電流センサ20の検出値から第1電流センサ19の検出値を減算した値をオペアンプ21に出力する。   As shown in FIG. 3, the current control unit 17 includes an operational amplifier 21, a comparator 22 provided at the input stage of the operational amplifier 21, and a resistor 23 connected to the output of the operational amplifier 21. A value obtained by subtracting the detection value of the first current sensor 19 from the detection value of the second current sensor 20 is output to the operational amplifier 21.

比較器22は、この例では、図4に示す様にオペアンプで構成され、オペアンプ22の反転入力端子に第1電流センサ19の検出値が印加され、非反転入力端子に第2電流センサ20の検出値が印加される。また、オペアンプ21(図3)は、この例では2個のオペアンプ21a,21b(図4)や抵抗等で構成される。端子12と端子15の電流比は、図4のオペアンプ21a,22のゲインを可変することにより任意に制御することが可能である。   In this example, the comparator 22 is composed of an operational amplifier as shown in FIG. 4, the detection value of the first current sensor 19 is applied to the inverting input terminal of the operational amplifier 22, and the second current sensor 20 is connected to the non-inverting input terminal. A detection value is applied. In addition, the operational amplifier 21 (FIG. 3) includes two operational amplifiers 21a and 21b (FIG. 4), resistors, and the like in this example. The current ratio between the terminals 12 and 15 can be arbitrarily controlled by varying the gains of the operational amplifiers 21a and 22 in FIG.

電圧制御ユニット18は、図3に示す様に、オペアンプ25と、オペアンプ25の入力段に設けられた比較器26と、オペアンプ25の出力に接続された抵抗27とからなり、比較器26は、第1電圧センサ13の検出値から第2電圧センサ16の検出値を減算した値をオペアンプ25に出力する。   As shown in FIG. 3, the voltage control unit 18 includes an operational amplifier 25, a comparator 26 provided at the input stage of the operational amplifier 25, and a resistor 27 connected to the output of the operational amplifier 25. A value obtained by subtracting the detection value of the second voltage sensor 16 from the detection value of the first voltage sensor 13 is output to the operational amplifier 25.

比較器26は、この例では、図4に示す様にオペアンプで構成され、オペアンプ26の非反転入力端子に第1電圧センサ13の検出値が印加され、反転入力端子に第2電圧センサ16の検出値が印加される。また、オペアンプ25(図3)は、この例では2個のオペアンプ25a,25b(図4)や抵抗等で構成される。端子12と端子15の電圧比は、図4のオペアンプ26,25aのゲインを可変することにより任意に制御することが可能である。   In this example, the comparator 26 is composed of an operational amplifier as shown in FIG. 4, the detection value of the first voltage sensor 13 is applied to the non-inverting input terminal of the operational amplifier 26, and the second voltage sensor 16 is applied to the inverting input terminal. A detection value is applied. In addition, the operational amplifier 25 (FIG. 3) includes two operational amplifiers 25a and 25b (FIG. 4), resistors, and the like in this example. The voltage ratio between the terminals 12 and 15 can be arbitrarily controlled by varying the gains of the operational amplifiers 26 and 25a shown in FIG.

斯かる構成のアクティブパワーインタフェース装置3は、図2に示す様に、アクティブパワーインタフェース装置3のPVシステム1側電圧をVR、電流をIRとし、配電系統模擬回路2側の電圧をVS、電流をISとした場合、PVシステム1側の電圧VR、電流IRを、第1電圧センサ13と第1電流センサ19により常時測定し、測定された電圧VR,電流IRをそれぞれn/m倍,N/M倍した電圧(n/m)VR,電流(N/M)IRが、接続端子15側の電圧VS,電流ISとなるように、電圧制御ユニット18が制御する。   As shown in FIG. 2, the active power interface device 3 having such a configuration has the PV system 1 side voltage of the active power interface device 3 as VR, the current as IR, the distribution system simulation circuit 2 side voltage as VS, and the current as In the case of IS, the voltage VR and current IR on the PV system 1 side are constantly measured by the first voltage sensor 13 and the first current sensor 19, and the measured voltage VR and current IR are respectively multiplied by n / m, N / The voltage control unit 18 controls the voltage (n / m) VR and current (N / M) IR multiplied by M so as to become the voltage VS and current IS on the connection terminal 15 side.

それと同時に、接続端子15の電圧VSと電流ISも、常時、第2電圧センサ16と第2電流センサ20により測定され、測定された電圧VS,電流ISをそれぞれm/n倍,M/N倍した電圧(m/n)VS,電流(M/N)ISが、接続端子12側の電圧VR,電流IRとなるように、電流制御ユニット17が制御する。   At the same time, the voltage VS and current IS of the connection terminal 15 are always measured by the second voltage sensor 16 and the second current sensor 20, and the measured voltage VS and current IS are multiplied by m / n and M / N, respectively. The current control unit 17 controls the voltage (m / n) VS and the current (M / N) IS to be the voltage VR and current IR on the connection terminal 12 side.

このアクティブパワーインタフェース装置3の両端の電圧,電流は、次の様にして決まる。即ち、接続端子12の電流は、オペアンプ21と接続端子12との間に挿入した抵抗23により決まり、接続端子12の電圧は、オペアンプ21の出力電圧から、抵抗23での電圧降下分を引いた電圧となる。   The voltage and current at both ends of the active power interface device 3 are determined as follows. That is, the current at the connection terminal 12 is determined by the resistor 23 inserted between the operational amplifier 21 and the connection terminal 12, and the voltage at the connection terminal 12 is obtained by subtracting the voltage drop at the resistor 23 from the output voltage of the operational amplifier 21. Voltage.

接続端子15側も同様であり、接続端子15の電圧は、オペアンプ25と接続端子15との間に挿入した抵抗27により決まり、オペアンプ25の出力電圧から抵抗27の電圧降下分を引いた電圧となる。   The same applies to the connection terminal 15 side, and the voltage at the connection terminal 15 is determined by the resistor 27 inserted between the operational amplifier 25 and the connection terminal 15, and is obtained by subtracting the voltage drop of the resistor 27 from the output voltage of the operational amplifier 25. Become.

第1電圧センサ13は接続端子12の電圧を検出し、第2電圧センサ16は接続端子15の電圧を検出し、電圧制御ユニット18は両検出電圧値を比較し、端子12の電圧と端子15の電圧の関係がm:nとなるように電圧制御ユニット18がフィードバック制御を行い、オペアンプ25の出力電圧を制御する。   The first voltage sensor 13 detects the voltage of the connection terminal 12, the second voltage sensor 16 detects the voltage of the connection terminal 15, the voltage control unit 18 compares both detection voltage values, and the voltage of the terminal 12 and the terminal 15 The voltage control unit 18 performs feedback control so that the voltage relationship of m: n becomes m: n, and controls the output voltage of the operational amplifier 25.

それと同時に、第1電流センサ19が端子12の電流を電圧として検出し、第2電流センサ20が端子15の電流を電圧として検出し、電流制御ユニット17は両検出電流値を比較し、両電流値の関係がM:Nとなるように電流制御ユニット17がフィードバック制御を行い、オペアンプ21の出力電圧を制御する。このとき、抵抗23による電圧降下により端子12と端子15との間の電圧の関係が崩れるため、電圧制御ユニット18により、再度、端子12と端子15の電圧を制御し、同時に、電流制御ユニット17により、端子12と端子15の電流を制御し、端子12と端子15の電圧,電流の関係が、常に、m:n,M:Nとなるまで制御を繰り返す動作を行う。   At the same time, the first current sensor 19 detects the current at the terminal 12 as a voltage, the second current sensor 20 detects the current at the terminal 15 as a voltage, and the current control unit 17 compares both the detected current values. The current control unit 17 performs feedback control so that the value relationship is M: N, and controls the output voltage of the operational amplifier 21. At this time, since the voltage relationship between the terminal 12 and the terminal 15 is destroyed due to the voltage drop caused by the resistor 23, the voltage control unit 18 controls the voltage of the terminal 12 and the terminal 15 again, and at the same time, the current control unit 17 Thus, the current of the terminal 12 and the terminal 15 is controlled, and the control is repeated until the relationship between the voltage and current of the terminal 12 and the terminal 15 is always m: n and M: N.

このアクティブパワーインタフェース装置3を用いることにより、電子回路で構成した超縮小型の配電系統模擬回路2と、実PVインバータ1とを等価的に接続することが可能となる。   By using this active power interface device 3, it is possible to equivalently connect the super-reduction type distribution system simulation circuit 2 constituted by an electronic circuit and the actual PV inverter 1.

図5は、上述した実施形態に係るアクティブパワーインタフェース装置3の直流特性を検討するために行った実験で使用した試験回路の構成図である。この試験回路は、アクティブパワーインタフェース装置3の左側端子に抵抗31を介して直流電源32を接続し、右側端子に抵抗33を介してコンデンサ34を接続している。   FIG. 5 is a configuration diagram of a test circuit used in an experiment conducted for examining the direct current characteristics of the active power interface device 3 according to the above-described embodiment. In this test circuit, a DC power supply 32 is connected to the left terminal of the active power interface device 3 via a resistor 31, and a capacitor 34 is connected to the right terminal via a resistor 33.

この試験回路により、RC回路による過渡応答をアクティブパワーインタフェース装置3で制御可能であるかを検討した。一例として、アクティブパワーインタフェース装置3の左端と右端のパワーレベルの関係を4:1とし、左端と右端の電圧,電流の関係がそれぞれ2:1となるように調整を行う。そして、直流電源32から電圧5Vを印加し、抵抗31を40Ω、抵抗33をl0Ω、コンデンサ34を47μFとしたとき、アクティブパワーインタフェース装置3の両端の電圧,電流の時間応答を測定した。   With this test circuit, it was examined whether the transient response by the RC circuit can be controlled by the active power interface device 3. As an example, adjustment is performed so that the relationship between the power levels of the left end and the right end of the active power interface device 3 is 4: 1, and the relationship between the voltage and current at the left end and the right end is 2: 1. Then, when the voltage 5 V was applied from the DC power supply 32, the resistance 31 was 40Ω, the resistance 33 was 10Ω, and the capacitor 34 was 47 μF, the time response of the voltage and current at both ends of the active power interface device 3 was measured.

図6,図7は測定結果を示すグラフであり、図6はアクティブパワーインタフェース装置3の両端の電圧特性、図7にその電流特性である。図6の特性I,IIの関係は、常に、2:1に制御されていることがわかる。また、この試験回路の時定数は、RC=2.35msであり、特性I,IIから測定された値ともほぼ一致することがわかる。また、図7からも、特性III,IVの関係が、常に、2:1に制御されており、回路の時定数も一致していることがわかる。   6 and 7 are graphs showing measurement results. FIG. 6 shows voltage characteristics at both ends of the active power interface device 3, and FIG. 7 shows current characteristics thereof. It can be seen that the relationship between the characteristics I and II in FIG. 6 is always controlled to 2: 1. In addition, the time constant of this test circuit is RC = 2.35 ms, and it can be seen that the values measured from the characteristics I and II almost coincide with each other. Also from FIG. 7, it can be seen that the relationship between the characteristics III and IV is always controlled to 2: 1, and the time constants of the circuits also coincide.

次に、アクティブパワーインタフェース装置3の交流特性を試験した。この試験は、図5に示した直流電源32を、交流電圧源に置き換えることで行った。試験条件は、直流特性を検討したときと同様な条件であるが、交流電圧源から試験回路に5V,50Hzの正弦波を入力した。そして、アクティブパワーインタフェース装置3の両端の電圧,電流の時間応答を測定した。   Next, the AC characteristics of the active power interface device 3 were tested. This test was performed by replacing the DC power source 32 shown in FIG. 5 with an AC voltage source. The test conditions were the same as those when the DC characteristics were examined, but a 5 V, 50 Hz sine wave was input from the AC voltage source to the test circuit. And the time response of the voltage of the both ends of the active power interface apparatus 3 and an electric current was measured.

図8,図9は測定結果を示すグラフであり、図8がアクティブパワーインタフェース装置3の両端の電圧特性、図9がその電流特性である。図8の特性V,VIの波形に位相ずれは無く、大きさが、常に、2:1に制御されていることわかる。また、試験回路にコンデンサ34が接続されていることにより電圧波形と位相がずれる電流波形においても、図9の特性VII,VIIIの波形に位相ずれはなく、大きさも、常に、2:1に制御されていることがわかる。   8 and 9 are graphs showing measurement results. FIG. 8 shows voltage characteristics at both ends of the active power interface device 3, and FIG. 9 shows current characteristics thereof. It can be seen that there is no phase shift in the waveforms of the characteristics V and VI in FIG. 8, and the size is always controlled to 2: 1. Further, even in a current waveform that is out of phase with the voltage waveform due to the capacitor 34 being connected to the test circuit, the waveforms of the characteristics VII and VIII in FIG. 9 have no phase shift, and the magnitude is always controlled to 2: 1. You can see that

以上の結果より、本実施形態のアクティブパワーインタフェース装置3は、直流,交流のいずれが入力されても精度良く動作することがわかる。このため、このアクティブパワーインタフェース装置を用いることで、パワーレベルの異なる実際の配電系統接続機器と電子回路で構成した配電系統模擬回路とを等価的に接続して配電系統接続機器を試験することができる。   From the above results, it can be seen that the active power interface device 3 of the present embodiment operates with high accuracy regardless of whether DC or AC is input. For this reason, by using this active power interface device, it is possible to test a distribution system connection device by equivalently connecting an actual distribution system connection device having a different power level and a distribution system simulation circuit composed of electronic circuits. it can.

本発明に係る試験装置は、太陽光発電システムの様に配電系統に接続して使用される実機器を、電子回路で構成した配電系統模擬回路に直接接続して試験することができるため、実機器の試験装置として有用である。   The test apparatus according to the present invention can test an actual device that is used by being connected to a power distribution system like a photovoltaic power generation system by directly connecting to a power distribution system simulation circuit constituted by an electronic circuit. It is useful as a testing device for equipment.

本発明の一実施形態に係る試験装置の構成図である。It is a lineblock diagram of a testing device concerning one embodiment of the present invention. 本発明の一実施形態に係る試験装置で用いる配電系統模擬回路の一例を示す回路図である。It is a circuit diagram which shows an example of the power distribution system simulation circuit used with the test apparatus which concerns on one Embodiment of this invention. 図1に示すアクティブパワーインタフェース装置のブロック図である。It is a block diagram of the active power interface apparatus shown in FIG. 図3に示すアクティブパワーインタフェース装置の回路図である。FIG. 4 is a circuit diagram of the active power interface device shown in FIG. 3. 図3に示すアクティブパワーインタフェース装置の試験回路図である。FIG. 4 is a test circuit diagram of the active power interface device shown in FIG. 3. 図5に示す試験回路で測定したアクティブパワーインタフェース装置の直流電圧特性を示すグラフである。It is a graph which shows the DC voltage characteristic of the active power interface apparatus measured with the test circuit shown in FIG. 図5に示す試験回路で測定したアクティブパワーインタフェース装置の直流電流特性を示すグラフである。It is a graph which shows the direct-current characteristic of the active power interface apparatus measured with the test circuit shown in FIG. 図3に示すアクティブパワーインタフェース装置の交流電圧特性を示すグラフである。It is a graph which shows the alternating voltage characteristic of the active power interface apparatus shown in FIG. 図3に示すアクティブパワーインタフェース装置の交流電流特性を示すグラフである。It is a graph which shows the alternating current characteristic of the active power interface apparatus shown in FIG.

符号の説明Explanation of symbols

1 太陽光発電システム(PVシステム)
2 配電系統模擬回路
3 アクティブパワーインタフェース装置
4 商用電源
11,14 アース端子
12,15 接続端子
13,16 電圧センサ
17 電流制御ユニット
18 電圧制御ユニット
19,20 電流センサ
1 Solar power generation system (PV system)
2 Power Distribution System Simulation Circuit 3 Active Power Interface Device 4 Commercial Power Supply 11, 14 Ground Terminal 12, 15 Connection Terminal 13, 16 Voltage Sensor 17 Current Control Unit 18 Voltage Control Unit 19, 20 Current Sensor

Claims (2)

配電系統に接続して使用される実機器を試験する試験装置において、前記配電系統を電子回路で模擬した配電系統模擬回路と、前記実機器と前記配電系統模擬回路との間に接続されるアクティブパワーインタフェース装置とを備えることを特徴とする配電系統に接続する実機器の試験装置。 In a test apparatus for testing an actual device used by being connected to a power distribution system, a power distribution system simulation circuit simulating the power distribution system with an electronic circuit, and an active device connected between the real device and the power distribution system simulation circuit A test apparatus for an actual device connected to a power distribution system, comprising a power interface device. 前記実機器側の電圧をVR,電流をIRとし、前記配電系統模擬回路側の電圧をVS,電流をISとした場合に、前記アクティブパワーインタフェース装置は、前記実機器側の電圧VR,電流IRを夫々常時検出する第1電圧センサ及び第1電流センサと、検出された電圧VR,電流IRをそれぞれn/m倍,N/M倍した電圧(n/m)VR,電流(N/M)IRが前記電圧VS,電流ISとなるように制御する電圧制御ユニットと、前記配電系統模擬回路側の電圧VS,電流ISを夫々常時検出する第2電圧センサ及び第2電流センサと、検出された電圧VS,電流ISをそれぞれm/n倍,M/N倍した電圧(m/n)VS,電流(M/N)ISが前記電圧VR,電流IRとなるように制御する電流制御ユニットとを備えることを特徴とする請求項1に記載の配電系統に接続する実機器の試験装置。 When the voltage on the actual device side is VR, the current is IR, the voltage on the distribution system simulation circuit side is VS, and the current is IS, the active power interface device has the voltage VR and current IR on the actual device side. The first voltage sensor and the first current sensor for constantly detecting the voltage VR, the current IR, and the voltage (n / m) VR and current (N / M) obtained by multiplying the detected voltage VR and current IR by n / m and N / M, respectively. A voltage control unit that controls the IR to be the voltage VS and the current IS, and a second voltage sensor and a second current sensor that constantly detect the voltage VS and the current IS on the power distribution system simulation circuit side, respectively. A voltage control unit for controlling the voltage (m / n) VS and the current (M / N) IS obtained by multiplying the voltage VS and the current IS by m / n and M / N, respectively, to become the voltage VR and the current IR; Features Actual device test apparatus connected to the power distribution system of claim 1,.
JP2003371736A 2003-10-31 2003-10-31 Test equipment for actual equipment connected to the power distribution system Expired - Fee Related JP4140837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003371736A JP4140837B2 (en) 2003-10-31 2003-10-31 Test equipment for actual equipment connected to the power distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003371736A JP4140837B2 (en) 2003-10-31 2003-10-31 Test equipment for actual equipment connected to the power distribution system

Publications (2)

Publication Number Publication Date
JP2005134280A true JP2005134280A (en) 2005-05-26
JP4140837B2 JP4140837B2 (en) 2008-08-27

Family

ID=34648307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371736A Expired - Fee Related JP4140837B2 (en) 2003-10-31 2003-10-31 Test equipment for actual equipment connected to the power distribution system

Country Status (1)

Country Link
JP (1) JP4140837B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879664A (en) * 2012-06-26 2013-01-16 兰州海红技术股份有限公司 Monitoring system for independent double-way AC (Alternate Current) power distribution equipment
JP2013040833A (en) * 2011-08-15 2013-02-28 Toshiba Corp Testing apparatus and testing method
JP2014023267A (en) * 2012-07-18 2014-02-03 Mitsubishi Electric Corp Analysis device and analysis method for power system
CN104808093A (en) * 2015-05-13 2015-07-29 国家电网公司 Anti-islanding protection testing circuit and method based on constant impedance load simulation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040833A (en) * 2011-08-15 2013-02-28 Toshiba Corp Testing apparatus and testing method
CN102879664A (en) * 2012-06-26 2013-01-16 兰州海红技术股份有限公司 Monitoring system for independent double-way AC (Alternate Current) power distribution equipment
JP2014023267A (en) * 2012-07-18 2014-02-03 Mitsubishi Electric Corp Analysis device and analysis method for power system
CN104808093A (en) * 2015-05-13 2015-07-29 国家电网公司 Anti-islanding protection testing circuit and method based on constant impedance load simulation

Also Published As

Publication number Publication date
JP4140837B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
Bollen et al. Primary and secondary harmonics emission; harmonic interaction-a set of definitions
CN112964280B (en) Apparatus and method for providing measurement results regarding uncertainty of transfer function
US8373406B2 (en) Electrical power quality test circuitry and method
US9869719B2 (en) High speed controllable load
Koch et al. Harmonics and resonances in the low voltage grid caused by compact fluorescent lamps
Nzimako et al. Stability and accuracy evaluation of a power hardware in the loop (PHIL) interface with a photovoltaic micro-inverter
Moro et al. A home appliance recognition system using the approach of measuring power consumption and power factor on the electrical panel, based on energy meter ICs
Binduhewa et al. Photovoltaic emulator
JP4140837B2 (en) Test equipment for actual equipment connected to the power distribution system
CN111007424B (en) Alternating current load system and method for simulating power factor
JP2009195093A (en) Dc current component detecting method, dc current component detecting device, and system interconnecting generator
Zhang et al. Two-port noise source equivalent circuit model for DC/DC buck converter with consideration of load effect
US7800380B1 (en) High capacitance load testing
Pintelon et al. Experimental characterization of operational amplifiers: a system identification approach-Part II: calibration and measurements
Pan et al. Fault macromodeling and a testing strategy for opamps
Habrych et al. Scalable System with Rogowski Coil for E-management of Detection and Measurement of PLC Interference in Electric Power Grids
US7307413B2 (en) Device using a detection circuit to determine whether an output current thereof is source-induced or load-induced, and method therefor
Meinck et al. Harmonic interaction of LED lamps in islanded microgrids
Yusoh et al. Identification of the source location Neutral to Earth Voltage (NTEV) rise on the commercial building
JPH08254564A (en) Inspection equipment for leak current detector for arrester and simulated leak current generation circuit for arrester
JP4752006B2 (en) Three-phase three-wire load simulator
De Gusseme et al. Fully equipped half bridge building block for fast prototyping of switching power converters
JP2015114199A (en) Surge test apparatus, surge test method, and electronic component
Takeuchi et al. A new type of scaled-down network simulator composed of power electronics
Bass et al. Time-varying modeling of electric vehicle chargers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees