JP2005045133A - Electromagnetic device - Google Patents

Electromagnetic device Download PDF

Info

Publication number
JP2005045133A
JP2005045133A JP2003279530A JP2003279530A JP2005045133A JP 2005045133 A JP2005045133 A JP 2005045133A JP 2003279530 A JP2003279530 A JP 2003279530A JP 2003279530 A JP2003279530 A JP 2003279530A JP 2005045133 A JP2005045133 A JP 2005045133A
Authority
JP
Japan
Prior art keywords
magnetic
control
magnetic path
main
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003279530A
Other languages
Japanese (ja)
Inventor
Takashi Ohinata
大日向  敬
Shigeaki Akatsuka
重昭 赤塚
Tomoyuki Aoki
智之 葵木
Mineo Kawakami
峰夫 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2003279530A priority Critical patent/JP2005045133A/en
Publication of JP2005045133A publication Critical patent/JP2005045133A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic device in which the structure of a magnetic circuit and the wound structure of coils are simple, in which the inductance is variable, and which can be produced easily at a low cost to connect with a power system in series. <P>SOLUTION: The electromagnetic device has a magnetic core symmetrically forming a two-by-two-matrix-shaped magnetic path in a four closed magnetic path, a main flux passes a first straight line magnetic path of a cross-shaped magnetic path in the two-by-two-matrix-shaped magnetic path, AC main windings 1a, 1b are wound so as to circulate the four closed magnetic paths opposed symmetrically to each other at a cross-shaped intersection, DC control windings 2a, 2b, 2c, 2d are wound so that a control flux passes the second straight line magnetic path of the cross-shaped magnetic path in one direction to circulate two magnetic paths symmetrically, and the magnetic resistance of the common magnetic path of the main flux and the control flux is adjusted by control of the control magnetic flux. The magnetic core forming the two-by-two-matrix-shaped magnetic path is divided at the center of the second straight line magnetic path of the cross-shaped magnetic path, and the two-by-two-matrix-shaped magnetic path is divided in the manner of the magnetic circuit with a gap 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、主巻線の励磁電流に影響されることなく、高調波歪みを低減し、リアクタンスを可変できる電磁機器、さらには、電力系統に直列に接続可能な電磁機器に関する。   The present invention relates to an electromagnetic device that can reduce harmonic distortion and vary reactance without being affected by an excitation current of a main winding, and further relates to an electromagnetic device that can be connected in series to a power system.

主巻線の励磁電流に影響されることなく、高調波歪みを低減し、リアクタンスを可変でき、電力系統に直列に接続可能な従来の技術としては、本出願人が先に提案した電磁機器(特許文献1)がある。   As a conventional technique that can reduce harmonic distortion, change reactance, and can be connected in series to the power system without being affected by the excitation current of the main winding, the electromagnetic device previously proposed by the applicant ( There exists patent document 1).

図8は、本出願人が先に提案した電磁機器(特許文献1)の一例を説明するための接続図である。この電磁機器は、田の字状磁心33に第1主巻線31a、第2主巻線31b、制御巻線32a、32b、32c及び32dを巻回し、直列に接続した制御巻線の開放端子側に制御回路34を接続した構成である。   FIG. 8 is a connection diagram for explaining an example of the electromagnetic device (Patent Document 1) previously proposed by the present applicant. In this electromagnetic device, a first main winding 31a, a second main winding 31b, and control windings 32a, 32b, 32c, and 32d are wound around a U-shaped magnetic core 33, and an open terminal of a control winding connected in series. The control circuit 34 is connected to the side.

主巻線の開放端に交流電源を接続し、制御巻線に直流制御電流Icを流すと、制御巻線32a、32b、32c、32dにおいて、制御巻線の巻数と直流制御電流Icの積で表される起磁力が発生することで、制御磁束φc31及びφc32と主磁束φ31a、φ31a’及びφ31b、φ31b’が同方向となる共通磁路部分の磁束密度が大となって透磁率が変化し、主磁束が制御されリアクタンスが低下する。
特開2003−068539号公報
When an AC power source is connected to the open end of the main winding and a DC control current Ic is passed through the control winding, the product of the number of turns of the control winding and the DC control current Ic in the control windings 32a, 32b, 32c, and 32d. When the magnetomotive force represented is generated, the magnetic flux density in the common magnetic path portion in which the control magnetic fluxes φc31 and φc32 and the main magnetic fluxes φ31a, φ31a ′, φ31b, and φ31b ′ are in the same direction increases, and the permeability changes. The main magnetic flux is controlled and the reactance is lowered.
JP 2003-068539 A

上述のごとき田の字状磁心を用いた電磁機器を、電力用電磁機器として製作する一般的な方法としては、図9(A)に示すような、2つのE型磁心41,42と1つのI型磁心43を突き合わせて、図9(B)に示すように構成して製作するが、この場合、構成する磁心は、従来の標準EI型磁心とは異なり、I型磁心43の幅(2t)が標準E型磁心41の幅(t)の2倍程度となるため、低コストの標準EI型磁心を適用することができなかった。   As a general method of manufacturing an electromagnetic device using the above-described magnetic field-shaped magnetic core as a power electromagnetic device, two E-type magnetic cores 41, 42 and one as shown in FIG. The I-type magnetic core 43 is abutted and manufactured as shown in FIG. 9B. In this case, the magnetic core is different from the conventional standard EI-type magnetic core, and the width of the I-type magnetic core 43 (2t). ) Is about twice the width (t) of the standard E-type magnetic core 41, so that a low-cost standard EI type magnetic core could not be applied.

本発明は、上述のごとき実情に鑑み、磁気回路の構造及び巻線の巻装構造が簡単で、インダクタンスを可変でき、電力系統に直列に接続可能な電磁機器の製作を、容易に、かつ低コストに提供することを課題とする。   In view of the above circumstances, the present invention has a simple magnetic circuit structure and a winding structure for windings, and can easily and lowly manufacture an electromagnetic device that can vary the inductance and can be connected in series to a power system. The issue is to provide costs.

対称的に四つの閉磁路で田の字状磁路を形成する磁心を有し、主磁束が前記田の字状磁路における十字状磁路の第1の直線磁路を通り、該十字の交点で対向して対称的に四つの閉磁路を還流するように交流主巻線が巻回され、制御磁束が前記十字状磁路の第2の直線磁路を一方向に通って対称的に二つの磁路を還流するように直流制御巻線が巻回され、前記制御磁束の制御により主磁束と制御磁束の共通磁路の磁気抵抗を調整する電磁機器であって、前記田の字状磁路を形成する磁心がその十字状磁路の前記第2の直線磁路の中心で分割され、田の字状磁路が磁気回路的に間隙をもって分割されていることを特徴としたものである。   Symmetrically, it has a magnetic core that forms a U-shaped magnetic path with four closed magnetic paths, and the main magnetic flux passes through the first straight magnetic path of the cross-shaped magnetic path in the U-shaped magnetic path, The AC main winding is wound so as to circulate through the four closed magnetic paths symmetrically facing each other at the intersection, and the control magnetic flux passes through the second linear magnetic path of the cruciform magnetic path in one direction symmetrically. An electromagnetic device in which a DC control winding is wound so as to recirculate two magnetic paths, and the magnetic resistance of the common magnetic path of the main magnetic flux and the control magnetic flux is adjusted by controlling the control magnetic flux. The magnetic core forming the magnetic path is divided at the center of the second linear magnetic path of the cross-shaped magnetic path, and the U-shaped magnetic path is divided with a gap in the magnetic circuit. is there.

本発明によれば、磁気回路の構造及び巻線の巻装構造が簡単で、タップを設けることなく、負荷電流の有無に拘わらず、高調波電流を抑制し、広範囲にリアクタンスを可変する電磁機器の製作を、容易に、かつ低コストに実現することができ、近年の電力需要の増大や負荷の多様化により、系統電圧の変動等負荷の多様化に対応できるフレキシブルな電力設備の提供がはかられ、電力系統の電圧の安定化に寄与できる。   According to the present invention, an electromagnetic device that has a simple magnetic circuit structure and winding winding structure, suppresses a harmonic current regardless of the presence or absence of a load current, and varies a reactance over a wide range without providing a tap. Can be realized easily and at low cost, and with the recent increase in power demand and diversification of loads, it is possible to provide flexible power equipment that can cope with diversification of loads such as system voltage fluctuations. This contributes to stabilization of the voltage of the power system.

図8に示した田の字状磁路を考察すると、主磁束φ31a、φ31a’とφ31b、φ31b’が対向して互いに左右に分流する十字路を構成する水平磁路の水平軸に対して、電磁鉄心の物理構造及び、磁束の流れを含めた磁気回路が対称的である。さらに、上記水平磁路部の磁束の流れは原理的に水平磁路を構成する鉄心の長手方向と平行になっている。   Considering the U-shaped magnetic path shown in FIG. 8, the main magnetic fluxes Φ31a, Φ31a ′ and Φ31b, Φ31b ′ are opposed to each other, and electromagnetic waves are The physical structure of the iron core and the magnetic circuit including the flow of magnetic flux are symmetrical. Further, the flow of magnetic flux in the horizontal magnetic path portion is in principle parallel to the longitudinal direction of the iron core constituting the horizontal magnetic path.

そこで、この磁気回路の水平磁路の磁束について、田の字状磁路の上部を構成する主巻線31a、制御巻線32a、32bによる磁束φ31a、φ31a’、φc31の上側磁束と、同下部を構成する主巻線31b、制御巻線32c、32dによる磁束φ31b、φ31b’、φc32の下側磁束に着目すると、両者の磁束は鉄心構造及び磁気回路構成が対称的であることから、基本的にその値等は同一であり、両磁束は互いに近接した磁路を通過し、相互に同一の影響、干渉を受けていると考えられる。   Therefore, with respect to the magnetic flux of the horizontal magnetic path of this magnetic circuit, the upper magnetic flux of the main winding 31a and the control windings 32a and 32b constituting the upper part of the U-shaped magnetic path and the upper magnetic flux of φ31a, φ31a ′, φc31, and the lower part thereof Focusing on the lower magnetic flux φ31b, φ31b ′, φc32 by the main winding 31b and the control windings 32c, 32d constituting the magnetic flux, the two magnetic fluxes are basically symmetrical because the iron core structure and the magnetic circuit configuration are symmetrical. The values are the same, and both magnetic fluxes pass through magnetic paths close to each other and are considered to be affected by the same influence and interference.

上記の考察に基づいて、図1に示すように、田の字状磁路の上記水平磁路を構成する鉄心を水平面で分割した状態を考えると、この分割田の字状磁路は分割面上の水平軸に対して電磁鉄心の物理構造及び、磁束の流れを含めた磁気回路は対称的であり、本来の田の字状磁路と同一である。   Based on the above consideration, as shown in FIG. 1, when considering the state in which the iron core constituting the horizontal magnetic path of the rice field-shaped magnetic path is divided in a horizontal plane, this divided field-shaped magnetic path is divided into planes. The physical structure of the electromagnetic core and the magnetic circuit including the flow of magnetic flux are symmetric with respect to the upper horizontal axis, and are the same as the original rice field-shaped magnetic path.

また、水平磁路部の磁束を考察すると、分割された水平磁路部の上側を上側磁束φ1a、φ1a’、φc1が、同下側を下側磁束φ1b、φ1b’、φc2が互いに分割面で形成される間隙7に漏洩する磁束によって影響、干渉を受けて通過しているものと考えられる。   Further, considering the magnetic flux of the horizontal magnetic path portion, the upper side of the divided horizontal magnetic path portion is the upper magnetic flux φ1a, φ1a ′, φc1, and the lower side is the lower magnetic flux φ1b, φ1b ′, φc2 on the divided surface. It is considered that the magnetic flux leaking into the formed gap 7 is affected and interfered with it.

すなわち、上記の間隙7を介した上記上側磁束と下側磁束の影響、干渉とリアクタンスの制御特性との関係が確認できれば、例えば、図1に示すように、従来の汎用されているEI鉄心を用いて簡単に、田の字状磁路の電磁機器を構成できる。   That is, if the relationship between the influence of the upper magnetic flux and the lower magnetic flux through the gap 7 and the relationship between the interference and reactance control characteristics can be confirmed, for example, as shown in FIG. An electromagnetic device having a U-shaped magnetic path can be configured easily.

図1は、従来汎用されているEI鉄心を用いて本発明による電磁機器を構成した例であり、田の字状磁心は、第1のE型磁心4aと第1のI型磁心5aを、鉄心窓部が2個所形成されるように構成した三脚磁心と、第2のE型磁心4bと第2のI型磁心5bを、鉄心窓部が2個所形成されるように構成した三脚磁心を、磁路が田の字状になるように、間隙7を介して対向させ、第1のE型磁心4aとI型磁心5aの接合面及び第2のE型磁心4bと第2のI型磁心5bの接合面は、磁心を構成する各々の積層鋼板を平行になるように突き合わせて構成する。   FIG. 1 is an example in which an electromagnetic device according to the present invention is configured by using a conventionally used EI iron core. A rice field-shaped magnetic core includes a first E-type magnetic core 4a and a first I-type magnetic core 5a. A tripod magnetic core configured such that two iron core window portions are formed, a second E-type magnetic core 4b and a second I-type magnetic core 5b, and a tripod magnetic core configured so that two iron core window portions are formed. The magnetic paths are opposed to each other through a gap 7 so that the magnetic path is in the shape of a rice field, the joint surface of the first E-type magnetic core 4a and the I-type magnetic core 5a, and the second E-type magnetic core 4b and the second I-type. The joint surface of the magnetic core 5b is formed by abutting each laminated steel plate constituting the magnetic core so as to be parallel.

第1のE型磁心4aの中央脚に第1主巻線1aを巻回し、第2のE型磁心4bの中央脚に第2主巻線1bを巻回す。主巻線1a及び1bを、両主巻線から生じる磁束φ1a及びφ1bがI型磁心5a及び5bに向かって同方向になるように直列に接続する。   The first main winding 1a is wound around the center leg of the first E-type magnetic core 4a, and the second main winding 1b is wound around the center leg of the second E-type magnetic core 4b. The main windings 1a and 1b are connected in series so that the magnetic fluxes φ1a and φ1b generated from both main windings are in the same direction toward the I-type magnetic cores 5a and 5b.

第1のE型磁心4aの外脚には制御巻線2a及び2bを巻回し、第2のE型磁心4bの外脚には制御巻線2c及び2dを巻回し、主巻線による磁束で制御巻線2a及び2b、2c及び2dに生じる誘起電圧がそれぞれ打ち消されるように全制御巻線を直列に接続し、その開放端子側に制御回路6を接続する。   The control windings 2a and 2b are wound around the outer leg of the first E-type magnetic core 4a, and the control windings 2c and 2d are wound around the outer leg of the second E-type magnetic core 4b. All control windings are connected in series so that the induced voltages generated in the control windings 2a and 2b, 2c and 2d are canceled, and the control circuit 6 is connected to the open terminal side.

なお、制御巻線は、2a、2b、2c、2dのうち、任意の2巻線を、生じる誘起電圧がそれぞれ打ち消されるように接続した一組と、同様に接続した、残る2巻線一組を直列または並列接続とし、その開放端子側に制御回路6を接続することもできる。   As for the control winding, one set of 2a, 2b, 2c, and 2d is connected so that the induced voltage generated is cancelled, and the other set of 2 windings connected in the same manner. Can be connected in series or in parallel, and the control circuit 6 can be connected to the open terminal side.

また、第1のE型磁心4aと第1のI型磁心5aにより構成した三脚磁心と、第2のE型磁心4bと第2のI型磁心5bにより構成した三脚磁心の構成方法は、E型磁心およびI型磁心の上下関係を反転させても同様の機能を実現できることは明らかであり、要は上側と下側の閉磁路が対称的に形成されることである。   Further, a method for constructing a tripod magnetic core constituted by a first E-type magnetic core 4a and a first I-type magnetic core 5a, and a tripod magnetic core constituted by a second E-type magnetic core 4b and a second I-type magnetic core 5b is as follows. It is clear that the same function can be realized even if the vertical relationship between the type magnetic core and the I type magnetic core is reversed, and the main point is that the upper and lower closed magnetic paths are formed symmetrically.

図1において、主巻線の開放端に交流電源を接続し、図示矢印方向の電流IL1が流れていたとする。なお、電流IL1を正サイクルとした場合、負サイクルでは電流IL2が流れる。電流IL1が流れると、磁路には主巻線1aによる主磁束φ1a及び主磁束φ1a’、並びに主巻線1bによる主磁束φ1b及び主磁束φ1b’がそれぞれ発生する。逆に、電流IL2が流れた場合についてはそれぞれ前記と逆向きの主磁束が発生する。   In FIG. 1, it is assumed that an AC power source is connected to the open end of the main winding and a current IL1 in the direction indicated by the arrow flows. When current IL1 is a positive cycle, current IL2 flows in a negative cycle. When the current IL1 flows, main magnetic flux φ1a and main magnetic flux φ1a ′ generated by the main winding 1a and main magnetic flux φ1b and main magnetic flux φ1b ′ generated by the main winding 1b are generated in the magnetic paths, respectively. On the contrary, when the current IL2 flows, a main magnetic flux in the opposite direction to that described above is generated.

発生した主磁束は、制御巻線に直流制御電流Icを流さない場合にはそれぞれ四つの閉磁路を通過し、主巻線には巻数と鉄心の磁気抵抗に応じたリアクタンスが発生する。制御巻線を巻回した鉄心部及びI型磁心部は、制御磁束φcと主磁束との共通磁路となる。   The generated main magnetic flux passes through four closed magnetic paths when the DC control current Ic is not passed through the control winding, and reactance corresponding to the number of turns and the magnetic resistance of the iron core is generated in the main winding. The iron core portion and the I-type magnetic core portion around which the control winding is wound serve as a common magnetic path for the control magnetic flux φc and the main magnetic flux.

主巻線に電流IL1、IL2を流した状態で制御巻線に直流制御電流Icを流すと、制御巻線2a、2b、2c、2dにおいて、制御巻線の巻数と直流制御電流Icの積で表される起磁力が発生することで、制御磁束φc1及びφc2と主磁束φ1a、φ1a’及びφ1b、φ1b’が同方向となる共通磁路部分の磁束密度が大となって透磁率が変化し、主磁束が制御されリアクタンスが低下する。   When the DC control current Ic is supplied to the control winding while the currents IL1 and IL2 are supplied to the main winding, the product of the number of turns of the control winding and the DC control current Ic in the control windings 2a, 2b, 2c, and 2d. When the magnetomotive force represented is generated, the magnetic flux density of the common magnetic path portion in which the control magnetic fluxes φc1 and φc2 and the main magnetic fluxes φ1a, φ1a ′, φ1b, and φ1b ′ are in the same direction increases, and the permeability changes. The main magnetic flux is controlled and the reactance is lowered.

主巻線電流IL1、IL2あるいは直流制御電流Icを増加させることにより共通磁路が磁気飽和状態に近づくと、主巻線1a及び1bより発生する主磁束がI型磁心5a及び5bに向かって同方向になるように主巻線を分割して接続しているため、増加する主磁束φ1a及び主磁束φ1a’と増加する主磁束φ1b及び主磁束φ1b’は、間隙7を介して互いに相殺される。一対の主巻線1a及び1bによる主磁束の増加分が閉磁路を環流しないので、互いの主巻線の起磁力を相殺することになる。   When the common magnetic path approaches a magnetic saturation state by increasing the main winding currents IL1 and IL2 or the DC control current Ic, the main magnetic flux generated from the main windings 1a and 1b becomes the same toward the I-type magnetic cores 5a and 5b. Since the main windings are divided and connected so as to be in the direction, the increasing main magnetic flux φ1a and main magnetic flux φ1a ′, and the increasing main magnetic flux φ1b and main magnetic flux φ1b ′ are offset through the gap 7 . Since the increase in the main magnetic flux caused by the pair of main windings 1a and 1b does not circulate in the closed magnetic circuit, the magnetomotive force of the main windings cancels each other.

また、主巻線電流IL1、IL2が増加しても、共通磁路が一定の磁束密度に保たれるように、増加する主巻線1aによる主磁束と主巻線1bによる主磁束は間隙7を介して相殺されるため、直流制御電流Icを制御することにより主磁束が制御でき、リアクタンスを可変することができる。即ち、主巻線電流に拘わらず、制御巻線に直流制御電流Icを流すことでリアクタンスを可変することができる。   Further, even if the main winding currents IL1 and IL2 increase, the main magnetic flux generated by the main winding 1a and the main magnetic flux generated by the main winding 1b are separated by a gap 7 so that the common magnetic path is maintained at a constant magnetic flux density. Therefore, the main magnetic flux can be controlled by controlling the DC control current Ic, and the reactance can be varied. That is, regardless of the main winding current, the reactance can be varied by passing the DC control current Ic through the control winding.

さらに、I型磁心5a及び5bを同一の構成とすることで、主磁束φ1a及びφ1b、主磁束φ1a’及びφ1b’、制御磁束φc1及びφc2によるI型磁心5a及び5b間の磁位はそれぞれ同一となるため、間隙部には電磁力が加わらず、騒音などの増大がなく、フィルムなどにより容易に間隙を作成することができる。   Further, by making the I-type magnetic cores 5a and 5b have the same configuration, the magnetic potentials between the I-type magnetic cores 5a and 5b by the main magnetic fluxes φ1a and φ1b, the main magnetic fluxes φ1a ′ and φ1b ′, and the control magnetic fluxes φc1 and φc2 are the same. Therefore, no electromagnetic force is applied to the gap, no increase in noise, etc., and the gap can be easily created with a film or the like.

また、間隙7を施設しても、主磁束φ1a、φ1a’及び制御磁束φc1はI型磁心5a部を介して還流し、主磁束φ1b、φ1b’及び制御磁束φc2はI型磁心5b部を介して還流することから、間隙7を設けることによる各々の磁束に対応した磁気回路の磁気抵抗は増加しないため、リアクタンス制御特性に対する間隙の影響は少ない。   Even if the gap 7 is provided, the main magnetic fluxes φ1a, φ1a ′ and the control magnetic flux φc1 return through the I-type magnetic core 5a, and the main magnetic flux φ1b, φ1b ′ and the control magnetic flux φc2 pass through the I-type magnetic core 5b. Therefore, since the magnetic resistance of the magnetic circuit corresponding to each magnetic flux by providing the gap 7 does not increase, the influence of the gap on the reactance control characteristics is small.

図2(A)は、本発明によるリアクタンスの制御特性例を示したもので、縦軸はリアクタンス、横軸は制御電流Icを表している。直流制御電流Icを増加させることにより、間隙を設けても、ほぼ同等のリアクタンスを可変できる。   FIG. 2A shows an example of reactance control characteristics according to the present invention. The vertical axis represents the reactance, and the horizontal axis represents the control current Ic. By increasing the direct current control current Ic, it is possible to vary substantially the same reactance even if a gap is provided.

図2(B)は、本発明による電磁機器に電圧を印加した場合の、励磁電流の高調波歪み率特性例を示したもので、縦軸は高調波歪み率、横軸は制御電流Icを表している。
間隙を設けても、高調波歪み率特性の悪化は見られず、むしろ、高調波歪み率が低下する。これは、間隙がない場合においては、共通磁路部が鉄などの非線形な磁気回路のみで構成されていたものが、間隙を設けることにより、共通磁路の一部が線形性の高い空間磁気回路と鉄などの非線形な磁気回路の並列回路になることから、非線形性が改善されるためである。
FIG. 2B shows an example of the harmonic distortion rate characteristic of the excitation current when a voltage is applied to the electromagnetic device according to the present invention. The vertical axis represents the harmonic distortion rate, and the horizontal axis represents the control current Ic. Represents.
Even if the gap is provided, the harmonic distortion rate characteristic is not deteriorated, but rather the harmonic distortion rate is lowered. In the case where there is no gap, the common magnetic path portion is composed only of a non-linear magnetic circuit such as iron, but by providing a gap, a part of the common magnetic path is a highly linear space magnetism. This is because the non-linearity is improved because the circuit becomes a parallel circuit of a non-linear magnetic circuit such as iron.

上述のように、本発明によれば、主巻線1a及び制御巻線2a、2bを巻き回したE型磁心4a及びI型磁心5aで構成される磁心部と、主巻線1b及び制御巻線2c、2dを巻き回したE型磁心4b及びI型磁心5bで構成される磁心部を、それぞれ別個に製作することが可能となり、磁気回路の構造及び巻線の巻装構造が簡単で、主巻線電流の影響を受けずに、リアクタンスを高速且つ連続的に可変できる電磁機器の製作を、容易に、かつ低コストに実現できる。なお、図1において、電磁機器の説明をE型磁心とI型磁心で構成される例で示したが、短冊形鋼板を積層した積鉄心においても同様の機能を有する磁心を構成できる。   As described above, according to the present invention, the magnetic core portion composed of the E-type magnetic core 4a and the I-type magnetic core 5a around which the main winding 1a and the control windings 2a and 2b are wound, the main winding 1b and the control winding. It is possible to separately manufacture the magnetic core portion composed of the E-type magnetic core 4b and the I-type magnetic core 5b around which the wires 2c and 2d are wound, and the structure of the magnetic circuit and the winding structure of the winding are simple. Production of an electromagnetic device capable of continuously changing the reactance at high speed without being affected by the main winding current can be realized easily and at low cost. In FIG. 1, the explanation of the electromagnetic device is shown by an example including an E-type magnetic core and an I-type magnetic core.

図3は、前記間隙7を施した二組の三脚磁心について、該間隙7を拡大させることにより電磁機器を構成した例であり、中央脚に主巻線1aを巻回し、外脚に制御巻線2a及び2bを巻回した第一の三脚磁心3aと、中央脚に主巻線1bを巻回し、外脚に制御巻線2c及び2dを巻回した第二の三脚磁心3bを空間的に対称に配置したものである。   FIG. 3 shows an example in which an electromagnetic device is configured by enlarging the gap 7 with respect to two sets of tripod cores provided with the gap 7. The main winding 1a is wound around the central leg and the control winding is wound around the outer leg. The first tripod magnetic core 3a wound with the wires 2a and 2b and the second tripod magnetic core 3b wound with the main winding 1b around the center leg and the control windings 2c and 2d around the outer leg are spatially arranged. They are arranged symmetrically.

三脚磁心3a及び3bは、三脚磁心3aの主巻線1aによる主磁束φ1a及びφ1a’の向きと、三脚磁心3bの主巻線1bによる主磁束φ1b及びφ1b’の向きが互いに対称になり、主磁路が磁気飽和状態になった時に発生する主巻線1a及び1bによる漏洩磁束同士が干渉しあうように、両三脚磁心を隣接して配置する。   In the tripod magnetic cores 3a and 3b, the directions of the main magnetic fluxes φ1a and φ1a ′ by the main winding 1a of the tripod magnetic core 3a and the directions of the main magnetic fluxes φ1b and φ1b ′ by the main winding 1b of the tripod magnetic core 3b are symmetrical to each other. Both tripod magnetic cores are arranged adjacent to each other so that leakage magnetic fluxes generated by the main windings 1a and 1b generated when the magnetic path is in a magnetic saturation state interfere with each other.

主巻線1a及び1bを直列に接続し、主巻線1aによる主磁束φ1a及びφ1a’で制御巻線2a、2bに生じる誘起電圧がそれぞれ打ち消されるように、また、主巻線1bによる主磁束φ1b及びφ1b’で制御巻線2c、2dに生じる誘起電圧がそれぞれ打ち消されるように全制御巻線を直列に接続し、その開放端子側に制御回路6を接続したものである。   The main windings 1a and 1b are connected in series so that the induced voltages generated in the control windings 2a and 2b are canceled by the main magnetic fluxes φ1a and φ1a ′ by the main winding 1a, respectively, and the main magnetic flux by the main winding 1b All control windings are connected in series so that the induced voltages generated in the control windings 2c and 2d are canceled by φ1b and φ1b ′, and the control circuit 6 is connected to the open terminal side.

なお、制御巻線は、生じる誘起電圧がそれぞれ打ち消されるように接続した一組と、同様に接続した、残る2巻線一組を、直列または並列接続とし、その開放端子側に制御回路6を接続することもできる。   Note that the control winding is connected in series or in parallel with one set of the connected windings so that the induced voltage generated is cancelled, and the remaining two windings connected in the same manner, and the control circuit 6 is provided on the open terminal side. It can also be connected.

三脚磁心に発生した主磁束は、制御巻線に直流制御電流を流さない場合にはそれぞれの閉磁路を通過し、主巻線には巻数と鉄心の磁気抵抗に応じたリアクタンスが発生する。
制御巻線に直流制御電流Icを流すと、前述と同様に、起磁力が発生することで、制御磁束φc1及びφc2と主磁束φ1a、φ1a’及びφ1b、φ1b’が同方向となる共通磁路部分の磁束密度が大となって透磁率が変化し、主磁束が制御されリアクタンスが低下する。
The main magnetic flux generated in the tripod core passes through the respective closed magnetic paths when no DC control current is passed through the control winding, and reactance according to the number of turns and the magnetic resistance of the iron core is generated in the main winding.
When a DC control current Ic is passed through the control winding, a magnetomotive force is generated as described above, so that the control magnetic fluxes φc1 and φc2 and the main magnetic fluxes φ1a, φ1a ′, φ1b, and φ1b ′ are in the same direction. The magnetic flux density of the portion increases, the permeability changes, the main magnetic flux is controlled, and the reactance decreases.

主巻線電流あるいは直流制御電流を増加させることにより共通磁路が磁気飽和状態に近づくと、増加する主磁束φ1a及びφ1a’と、増加する主磁束φ1b及びφ1b’は、漏洩磁束となって二組の三脚磁心間の空間を介して互いに相殺される。このため、直流制御電流Icを制御することにより主磁束が制御でき、リアクタンスを可変することができる。即ち、主巻線電流に拘わらず、制御巻線に直流制御電流Icを流すことでリアクタンスを可変することができる。   When the common magnetic path approaches a magnetic saturation state by increasing the main winding current or the DC control current, the increasing main magnetic fluxes φ1a and φ1a ′ and the increasing main magnetic fluxes φ1b and φ1b ′ become two leakage fluxes. They cancel each other through the space between the pair of tripod cores. For this reason, the main magnetic flux can be controlled by controlling the DC control current Ic, and the reactance can be varied. That is, regardless of the main winding current, the reactance can be varied by passing the DC control current Ic through the control winding.

二組の三脚磁心を配置する方法として、図3に記載したように、対称軸に対して上下に配置する方法を示したが、漏洩磁束が干渉しあう空間的な配置であれば、両三脚磁心を並行して配置するなど、様々な配置方法が可能である。   As shown in FIG. 3, as a method of arranging two sets of tripod magnetic cores, a method of arranging up and down with respect to the axis of symmetry has been shown. However, if the spatial arrangement is such that leakage flux interferes, both tripods Various arrangement methods such as arranging magnetic cores in parallel are possible.

図4(A)は、両三脚磁心を並置した場合のリアクタンスの制御特性例を示したもので、従来の間隙なしとほぼ同等のリアクタンスを可変できる。
図4(B)は、同様に高調波歪み率特性例を示したもので、若干の高調波歪み率の悪化が見られるものの、ほぼ同等の高調波歪み率となる。
FIG. 4A shows an example of the control characteristic of reactance when both tripod magnetic cores are juxtaposed, and the reactance substantially equivalent to that without a conventional gap can be varied.
FIG. 4B similarly shows an example of the harmonic distortion rate characteristic, and although the harmonic distortion rate is slightly deteriorated, almost the same harmonic distortion rate is obtained.

上述のように、要は、二組の三脚磁心から生じた各々の漏洩磁束が干渉するように隣接して配置することが重要であり、特に空間的に対称に設置することにより漏洩磁束が効率的に干渉し合い、特性の優れた電磁機器を実現することができる。   As described above, it is important that the leakage fluxes generated from the two sets of tripod cores are adjacent to each other so that the leakage fluxes interfere with each other. Electromagnetic devices with excellent characteristics can be realized.

なお、二組の三脚磁心を対称に配置した場合においても、漏洩磁束の干渉度合いは両磁心間距離により影響を受けるため、磁心間距離を大きくすることにより干渉度合いは低下し、リアクタンスの変化率は低下する。   Even when two sets of tripod magnetic cores are arranged symmetrically, the interference degree of leakage flux is affected by the distance between both magnetic cores, so increasing the distance between the magnetic cores reduces the degree of interference and the rate of change in reactance. Will decline.

図5は、中央脚に主巻線1aを、外脚に制御巻線2a及び2bを巻回した第1のE型カットコア10aと第2のE型カットコア10bを対向させて形成した三脚磁心と、中央脚に主巻線1bを、外脚に制御巻線2c及び2dを巻回した第3のE型カットコア10cと第4のE型カットコア10dを対向させて形成した三脚磁心の、2組の三脚磁心を、間隙7を介して接して磁路が田の字状になるように対向させて構成したものである。   FIG. 5 shows a tripod formed by opposing a first E-type cut core 10a and a second E-type cut core 10b in which a main winding 1a is wound around a central leg and control windings 2a and 2b are wound around an outer leg. A tripod magnetic core formed by opposing a magnetic core and a third E-shaped cut core 10c and a fourth E-shaped cut core 10d in which the main winding 1b is wound around the center leg and the control windings 2c and 2d are wound around the outer leg. The two sets of tripod magnetic cores are arranged so as to be in contact with each other through the gap 7 so as to face each other so that the magnetic path has a square shape.

本構成によれば、高磁束密度鋼板を適用したE型カットコアが使用できることから、コアの設計磁束密度を高くすることができ、機器のコンパクト化が図れるとともに、低コストの電磁機器を実現することができる。   According to this configuration, since an E-shaped cut core to which a high magnetic flux density steel plate is applied can be used, the core design magnetic flux density can be increased, the device can be made compact, and a low-cost electromagnetic device can be realized. be able to.

(適用例)
図6は、本発明の電磁機器の無効電力補償装置への適用例を示した図で、電磁機器11と電力用コンデンサ12を並列接続し、送電線路に並列に挿入し、電磁機器の制御により、系統に生じる遅相から進相の無効電力を連続的に補償するようにしたものである。
(Application example)
FIG. 6 is a diagram showing an application example of the electromagnetic device of the present invention to the reactive power compensator, in which the electromagnetic device 11 and the power capacitor 12 are connected in parallel, inserted in parallel to the transmission line, and controlled by the electromagnetic device. The reactive power from the slow phase to the fast phase generated in the system is continuously compensated.

(応用例)
図7は、本発明の電磁機器を多機能変圧器へ適用した応用例を説明するための図で、図1で示した本発明の電磁機器において、主巻線を一次巻線8a、8bとし、さらに一次巻線8a、8bを巻回した脚それぞれに、二次巻線9a、9bを巻回して一次巻線と同様に接続して構成した多機能変圧器である。
(Application examples)
FIG. 7 is a diagram for explaining an application example in which the electromagnetic device of the present invention is applied to a multi-function transformer. In the electromagnetic device of the present invention shown in FIG. 1, the main windings are primary windings 8a and 8b. Further, the multi-function transformer is configured by winding the secondary windings 9a and 9b on the respective legs around which the primary windings 8a and 8b are wound and connecting them in the same manner as the primary winding.

図7において、一次巻線に交流電源を接続し二次巻線には負荷を接続し、二次巻線に図示矢印方向の二次電流IL2が流れたとする。直流制御電流を流さない場合には、一次巻線8a及び8bには、上記二次電流で発生した磁束を打ち消すように一次電流IL1が流れ、全体として変圧器動作を示す。   In FIG. 7, it is assumed that an AC power source is connected to the primary winding, a load is connected to the secondary winding, and a secondary current IL2 in the direction indicated by the arrow flows in the secondary winding. When no DC control current is passed, the primary current IL1 flows through the primary windings 8a and 8b so as to cancel the magnetic flux generated by the secondary current, and the transformer operation is shown as a whole.

制御巻線に直流制御電流Icを流すと、制御巻線の巻数と直流制御電流Icの積で表される起磁力が発生することで透磁率が変化し、主磁束が制御される。制御電流の増加に伴い、一次巻線8aによる主磁束φ1a及びφ1a’と一時巻線8bによる主磁束φ1b及びφ1b’はそれぞれが互いに逆向きの磁束であるため間隙7を介して相殺され、その結果、一次巻線と鎖交する主磁束が減少する。   When the DC control current Ic is passed through the control winding, the magnetic permeability is changed by the generation of a magnetomotive force represented by the product of the number of turns of the control winding and the DC control current Ic, and the main magnetic flux is controlled. As the control current increases, the main magnetic fluxes φ1a and φ1a ′ by the primary winding 8a and the main magnetic fluxes φ1b and φ1b ′ by the temporary winding 8b cancel each other through the gap 7 because they are opposite to each other. As a result, the main magnetic flux interlinking with the primary winding is reduced.

このため、一次巻線には直流制御電流の制御に伴う主磁束の減少に応じて、一次巻線の端子間電圧を維持するために必要な主磁束を発生させる遅れ無効電流である励磁電流が増加する。
即ち、変圧器としての機能に加えて、直流制御電流を調整することで一次側に流入する無効電流の調整が可能な多機能変圧器を実現することができる。
Therefore, the primary winding has an exciting current that is a delayed reactive current that generates the main magnetic flux necessary to maintain the voltage across the terminals of the primary winding in accordance with the decrease in the main magnetic flux accompanying the control of the DC control current. To increase.
That is, in addition to the function as a transformer, it is possible to realize a multi-function transformer capable of adjusting the reactive current flowing into the primary side by adjusting the DC control current.

なお、多機能変圧器を請求項1の電磁機器に適用して説明したが、本発明で記載した他の電磁機器についても適用可能なことは明らかである。   In addition, although the multifunctional transformer was demonstrated and applied to the electromagnetic device of Claim 1, it is clear that it can apply also to the other electromagnetic device described by this invention.

本発明による単相形電磁機器の基本構成の一例を示す接続図である。It is a connection diagram which shows an example of the basic composition of the single phase type electromagnetic equipment by this invention. 電磁機器の制御特性例を示す図である。It is a figure which shows the example of control characteristics of an electromagnetic device. 本発明による電磁機器の他の基本構成例を示す接続図である。It is a connection diagram which shows the other basic structural example of the electromagnetic equipment by this invention. 電磁機器の制御特性例を示す図である。It is a figure which shows the example of control characteristics of an electromagnetic device. 本発明による電磁機器の他の基本構成例を示す接続図である。It is a connection diagram which shows the other basic structural example of the electromagnetic equipment by this invention. 本発明を無効電力補償装置に適用した例を示す接続図である。It is a connection diagram which shows the example which applied this invention to the reactive power compensation apparatus. 本発明を多機能変圧器へ適用した例を示す接続図である。It is a connection diagram which shows the example which applied this invention to the multifunctional transformer. 本出願人が先に提案した電磁機器の一例を示す接続図である。It is a connection diagram which shows an example of the electromagnetic equipment previously proposed by the present applicant. 本出願人が先に提案した電磁機器の製作方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the electromagnetic device previously proposed by the present applicant.

符号の説明Explanation of symbols

1(1a,1b)…主巻線、2(2a,2b,2c,2d)…制御巻線、3(3a,3b)…三脚磁心、4(4a,4b)…E型磁心、5(5a,5b)…I型磁心、6…制御回路、7…間隙、8(8a,8b)…一次巻線、9(9a,9b)…二次巻線、10(10a,10b,10c,10d)…E型カットコア、11…電磁機器、12…電力用コンデンサ、31(31a,31b)…主巻線、32(32a,32b,32c,32d)…制御巻線、33…田の字状磁心、34…制御回路、41,42…E型磁心、43…I型磁心。 1 (1a, 1b) ... main winding, 2 (2a, 2b, 2c, 2d) ... control winding, 3 (3a, 3b) ... tripod magnetic core, 4 (4a, 4b) ... E type magnetic core, 5 (5a 5b) ... I-type magnetic core, 6 ... control circuit, 7 ... gap, 8 (8a, 8b) ... primary winding, 9 (9a, 9b) ... secondary winding, 10 (10a, 10b, 10c, 10d) ... E-shaped cut core, 11 ... electromagnetic device, 12 ... power capacitor, 31 (31a, 31b) ... main winding, 32 (32a, 32b, 32c, 32d) ... control winding, 33 ... field-shaped magnetic core , 34 ... control circuit, 41, 42 ... E type magnetic core, 43 ... I type magnetic core.

Claims (5)

対称的に四つの閉磁路で田の字状磁路を形成する磁心を有し、
主磁束が前記田の字状磁路における十字状磁路の第1の直線磁路を通り、該十字の交点で対向して対称的に四つの閉磁路を還流するように交流主巻線が巻回され、
制御磁束が前記十字状磁路の第2の直線磁路を一方向に通って対称的に二つの磁路を還流するように直流制御巻線が巻回され、
前記制御磁束の制御により主磁束と制御磁束の共通磁路の磁気抵抗を調整する電磁機器であって、
前記田の字状磁路を形成する磁心がその十字状磁路の前記第2の直線磁路の中心で分割され、田の字状磁路が磁気回路的に間隙をもって分割されていることを特徴とする電磁機器。
Symmetrically, it has a magnetic core that forms a U-shaped magnetic path with four closed magnetic paths,
The AC main winding is passed through the first linear magnetic path of the cross-shaped magnetic path in the U-shaped magnetic path, and symmetrically flows back through the four closed magnetic paths facing each other at the intersection of the cross. Wound,
The DC control winding is wound so that the control magnetic flux passes through the second linear magnetic path of the cruciform magnetic path in one direction and returns to the two magnetic paths symmetrically,
An electromagnetic device for adjusting a magnetic resistance of a common magnetic path of a main magnetic flux and a control magnetic flux by controlling the control magnetic flux,
The magnetic core that forms the U-shaped magnetic path is divided at the center of the second linear magnetic path of the cross-shaped magnetic path, and the U-shaped magnetic path is divided with a gap in the magnetic circuit. Characteristic electromagnetic equipment.
請求項1において、前記磁心は、I字状磁心とE字状磁心で形成される三脚磁心二組を重ねて田の字状に構成されていることを特徴とする電磁機器。   2. The electromagnetic device according to claim 1, wherein the magnetic core is configured in a square shape by overlapping two sets of tripod magnetic cores formed of an I-shaped magnetic core and an E-shaped magnetic core. 請求項1において、前記磁心は、E形カットコアを対向させた三脚磁心二組を重ねて田の字状に構成されていることを特徴とする電磁機器。   2. The electromagnetic device according to claim 1, wherein the magnetic core is configured in a square shape by overlapping two sets of tripod magnetic cores each having an E-shaped cut core facing each other. 請求項2又は3において、二組の三脚磁心が空隙を介して重ねられて田の字状に構成されていることを特徴とする電磁機器。   4. The electromagnetic device according to claim 2, wherein two sets of tripod magnetic cores are overlapped via a gap and configured in a square shape. 請求項2又は3において、重ねられる二組の三脚磁心が並置されていることを特徴とする電磁機器。   4. The electromagnetic device according to claim 2, wherein two sets of tripod magnetic cores to be stacked are juxtaposed.
JP2003279530A 2003-07-25 2003-07-25 Electromagnetic device Pending JP2005045133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279530A JP2005045133A (en) 2003-07-25 2003-07-25 Electromagnetic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279530A JP2005045133A (en) 2003-07-25 2003-07-25 Electromagnetic device

Publications (1)

Publication Number Publication Date
JP2005045133A true JP2005045133A (en) 2005-02-17

Family

ID=34265609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279530A Pending JP2005045133A (en) 2003-07-25 2003-07-25 Electromagnetic device

Country Status (1)

Country Link
JP (1) JP2005045133A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004754A (en) * 2006-06-22 2008-01-10 Tohoku Electric Power Co Inc Electromagnetic equipment
JP2010123587A (en) * 2008-11-17 2010-06-03 Tohoku Electric Power Co Inc Electromagnetic device
WO2016110013A1 (en) * 2015-01-08 2016-07-14 山东大学 Magnetically-controlled isolated multifunctional transformer
CN110070983A (en) * 2018-01-22 2019-07-30 广州汽车集团股份有限公司 A kind of magnetic integrated inductor and energy conversion system for energy conversion system
WO2023053479A1 (en) * 2021-09-29 2023-04-06 三菱重工サーマルシステムズ株式会社 Reactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004754A (en) * 2006-06-22 2008-01-10 Tohoku Electric Power Co Inc Electromagnetic equipment
JP2010123587A (en) * 2008-11-17 2010-06-03 Tohoku Electric Power Co Inc Electromagnetic device
WO2016110013A1 (en) * 2015-01-08 2016-07-14 山东大学 Magnetically-controlled isolated multifunctional transformer
CN110070983A (en) * 2018-01-22 2019-07-30 广州汽车集团股份有限公司 A kind of magnetic integrated inductor and energy conversion system for energy conversion system
CN110070983B (en) * 2018-01-22 2022-02-15 广汽埃安新能源汽车有限公司 Magnetic integrated inductor for energy conversion system and energy conversion system
WO2023053479A1 (en) * 2021-09-29 2023-04-06 三菱重工サーマルシステムズ株式会社 Reactor

Similar Documents

Publication Publication Date Title
JP4646327B2 (en) Three-phase electromagnetic equipment
US3686561A (en) Regulating and filtering transformer having a magnetic core constructed to facilitate adjustment of non-magnetic gaps therein
US3659191A (en) Regulating transformer with non-saturating input and output regions
US20080192960A1 (en) Hybrid Filter for Audio Switching Amplifier
JPH05299270A (en) Electromagnetic device and electromagnetic core structure
US11870359B2 (en) Transformer and bidirectional isolated resonant converter
WO2017061329A1 (en) Transformer and resonant circuit having same
JP2012134266A (en) Composite magnetic component and switching power supply using the same
JP2012169666A (en) Wound iron core for static apparatus, and static apparatus with the same
JP5896371B2 (en) Three-phase electromagnetic equipment
JP2014123639A (en) PFC choke coil for interleave
JP2015032814A (en) Three-phase electromagnetic equipment
EP1559120B1 (en) Transformer
JP2006222387A (en) Choke coil unit
JP2005045133A (en) Electromagnetic device
JP3789333B2 (en) Electromagnetic equipment
JP3792109B2 (en) Electromagnetic equipment
JP5520613B2 (en) Magnetic flux control type variable transformer
JP4193942B2 (en) Inductance parts
JPH11219832A (en) Choke coil for noise filter
JP2008004754A (en) Electromagnetic equipment
JP4368051B2 (en) Electromagnetic equipment
US20220093325A1 (en) Three-phase magnetics assembly
JP3986809B2 (en) Three-phase electromagnetic equipment
JP5918066B2 (en) Electromagnetic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050404

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Effective date: 20080226

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080417

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526