JP2005020878A - System linkage protection device - Google Patents

System linkage protection device Download PDF

Info

Publication number
JP2005020878A
JP2005020878A JP2003181516A JP2003181516A JP2005020878A JP 2005020878 A JP2005020878 A JP 2005020878A JP 2003181516 A JP2003181516 A JP 2003181516A JP 2003181516 A JP2003181516 A JP 2003181516A JP 2005020878 A JP2005020878 A JP 2005020878A
Authority
JP
Japan
Prior art keywords
change rate
voltage
frequency
power generator
fluctuation signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003181516A
Other languages
Japanese (ja)
Other versions
JP3990324B2 (en
Inventor
Shigeo Nomiya
成生 野宮
Takeshi Taniguchi
健 谷口
Hidetoshi Chiba
秀俊 千葉
Katsuyuki Hiroi
克之 広井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nishishiba Electric Co Ltd
Original Assignee
Toshiba Corp
Nishishiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nishishiba Electric Co Ltd filed Critical Toshiba Corp
Priority to JP2003181516A priority Critical patent/JP3990324B2/en
Publication of JP2005020878A publication Critical patent/JP2005020878A/en
Application granted granted Critical
Publication of JP3990324B2 publication Critical patent/JP3990324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system linkage protection device that can surely and easily detect and protect the single operation of a regular use generating set during system linkage at the side of the regular use generating set, without the need for arranging an expensive transfer breaker. <P>SOLUTION: The voltage of a synchronous motor 10 is largely changed by changing an output voltage downward when the rate of the frequency change of the synchronous motor 10 is positive, and changing the output voltage upward when the rate of the frequency change is negative, thus determining the single operation when the polarity of a voltage change rate and the polarity of a voltage oscillation signal coincide with each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ごみ発電システム、コージェネレーション等の常用発電装置を典型例とする発電装置に適用される系統連系保護装置に関するものである。
【0002】
【従来の技術】
ごみ発電システム、コージェネレーション等の常用発電装置と交流電力系統とを連系保護する装置として、特許文献1,特許文献2,特許文献3が知られている。
【0003】
かかる系統連系保護装置の従来例を、図5を参照して説明する。
【0004】
図5において、交流電力系統である上位変電所4では、系統電源1の電圧を変圧器2を介して降圧し、遮断器3を通して、上位変電所4側からの電力を需要家に配電する配電線26により、一般需要家7に電力を供給している。一般需要家7は、遮断器5Bを介して負荷6Bで電力を消費する。
【0005】
一方、常用発電装置および系統連系保護装置20を設置している分散電源設置需要家9では、常用発電装置として原動機24により駆動される同期発電機10の出力を、遮断器28、遮断器12を介して、上位変電所4と連系している。
【0006】
同期発電機10の出力電圧の制御は、自動電圧調整器(AVR)22により同期発電機10の界磁巻線23の電圧を制御することによって行い、同期発電機10の出力周波数の制御は、同期発電機10を駆動する原動機24の図示しない調速機により原動機24パワーを制御することによって行われている。
【0007】
また、分散電源設置需要家9では、上位変電所4側からの電力を、遮断器12、遮断器5Aを介して受け、同期発電機10からの電力を遮断器28、遮断器5Aを介して受け、負荷(構内負荷)6Aで消費するようにしている。
【0008】
一方、系統連系保護装置20は、遮断器28の出力側(変電所側)に変流器14を設け、また当該変流器14の出力電流に基づいて過電流を検出する過電流検出器(OC)15と、系統電源1の異常時、特に系統電源1が例えば遮断器3の解放によって遮断された時、同期発電機10の出力電力と負荷6Aの負荷電力とのアンバランスから、周波数や電圧が異常になることを検出する周波数低下継電器(UF)16、周波数上昇継電器(OF)17、過電圧継電器(OV)18、および不足電圧継電器(UV)19とを設け、これら各保護継電器の検出信号に基づいて故障トリップ回路13を動作させ、トリップ信号を出力して遮断器12を解放し、遮断器3の再閉路が可能な状態にするようにしている。
【0009】
さらに、この他に、発電機の保護手段として、同期発電機10の出力側にその出力電流を検出する変流器11を設け、また変流器11の出力電流に基づいて同期発電機10の過電流を検出する過電流継電器(OC)51と、同期発電機10の出力電圧異常を検出する過電圧検出器(OV)52および不足電圧継電器(UV)53と、同期発電機10の逆電力を検出する逆電力継電器(RPR)54とを設け、これら各保護継電器の検出信号に基づいて故障トリップ回路27を動作させ、トリップ信号を出力して遮断器28を解放するようにしている。
【0010】
ところで、このような系統連系保護装置においては、例えば系統電源1に異常が発生して遮断器3が開となった時に、同期発電機10の出力電力と負荷6A、6Bの所要電力が、有効分および無効分共にほぼ等しくなっていると、周波数も電圧もほとんど変化しないので、保護継電器15〜19のいずれも動作せず、運転を継続する状態となる。これは、いわゆる単独運転(アイランディング)と呼ばれる現象であり、遮断器3の再閉路を妨げるという問題が発生する。
【0011】
そこで、従来では、このような単独運転を防ぐ目的で、変電所4からの専用線により接続された転送遮断装置8を設けて、遮断器12に対して転送遮断を実施する方法が採用されているものがある。
【0012】
すなわち、この転送遮断装置8は、上位変電所4の遮断器3が開となった信号を検出した時に、遮断器12に対して遮断信号を送って遮断器12を開放するものである。
【0013】
転送遮断装置8に関する発明としては、例えば以下に示す特許文献4がある。
【0014】
【特許文献1】
特開2002−281673号公報
【0015】
【特許文献2】
特開2002−281674号公報
【0016】
【特許文献3】
特開2002−291158号公報
【0017】
【特許文献4】
特開平7−59250号公報
【0018】
【発明が解決しようとする課題】
しかしながら、この種の転送遮断装置8は、数百kW程度の出力である中小容量の常用発電装置にとっては、非常にコストが高くなり、さらに伝送手段や伝送経路を設置する必要があるため、常用発電装置を設置することによるエネルギーコスト削減のメリットを得ることができない。
【0019】
本発明の目的は、高価な転送遮断装置を設けることなく、系統連系中の常用発電装置の単独運転を常用発電装置側で確実にかつ容易に検出して保護することが可能な系統連系保護装置を提供することにある。
【0020】
【課題を解決するための手段】
上記課題を解決するために、本発明は、遮断器を介して交流電力系統と連系される常用発電装置の常用系統連系保護装置において、
前記交流電力系統の周波数を検出する周波数検出器と、
前記周波数検出器によって検出された周波数の変化率を演算する周波数変化率検出器と、
前記周波数変化率に基づいて、当該周波数変化率が正である場合は前記常用発電装置の出力電圧を低下させ、周波数変化率が負である場合は前記常用発電装置の出力電圧を上昇させる電圧揺動信号を出力させる電圧揺動信号演算部と、
前記周波数変化率に応じて複数のしきい値を設定し、各しきい値を超える毎に前記電圧揺動信号のゲインを切り替えるゲイン切り替え手段と、
前記常用発電装置の出力電圧の変化率を検出する電圧変化率検出器と、
前記電圧揺動信号演算部により演算された電圧揺動信号を前記常用発電装置に備わる自動電圧調整器に与えることで生じる前記常用発電装置の電圧変化率が所定値を超え、前記電圧揺動信号と電圧変化率の極性が同一の場合に、前記遮断器を解放して交流電力系統から前記常用発電装置を解列させる保護手段と
を具備することを特徴とする。
【0021】
本発明による系統連系保護装置では、常用発電装置の周波数の変化率を検出し、周波数変化率が正の場合には常用発電装置の出力電圧を下げ方向に変化させ、周波数変化率が負の場合には常用発電装置の電圧を上げ方向に変化させるようにしており、発電機の電圧が大きく変化し、電圧変化率の極性と電圧揺動信号の極性が同一の場合に単独運転と判定することができ、従来のように高価な転送遮断装置を設けることなく、系統連系中の常用発電装置の単独運転を常用発電装置側で確実にかつ容易に検出して常用発電装置を解列し保護することが可能となる。
【0022】
【発明の実施形態】
(第1の実施形態、請求項1,2対応)
以下、本発明の請求項1に対応する実施形態を図を参照して説明する。
【0023】
図1は、本実施形態による系統連系保護装置の構成例を示す図であり、図5と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
【0024】
図1に示すように、本実施形態の分散電源設置需要家9′は、系統連系保護装置29を具備する。この系統連系保護装置29が、図5に示した従来の系統連系保護装置と異なる点は、前述した高価な転送遮断装置8を省略し、同期発電機10の出力から周波数を検出する周波数検出器41と、周波数変化率検出器42と、周波数検出器41から出力される周波数の変化率を検出する変化率過大第1判定器43と、電圧揺動信号発生手段である電圧揺動信号演算部44と、電圧変化率検出器48と、変化率過大第2判定器49を新規に備えたことである。
【0025】
いま、同期発電機10からの出力の有効電力をP、無効電力をQ、負荷6Aおよび6Bが必要とする有効電力をPL、無効電力をQLとすると、系統電源1へ流出する有効電力ΔPおよび無効電力ΔQは、それぞれ次のように表される。
【0026】
ΔP=P―PL
ΔQ=Q―QL
ここで、負荷6Aおよび6Bの電圧をV、周波数をfとする。
【0027】
そうすると、通常の場合は、ΔP≒0、ΔQ≒0に近い状態で遮断器3が開となっても、負荷6Aおよび6Bの電圧V、周波数fはほとんど変化しないため、転送遮断装置が無く従前の保護継電器15〜19は、同期発電機10の単独運転を検出することができず、単独運転を継続することになる。
【0028】
これに対し、本実施形態では、転送遮断装置が無くても各検出器41〜49を付加したことにより、同期発電機10の単独運転を検出することができる。
【0029】
図2は、図1を元に簡略化した図で、図1と同一部分には同一符号を付している。負荷6は、負荷6Aおよび負荷6Bを合成した負荷で、配電系統に存在する負荷全体を表す。ゆえに、PLおよびQLは負荷6で消費する電力となる。
【0030】
図2において、負荷6の有効電力PLは
PL=V2/R (1)
(V:電圧、R:抵抗値)
で表される。
【0031】
電圧揺動信号演算部44は、一例として図3(a)、(b)に示すような関数を内蔵しており、周波数変化率検出器42で検出された周波数変化率に基づいて、周波数の変化を助長するように電圧揺動信号を演算し、同期発電機10の自動電圧調整器22に電圧揺動信号を与える。(ΔV*:電圧揺動信号、df/dt:周波数変化率)
この電圧揺動信号演算部44は、周波数変化率に応じて自動電圧調整器22に与える電圧揺動信号を、最初は図3(a)の関数により決める。
【0032】
ここで、同期発電機10の単独運転中に、わずかに周波数が低下した場合を考える。周波数変化率は、負数でごく小さい値となる。
【0033】
この時、電圧揺動信号演算部44では、同期発電機10の電圧をわずかに上げるように電圧揺動信号を出力する。自動電圧調整器22の働きにより電圧が上昇することになる。
【0034】
すると、前記(1)式で表される負荷の有効電力PLが増加するので、負荷のトルクが増加し、同期発電機10の回転速度、すなわち周波数が低下する方向に作用するので、さらに周波数が低下するという正帰還作用が形成され、周波数の変動を増大させる。
【0035】
電圧揺動信号による周波数の変動は、電圧揺動信号が大きいほど周波数の変動も大きくなる。
【0036】
分散電源が単独運転であるか系統連系中であるか判定するためには、単独運転になったときに十分な周波数変動を招く電圧揺動信号を与えることが好ましいが、系統連系中に大きな電圧揺動信号を与えることは系統に擾乱を招く要素になることが懸念される。
【0037】
そこで最初は、一例として図3(a)にように、系統に悪影響とならないレベルの小さい電圧揺動信号としている。
【0038】
周波数変化率があるレベルに到達したときに、周波数変化率の過大を変化率過大第1判定器43で検出すると、電圧揺動信号演算部44は、周波数変化率に応じて自動電圧調整器22に与える電圧揺動信号を、図3(b)のような関数に基づいた電圧揺動信号に切り替える。これは、周波数変化率に対する電圧揺動信号のゲインを切り替える手段として作用し、周波数変化率が大きくなると、電圧揺動信号を大きくして速く電圧と周波数の変動を増大させることになる。
【0039】
電圧変化率検出器48は発電機電圧の変化率dv/dtを演算する。変化率過大第2判定器49は、発電機電圧の変化率dv/dtと電圧揺動信号ΔV*を入力し、dv/dtの絶対値が予め定められた設定値dv1以上であり、dv/dtとΔV*の極性が同じ場合に単独運転と判定する。
【0040】
系統連系中であれば自動電圧調整器22への電圧指令を変動させても系統電源1によって電圧が維持されているので発電機電圧はあまり変動しないが、単独運転ならば電圧指令を変化させた方向に発電機電圧が大きく変動する。このことにより単独運転を判定することが出来る。
【0041】
単独運転と判定すると、異常信号V31を出力する。
【0042】
故障トリップ回路13では、この異常信号V31により、遮断器12を遮断操作して同期発電機10を解列する。
【0043】
このことにより、従来用いていた転送遮断装置8を用いなくても、常用発電装置側で単独運転を検出することが可能となる。
【0044】
以上述べたように、本実施形態による系統連系保護装置では、常用発電装置の同期発電機10の周波数の変化率df/dtを検出し、周波数変化率が正の場合には同期発電機10の電圧を下げ方向に変化させ、周波数変化率が負の場合には同期発電機10の電圧を上げ方向に変化させるようにしており、発電機の電圧が大きく変化し、電圧変化率の極性と電圧揺動信号の極性が同一の場合に単独運転と判定するようにしているので、前述した従来のように高価な転送遮断装置8を設けることなく、系統連系中の常用発電装置の単独運転を常用発電装置側で確実にかつ容易に検出して同期発電機10を解列し保護することが可能となる。
【0045】
(第2の実施形態、請求項3対応)
図4は、本実施形態による系統連系保護装置の構成例を示す図であり、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
【0046】
図4に示すように、本実施形態の分散電源設置需要家9′′は、系統連系保護装置29′を具備する。この系統連系保護装置29′は、変化率過大第3判定器50、論理積演算器47を新規に備えている。
【0047】
変化率過大第3判定器50は、発電機周波数の変化率df/dtの絶対値が予め定められた設定値D2以上か否かを判定し、条件を満たす場合、単独運転らしいとしてV03を出力する。
【0048】
変化率過大第2判定器49は、発電機電圧の変化率dv/dtと電圧揺動信号ΔV*を入力し、dv/dtの絶対値が予め定められた設定値dv1以上であり、dv/dtとΔV*の極性が同じであるかどうかを判定し、条件を満たす場合、単独運転らしいとしてV02を出力する。ここで、D2は、変化率過大第1判定器43のしきい値であるD1より大きい値としている。
【0049】
論理積演算器47は、発電機電圧の変化率からみた単独運転の推定出力であるV02と、発電機周波数の変化率からみた単独運転の推定出力であるV03の論理積を演算する。ここに、V02、V03それぞれは単独では推定出力であるが、2つ推定出力の論理積をとることで、単独運転の判定について、推定を超えほぼ確定的な判断結果を得ることができ、これに基づき論理積演算器47は異常信号V31を出力する。
【0050】
故障トリップ回路13では、この異常信号V31により、遮断器12を遮断操作して同期発電機10を解列する。
【0051】
このことにより、従来用いていた転送遮断装置8を用いなくても、常用発電装置側で単独運転を検出することが可能となる。
【0052】
以上述べたように、本実施形態による系統連系保護装置では、常用発電装置の同期発電機10の周波数の変化率df/dtを検出し、周波数変化率が正の場合には同期発電機10の電圧を下げ方向に変化させ、周波数変化率が負の場合には同期発電機10の電圧を上げ方向に変化させるようにしており、発電機の電圧変化率が所定値より大きく、電圧変化率の極性と電圧揺動信号の極性が同一で、かつ周波数変化率が所定値より大きくなった場合に単独運転と判定するようにしているので、前述した従来のように高価な転送遮断装置8を設けることなく、系統連系中の常用発電装置の単独運転を常用発電装置側で確実にかつ容易に検出して同期発電機10を解列し保護することが可能となる。
【0053】
第2の実施形態が第1の実施形態と違うのは、電圧変化率に加えて周波数変化率が所定値より大きいことも単独運転の判定条件に追加していることであり、これにより推定出力である判定条件が1つから2つに増加した分、誤検出が少なくなる利点がある。
【0054】
上述した各実施形態では、常用発電装置としてごみ発電システム、コージェネレーション等における原動機により駆動される同期発電機を例示したが、これに限定するものではない。
【0055】
なお、本願発明は、上記各実施形態に限定されるものでなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合、組み合わされた効果が得られる。さらに、上記各実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば実施形態に示される全構成要件から幾つかの構成要件が省略されることで発明が抽出された場合には、その抽出された発明を実施する場合には省略部分が周知慣用技術で適宜補われるものである。
【0056】
【発明の効果】
以上説明したように、本発明の系統連系保護装置によれば、高価な転送遮断装置を設けることなく、系統連系中の常用発電装置の単独運転を常用発電装置側で確実に検知でき、系統から迅速に発電装置を解列し保護することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態である系統連系保護装置を示す構成図。
【図2】同第1の実施形態による系統連系保護装置における動作を説明するための図。
【図3】同第1の実施形態による系統連系保護装置における電圧揺動信号を決定する関数の例を示す図。
【図4】本発明の第2の実施形態である系統連系保護装置を示す構成図。
【図5】従来の系統連系保護装置の構成図。
【符号の説明】
1…系統電源、2…変圧器、3,5A,5B,12,28…遮断器、4…上位変電所、6,6A,6B…負荷、7…一般需要家、8…転送遮断装置、9…分散電源設置需要家、10…同期発電機、11,14…変流器、13,27…故障トリップ回路、15,51…過電流継電器、16…周波数低下継電器、17…周波数上昇継電器、18,52…過電圧継電器、19,53…不足電圧継電器、20,29…系統連系保護装置、22…自動電圧調整器、23…界磁巻線、24…原動機、26…配電線、41…周波数検出器、42…周波数変化率検出器、43…変化率過大第1判定器、44…電圧揺動信号演算部、47…論理積演算器、48…電圧変化率検出器、49…変化率過大第2判定器、50…変化率過大第3判定器、54…逆電力継電器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grid interconnection protection device applied to a power generation device having a typical power generation device such as a garbage power generation system and cogeneration as a typical example.
[0002]
[Prior art]
Patent Document 1, Patent Document 2, and Patent Document 3 are known as devices for interconnecting and protecting a regular power generation device such as a garbage power generation system and cogeneration and an AC power system.
[0003]
A conventional example of such a grid interconnection protection device will be described with reference to FIG.
[0004]
In FIG. 5, in the upper substation 4 that is an AC power system, the voltage of the system power supply 1 is stepped down via the transformer 2, and the electric power from the upper substation 4 side is distributed to consumers through the circuit breaker 3. Electric power is supplied to the general consumer 7 by the electric wire 26. The general consumer 7 consumes electric power with the load 6B through the circuit breaker 5B.
[0005]
On the other hand, in the distributed power supply installation customer 9 in which the common power generator and the grid connection protection device 20 are installed, the output of the synchronous generator 10 driven by the prime mover 24 as the regular power generator is supplied to the circuit breaker 28 and the circuit breaker 12. It is connected to the upper substation 4 via
[0006]
Control of the output voltage of the synchronous generator 10 is performed by controlling the voltage of the field winding 23 of the synchronous generator 10 by means of an automatic voltage regulator (AVR) 22, and the control of the output frequency of the synchronous generator 10 is as follows: This is done by controlling the power of the prime mover 24 with a speed governor (not shown) of the prime mover 24 that drives the synchronous generator 10.
[0007]
In addition, the distributed power supply installation customer 9 receives power from the upper substation 4 via the circuit breaker 12 and the circuit breaker 5A, and receives power from the synchronous generator 10 via the circuit breaker 28 and the circuit breaker 5A. Receiving and loading (in-house load) 6A.
[0008]
On the other hand, the grid connection protection device 20 is provided with a current transformer 14 on the output side (substation side) of the circuit breaker 28 and an overcurrent detector that detects an overcurrent based on the output current of the current transformer 14. From the imbalance between the output power of the synchronous generator 10 and the load power of the load 6A when the (OC) 15 and the system power supply 1 are abnormal, especially when the system power supply 1 is interrupted by, for example, releasing the circuit breaker 3 And a voltage lowering relay (UF) 16, a frequency increasing relay (OF) 17, an overvoltage relay (OV) 18, and an undervoltage relay (UV) 19 for detecting that the voltage becomes abnormal. The fault trip circuit 13 is operated based on the detection signal, and a trip signal is output to release the circuit breaker 12 so that the circuit breaker 3 can be closed again.
[0009]
In addition to this, a current transformer 11 for detecting the output current is provided on the output side of the synchronous generator 10 as protection means for the generator, and based on the output current of the current transformer 11, the synchronous generator 10 An overcurrent relay (OC) 51 that detects an overcurrent, an overvoltage detector (OV) 52 and an undervoltage relay (UV) 53 that detect an output voltage abnormality of the synchronous generator 10, and a reverse power of the synchronous generator 10 A reverse power relay (RPR) 54 for detection is provided, and the fault trip circuit 27 is operated based on the detection signals of these protection relays to output a trip signal and release the circuit breaker 28.
[0010]
By the way, in such a grid connection protection device, for example, when an abnormality occurs in the system power supply 1 and the circuit breaker 3 is opened, the output power of the synchronous generator 10 and the required power of the loads 6A and 6B are: If both the effective part and the ineffective part are substantially equal, neither the frequency nor the voltage changes, so that none of the protective relays 15 to 19 operate and the operation is continued. This is a phenomenon called so-called islanding (islanding), which causes a problem of preventing reclosing of the circuit breaker 3.
[0011]
Therefore, conventionally, for the purpose of preventing such an isolated operation, a method of providing a transfer interruption device 8 connected by a dedicated line from the substation 4 and carrying out transfer interruption for the circuit breaker 12 has been adopted. There is something.
[0012]
That is, the transfer interrupting device 8 opens the circuit breaker 12 by sending a circuit breaker signal to the circuit breaker 12 when detecting the signal that the circuit breaker 3 of the upper substation 4 is opened.
[0013]
As an invention related to the transfer blocking device 8, there is, for example, Patent Document 4 shown below.
[0014]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-281673
[Patent Document 2]
[Patent Document 1] Japanese Patent Laid-Open No. 2002-281654
[Patent Document 3]
Japanese Patent Laid-Open No. 2002-291158
[Patent Document 4]
JP-A-7-59250 [0018]
[Problems to be solved by the invention]
However, this type of transfer interrupting device 8 is very expensive for a medium and small capacity utility power generator having an output of several hundred kW, and it is necessary to install transmission means and a transmission path. The merit of energy cost reduction by installing the power generation device cannot be obtained.
[0019]
An object of the present invention is to provide a grid interconnection capable of reliably and easily detecting and protecting a single operation of a regular power generator in a grid interconnection without providing an expensive transfer interruption device. It is to provide a protective device.
[0020]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention provides a common system interconnection protection device for a regular power generator that is linked to an AC power system via a circuit breaker.
A frequency detector for detecting the frequency of the AC power system;
A frequency change rate detector for calculating a change rate of the frequency detected by the frequency detector;
Based on the frequency change rate, when the frequency change rate is positive, the output voltage of the common power generator is decreased, and when the frequency change rate is negative, the voltage fluctuation is increased to increase the output voltage of the common power generator. A voltage fluctuation signal calculation unit for outputting a dynamic signal;
A plurality of threshold values according to the frequency change rate, and a gain switching means for switching the gain of the voltage fluctuation signal every time each threshold value is exceeded;
A voltage change rate detector for detecting the change rate of the output voltage of the regular power generator;
When the voltage fluctuation signal calculated by the voltage fluctuation signal calculation unit is applied to an automatic voltage regulator provided in the normal power generator, the voltage change rate of the normal power generator exceeds a predetermined value, and the voltage fluctuation signal And a protection means for releasing the circuit breaker and disconnecting the common power generator from the AC power system when the polarity of the voltage change rate is the same.
[0021]
In the grid interconnection protection device according to the present invention, the frequency change rate of the common power generator is detected, and when the frequency change rate is positive, the output voltage of the common power generator is changed in the downward direction, and the frequency change rate is negative. In this case, the voltage of the common power generator is changed in the upward direction. When the voltage of the generator changes greatly and the polarity of the voltage change rate and the polarity of the voltage fluctuation signal are the same, it is determined that the operation is independent. Without the need for an expensive transfer interruption device as in the past, it is possible to reliably and easily detect the independent operation of the utility power generator in the grid connection on the utility power generator side, and disconnect the utility power generator. It becomes possible to protect.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment, corresponding to claims 1 and 2)
Hereinafter, an embodiment corresponding to claim 1 of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 is a diagram illustrating a configuration example of a grid interconnection protection device according to the present embodiment. The same parts as those in FIG. 5 are denoted by the same reference numerals, and the description thereof is omitted. Only different parts will be described here.
[0024]
As shown in FIG. 1, the distributed power supply installation customer 9 ′ of this embodiment includes a grid interconnection protection device 29. The system interconnection protection device 29 is different from the conventional system interconnection protection device shown in FIG. 5 in that the expensive transfer cut-off device 8 described above is omitted and the frequency for detecting the frequency from the output of the synchronous generator 10 is detected. A detector 41, a frequency change rate detector 42, a change rate excess first determination unit 43 that detects a change rate of the frequency output from the frequency detector 41, and a voltage fluctuation signal that is a voltage fluctuation signal generating means. The calculation unit 44, the voltage change rate detector 48, and the change rate excessive second determination unit 49 are newly provided.
[0025]
Now, assuming that the active power of the output from the synchronous generator 10 is P, the reactive power is Q, the active power required by the loads 6A and 6B is PL, and the reactive power is QL, the active power ΔP flowing out to the system power supply 1 and The reactive power ΔQ is expressed as follows, respectively.
[0026]
ΔP = P-PL
ΔQ = Q-QL
Here, the voltages of the loads 6A and 6B are V and the frequency is f.
[0027]
Then, in the normal case, the voltage V and the frequency f of the loads 6A and 6B hardly change even when the circuit breaker 3 is opened in a state close to ΔP≈0 and ΔQ≈0. The protective relays 15 to 19 cannot detect the single operation of the synchronous generator 10 and continue the single operation.
[0028]
On the other hand, in this embodiment, the independent operation of the synchronous generator 10 can be detected by adding the detectors 41 to 49 without the transfer blocking device.
[0029]
FIG. 2 is a simplified diagram based on FIG. 1, and the same components as those in FIG. The load 6 is a load obtained by combining the load 6A and the load 6B, and represents the entire load existing in the distribution system. Therefore, PL and QL are electric power consumed by the load 6.
[0030]
In FIG. 2, the active power PL of the load 6 is PL = V2 / R (1)
(V: Voltage, R: Resistance value)
It is represented by
[0031]
The voltage fluctuation signal calculation unit 44 incorporates a function as shown in FIGS. 3A and 3B as an example. Based on the frequency change rate detected by the frequency change rate detector 42, The voltage fluctuation signal is calculated so as to promote the change, and the voltage fluctuation signal is given to the automatic voltage regulator 22 of the synchronous generator 10. (ΔV *: voltage fluctuation signal, df / dt: frequency change rate)
The voltage fluctuation signal calculation unit 44 initially determines a voltage fluctuation signal to be given to the automatic voltage regulator 22 according to the frequency change rate by the function of FIG.
[0032]
Here, a case where the frequency slightly decreases during the independent operation of the synchronous generator 10 is considered. The frequency change rate is a negative number and a very small value.
[0033]
At this time, the voltage fluctuation signal calculation unit 44 outputs a voltage fluctuation signal so that the voltage of the synchronous generator 10 is slightly increased. The voltage rises by the action of the automatic voltage regulator 22.
[0034]
Then, since the active power PL of the load represented by the above equation (1) increases, the torque of the load increases and acts on the rotational speed of the synchronous generator 10, that is, the frequency decreases. A positive feedback action of lowering is formed, increasing the frequency variation.
[0035]
The frequency fluctuation due to the voltage fluctuation signal increases as the voltage fluctuation signal increases.
[0036]
In order to determine whether the distributed power supply is operating alone or in a grid connection, it is preferable to provide a voltage fluctuation signal that causes sufficient frequency fluctuations when the system is operated independently. There is a concern that giving a large voltage fluctuation signal becomes a factor causing disturbance to the system.
[0037]
Therefore, at first, as an example, as shown in FIG. 3A, a voltage fluctuation signal having a small level that does not adversely affect the system is used.
[0038]
When the frequency change rate reaches a certain level and the frequency change rate excess is detected by the first change rate excess first determination unit 43, the voltage fluctuation signal calculation unit 44 determines whether the automatic voltage regulator 22 is in accordance with the frequency change rate. Is switched to a voltage fluctuation signal based on a function as shown in FIG. This acts as a means for switching the gain of the voltage fluctuation signal with respect to the frequency change rate. When the frequency change rate increases, the voltage fluctuation signal is increased to increase the voltage and frequency fluctuations quickly.
[0039]
The voltage change rate detector 48 calculates the change rate dv / dt of the generator voltage. The change rate excessive second determination unit 49 receives the change rate dv / dt of the generator voltage and the voltage fluctuation signal ΔV *, and the absolute value of dv / dt is equal to or greater than a predetermined set value dv1. When the polarities of dt and ΔV * are the same, it is determined that the single operation is performed.
[0040]
If the voltage command to the automatic voltage regulator 22 is fluctuated during grid connection, the voltage is maintained by the system power source 1 so that the generator voltage does not fluctuate very much. The generator voltage fluctuates greatly in the opposite direction. This makes it possible to determine the isolated operation.
[0041]
If it is determined that the vehicle is operating alone, an abnormal signal V31 is output.
[0042]
In the fault trip circuit 13, the circuit breaker 12 is operated to be disconnected by the abnormal signal V31, and the synchronous generator 10 is disconnected.
[0043]
This makes it possible to detect an isolated operation on the side of the regular power generation device without using the transfer interruption device 8 that has been used conventionally.
[0044]
As described above, in the grid interconnection protection device according to the present embodiment, the frequency change rate df / dt of the synchronous generator 10 of the regular power generator is detected, and when the frequency change rate is positive, the synchronous generator 10 When the frequency change rate is negative, the voltage of the synchronous generator 10 is changed in the upward direction, the generator voltage changes greatly, and the polarity of the voltage change rate Since it is determined that the operation is independent when the polarity of the voltage fluctuation signal is the same, the independent operation of the common power generator in the grid connection is not provided without providing the expensive transfer interruption device 8 as in the conventional case. Can be detected reliably and easily on the side of the common power generator, and the synchronous generator 10 can be disconnected and protected.
[0045]
(Second embodiment, corresponding to claim 3)
FIG. 4 is a diagram illustrating a configuration example of the grid interconnection protection device according to the present embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. Only different parts will be described here.
[0046]
As shown in FIG. 4, the distributed power supply installation customer 9 ″ of this embodiment includes a grid interconnection protection device 29 ′. This grid connection protection device 29 ′ is newly provided with a change rate excess third determination unit 50 and a logical product calculation unit 47.
[0047]
The excessive change rate third determiner 50 determines whether or not the absolute value of the change rate df / dt of the generator frequency is equal to or greater than a predetermined set value D2, and outputs V03 if it seems to be an isolated operation if the condition is satisfied. To do.
[0048]
The change rate excessive second determination unit 49 receives the change rate dv / dt of the generator voltage and the voltage fluctuation signal ΔV *, and the absolute value of dv / dt is equal to or greater than a predetermined set value dv1. It is determined whether or not the polarities of dt and ΔV * are the same, and if the condition is satisfied, V02 is output because it seems to be an independent operation. Here, D2 is set to a value larger than D1, which is the threshold value of the change rate excess first determination unit 43.
[0049]
The logical product calculator 47 calculates the logical product of V02, which is the estimated output of the isolated operation as seen from the rate of change of the generator voltage, and V03, which is the estimated output of the isolated operation as seen from the rate of change of the generator frequency. Here, each of V02 and V03 is an estimated output alone, but by taking the logical product of the two estimated outputs, it is possible to obtain an almost deterministic determination result that exceeds the estimation for the determination of the isolated operation. Based on the above, the AND operator 47 outputs an abnormal signal V31.
[0050]
In the fault trip circuit 13, the circuit breaker 12 is operated to be disconnected by the abnormal signal V31, and the synchronous generator 10 is disconnected.
[0051]
This makes it possible to detect an isolated operation on the side of the regular power generation device without using the transfer interruption device 8 that has been used conventionally.
[0052]
As described above, in the grid interconnection protection device according to the present embodiment, the frequency change rate df / dt of the synchronous generator 10 of the regular power generator is detected, and when the frequency change rate is positive, the synchronous generator 10 When the frequency change rate is negative, the voltage of the synchronous generator 10 is changed in the upward direction. The voltage change rate of the generator is greater than a predetermined value, and the voltage change rate is And the polarity of the voltage fluctuation signal are the same, and the frequency change rate becomes larger than a predetermined value, it is determined that the single operation is performed. Without the provision, it is possible to reliably and easily detect the independent operation of the common power generator in the grid connection on the side of the common power generator and to disconnect and protect the synchronous generator 10.
[0053]
The second embodiment is different from the first embodiment in that the frequency change rate is larger than a predetermined value in addition to the voltage change rate, which is added to the determination condition for the isolated operation. There is an advantage that false detections are reduced by the increase of the determination condition from one to two.
[0054]
In each embodiment mentioned above, although the synchronous generator driven by the motor | power_engine in a refuse power generation system, cogeneration, etc. was illustrated as a regular power generator, it is not limited to this.
[0055]
Note that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention at the stage of implementation. In addition, the embodiments may be appropriately combined as much as possible, and in that case, combined effects can be obtained. Furthermore, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, when an invention is extracted by omitting some constituent elements from all the constituent elements shown in the embodiment, when the extracted invention is implemented, the omitted part is appropriately supplemented by a well-known common technique. It is what is said.
[0056]
【The invention's effect】
As described above, according to the grid interconnection protection device of the present invention, it is possible to reliably detect the single operation of the regular power generation device in the grid interconnection on the regular power generation device side without providing an expensive transfer cutoff device, The generator can be quickly disconnected from the grid and protected.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a system interconnection protection device according to a first embodiment of the present invention.
FIG. 2 is a diagram for explaining an operation in the grid interconnection protection device according to the first embodiment;
FIG. 3 is a diagram showing an example of a function for determining a voltage fluctuation signal in the system interconnection protection device according to the first embodiment;
FIG. 4 is a configuration diagram showing a system interconnection protection device according to a second embodiment of the present invention.
FIG. 5 is a configuration diagram of a conventional grid connection protection device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... System power supply, 2 ... Transformer, 3, 5A, 5B, 12, 28 ... Circuit breaker, 4 ... Upper substation, 6, 6A, 6B ... Load, 7 ... General customer, 8 ... Transfer interruption device, 9 ... distributed power installation customers, 10 ... synchronous generators, 11, 14 ... current transformers, 13, 27 ... fault trip circuits, 15, 51 ... overcurrent relays, 16 ... frequency drop relays, 17 ... frequency boost relays, 18 , 52 ... Overvoltage relay, 19, 53 ... Undervoltage relay, 20, 29 ... Grid connection protection device, 22 ... Automatic voltage regulator, 23 ... Field winding, 24 ... Motor, 26 ... Distribution line, 41 ... Frequency Detector: 42 ... Frequency change rate detector, 43 ... Change rate excessive first determination unit, 44 ... Voltage fluctuation signal calculation unit, 47 ... Logical product calculator, 48 ... Voltage change rate detector, 49 ... Change rate excessive Second decision unit, 50 ... third rate decision unit with excessive change rate, 54 ... reverse power relay .

Claims (3)

遮断器を介して交流電力系統と連系される常用発電装置の常用系統連系保護装置において、
前記交流電力系統の周波数を検出する周波数検出器と、
前記周波数検出器によって検出された周波数の変化率を演算する周波数変化率検出器と、
前記周波数変化率に基づいて、当該周波数変化率が正である場合は前記常用発電装置の出力電圧を低下させ、周波数変化率が負である場合は前記常用発電装置の出力電圧を上昇させる電圧揺動信号を出力させる電圧揺動信号演算部と、
前記周波数変化率に応じて複数のしきい値を設定し、各しきい値を超える毎に前記電圧揺動信号のゲインを切り替えるゲイン切り替え手段と、
前記常用発電装置の出力電圧の変化率を検出する電圧変化率検出器と、
前記電圧揺動信号演算部により演算された電圧揺動信号を前記常用発電装置に備わる自動電圧調整器に与えることで生じる前記常用発電装置の電圧変化率が所定値を超え、前記電圧揺動信号と電圧変化率の極性が同一の場合に、前記遮断器を解放して交流電力系統から前記常用発電装置を解列させる保護手段と
を具備することを特徴とする系統連系保護装置。
In the regular system interconnection protection device of the regular power generator connected to the AC power system through the circuit breaker,
A frequency detector for detecting the frequency of the AC power system;
A frequency change rate detector for calculating a change rate of the frequency detected by the frequency detector;
Based on the frequency change rate, when the frequency change rate is positive, the output voltage of the common power generator is decreased, and when the frequency change rate is negative, the voltage fluctuation is increased to increase the output voltage of the common power generator. A voltage fluctuation signal calculation unit for outputting a dynamic signal;
A plurality of threshold values according to the frequency change rate, and a gain switching means for switching the gain of the voltage fluctuation signal every time each threshold value is exceeded;
A voltage change rate detector for detecting the change rate of the output voltage of the regular power generator;
When the voltage fluctuation signal calculated by the voltage fluctuation signal calculation unit is applied to an automatic voltage regulator provided in the normal power generator, the voltage change rate of the normal power generator exceeds a predetermined value, and the voltage fluctuation signal And a protection means for releasing the circuit breaker and disconnecting the common power generator from the AC power system when the polarity of the voltage change rate is the same.
前記常用発電装置は、原動機により駆動される同期発電機を備えることを特徴とする請求項1記載の系統連系保護装置。The grid connection protection device according to claim 1, wherein the regular power generation device includes a synchronous generator driven by a prime mover. 前記電圧変化率が所定値を超え、前記電圧揺動信号と電圧変化率の極性が同一で、かつ前記周波数変化率に基づいて、周波数変化率が所定のしきい値を超えた場合に、前記遮断器を解放して交流電力系統から前記常用発電装置を解列させる保護手段を備えることを特徴とする請求項1又は2に記載の系統連系保護装置。When the voltage change rate exceeds a predetermined value, the polarity of the voltage fluctuation signal and the voltage change rate are the same, and based on the frequency change rate, the frequency change rate exceeds a predetermined threshold, The system interconnection protection device according to claim 1, further comprising a protection unit that releases the circuit breaker and disconnects the common power generator from the AC power system.
JP2003181516A 2003-06-25 2003-06-25 Grid connection protection device Expired - Fee Related JP3990324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003181516A JP3990324B2 (en) 2003-06-25 2003-06-25 Grid connection protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181516A JP3990324B2 (en) 2003-06-25 2003-06-25 Grid connection protection device

Publications (2)

Publication Number Publication Date
JP2005020878A true JP2005020878A (en) 2005-01-20
JP3990324B2 JP3990324B2 (en) 2007-10-10

Family

ID=34182212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181516A Expired - Fee Related JP3990324B2 (en) 2003-06-25 2003-06-25 Grid connection protection device

Country Status (1)

Country Link
JP (1) JP3990324B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148664A (en) * 2017-03-03 2018-09-20 富士電機株式会社 Reactive power compensator and control system of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148664A (en) * 2017-03-03 2018-09-20 富士電機株式会社 Reactive power compensator and control system of the same
JP7055998B2 (en) 2017-03-03 2022-04-19 富士電機株式会社 Static VAR compensator and control method of the device

Also Published As

Publication number Publication date
JP3990324B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP4546486B2 (en) Power network
JP3420162B2 (en) Power grid connection protection device
US20160248246A1 (en) Detecting faults in electricity grids
GB2370702A (en) Line linkage protection device for electrical generating equipment
JPH09247863A (en) Reactive power compensator for protecting system interconnection
JP3990324B2 (en) Grid connection protection device
JP3944057B2 (en) System interconnection protection device for power generation facilities
JP6801788B2 (en) Reactive power suppression methods for power converters, power systems and power systems
JP3751829B2 (en) System interconnection protection device for power generation facilities
KR100635480B1 (en) A protection method of grid-connected dispersed storage and generating system based on operation characteristics of a recloser
JP4341028B2 (en) Grid connection protection device for regular power generator
JP3302898B2 (en) Power grid connection protection device
JP2002101562A (en) System interconnection protection device of power generating installation
JP3315298B2 (en) Power grid connection protection device
JP3967483B2 (en) System interconnection protection device for power generation facilities
JP4387620B2 (en) System interconnection protection device for power generation facilities
JP4387621B2 (en) System interconnection protection device for power generation facilities
JP3689004B2 (en) System interconnection protection device for power generation facilities
JP3397608B2 (en) Power grid connection protection device
JP3634645B2 (en) System linkage protection device for power generation facilities
JP4202954B2 (en) Grid connection protection device for regular power generator
JP2002281673A (en) System interconnection protecting device for power generating facility
JP4149962B2 (en) Isolated operation prevention device
JP3261541B2 (en) Protective relay
JP2002281674A (en) System interconnection protection device for power generating facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3990324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees