JP2004320888A - Noise suppression device for power conversion apparatus - Google Patents

Noise suppression device for power conversion apparatus Download PDF

Info

Publication number
JP2004320888A
JP2004320888A JP2003111077A JP2003111077A JP2004320888A JP 2004320888 A JP2004320888 A JP 2004320888A JP 2003111077 A JP2003111077 A JP 2003111077A JP 2003111077 A JP2003111077 A JP 2003111077A JP 2004320888 A JP2004320888 A JP 2004320888A
Authority
JP
Japan
Prior art keywords
circuit
capacitor
reactor
series
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003111077A
Other languages
Japanese (ja)
Inventor
Jiro Toyosaki
次郎 豊崎
Michio Iwabori
道雄 岩堀
Hidetoshi Kaida
英俊 海田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003111077A priority Critical patent/JP2004320888A/en
Publication of JP2004320888A publication Critical patent/JP2004320888A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, because the trend toward high speed of a power conversion switching device increases high-frequency leak current and surge voltage to exert an adverse effect, although there is the conventional embodiment is which can reduce such an adverse effect by attaching a resonance circuit consisting of reactors and capacitors , some loss is generated due to resistance contained in the resonance circuit. <P>SOLUTION: A series circuit of the reactors L1 to L3 and the capacitors C1 to C3 is connected between output terminals Vu to Vw of an inverter 3 consisting of switching devices Q1 to Q6 and negative side VN of DC output. Diodes D1 to D6 are connected between VP and VN, and resistors R1 to R3 are connected between a junction point of the reactor and the capacitor and a diode junction point. With this constitution, the loss due to resistance can be restrained from increasing by excluding resistance in a charging/discharging path of the capacitors C1 to C3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、インバータ装置等のスイッチング素子を含む電力変換装置におけるノイズ低減装置に関する。
【0002】
【従来の技術】
図7に3相誘導電動機を3相インバータにより駆動する誘導電動機駆動システムを示す。これは例えば特開2002−247836号公報に図1として示されているもので、その図1から電流検出器5を除いたものが図7に相当する。
図7では、交流電源1に整流器2の入力が、整流器2の出力にコンデンサC0が、コンデンサC0には半導体スイッチQ1〜Q6で構成された3相インバータ3が、3相インバータ3の出力にはモータ4がそれぞれ接続されている。3相インバータ3のスイッチQ1〜Q6は、パルス幅変調(PWM)パルスでオン,オフ制御され、モータ4は3相インバータ3の出力の出力電圧で駆動される。
【0003】
ところで、半導体スイッチQ1〜Q6はスイッチング損失の低減、騒音低減などの観点から素子特性の高速化が進んでおり、スイッチング時の電圧変化率であるdv/dtが急峻になるにしたがって、高調波漏れ電流の増加,サージ電圧の増加によるモータ巻線の絶縁劣化と言った問題が発生している。
そこで、素子特性の高速化によるメリットはそのままに、モータなどの負荷に印加される電圧のdv/dtを抑制するものとして、非特許文献1に示す図8のような回路が提案されている。
【0004】
図8に就いて説明する。
リアクトルL1には、インバータ3から負荷側に電流が流れているものとする。この状態でスイッチQ1がターンオンすると、図9に矢印で示すような共振電流i1が流れ、コンデンサC1は充電されることになる。リアクトルL1とコンデンサC1の共振現象により、コンデンサC1の電圧はスイッチQ1の電圧変化に比べて緩やかに上昇することになる。コンデンサC1が直流中間電圧Edまで充電されると、ダイオードD1が導通状態となって図9に矢印で示すような電流i2が流れ、共振現象にてリアクトルL1に蓄えられたエネルギーがリアクトルL1→ダイオードD1→抵抗器R1→スイッチQ1→リアクトルL1の経路で抵抗器に消費される。共振現象により蓄えられたエネルギーが抵抗器R1によって消費されると、リアクトルL1には負荷電流iLのみが流れ、通常の状態となる。この回路動作により、モータ4に印加される電圧は電圧変化が抑制され、かつダイオードにより、ほぼ直流中間電圧値にクランプされるので、サージ電圧が抑制されるとともに高周波ノイズが低減される。
【0005】
次に、スイッチQ1がターンオフし、スイッチQ2がターンオンした場合を考える。この場合、図10の矢印のように共振電流i3が流れ、コンデンサC1は放電されることになる。リアクトルL1とコンデンサC1との共振現象により、コンデンサC1の電圧はスイッチQ1(またはスイッチQ2)の電圧変化に比べて緩やかに下降することとなる。
コンデンサC1が零まで放電されると、ダイオードD2が導通状態となり、図10の矢印のような電流i4が流れ、共振現象によりリアクトルL1に蓄えられたエネルギーが、リアクトルL1→スイッチQ2→抵抗器R2→ダイオードD2→リアクトルL1の経路で抵抗器R2に消費される。共振現象により蓄えられたエネルギーが抵抗器R2によって消費されると、リアクトルL1には負荷電流iLのみが流れ、通常の状態となる。
【0006】
よって、スイッチQ1がターンオンした場合と同様に、モータ4に印加される電圧は電圧変化が抑制され、かつダイオードにより、ほぼ零(直流出力の負側電位)にクランプされるので、サージ電圧が抑制されるとともに高周波ノイズが低減される。上記ではU相分について説明したが、他の相の動作や効果も全く同様である。
【0007】
【非特許文献1】
「Design and Implementation of an Inverter Output LC Filter Used forDV/DT Reduction」“IEEE TRANSACTION ONPOWER ELECTRONICS”VOL.17,NO.3,p.327〜331,MAY,2002
【0008】
【発明が解決しようとする課題】
図8の構成では、スイッチQ1がターンオフし、スイッチQ2がターンオンした場合のコンデンサC1が放電する経路に抵抗器R2があるため、この抵抗器R2が余計な損失を発生させることになる。これにより、抵抗器に許容損失の大きな部品を使用しなければならず、装置が大型化すると言う問題が生じる。
したがって、この発明の課題は、抵抗器の損失を低減しつゝ漏れ電流やサージ電圧を低減し装置の小型化を実現することにある。
【0009】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、交流電源に接続された整流回路と、この整流回路の直流出力に平滑回路とインバータ回路とを接続した電力変換装置において、
前記インバータ回路の各相の出力端子とその直流出力部の正側母線または負側母線との間にリアクトルとコンデンサとの直列回路をそれぞれ接続し、前記直流出力部の正側母線と負側母線との間にダイオードの直列回路を出力相数と同じ数だけ接続し、前記リアクトルとコンデンサとの接続点と前記ダイオードの直列回路の接続点との間に抵抗器をそれぞれ接続したことを特徴とする。
【0010】
請求項2の発明では、交流電源に接続された整流回路と、この整流回路の直流出力に平滑回路とインバータ回路とを接続した電力変換装置において、
前記インバータ回路の各相の出力端子とその直流出力部の負側母線との間にリアクトルとコンデンサとの直列回路をそれぞれ接続し、前記リアクトルと前記コンデンサとの接続点にダイオードを直列接続した直列回路の接続点を各相個別に接続し、前記ダイオードの直列回路のカソード側と直流出力部の正側母線との間に抵抗器を接続し、前記ダイオードの直列回路のアノード側と前記コンデンサのリアクトルと接続されていない一端との間に抵抗器をそれぞれ接続したことを特徴とする。
【0011】
請求項3の発明では、交流電源に接続された整流回路と、この整流回路の直流出力に平滑回路とインバータ回路とを接続した電力変換装置において、
前記インバータ回路の各相の出力端子とその直流出力部の正側母線との間にリアクトルとコンデンサとの直列回路をそれぞれ接続し、前記リアクトルと前記コンデンサとの接続点にダイオードを直列接続した直列回路の接続点を各相個別に接続し、前記ダイオードの直列回路のカソード側と前記コンデンサのリアクトルと接続されていない一端との間に抵抗器を接続し、前記ダイオードの直列回路のアノード側と直流出力部の負側母線との間に抵抗器をそれぞれ接続したことを特徴とする。
【0012】
請求項4の発明では、交流電源に接続された整流回路と、この整流回路の直流出力に平滑回路とインバータ回路とを接続した電力変換装置において、
前記平滑回路を容量の等しい平滑コンデンサの直列接続回路から構成し、この平滑コンデンサの直列接続点と前記インバータ回路の各相の出力端子との間に、リアクトルとコンデンサとの直列回路をそれぞれ接続し、前記リアクトルと前記コンデンサとの接続点にダイオードを直列接続した直列回路の接続点を各相個別に接続し、前記ダイオードの直列回路のカソード側と直流出力部の正側母線との間に抵抗器を接続し、前記ダイオードの直列回路のアノード側と直流出力部の負側母線との間に抵抗器をそれぞれ接続したことを特徴とする。
【0013】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示す構成図である。これは、図8における抵抗器の接続位置を変更したものであり、以下にその動作に就いて説明する。図2に示すように、リアクトルL1には、インバータ3から負荷側に電流が流れているものとする。この状態でスイッチQ1がターンオンすると、図2に示す共振電流ilが流れ、コンデンサC1は充電されることになる。リアクトルL1とコンデンサC1の共振現象により、コンデンサC1の電圧はスイッチQ1の電圧変化に比べて緩やかに上昇することになる。
【0014】
コンデンサC1が直流中間電圧値Edまで充電されると、ダイオードD1が導通状態となり、図2のように電流i2が流れ、共振現象によりリアクトルL1に蓄えられたエネルギーが、リアクトルL1→抵抗器R1→ダイオードD1→スイッチQ1→リアクトルL1の経路で抵抗器R1に消費される。共振現象により蓄えられたエネルギーが抵抗器R1によって消費されると、リアクトルL1には負荷電流iLのみが流れ、通常の状態となる。この動作により、モータ4に印加される電圧は電圧変化が抑制され、かつダイオードにより、ほぼ直流中間電圧値にクランプされるので、サージ電圧が抑制されるとともに高周波ノイズが低減される。
【0015】
次に、スイッチQ1がターンオフし、スイッチQ2がターンオンした場合を考える。この場合、図3のように共振電流i3が流れ、コンデンサC1は放電されることになる。リアクトルL1とコンデンサC1との共振現象により、コンデンサC1の電圧はスイッチQ1(またはスイッチQ2)の電圧変化に比べて緩やかに下降することとなる。
コンデンサC1が零まで放電されると、ダイオードD2が導通状態となり、図3のように電流i4が流れ、共振現象によりリアクトルL1に蓄えられたエネルギーが、リアクトルL1→スイッチQ2→ダイオードD2→抵抗器R1→リアクトルL1の経路で抵抗器R1に消費される。共振現象により蓄えられたエネルギーが抵抗器R1によって消費されると、リアクトルL1には負荷電流iLのみ流れ、通常の状態となる。
【0016】
よって、スイッチQ1がターンオンした場合と同様に、モータ4に印加される電圧は電圧変化が抑制され、かつダイオードにより、ほぼ零(直流出力の負側電位)にクランプされるので、サージ電圧が抑制されるとともに高周波ノイズが低減される。上記ではU相分について説明したが、他の相の動作や効果も同様である。
つまり、基本的な機能,動作は図8の従来回路と同様であるが、図1の回路ではコンデンサの充電時および放電時には抵抗器を介さない経路を形成しているので、抵抗器に余計な損失が発生しない利点がある。また、負荷電流を抵抗器に流さないように、負荷の接続点はリアクトルL1とコンデンサC1との接続点としている。図1では、コンデンサC1〜C3を直流母線の負側に接続したが、直流母線の正側に接続するようにしても良い。
【0017】
図4はこの発明の第2の実施の形態を示す回路図で、コンデンサC1〜C3の接続点を直流母線の負側に接続したものである。
同様に、図5はこの発明の第3の実施の形態を示す回路図で、コンデンサC1〜C3の接続点を直流母線の正側に接続したものである。
さらに図6はこの発明の第4の実施の形態を示す回路図で、コンデンサC1〜C3の接続点をコンデンサC01とC02との直列接続点、すなわち直流中間電圧の中性点に接続したものである。
なお、図4〜6の機能,動作は図1と全く同様なので説明は省略する。
【0018】
【発明の効果】
この発明によれば、抵抗器による損失を増大させることなく、漏れ電流やサージ電圧の低減ができるため装置の小型化,高効率化が可能となる利点がもたらされる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示す回路図
【図2】図1でQ1ターンオン時の電流経路説明図
【図3】図1でQ1ターンオフ時の電流経路説明図
【図4】この発明の第2の実施の形態を示す回路図
【図5】この発明の第3の実施の形態を示す回路図
【図6】この発明の第4の実施の形態を示す回路図
【図7】誘導電動機駆動システムの従来例を示す回路図
【図8】dv/dtを抑制する従来例を示す回路図
【図9】図8でQ1ターンオン時の電流経路説明図
【図10】図8でQ1ターンオフ時の電流経路説明図
【符号の説明】
1…交流電源、2…整流器、3…インバータ回路、4…誘導電動機(モータ)、Q1〜Q6…スイッチング素子、L1〜L3…リアクトル、C0〜C3,C01,C02…コンデンサ、R1〜R3…抵抗器、D1〜D6…ダイオード。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a noise reduction device in a power conversion device including a switching element such as an inverter device.
[0002]
[Prior art]
FIG. 7 shows an induction motor drive system for driving a three-phase induction motor by a three-phase inverter. This is shown, for example, in FIG. 1 in Japanese Patent Application Laid-Open No. 2002-247836, and FIG. 7 in which the current detector 5 is removed from FIG. 1 corresponds to FIG.
In FIG. 7, the input of the rectifier 2 is provided to the AC power supply 1, the capacitor C0 is provided to the output of the rectifier 2, the three-phase inverter 3 including the semiconductor switches Q1 to Q6 is provided to the capacitor C0, and the output of the three-phase inverter 3 is provided. The motors 4 are respectively connected. The switches Q1 to Q6 of the three-phase inverter 3 are turned on and off by pulse width modulation (PWM) pulses, and the motor 4 is driven by the output voltage of the output of the three-phase inverter 3.
[0003]
By the way, the semiconductor switches Q1 to Q6 have higher element characteristics from the viewpoints of reduction of switching loss and noise reduction, and as the dv / dt, which is a voltage change rate at the time of switching, becomes steeper, harmonic leakage occurs. Problems such as deterioration of motor winding insulation due to increase in current and surge voltage have occurred.
Therefore, a circuit as shown in FIG. 8 shown in Non-Patent Document 1 has been proposed as suppressing the dv / dt of the voltage applied to a load such as a motor while keeping the merit of increasing the element characteristics.
[0004]
FIG. 8 will be described.
It is assumed that a current flows from the inverter 3 to the load side in the reactor L1. When the switch Q1 is turned on in this state, a resonance current i1 flows as indicated by an arrow in FIG. 9 and the capacitor C1 is charged. Due to the resonance phenomenon between the reactor L1 and the capacitor C1, the voltage of the capacitor C1 rises more slowly than the voltage change of the switch Q1. When the capacitor C1 is charged to the DC intermediate voltage Ed, the diode D1 becomes conductive and a current i2 flows as shown by an arrow in FIG. 9, and the energy stored in the reactor L1 by the resonance phenomenon is changed from the reactor L1 to the diode. D1 → resistor R1 → switch Q1 → reactor L1 is consumed in the resistor. When the energy stored by the resonance phenomenon is consumed by the resistor R1, only the load current iL flows through the reactor L1, and a normal state is set. By this circuit operation, the voltage applied to the motor 4 is suppressed from changing, and is clamped by the diode to a DC intermediate voltage value, so that the surge voltage is suppressed and the high-frequency noise is reduced.
[0005]
Next, consider the case where the switch Q1 is turned off and the switch Q2 is turned on. In this case, the resonance current i3 flows as indicated by the arrow in FIG. 10, and the capacitor C1 is discharged. Due to the resonance phenomenon between the reactor L1 and the capacitor C1, the voltage of the capacitor C1 falls more slowly than the voltage change of the switch Q1 (or the switch Q2).
When the capacitor C1 is discharged to zero, the diode D2 becomes conductive, a current i4 flows as shown by an arrow in FIG. 10, and the energy stored in the reactor L1 by the resonance phenomenon is changed from the reactor L1, the switch Q2, and the resistor R2. → Diode D2 → Dissipated to resistor R2 via reactor L1. When the energy stored by the resonance phenomenon is consumed by the resistor R2, only the load current iL flows through the reactor L1, and a normal state is set.
[0006]
Therefore, as in the case where the switch Q1 is turned on, the voltage applied to the motor 4 is suppressed from changing, and is clamped to almost zero (the negative potential of the DC output) by the diode, so that the surge voltage is suppressed. And high-frequency noise is reduced. Although the U phase has been described above, the operations and effects of the other phases are exactly the same.
[0007]
[Non-patent document 1]
"Design and Implementation of an Inverter Output LC Filter Used for DV / DT Reduction", "IEEE TRANSACTION ONPOWER ELECTRONICS" VOL. 17, NO. 3, p. 327-331, MAY, 2002
[0008]
[Problems to be solved by the invention]
In the configuration of FIG. 8, since the resistor R2 is on the path where the capacitor C1 discharges when the switch Q1 is turned off and the switch Q2 is turned on, the resistor R2 causes an extra loss. As a result, a component having a large allowable loss must be used for the resistor, which causes a problem that the device becomes large.
Accordingly, an object of the present invention is to reduce the loss of a resistor, reduce leakage current and surge voltage, and realize a smaller device.
[0009]
[Means for Solving the Problems]
In order to solve such a problem, the invention according to claim 1 includes a rectifier circuit connected to an AC power supply, and a power converter in which a DC output of the rectifier circuit is connected to a smoothing circuit and an inverter circuit.
A series circuit of a reactor and a capacitor is connected between the output terminal of each phase of the inverter circuit and the positive bus or the negative bus of the DC output unit, respectively, and the positive bus and the negative bus of the DC output unit are connected. A series circuit of diodes is connected by the same number as the number of output phases, and a resistor is connected between a connection point of the reactor and the capacitor and a connection point of the series circuit of the diode. I do.
[0010]
According to a second aspect of the present invention, there is provided a power converter in which a rectifier circuit connected to an AC power supply and a DC output of the rectifier circuit are connected to a smoothing circuit and an inverter circuit.
A series circuit in which a series circuit of a reactor and a capacitor is connected between the output terminal of each phase of the inverter circuit and the negative bus of the DC output unit, and a diode is connected in series with a connection point between the reactor and the capacitor. A connection point of the circuit is individually connected to each phase, a resistor is connected between a cathode side of the series circuit of the diode and a positive bus of the DC output unit, and an anode side of the series circuit of the diode and the capacitor of the capacitor. A resistor is connected between the reactor and one end that is not connected.
[0011]
According to a third aspect of the present invention, there is provided a power converter in which a rectifier circuit connected to an AC power supply and a DC output of the rectifier circuit are connected to a smoothing circuit and an inverter circuit.
A series circuit in which a series circuit of a reactor and a capacitor is connected between the output terminal of each phase of the inverter circuit and the positive bus of the DC output unit, and a diode is connected in series with a connection point between the reactor and the capacitor. A connection point of the circuit is individually connected to each phase, a resistor is connected between a cathode side of the series circuit of the diode and one end of the capacitor not connected to the reactor, and an anode side of the series circuit of the diode. A resistor is connected between the DC output unit and the negative bus.
[0012]
According to a fourth aspect of the present invention, there is provided a power converter in which a rectifier circuit connected to an AC power supply and a DC output of the rectifier circuit are connected to a smoothing circuit and an inverter circuit.
The smoothing circuit comprises a series connection circuit of smoothing capacitors having the same capacity, and a series circuit of a reactor and a capacitor is connected between a series connection point of the smoothing capacitors and an output terminal of each phase of the inverter circuit. A connection point of a series circuit in which a diode is connected in series to a connection point between the reactor and the capacitor is individually connected to each phase, and a resistance is provided between a cathode side of the series circuit of the diode and a positive bus of a DC output unit. And a resistor connected between the anode side of the series circuit of the diode and the negative bus of the DC output unit.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a configuration diagram showing a first embodiment of the present invention. This is obtained by changing the connection position of the resistor in FIG. 8, and the operation will be described below. As shown in FIG. 2, it is assumed that a current flows from the inverter 3 to the load side in the reactor L1. When the switch Q1 is turned on in this state, the resonance current il shown in FIG. 2 flows, and the capacitor C1 is charged. Due to the resonance phenomenon between the reactor L1 and the capacitor C1, the voltage of the capacitor C1 rises more slowly than the voltage change of the switch Q1.
[0014]
When the capacitor C1 is charged to the DC intermediate voltage value Ed, the diode D1 becomes conductive, a current i2 flows as shown in FIG. 2, and the energy stored in the reactor L1 by the resonance phenomenon is changed from the reactor L1 to the resistor R1 to the resistor R1. It is consumed by the resistor R1 through the path of the diode D1, the switch Q1, and the reactor L1. When the energy stored by the resonance phenomenon is consumed by the resistor R1, only the load current iL flows through the reactor L1, and a normal state is set. By this operation, the voltage applied to the motor 4 is suppressed from changing, and is clamped by the diode to a DC intermediate voltage value, so that the surge voltage is suppressed and the high-frequency noise is reduced.
[0015]
Next, consider the case where the switch Q1 is turned off and the switch Q2 is turned on. In this case, the resonance current i3 flows as shown in FIG. 3, and the capacitor C1 is discharged. Due to the resonance phenomenon between the reactor L1 and the capacitor C1, the voltage of the capacitor C1 falls more slowly than the voltage change of the switch Q1 (or the switch Q2).
When the capacitor C1 is discharged to zero, the diode D2 becomes conductive, a current i4 flows as shown in FIG. 3, and the energy stored in the reactor L1 by the resonance phenomenon is changed from the reactor L1, the switch Q2, the diode D2, and the resistor. R1 is consumed by the resistor R1 through the reactor L1. When the energy stored by the resonance phenomenon is consumed by the resistor R1, only the load current iL flows through the reactor L1, and a normal state is set.
[0016]
Therefore, as in the case where the switch Q1 is turned on, the voltage applied to the motor 4 is suppressed from changing, and is clamped to almost zero (the negative potential of the DC output) by the diode, so that the surge voltage is suppressed. And high-frequency noise is reduced. Although the U phase has been described above, the operation and effects of the other phases are the same.
That is, although the basic functions and operations are the same as those of the conventional circuit of FIG. 8, the circuit of FIG. 1 forms a path that does not pass through the resistor when charging and discharging the capacitor, so that the resistor is unnecessary. There is an advantage that no loss occurs. The connection point of the load is a connection point between the reactor L1 and the capacitor C1 so that the load current does not flow through the resistor. In FIG. 1, the capacitors C1 to C3 are connected to the negative side of the DC bus, but may be connected to the positive side of the DC bus.
[0017]
FIG. 4 is a circuit diagram showing a second embodiment of the present invention, in which connection points of capacitors C1 to C3 are connected to the negative side of a DC bus.
Similarly, FIG. 5 is a circuit diagram showing a third embodiment of the present invention, in which connection points of capacitors C1 to C3 are connected to the positive side of a DC bus.
FIG. 6 is a circuit diagram showing a fourth embodiment of the present invention, in which a connection point of capacitors C1 to C3 is connected to a series connection point of capacitors C01 and C02, that is, a neutral point of a DC intermediate voltage. is there.
Note that the functions and operations of FIGS. 4 to 6 are completely the same as those of FIG.
[0018]
【The invention's effect】
According to the present invention, the leakage current and the surge voltage can be reduced without increasing the loss due to the resistor, so that there is an advantage that the size and efficiency of the device can be reduced.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of the present invention; FIG. 2 is an explanatory diagram of a current path when Q1 is turned on in FIG. 1; FIG. 3 is an explanatory diagram of a current path when Q1 is turned off in FIG. FIG. 5 is a circuit diagram showing a second embodiment of the present invention. FIG. 5 is a circuit diagram showing a third embodiment of the present invention. FIG. 6 is a circuit diagram showing a fourth embodiment of the present invention. 7 is a circuit diagram showing a conventional example of an induction motor drive system. FIG. 8 is a circuit diagram showing a conventional example for suppressing dv / dt. FIG. 9 is an explanatory diagram of a current path when Q1 is turned on in FIG. For explaining the current path when Q1 is turned off.
DESCRIPTION OF SYMBOLS 1 ... AC power supply, 2 ... Rectifier, 3 ... Inverter circuit, 4 ... Induction motor (motor), Q1-Q6 ... Switching element, L1-L3 ... Reactor, C0-C3, C01, C02 ... Capacitor, R1-R3 ... Resistance Vessels, D1 to D6 ... diodes.

Claims (4)

交流電源に接続された整流回路と、この整流回路の直流出力に平滑回路とインバータ回路とを接続した電力変換装置において、
前記インバータ回路の各相の出力端子とその直流出力部の正側母線または負側母線との間にリアクトルとコンデンサとの直列回路をそれぞれ接続し、前記直流出力部の正側母線と負側母線との間にダイオードの直列回路を出力相数と同じ数だけ接続し、前記リアクトルとコンデンサとの接続点と前記ダイオードの直列回路の接続点との間に抵抗器をそれぞれ接続したことを特徴とする電力変換装置のノイズ低減装置。
In a rectifier circuit connected to an AC power supply, and a power converter in which a smoothing circuit and an inverter circuit are connected to a DC output of the rectifier circuit,
A series circuit of a reactor and a capacitor is connected between the output terminal of each phase of the inverter circuit and the positive bus or the negative bus of the DC output unit, respectively, and the positive bus and the negative bus of the DC output unit are connected. A series circuit of diodes is connected by the same number as the number of output phases, and a resistor is connected between a connection point of the reactor and the capacitor and a connection point of the series circuit of the diode. Noise reduction device for power converters.
交流電源に接続された整流回路と、この整流回路の直流出力に平滑回路とインバータ回路とを接続した電力変換装置において、
前記インバータ回路の各相の出力端子とその直流出力部の負側母線との間にリアクトルとコンデンサとの直列回路をそれぞれ接続し、前記リアクトルと前記コンデンサとの接続点にダイオードを直列接続した直列回路の接続点を各相個別に接続し、前記ダイオードの直列回路のカソード側と直流出力部の正側母線との間に抵抗器を接続し、前記ダイオードの直列回路のアノード側と前記コンデンサのリアクトルと接続されていない一端との間に抵抗器をそれぞれ接続したことを特徴とする電力変換装置のノイズ低減装置。
In a rectifier circuit connected to an AC power supply, and a power converter in which a smoothing circuit and an inverter circuit are connected to a DC output of the rectifier circuit,
A series circuit in which a series circuit of a reactor and a capacitor is connected between the output terminal of each phase of the inverter circuit and the negative bus of the DC output unit, and a diode is connected in series with a connection point between the reactor and the capacitor. A connection point of the circuit is individually connected to each phase, a resistor is connected between a cathode side of the series circuit of the diode and a positive bus of the DC output unit, and an anode side of the series circuit of the diode and the capacitor of the capacitor. A noise reduction device for a power conversion device, wherein a resistor is connected between a reactor and one end that is not connected.
交流電源に接続された整流回路と、この整流回路の直流出力に平滑回路とインバータ回路とを接続した電力変換装置において、
前記インバータ回路の各相の出力端子とその直流出力部の正側母線との間にリアクトルとコンデンサとの直列回路をそれぞれ接続し、前記リアクトルと前記コンデンサとの接続点にダイオードを直列接続した直列回路の接続点を各相個別に接続し、前記ダイオードの直列回路のカソード側と前記コンデンサのリアクトルと接続されていない一端との間に抵抗器を接続し、前記ダイオードの直列回路のアノード側と直流出力部の負側母線との間に抵抗器をそれぞれ接続したことを特徴とする電力変換装置のノイズ低減装置。
In a rectifier circuit connected to an AC power supply, and a power converter in which a smoothing circuit and an inverter circuit are connected to a DC output of the rectifier circuit,
A series circuit in which a series circuit of a reactor and a capacitor is connected between the output terminal of each phase of the inverter circuit and the positive bus of the DC output unit, and a diode is connected in series with a connection point between the reactor and the capacitor. A connection point of the circuit is individually connected to each phase, a resistor is connected between a cathode side of the series circuit of the diode and one end of the capacitor not connected to the reactor, and an anode side of the series circuit of the diode. A noise reduction device for a power converter, wherein a resistor is connected between the DC output unit and a negative bus.
交流電源に接続された整流回路と、この整流回路の直流出力に平滑回路とインバータ回路とを接続した電力変換装置において、
前記平滑回路を容量の等しい平滑コンデンサの直列接続回路から構成し、この平滑コンデンサの直列接続点と前記インバータ回路の各相の出力端子との間に、リアクトルとコンデンサとの直列回路をそれぞれ接続し、前記リアクトルと前記コンデンサとの接続点にダイオードを直列接続した直列回路の接続点を各相個別に接続し、前記ダイオードの直列回路のカソード側と直流出力部の正側母線との間に抵抗器を接続し、前記ダイオードの直列回路のアノード側と直流出力部の負側母線との間に抵抗器をそれぞれ接続したことを特徴とする電力変換装置のノイズ低減装置。
In a rectifier circuit connected to an AC power supply, and a power converter in which a smoothing circuit and an inverter circuit are connected to a DC output of the rectifier circuit,
The smoothing circuit comprises a series connection circuit of smoothing capacitors having the same capacity, and a series circuit of a reactor and a capacitor is connected between a series connection point of the smoothing capacitors and an output terminal of each phase of the inverter circuit. A connection point of a series circuit in which a diode is connected in series to a connection point between the reactor and the capacitor is individually connected to each phase, and a resistance is provided between a cathode side of the series circuit of the diode and a positive bus of a DC output unit. And a resistor connected between the anode side of the series circuit of the diode and the negative bus of the DC output unit.
JP2003111077A 2003-04-16 2003-04-16 Noise suppression device for power conversion apparatus Pending JP2004320888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111077A JP2004320888A (en) 2003-04-16 2003-04-16 Noise suppression device for power conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111077A JP2004320888A (en) 2003-04-16 2003-04-16 Noise suppression device for power conversion apparatus

Publications (1)

Publication Number Publication Date
JP2004320888A true JP2004320888A (en) 2004-11-11

Family

ID=33471729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111077A Pending JP2004320888A (en) 2003-04-16 2003-04-16 Noise suppression device for power conversion apparatus

Country Status (1)

Country Link
JP (1) JP2004320888A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6299915B1 (en) * 2017-05-31 2018-03-28 富士電機株式会社 Surge voltage suppression device, power conversion device using the same, and multiphase motor drive device
JP2019140769A (en) * 2018-02-08 2019-08-22 富士電機株式会社 Surge voltage suppression device, electric power conversion device and multi-phase motor driving device using the same
DE102019113721A1 (en) 2018-07-06 2020-01-09 Fuji Electric Co., Ltd. Motor driving device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6299915B1 (en) * 2017-05-31 2018-03-28 富士電機株式会社 Surge voltage suppression device, power conversion device using the same, and multiphase motor drive device
JP2018207601A (en) * 2017-05-31 2018-12-27 富士電機株式会社 Surge voltage suppression device, and power conversion apparatus and multi-phase motor driving apparatus using the same
JP2019140769A (en) * 2018-02-08 2019-08-22 富士電機株式会社 Surge voltage suppression device, electric power conversion device and multi-phase motor driving device using the same
JP7127290B2 (en) 2018-02-08 2022-08-30 富士電機株式会社 Surge voltage suppressor, power conversion device and polyphase motor drive device using the same
DE102019113721A1 (en) 2018-07-06 2020-01-09 Fuji Electric Co., Ltd. Motor driving device

Similar Documents

Publication Publication Date Title
CA2789937C (en) 3-level pulse width modulation inverter with snubber circuit
JP5049964B2 (en) Power converter
JP2011120440A (en) Power conversion apparatus
EP0783203B1 (en) Bridge power converter
JP2010252548A (en) Snubber circuit of three-level power converter
US8787055B2 (en) Inverter device
JPH03103079A (en) Method and apparatus for regenerating energy in power converting circuit using gto thyristor
WO2014141441A1 (en) Current-source power conversion apparatus
JP2009095083A (en) Power converter
US20220173652A1 (en) Power conversion system and virtual dc voltage generator circuit
JP2004080880A (en) Snubber circuit
JPH07312878A (en) Snubber circuit for three-level inverter
JP2006340410A (en) Ac direct converter unit
JP3864799B2 (en) PWM cycloconverter
JP2004320888A (en) Noise suppression device for power conversion apparatus
JP5407744B2 (en) AC-DC converter
JP4471076B2 (en) PWM cycloconverter
JPH11146648A (en) Dc-dc converter
JP3396635B2 (en) Power converter
JPH0731158A (en) Snubber energy recovery circuit for power converter
JP2004248419A (en) Power converter
JP2001169563A (en) Three-level inverter
JP2000232788A (en) Reduction of higher harmonic noise of power converter circuit
JP2004048899A (en) Power converter for rectifying alternating current to direct current
JPH08322268A (en) Three-/single-phase voltage converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080821