JP2004319419A - Connector of multiple discharge tube lighting control circuit - Google Patents

Connector of multiple discharge tube lighting control circuit Download PDF

Info

Publication number
JP2004319419A
JP2004319419A JP2003146990A JP2003146990A JP2004319419A JP 2004319419 A JP2004319419 A JP 2004319419A JP 2003146990 A JP2003146990 A JP 2003146990A JP 2003146990 A JP2003146990 A JP 2003146990A JP 2004319419 A JP2004319419 A JP 2004319419A
Authority
JP
Japan
Prior art keywords
discharge tube
connector
frequency
inverter
lighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003146990A
Other languages
Japanese (ja)
Inventor
Koichi Ishida
耕一 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003146990A priority Critical patent/JP2004319419A/en
Publication of JP2004319419A publication Critical patent/JP2004319419A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple lamp electronic ballast and connector with a high setting cost merit capable of efficiently and surely lighting multiple lamps and fluorescent lamps including meta-halide tubes only by use of two output lines of one large output inverter and performing the dimming control thereof by significantly reducing a switching noise inevitably generated when performing lighting control of a high-power discharge tube by a rectangular wave electronic ballast. <P>SOLUTION: In this multi-lamp type electronic ballast and connector, a plurality of connectors 10 comprising an inductance 8 and a capacity 9 are provided in parallel on the output of one rectangular wave inverter of oscillating frequency, and the oscillating frequency of the inverter is set according to the vicinity slightly shifted from the serial resonance frequency of L and C of the connector according to the impedance in a discharge tube rated power. Each discharge tube 11 is connected to them, and the frequency is varied to dime it. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は一台のインバーターの出力二線のみで多数の放電管を同時点灯制御する方式において、各放電灯毎に接続し初期点灯及び出力を制御する電子安定器と負荷放電管とを繋ぐ接続器回路に関する。
【0002】
【従来の技術】
従来水銀灯、ナトリューム灯、メタハラ灯等の放電管点灯の安定器器具として、所謂、銅鉄型安定器のトランス、チョークコイルの組み合わせによる重量の大きい大型の安定器一台が一放電管を一対一で点灯制御するのが通例であつた。最近蛍光灯では一台の電子安定器で多数の蛍光灯を点灯制御する方式も現れて来たが、高輝度放電灯、更に高電圧パルスの必要とするメタハラ管等の大電力管をも、二線のみで多数灯を初期点灯及び制御をする装置の実用化は大電力であるための発生ノイズ、効率、製造コスト高、等の難問題がその実用化を妨げてきた。
【0003】
【発明が解決しようとする課題】
従来の銅鉄型安定器、更に電子安定器もふくめて高輝度放電管と安定器が1対1の組で商用交流電源に接続し使用するものが殆どであり、電子安定器の場合など大出力になるとその力率改善、更に出力波形をもかなり補正して、大出力に伴うノイズ発生のレベルをも低下させねばならず、そのための付加装置の回路、部品増加によるコストアップ、はたまた波形補正による効率低下、回路ロスによる反省エネ性も免れない。、したがってノイズレベルの低い小電力のものはともかく、大電力のものはその実用化普及を妨げてきている。それらのノイズ発生問題と言う最大の泣き所さえ改善出来れば、一台の大電力安定器によつて5灯、10灯の多数灯を同時点灯すると言う、省資源性とコストメリット可能な多灯用装置も出現可能となる。先に特願2002−383419で提出したものも一台で多灯を点灯制御に関するものであつた、しかし図2の様に管にかかる出力電圧波形は高調波の多い三角波とその上矩形パルス切り替え時に発生するノイズ15,16が小規模ながら常時現れ、小出力管の時はともかく、更に大出力にしようとするとノイズレベルが出力に比例してアップする。また初期の起動高電圧もほどほどなので放電管寿命末期等に多い管の起動電圧上昇に伴う不点灯も防ぐためにも今一段起動電圧を高めたかった。本発明は前記したように点灯以後は出力波形を完全マイルドなサインウエーブ19に近づけ発生ノイズをも大幅軽減、更に電子安定器ならではの諸機能、つまり調光、高効率、軽量、等の機能維持と大電力安定器一台の出力二線のみに多種高輝度放電管多灯を負荷して初期点灯及び制御する設置によるコストメリット、省エネ性の実現が本発明の目的である。
【0004】
【発明が解決しようとするための手段】
1図は本発明の一実施例に使用した矩形波発生用インバーター回路である。A、B、より左側はFET2による昇圧スイチング回路、このAB間昇圧直流電源は360V位に設定しておく。次の各FET5,7のブリジの駆動体6へ周波数可変の矩形波インバーターIC回路12で駆動、その出力の2線C、D、に並列に本発明の各接続器10,を接続し、それに各放電管11,を負荷とするのが基本回路である。前述の出願2002−383419と異なるところは接続器10,の構成がコイルだけのインピーダンス制御であったものが、更にコンデンサー9が増えていることである。それが負荷放電管11,とシリースになっている。そしてインバーター回路12の可変発振周波数を接続器10,内蔵されているコンデンサー9の容量Cとコイル8,のリアクタンスLの直列共振周波数22f中心近くの図4の下点Eもしくは上点F、いずれか一点にインバーター12の周波数可変用ボリューウムを回し管定格出力時のインピーダンスに合わせ、基本の定格時設定をする。なおこの場合各接続器10内のリアクタンス8、L、キャパシティー9の値Cによる共振周波数22fのLCR共振インピーダンス計算、この場合Rは管内の負性的抵抗として、入力電圧、管の定格電圧、電流等によりリアクタンス、コイル線徑、キャパシタンスとの合成インピーダンスの簡単な交流計算で、各管種別、出力別に適合したL、C値で各放電管の種類ごとにLC値がきまり、それによって管の種類別接続器10が小型に簡単に作成できる。一例で300W水銀灯の場合、駆動直流電源DC360V、共振周波数f=20KHz、L=0.638mH コイル1.2mm線徑 C=0.1μF。是により100W〜400W調光可、従ってこの接続器は100Wから最大400Wまでの範囲の水銀灯管どれにもにも使用が可能な接続器10である。
【0005】
【作用と実施例】
今一実施例として図1のブリッジ型インバーター回路の可変周波数発振器12のボリュウムを回し予め設定した周波数つまり図4の接続器10の共振インピーダンスカーブの共振点周波数21fより低いところに基点E点19もしくは高いところに基点F点20のどちらかに合わせておき電源を入れる。するとインバーターがその周波数で発振し、それと接続器10,内のコイル8,、コンデンサー9,と放電管11のRが近似的LC直列共振を起こし、図1のA、B間に起きているブリッジインバーター駆動用電源の360V〜400Vと相まって図3の17ようにかなり高いQ倍の起動用放電管電圧17を、しかも近似的共振波形動作のサイン波高圧を発生する、そのため確実に放電を開始し点灯起動をする。同様の動作で図4の基本点F点にも設定しても同様に起動できる。この場合は周波数を高くすると反対に暗くなる。放電開始直後は電流が流れ、瞬時的に放電管の管内インピーダンス負性抵抗と放電管11のインピーダンスL、C、とがQダンプされ低い放電管電圧にバランスよく折り合いがつき、安定かつマイルドなサインウエーブ電圧18で点灯を継続する。またこの初期点灯の際は管内ガス温度低く定格の3分の1〜2分の1電流で点灯スタートし、やがて管温上昇で管内インピーダンスの変化に応じ定格に達し安定する、つまり立ち上がり電力はマイルドスタートをする。更にE点設定でもF点設定でも可変周波数発振器12、のVRを変化させると図4の如く出力調整、調光も無段階にできる。なおインバーターの矩形波出力波形が本発明の接続器を経由して放電管負荷に加えると図3のように起動高圧波17も通常点灯波形19ともにノイズの少いサインウエーブで通常点灯時は更にQダンプされ電圧の低い、近接LC共振のサインウェーブ波に変化する。それが放電管11への供給電圧波形になるのでランプ11,からの電磁放射も僅少になる。このため昇圧電源インバーター、矩形波インバーターの漏洩ノイズ、コモンノイズを一台分だけの回路対策ですみ、本実施例では簡単なインダクター13をいれるだけでも、従来の銅鉄型安定器のノイズレベル近くまでも下げられる。なおかつこの二線のままで高圧発生器なしで、しかもノイズの少ないマイルド波形でメタハラ管をも軽く点灯制御が可能という一挙両得が発生。なお本実施例では安価な矩形波出力のブリッジインバーターを使用したが、図1のAB間の駆動用電源電圧を必要だけの起動共振高電圧発生に充分なだけ高く取れる、インバターでAB間電圧波高値約360Vの上下2倍の720VのQ倍に起動電圧17に作用するブリッジ型で矩形波を発振させている。なお発振周波数も可変で、波高値も充分なら。ハーフブリッジ、フォワード、サイン波インバーター、等でもば問題なく同一機能し点灯動作をすることができる。また水銀灯、蛍光灯のみの負荷の場合は高い起動電圧不要で波高値240V位でも良い。本発明の基本動作機能はこれまでの説明したように、単純な共振型インバーターではなく意図的にその動作点を中心の共振周波数22fより上の点F20かまたは下の点E19かのどちらか一点に設定、その定格動作点で各放電管11種類、出力に適合させたインダクター8とコンデンサー9とよりなる接続器10を多種多様の各直列LCよりなる接続器10,を出力線に並列接続し、起動点灯と調光制御が可能な共振点近接の周波数の変化による可変インピーダンスの近接共振制御によるノイズ抑制点灯機能である。つまりこの点灯の動作を動作波形的に繰り返すとと、矩形波発振のインバーターに本発明の接続器10を付け通電する、近似的共振で高電圧サインウエーブ17を発生し点灯を開始、点灯後は放電管内部インピーダンスで自動的にQダンプされLCRの共振インピーダンスのマイルドな低電圧サイン波18波形による点灯電圧で安定点灯、そして周波数を変化させ直列LCR近似共振インピーダンスのによる放電管11電流を安定に制御をする。その際点灯初期は管温度低く管内インピーダンス高く定格の3分の1〜2分の1からのマイルドにスタート動作をする。
【0006】
【発明の効果】
本発明の高出力多灯型電子安定器の二線出力のみで、最大出力以内であれば、蛍光灯、水銀灯、メタハラ灯、ナトリュウム灯の各種放電管、しかも各放電管の出力が別々であっても、各灯に適合した容量のL、Cを収納した本発明による接続器10を繋ぐだけで大出力でありながら理想的低ノイズのサイン波18で多種多灯を並列に確実初期点灯、起動用高圧パルス回路も不要、そしてインバーター周波数を変化することで全灯を同率の調光が簡単に可能である。Qダンプされたインピーダンス制御なので、放電出力を下げると自動的に管電圧が上昇するので定格の30%位まで問題ない大幅な調光が出来る。また初期点灯時も充分な高圧ながらマイルドなサイン波形17でごく短時間で点灯するので、従来の連続する高圧パルス波発生点灯器と異なり、電極への初期点灯ストレス少なく、多数灯同時点灯のノイズレベルも少ない、起動電圧のいらない放電管の寿命末期の点灯のしにくさも解消する寿命延長的効果、消灯後再点灯する場合の待ち時間も半減できる。しかも一台の電子安定器で5灯、10灯を2線のみで配線ですむ上、従来の銅鉄型安定器の場合など起動時数分間は定格2倍以上電流が流れるため、照明配線容量に倍近い余裕が必要だったが、本安定器はマイルドスタートなので配線定格一杯の放電灯負荷を賄え、従って倍近い多灯数を一回路に接続できる。設置コストも本体は1台なので、本体の雑音、高調波対策を更に数段高めたとしても従来の1灯1台の安定器の10台分と比べコストも半分以下ですむ。また本発明の接続器10の各構成部品常数である共振周波数、リアクタンス材、コンデンサーをロスの少ない高効率に設計すると、例えば10灯10台分の各安定器の累積合計ロスに比べて本器の場合一台なので25%〜36%も低い省エネ性をも発揮出来る。なお高圧パルスの必要としない水銀灯の場合でも放電の開始電流が流れると接続器10の構造上その瞬間Qダンプして電圧が下がるので管寿命への影響も僅少である。
【図面の簡単な説明】
【図1】本発明の多灯用放電管電子安定器回路と接続器の全体配線図
【図2】出願番号2002−383419の接続器経由による放電管への出力電圧波形
【図3】安定器からの矩形波を本発明の接続器10経由の放電管11への出力電圧波形
【図4】本発明による設定2基点とLCR共振インピーダンスグラフと調光関係図
【符号の説明】
1は直流電源
2は昇圧用スイッチング用FET
3はゲート駆動部
4は電源用昇圧インバーターIC回路
5はブリッジスイッチング用FET(絶縁部)
6はフォトカプラーの駆動部、矩形波発信器12からの信号を入力(配線省略)
7はブリッジスイチング用FET
8はインダクタンスL
9はキァパシタンスC
10は8,9収納用接続器ボックス
11は各負荷の放電管
12は周波数可変矩形波発振回路
13はノイズフィルター
14はフューズ
15はに特願2002−383419による矩形波出力波形とノイズ
16はの特願2002−383419による点灯後接続器出力三角波形とノイズ
17は本発明の初期点灯時の接続器の高圧発振波形
18は本発明の通常点灯時の接続器の出力波形
19は共振周波数fより低い方の定格調整基点E
20は共振周波数fより高い方の定格調整基点F
21はLCR共振カーブによるインピーダンス、周波数グラフ
22はL8,C9の共振点f、LCの平方根分の1、共振カーブの最下点
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a system for simultaneously lighting and controlling a large number of discharge tubes with only two lines of output of one inverter, and a connection for connecting an electronic ballast for controlling initial lighting and output for each discharge lamp and a load discharge tube. Circuit.
[0002]
[Prior art]
Conventionally, as a ballast device for lighting a discharge tube such as a mercury lamp, a sodium lamp, and a metahala lamp, one large ballast having a large weight by combining a so-called copper-iron type ballast transformer and a choke coil has one discharge tube one-to-one. It was customary to control the lighting with. Recently, a method of controlling the lighting of a large number of fluorescent lamps with one electronic ballast has emerged for fluorescent lamps, but high-power discharge tubes, such as high-intensity discharge lamps and meta-hara tubes requiring high-voltage pulses, have also been developed. Practical use of a device for initially lighting and controlling a large number of lamps using only two wires has been difficult due to high power, noise, efficiency, high manufacturing cost, and other difficult problems.
[0003]
[Problems to be solved by the invention]
In most cases, high-intensity discharge tubes and ballasts are connected to a commercial AC power supply in one-to-one pairs, including conventional copper-iron ballasts and electronic ballasts. When the output is obtained, the power factor must be improved, and the output waveform must be considerably corrected to reduce the level of noise generation associated with the large output. Efficiency reduction due to waveform correction and anti-energy saving due to circuit loss are inevitable. Therefore, aside from the low power type having a low noise level, the high power type has hindered its practical use. As long as the biggest crying point, such as the problem of noise generation, can be improved, a large power stabilizer can be used to light up 5 or 10 lights at the same time. Apparatus can also appear. The one previously filed in Japanese Patent Application No. 2002-383419 was also concerned with lighting control of multiple lamps by one unit. However, as shown in FIG. 2, the output voltage waveform applied to the tube is switched between a triangular wave with many harmonics and a rectangular pulse on it. The noises 15 and 16 that occur at all times appear constantly in a small scale, and aside from the small output tube, if the output is further increased, the noise level increases in proportion to the output. In addition, since the initial starting high voltage is also moderate, it was desired to increase the starting voltage by one step in order to prevent a non-lighting caused by an increase in the starting voltage of the tube which is often at the end of the discharge tube life. As described above, the present invention brings the output waveform closer to the completely mild sine wave 19 after lighting, greatly reduces the generated noise, and further maintains various functions unique to the electronic ballast, that is, functions such as dimming, high efficiency, and light weight. It is an object of the present invention to realize cost merit and energy saving by installing and controlling the initial lighting and control by loading various kinds of high-intensity discharge tube lamps on only two output lines of one high power ballast.
[0004]
Means for Solving the Problems
FIG. 1 shows an inverter circuit for generating a rectangular wave used in one embodiment of the present invention. A and B, the left side is a step-up switching circuit by FET2, and the step-up DC power supply between AB is set to about 360V. The following bridge driver 6 of each of the FETs 5 and 7 is driven by a variable frequency rectangular wave inverter IC circuit 12 and connected to each of the connectors 10 of the present invention in parallel with two lines C and D of the output thereof. The basic circuit uses each discharge tube 11 as a load. The difference from the above-mentioned application 2002-383419 is that the configuration of the connector 10 is impedance control of only the coil, but the number of the capacitors 9 is further increased. It forms a series with the load discharge tube 11. Then, the variable oscillation frequency of the inverter circuit 12 is changed to the lower point E or the upper point F near the center of the series resonance frequency 22f of the connector 10, the capacitance C of the built-in capacitor 9 and the reactance L of the coil 8, as shown in FIG. The frequency variable volume of the inverter 12 is turned to one point, and the basic rated setting is made according to the impedance at the rated output of the tube. In this case, the LCR resonance impedance of the resonance frequency 22f is calculated based on the reactances 8, L in each connector 10 and the value C of the capacity 9. In this case, R is an input voltage, a rated voltage of the tube, By simple AC calculation of the combined impedance with reactance, coil diameter and capacitance by current etc., the LC value is determined for each type of discharge tube by the L and C values adapted for each tube type and output. The type-specific connector 10 can be easily made compact. As an example, in the case of a 300 W mercury lamp, the driving DC power supply is DC 360 V, the resonance frequency f is 20 KHz, L is 0.638 mH, the coil diameter is 1.2 mm, and the diameter C is 0.1 μF. By all means, dimming from 100 W to 400 W is possible, so this connection is a connection 10 that can be used for any mercury lamp tube in the range from 100 W to a maximum of 400 W.
[0005]
[Action and Example]
As another embodiment, the volume of the variable frequency oscillator 12 of the bridge type inverter circuit shown in FIG. 1 is turned to rotate the volume, and the base point E 19 or the base point E at a frequency lower than the resonance point frequency 21f of the resonance impedance curve of the connector 10 of FIG. Turn on the power after setting it at one of the base points F 20 at a high place. Then, the inverter oscillates at that frequency, and the inductor 8, the coil 8, the capacitor 9, and the R of the discharge tube 11 cause approximate LC series resonance, and the bridge occurring between A and B in FIG. Combined with the inverter drive power supply of 360V to 400V, a considerably high Q discharge lamp voltage 17 as shown in FIG. 3 and a sine wave high voltage of an approximate resonance waveform operation are generated. Start lighting. The same operation can be performed when the basic point F in FIG. 4 is set. In this case, the higher the frequency, the darker. Immediately after the start of the discharge, a current flows, and the negative impedance in the discharge tube and the impedances L, C of the discharge tube 11 are instantaneously dumped in Q, and the low discharge tube voltage is balanced in a well-balanced manner. Lighting is continued at the wave voltage 18. In addition, at the time of this initial lighting, lighting starts at a gas temperature that is lower than one-third of the rated current and reaches the rated value according to a change in the impedance of the tube due to a rise in the temperature of the tube. Make a start. Further, when the VR of the variable frequency oscillator 12 is changed regardless of whether the point E or the point F is set, the output adjustment and the dimming can be continuously performed as shown in FIG. When the square wave output waveform of the inverter is applied to the discharge tube load via the connector according to the present invention, as shown in FIG. It changes to a sine wave wave of Q-dump and low voltage, which is a close LC resonance. Since this becomes the waveform of the supply voltage to the discharge tube 11, the electromagnetic radiation from the lamp 11 is also small. For this reason, the leakage noise and the common noise of the step-up power supply inverter and the square wave inverter can be reduced only by one circuit. In this embodiment, the noise level of the conventional copper-iron type ballast can be reduced by simply inserting the simple inductor 13. Can be lowered. In addition, it is possible to control the lighting of the meta-hara tube lightly with a mild waveform with little noise without using a high-voltage generator. In this embodiment, an inexpensive bridge inverter with a rectangular wave output is used. However, the drive power supply voltage between A and B in FIG. 1 can be set high enough to generate the necessary starting resonance high voltage. A rectangular wave is oscillated in a bridge type which acts on the starting voltage 17 at Q times of 720V which is twice as high and low as the peak value of about 360V. If the oscillation frequency is variable and the peak value is sufficient. The half bridge, forward, sine wave inverter, etc. can perform the same function and perform the lighting operation without any problem. In the case of a load using only a mercury lamp or a fluorescent lamp, a high starting voltage is not required and a peak value of about 240 V may be used. As described above, the basic operation function of the present invention is not a simple resonance type inverter but intentionally sets its operation point at one point, either the point F20 above the center resonance frequency 22f or the point E19 below the center. At the rated operating point, a connector 10 composed of an inductor 8 and a capacitor 9 adapted to 11 types and outputs of each discharge tube is connected in parallel with a connector 10 composed of various series LCs to an output line. This is a noise suppression lighting function by proximity resonance control of variable impedance due to a change in frequency near a resonance point where start-up lighting and dimming control can be performed. In other words, when this lighting operation is repeated in an operation waveform, the connector 10 of the present invention is attached to a rectangular wave oscillation inverter and energized. A high voltage sine wave 17 is generated by approximate resonance, lighting is started, and after lighting, The lamp is automatically Q-dumped with the internal impedance of the discharge tube and stable lighting with the lighting voltage of a mild low voltage sine wave 18 waveform of LCR resonance impedance, and the frequency is changed to stabilize the discharge tube 11 current due to the series LCR approximate resonance impedance. Take control. At that time, in the early stage of lighting, the tube temperature is low and the impedance inside the tube is high.
[0006]
【The invention's effect】
If only the two-line output of the high-output multi-lamp type electronic ballast of the present invention is within the maximum output, the discharge tubes of fluorescent lamps, mercury lamps, metahara lamps, and sodium lamps, and the outputs of the respective discharge tubes are different. However, simply by connecting the connector 10 according to the present invention, which accommodates L and C of the capacities suitable for each lamp, it is possible to securely and initially light various lamps in parallel with a sine wave 18 having a large output and an ideal low noise. A high-voltage pulse circuit for starting is not required, and dimming of all lamps at the same rate can be easily performed by changing the inverter frequency. Because of the Q-dumped impedance control, the tube voltage automatically increases when the discharge output is reduced, so that significant dimming can be performed without any problem up to about 30% of the rated value. In addition, since the lighting is performed in a very short time with a sufficiently high voltage and a mild sine waveform 17 even at the time of initial lighting, unlike the conventional continuous high-voltage pulse wave generating lighting device, the initial lighting stress on the electrodes is small, and the noise of simultaneous lighting of many lamps is reduced. It has a low level and has an effect of prolonging the life of the discharge tube, which does not require a starting voltage. In addition, one electronic ballast requires only 5 wires and 10 lamps with only 2 wires. In addition, in the case of a conventional copper-iron ballast, the current flows at least twice the rated value for several minutes at startup. This ballast has a mild start, so it can cover the discharge lamp load of the full wiring rating, so that almost twice as many lamps can be connected to one circuit. Since the installation cost is one unit, even if the noise and harmonic countermeasures of the main unit are further increased by several steps, the cost is less than half that of the conventional 10 ballasts per lamp. When the resonance frequency, the reactance material, and the condenser, which are the constants of the respective components of the connector 10 of the present invention, are designed to be highly efficient with little loss, for example, this device is compared with the accumulated total loss of each ballast for 10 lamps of 10 lamps. In this case, since it is a single unit, it can also exhibit low energy savings of 25% to 36%. Even in the case of a mercury lamp that does not require a high-voltage pulse, if a discharge starting current flows, the structure of the connector 10 causes a Q dump at that moment and the voltage drops, so that the influence on the tube life is negligible.
[Brief description of the drawings]
FIG. 1 is an overall wiring diagram of a discharge lamp electronic ballast circuit and a connector of a multi-lamp discharge tube of the present invention. FIG. 2 is an output voltage waveform to a discharge tube via a connector of application No. 2002-383419. Output voltage waveform to the discharge tube 11 via the connector 10 of the present invention from the square wave from the present invention.
1 is a DC power supply 2 is a switching FET for boosting
3 is a gate drive unit 4 is a step-up inverter IC circuit for power supply 5 is a bridge switching FET (insulating unit)
Reference numeral 6 denotes a drive unit of the photocoupler, which receives a signal from the rectangular wave transmitter 12 (wiring omitted).
7 is a bridge switching FET
8 is the inductance L
9 is Capacitance C
Reference numeral 10 denotes a connection connector box for storing 8, 9; a discharge tube 12 of each load; a variable frequency rectangular wave oscillation circuit 13; a noise filter 14; a fuse 15; and a rectangular wave output waveform and noise 16 according to Japanese Patent Application No. 2002-383419. According to Japanese Patent Application No. 2002-383419, the output triangular waveform and noise 17 of the connector after lighting are the high voltage oscillation waveform 18 of the connector at the time of initial lighting of the present invention, and the output waveform 19 of the connector at the time of normal lighting of the present invention is the resonance frequency f. Lower rated adjustment base point E
20 is a rating adjustment base point F higher than the resonance frequency f.
21 is an impedance based on the LCR resonance curve, frequency graph 22 is a resonance point f of L8 and C9, 1 / the square root of LC, and a lowest point of the resonance curve.

Claims (1)

リアクタンスLなる(8)とキァパシタンスC(9)両素子を直列により構成された接続器(10)に負荷放電管(11)を接続したものを多数個を周波数可変の交流波発生の駆動用インバーター(12)の出力線C、Dに並列に接続し、その駆動用インバーター(12)の発振周波数を接続器(11)内のリアクタンスL(8)とキャパシタンスC(9)との直列共振インピーダンスグラフの中心共振周波数f(22)よりずれた上側のF点(20)か下側のE点(19)2点中のどちらか一点を負荷放電管(11)の定格電圧、電流時のインピーダンスに合わせた周波数を定格調整基点(19,又は20)として設定して、その基点周波数(19,又は20)を上下に変化させ点灯、調光する事を特徴とする多数灯放電管点灯制御回路の接続器(10)。A drive inverter for generating a frequency-variable alternating-current wave by connecting a load discharge tube (11) to a connector (10) composed of both elements of reactance L (8) and capacitance C (9) in series. (12) is connected in parallel to the output lines C and D, and the oscillation frequency of the driving inverter (12) is the series resonance impedance graph of the reactance L (8) and the capacitance C (9) in the connector (11). Of the upper point F (20) or the lower point E (19), which is deviated from the center resonance frequency f (22) of the load discharge tube (11), to the impedance at the rated voltage and current of the load discharge tube (11). The combined frequency is set as a rating adjustment base point (19 or 20), and the base frequency (19 or 20) is changed up and down to light and dimming, and a multi-lamp discharge tube lighting control circuit is characterized. Continued vessel (10).
JP2003146990A 2003-04-18 2003-04-18 Connector of multiple discharge tube lighting control circuit Pending JP2004319419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146990A JP2004319419A (en) 2003-04-18 2003-04-18 Connector of multiple discharge tube lighting control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003146990A JP2004319419A (en) 2003-04-18 2003-04-18 Connector of multiple discharge tube lighting control circuit

Publications (1)

Publication Number Publication Date
JP2004319419A true JP2004319419A (en) 2004-11-11

Family

ID=33475330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146990A Pending JP2004319419A (en) 2003-04-18 2003-04-18 Connector of multiple discharge tube lighting control circuit

Country Status (1)

Country Link
JP (1) JP2004319419A (en)

Similar Documents

Publication Publication Date Title
US6975077B2 (en) High intensity discharge lamp ballast apparatus
US5751120A (en) DC operated electronic ballast for fluorescent light
CA2224300C (en) Discharge lamp driving bridge circuit
US6020691A (en) Driving circuit for high intensity discharge lamp electronic ballast
US7271545B2 (en) Ballast and igniter for a lamp having larger storage capacitor than charge pump capacitor
US7291988B2 (en) Electronic high intensity discharge lamp driver
JP2004247201A (en) Electrodeless discharge lamp lighting device
TW200908800A (en) Circuit arrangement for igniting and operating a discharge lamp
JP2004511071A (en) System and method employing pulse width modulation for reducing vertical color separation in gas discharge lamps
JP2005513755A (en) Circuit that lights one or more lamps
US20070145905A1 (en) Driver device for a gas discharge lamp and igniter
JP4354803B2 (en) Ballast for driving discharge lamp
US6555971B1 (en) High frequency, high efficiency quick restart lighting system
JP2004319419A (en) Connector of multiple discharge tube lighting control circuit
US6555972B1 (en) High frequency, high efficiency electronic lighting system with metal halide lamp
WO2005099317A1 (en) Discharge lamp operating device
JP2003203790A (en) Discharge lamp lighting device
JP3769993B2 (en) Discharge lamp lighting device
KR100545996B1 (en) Electronic Ballasts for Metal Halide Lamps
JP2009514158A (en) Gas discharge lamp lighting module
JPH09167693A (en) Discharge lamp lighting device
WO2009075940A1 (en) High frequency high intensity discharge ballast
JP3151234B2 (en) Discharge lamp lighting device
KR20020030812A (en) Method and circuit for operating a sodium high-pressure lamp
CN113242624A (en) Activation control circuit of metal halide lamp and metal halide lamp electronic ballast