JP2004319268A - Nonacqueous electrolyte secondary battery - Google Patents

Nonacqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004319268A
JP2004319268A JP2003111658A JP2003111658A JP2004319268A JP 2004319268 A JP2004319268 A JP 2004319268A JP 2003111658 A JP2003111658 A JP 2003111658A JP 2003111658 A JP2003111658 A JP 2003111658A JP 2004319268 A JP2004319268 A JP 2004319268A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
lithium
linio
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003111658A
Other languages
Japanese (ja)
Inventor
Satoshi Nagashima
聰 長嶋
Jo Sasaki
丈 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2003111658A priority Critical patent/JP2004319268A/en
Publication of JP2004319268A publication Critical patent/JP2004319268A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonacqueous electrolyte secondary battery with a high energy density and enhanced security. <P>SOLUTION: The battery has a positive electrode mix layer containing a lithium nickel compound oxide and a negative electrode mix layer containing a negative active material capable of storing and releasing lithium, and the positive electrode mix layer includes 1-10 wt% of diniobium pentoxide (Nb<SB>2</SB>O<SB>5</SB>). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムニッケル複合酸化物を正極活物質とする非水電解質二次電池の正極合材層への添加材に関する。
【0002】
【従来の技術】
リチウムイオン二次電池などの非水電解質二次電池は、軽量、高電圧、長寿命という特徴を兼ね備えた電池であり、なかでも体積当たり高エネルギー密度であることから、携帯型端末機器の電源として急速に普及し、今や必須なものとなっている。また、より大型の移動体である電気自動車の電源としての使用のほか、非常用電源のとしての利用も検討されており、今後より一層の大型化と高出力化が推測される。
【0003】
このような電池の大型化がなされても、電池構成材料は同じ物である。正極活物質の代表的なものとして、岩塩型層状構造を有するコバルト酸リチウムやニッケル酸リチウム、そしてスピネル型構造を有するマンガン酸リチウムがあげられる。負極活物質としては主に炭素材料が使われ、電解液には可燃性の有機溶媒に支持塩を溶解した非水電解液が用いられる。これらを、ポリオレフィン微多孔質セパレータを隔て捲回した形状、もしくは封筒状のセパレータに正極、もしくは負極の一方を封したスタック型の形状が一般に用いられる。
【0004】
しかしながら、昨今の高エネルギー密度化や大型化により、安全性の確保がより重要視されている。正極活物質は、短絡による大電流の通電や高温にさらされることにより発熱反応を示し、将棋倒し的に反応が進み、負極の発熱、そして電解液の分解によって多量のガスが発生し、破裂発火へと至ることが懸念される。
【0005】
リチウムイオン二次電池の正極活物質としては、これまで主にコバルトを主としたリチウム複合酸化物が用いられてきた。この電池の安全性を確保するために、ある温度で熱溶融により自ら微孔を閉じて多孔性を消失し、電流を遮断する、いわゆるシャットダウン機能を持ったポリプロピレン製やポリエチレン製の多孔質膜をセパレータとして用いることが、特開平05−159766号公報に開示されている。また、特定の温度範囲に作動温度を有するPTC素子を用いることにより、過充電による破裂を防止できることが、特開平05−074493号公報に開示されている。これらのシャットダウン機能を持ったセパレータやPTC素子は、コバルトを主としたリチウム複合酸化物よりも安全性が高いとされるスピネル型マンガンリチウム複合酸化物にも応用できる。
【0006】
そして、さらなる高エネルギー密度を有する正極活物質として、一般式LixNiO(ただし0<x<1)で表されるリチウムニッケル複合酸化物が期待されているが、この化合物の発熱挙動はさらに顕著であり、より一層の安全性対策が求められる。正極活物質にリチウムニッケル複合酸化物を用いた場合、内部短絡状況での安全性の確保のために、Niの一部を異種元素で置換して充電時における熱的な安定性の向上をはかることが、特開2000−323143号公報に開示されている。
【0007】
また、正極活物質として、主活物質としてのLiCoOと副活物質としてのNbを混合して用いることにより、負極の過充電劣化を抑制する技術が、特開平05−151995号に開示されている。さらに、正極活物質として、Nb、LiNiO、LiCoO、LiMnなどのいずれか1種または2種以上混合して用いる技術が、特開平08−306352号や特開2000−164217号等に開示されているが、いずれの場合もLiNiOとNbとを混合して用いた具体例やその効果については記載されていない。
【0008】
しかし、大型化および高エネルギー密度化が進むにつれ、上記の安全対策や安全弁を設ける等の方法では、安全性の確保は不十分である。
【0009】
【発明が解決しようとする課題】
本発明の目的は、正極活物質にリチウムニッケル複合酸化物を用いた非水電解質二次電池における上記問題点を解決するもので、高エネルギー密度を維持しつつ、正極活物質の熱暴走時の発熱挙動を抑制することにより、安全性を高めた非水電解質二次電池を提供することにある。
【0010】
【課題を解決するための手段】
請求項1の発明は、リチウムニッケル複合酸化物を含む正極合材層とリチウムを吸蔵放出可能な負極活物質を含む負極合材層とを備えた非水電解質二次電池において、前記正極合材層中に五酸化二ニオブ(Nb)を1〜10wt%含有することを特徴とする。
【0011】
請求項1の発明によれば、正極合材層からの発熱量を減少させることができ、その結果、高エネルギー密度で、安全性の高い非水電解質二次電池を得ることができる。
【0012】
【発明の実施の形態】
本発明は、正極活物質にリチウムニッケル複合酸化物を用いた非水電解質二次電池において、正極合材層中に五酸化二ニオブ(Nb)を1〜10wt%含有することを特徴とする。
【0013】
正極合材層中に五酸化二ニオブ(Nb)を含有した場合、正極合材層の発熱量を減少させることができる理由は、現在のところ明確ではないが、負触媒として機能してリチウムニッケル複合酸化物表面の活性が低下し、電解液分解反応が抑制されると推定される。また、リチウムニッケル複合酸化物にはリチウム化合物が残渣としてしばしば見られ、このアルカリ残渣と五酸化二ニオブ(Nb)が反応することも理由として考えられるが、他種の酸において同等の効果が得られないことから、前述の活性抑制触媒が優位であると推定される。
【0014】
正極合材層中の五酸化二ニオブ(Nb)の含有量は1〜10wt%とする必要がある。含有量が1wt%未満の場合には、正極合材層の発熱量を減少させる効果が得られず、10wt%を越える場合には、正極合材層中の正極活物質の含有比率が減少するため、電池の放電容量が小さくなる。
【0015】
本願発明の非水電解質二次電池において、正極活物質として、従来、高エネルギー密度が可能であるが、正極活物質の中では最も発熱挙動が激しく、より高度な安全性対策が求められるとされていたリチウムニッケル複合酸化物(LiNiO)を用いる。
【0016】
また、このリチウムニッケル複合酸化物を構成するニッケルの一部を他の元素で置換した、LiNiCo(ただし、x+y=1)、LiNiAl(ただし、x+y=1)、LiNiMg(ただし、x+y=1)、LiNiCoAl(ただしx+y+z=1)やLiNiCoMn(ただしx+y+z=1)などのリチウム複合酸化物を、1種または2種以上を混合して使用することにより、より安全性の高い非水電解質二次電池を得ることができる。
【0017】
なお、正極合材層中には五酸化二ニオブ(Nb)に加え、ニオブ化合物としては、一酸化一ニオブ(NbO)、一酸化二ニオブ(NbO)、Nb3n+13n−2で表されるマグネリ相、塩化ニオブ(NbCl)、ニオブ酸リチウムLiNbOなどのニオブ化合物を添加することができる。
【0018】
本発明における負極活物質としては、リチウムイオンを吸蔵および放出可能な材料を用いる。具体例としては、炭素材料として天然黒鉛、人造黒鉛、コークス類、炭素繊維などの炭素質材料、またはリチウム金属、リチウム合金、酸化珪素などの系素質材料、酸化錫などの酸化金属が挙げられる。
【0019】
本発明に用いられる電解液の溶媒として、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1−3ジオキソラン、メチルアセテート、メチルプロピオネート等のいずれか1種以上を含むものを用いる。
【0020】
電解液の電解質としては、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、トリフロロメタンスルホン酸リチウム(LiCFSO)などを溶解して用いる。
【0021】
本発明におけるセパレータとしては、熱可塑性のシャットダウン機能を有したポリエチレン、ポリプロピレンなどのポリオレフィン材料、またはこれに耐熱多孔質層を塗布/貼り合せたものを用いる。
【0022】
【実施例】
まず、リチウムニッケル複合酸化物と電解液とが共存した場合の発熱量を測定した。リチウムニッケル複合酸化物として平均粒径10μmのLiNiOを用いた。
【0023】
リチウムニッケル複合酸化物としてのLiNiOは、ニッケル源である水酸化ニッケルと、リチウム源である水酸化リチウムを、リチウムとニッケルの比率が1.05となるように混合し、酸素雰囲気下において750℃で焼成することにより合成した。
【0024】
また、Nbはナカライテスク製の試薬特級(平均粒径0.8μm)を使用した。
【0025】
平均粒径10μmのリチウムニッケル複合酸化物(LiNiO)95wt%と平均粒径0.8μmの五酸化二ニオブ(Nb)5wt%とを、LiNiOの表面にNbが均一に付着するよう混合機を用いて撹拌混合した。この混合物と、導電助剤としてアセチレンブラックと、結着材としてポリフッ化ビニリデン(PVdF)を重量比88:4:8で混合し、正極合材ペーストを作製した。これを15mm×15mmのアルミメッシュ集電体に塗布し、乾燥、プレスすることにより、発熱量評価用の正極とした。
【0026】
この正極と、対極としての金属リチウム、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比3:7で混合したものに1.2mol/lの六フッ化リン酸リチウム(LiPF)を加えた電解液とを用いて、試験用のガラスセルを作製し、単極試験をおこなった。単極の充放電試験は室温でおこない、1.0mA/cmで4.3Vまで定電流で充電し、ついで1.0mA/cmで3.0Vまで定電流で放電し、容量を確認した。その後、再び1.0mA/cmで4.3Vまで定電圧で24時間充電した後、この正極から正極合材を取り出し、これを正極合材Aとし、発熱量測定をおこなった。
【0027】
電解液としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比3:7で混合したものに1.2mol/lの六フッ化リン酸リチウム(LiPF)を加えたものを作製した。
【0028】
充電状態の正極合材層1mgに、上記電解液1mgを加え、熱分析用のステンレス密閉容器に封入し、発熱量測定試料とした。熱分析には、Seiko Instruments Inc.製の示差走査熱量測定装置DSC6200を用いた。温度範囲は50〜450℃、昇温速度は10℃/minで測定した。
【0029】
正極合材Aと同様にして、正極活物質に平均粒径10μmのリチウムニッケル複合酸化物(LiNiO)を用い、五酸化二ニオブ(Nb)を添加しない正極合材を作製し、これを正極合材Bとし、同様の条件で発熱量を測定した。
【0030】
平均粒径10μmのリチウムニッケル複合酸化物(LiNiO)95wt%と酸化チタン(TiO)5wt%とを混合して正極活物質とし、正極合材Aと同様にして正極合材を作製し、これを正極合材Cとし、同様の条件で発熱量を測定した。
【0031】
正極合材A、BおよびCの単極試験における放電曲線を図1に示す。また、表1に1サイクル目の充放電電気量を示す。なお、表1において、充放電効率とは充電容量に対する放電容量の比率(%)を意味し、不可逆容量とは充電容量と放電容量との差を意味するものとする。
【0032】
【表1】

Figure 2004319268
【0033】
表1から、Nbを添加した正極合材Aは、Nbを添加していない正極合材Bと同等の放電容量を示したが、TiOを添加した正極合材Cでは分極の増大や容量の低下が見られることがわかった。
【0034】
正極合材A、BおよびCのDSC特性を図2に示す。図2において、縦軸に示される発熱量の重量は、電解液を含まない正極合材の重量から求められた値である。図2から、Nbを添加した正極合材Aの発熱量は、Nbを添加していない正極合材Bの発熱量よりも減少していることが確認できた。TiOを添加した正極合材Cの発熱量は、正極合材Bの発熱量よりも若干減少した。このように、LiNiOに対しては五酸化二ニオブ(Nb)の添加が効果的であることを示している。
【0035】
つぎに、電池を作製してその特性を比較した。
【0036】
最初に、実施例1〜5および比較例1、2の電池を作製し、LiNiOとNbとの混合比を変えた場合の電池特性を比較した。
【0037】
<実施例1>
正極活物質として平均粒径10μmのLiNiOを用いた。このLiNiO99wt%と平均粒径0.8μmのNb1wt%とを、混合機を用いて撹拌混合した。この混合物と、導電助剤としてアセチレンブラックと、結着材としてPVdFとを重量比91:3:6の割合で混合し、正極ペーストとした。この正極ペーストを、集電体としての厚さ20μmのアルミニウム箔の両面に塗布、乾燥、プレスすることにより、アルミニウム箔の両面に正極合材層を備えた正極板を得た。
【0038】
負極活物質として、人造黒鉛と天然黒鉛の重量比1:1の混合物を用いた。負極活物質と、結着材としてのPVdFとを重量比92:8の割合で混合し、負極ペーストとした。この負極ペーストを、集電体としての厚さ15μmの銅箔に塗布、乾燥、プレスすることにより、銅箔の両面に負極合材層を備えた負極板を得た。
【0039】
前述の正極板、ポリエチレン製のセパレータ、負極板、ポリエチレン製セパレータの順に積層したものを巻回して発電素子を作製し、アルミニウムよりなる角型の電池缶に収納した。この電池缶内に、ECとDECとを体積比3:7で混合したものに1.2mol/lのLiPFを溶解した電解液を充填し、電池蓋により密閉して、周知の方法で安全弁を備えた、公称容量700mAhの角型非水電解質二次電池を作製し、これを実施例1の電池Aとした。
【0040】
<実施例2>
LiNiOとNbとの混合比を、LiNiO98wt%とNb2wt%とした以外は実施例1と同様にして、実施例2の電池Bを作製した。
【0041】
<実施例3>
LiNiOとNbとの混合比を、LiNiO95wt%とNb5wt%とした以外は実施例1と同様にして、実施例3の電池Cを作製した。
【0042】
<実施例4>
LiNiOとNbとの混合比を、LiNiO92wt%とNb8wt%とした以外は実施例1と同様にして、実施例4の電池Dを作製した。
【0043】
<実施例5>
LiNiOとNbとの混合比を、LiNiO90wt%とNb10wt%とした以外は実施例1と同様にして、実施例5の電池Eを作製した。
【0044】
<比較例1>
Nbを添加せず、LiNiOのみを用いた以外は実施例1と同様にして、比較例1の電池Fを作製した。
【0045】
<比較例2>
LiNiOとNbとの混合比を、LiNiO99.5wt%とNb0.5wtとした以外は実施例1と同様にして、比較例2の電池Gを作製した。
【0046】
<比較例3>
LiNiOとNbとの混合比を、LiNiO85wt%とNb15wt%とした以外は実施例1と同様にして、比較例3の電池Hを作製した。
【0047】
実施例1〜5および比較例1〜3の電池について、つぎのような条件で容量試験と安全性確認試験を行った。充放電試験は室温でおこない、充電は700mA(1CA)定電流で4.2Vまで、さらに4.2V定電圧で3時間行い、ついで700mA(1CA)定電流で2.75Vまで放電し、電池容量を確認した。その後、再び700mA(1CA)定電流で4.2Vまで、さらに4.2V定電圧で3時間の充電を行い、その後、安全性確認試験としての釘刺試験および過充電試験をおこなった。釘刺試験は2.5φの釘が電池を貫通するまで刺し、過充電試験は2100mA(3CA)定電流で12Vまで、さらに4.2で定電圧充電を続けた。
【0048】
試験の結果を表2に示す。なお、表2において「Nbの混合比」は、LiNiOとNbとの合計重量に対するNbの比率(wt%)を示すものとする。
【0049】
【表2】
Figure 2004319268
【0050】
表2の結果から、つぎのようなことがわかった。電池容量は、電池Hの場合には700mAhをかなり下回ったが、電池A〜Gの場合には700mAh以上であった。また、釘刺試験においては、電池Fの場合には、釘刺し直後に弁が作動し、発煙が見られ、電池Gの場合には、釘刺し直後に弁が作動したが、電池A〜Eおよび電池Hの場合には異常は見られなかった。さらに、過充電試験においては、電池FおよびGの場合には、電池容量比170%の過充電で弁が作動したが、電池A〜Eおよび電池Hの場合には異常は見られなかった。したがって、LiNiOとNbとの合計重量に対し、Nbを1〜10wt%添加した場合には、高エネルギー密度で安全性に優れた電池が得られることがわかった。
【0051】
つぎに、実施例6〜12の電池を作製し、正極活物質であるリチウムニッケル複合酸化物の組成を変えた場合の電池特性を比較した。なお、正極合材中での混合比は、リチウムニッケル複合酸化物95wt%、Nb5wt%とした。
【0052】
<実施例6>
LiNiOの代わりにLiNi0.8Co0.2を用いた以外は実施例3と同様にして、実施例6の電池Iを作製した。
【0053】
<実施例7>
LiNiOの代わりにLiNi0.9Al0.1を用いた以外は実施例3と同様にして、実施例7の電池Jを作製した。
【0054】
<実施例8>
LiNiOの代わりにLiNi0.9Mg0.1を用いた以外は実施例3と同様にして、実施例8の電池Kを作製した。
【0055】
<実施例9>
LiNiOの代わりにLiNi0.82Co0.15Al0.03を用いた以外は実施例3と同様にして、実施例9の電池Lを作製した。
【0056】
<実施10>
LiNiOの代わりにLiNi0.8Co0.1Mn0.1を用いた以外は実施例3と同様にして、実施例10の電池Mを作製した。
【0057】
<実施例11>
LiNiOの代わりに、LiNiOとLiNi0.9Al0.1との重量比7:3の混合物を用いた以外は実施例3と同様にして、実施例11の電池Nを作製した。
【0058】
<実施12>
LiNiOの代わりに、LiNi0.8Co0.2とLiNi0.9Mg0.1との重量比8:2の混合物を用いた以外は実施例3と同様にして、実施例12の電池Oを作製した。
【0059】
実施例6〜12の電池について、実施例1と同様の条件で容量試験と安全性確認試験を行った。試験の結果を表3に示す。
【0060】
【表3】
Figure 2004319268
【0061】
表3の結果から、つぎのようなことがわかった。電池容量は、いずれの電池の場合も700mAh以上あり、安全性試験の結果もすべて異常なしであった。したがって、LiNiOのNiの一部を他の元素で置換した正極活物質を用い、これにNbを添加した場合も、置換しない場合と同様に、高エネルギー密度で安全性に優れた電池が得られることがわかった。
【0062】
さらに、実施例13〜18の電池を作製し、Nbの平均粒径を変えた場合の電池特性を比較した。なお、正極活物質としては平均粒径10μmのLiNiOを用い、正極合材中での混合比は、LiNiO95wt%、Nb5wt%とした。
【0063】
<実施例13>
平均粒径が0.05μmのNb用いた以外は実施例3と同様にして、実施例13の電池Pを作製した。
【0064】
<実施例14>
平均粒径が0.1μmのNb用いた以外は実施例3と同様にして、実施例14の電池Qを作製した。
【0065】
<実施例15>
平均粒径が0.5μmのNb用いた以外は実施例3と同様にして、実施例15の電池Rを作製した。
【0066】
<実施例16>
平均粒径が1.5μmのNb用いた以外は実施例3と同様にして、実施例16の電池Sを作製した。
【0067】
<実施例17>
平均粒径が3μmのNb用いた以外は実施例3と同様にして、実施例17の電池Tを作製した。
【0068】
<実施例18>
平均粒径が5μmのNb用いた以外は実施例3と同様にして、実施例18の電池Uを作製した。
【0069】
実施例13〜18の電池について、実施例1と同様の条件で容量試験と安全性確認試験を行った。試験の結果を表4に示す。
【0070】
【表4】
Figure 2004319268
【0071】
表4の結果から、つぎのようなことがわかった。電池容量は、いずれの電池の場合も700mAh以上あり、安全性試験の結果もすべて異常なしであった。したがって、Nbの平均粒径が0.05〜5μmの範囲の場合には、高エネルギー密度で安全性に優れた電池が得られることがわかった。
【0072】
また、実施例18〜22の電池を作製し、電解液溶媒を変えた場合の電池特性を比較した。なお、正極合材中での混合比は、LiNiO95wt%、Nb5wt%とし、電解溶媒にLiPFを1.0mol/l溶解した電解液を使用した。
【0073】
<実施例18>
電解液溶媒にECとジメチルカーボネート(DMC)との体積比3:7の混合物を用いた以外は実施例3と同様にして、実施例18の電池Vを作製した。
【0074】
<実施例19>
電解液溶媒にECとエチルメチルカーボネート(EMC)との体積比3:7の混合物を用いた以外は実施例3と同様にして、実施例19の電池Wを作製した。
【0075】
<実施例20>
電解液溶媒にECとDMCとEMCの体積比3:3:4の混合物を用いた以外は実施例3と同様にして、実施例20の電池Xを作製した。
【0076】
<実施例21>
電解液溶媒にECとDMCとDECとの体積比3:3:4の混合物を用いた以外は実施例3と同様にして、実施例21の電池Yを作製した。
【0077】
<実施例22>
電解液溶媒にECと1,3−ジメトキシエタン(DME)との体積比2:8の混合物を用いた以外は実施例3と同様にして、実施例22の電池Zを作製した。
【0078】
実施例18〜22の電池について、実施例1と同様の条件で容量試験と安全性確認試験を行った。試験の結果を表5に示す。
【0079】
【表5】
Figure 2004319268
【0080】
表5の結果から、つぎのようなことがわかった。電池容量は、いずれの電池の場合も700mAh以上あり、安全性試験の結果もすべて異常なしであった。したがって、電解液溶媒の種類を変えた場合にも、高エネルギー密度で安全性に優れた電池が得られることがわかった。
【0081】
なお、実施例13と同様にして、LiPF以外の、LiBFやLiClO等のリチウム塩を用いた場合も、高エネルギー密度で安全性に優れた電池が得られた。
【0082】
【発明の効果】
本発明のように、正極活物質にリチウムニッケル複合酸化物を用いた非水電解質二次電池において、正極合材層中にNbを1〜10wt%含有させることで、非水電解質二次電池における熱暴走などの発熱挙動を抑制することが可能となり、高エネルギー安全性をより高めた非水二次電池を提供することができる。
【図面の簡単な説明】
【図1】正極合材A、BおよびCの単極試験における放電曲線を示す図。
【図2】正極合材A、BおよびCのDSC特性を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an additive to a positive electrode mixture layer of a nonaqueous electrolyte secondary battery using a lithium nickel composite oxide as a positive electrode active material.
[0002]
[Prior art]
Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries are lightweight, high voltage, and long-life batteries, and have a high energy density per volume. It has spread rapidly and is now essential. In addition to use as a power source for an electric vehicle, which is a larger mobile object, use as an emergency power source is also being considered, and further increase in size and output are expected in the future.
[0003]
Even if the size of the battery is increased, the material of the battery is the same. Representative examples of the positive electrode active material include lithium cobaltate and lithium nickelate having a rock salt type layered structure, and lithium manganate having a spinel type structure. A carbon material is mainly used as the negative electrode active material, and a non-aqueous electrolyte obtained by dissolving a supporting salt in a flammable organic solvent is used as an electrolyte. These are generally used in the form of being wound with a polyolefin microporous separator therebetween, or in the form of a stack in which one of the positive electrode and the negative electrode is sealed in an envelope-shaped separator.
[0004]
However, due to the recent increase in energy density and size, securing safety has become more important. The positive electrode active material exhibits an exothermic reaction when exposed to high current or a high temperature due to a short circuit, and the reaction progresses in a shogi manner, generating heat from the negative electrode and decomposing the electrolyte to generate a large amount of gas, which causes a burst ignition. Is concerned.
[0005]
As a positive electrode active material of a lithium ion secondary battery, a lithium composite oxide mainly containing cobalt has been used so far. In order to ensure the safety of this battery, a porous membrane made of polypropylene or polyethylene with a so-called shutdown function that closes the pores by heat melting at a certain temperature and loses porosity by itself, and shuts off current. Use as a separator is disclosed in JP-A-05-159766. Japanese Patent Application Laid-Open No. 05-074493 discloses that bursting due to overcharging can be prevented by using a PTC element having an operating temperature in a specific temperature range. The separator or PTC element having such a shutdown function can be applied to a spinel-type manganese lithium composite oxide which is considered to be safer than a lithium composite oxide mainly containing cobalt.
[0006]
As a positive electrode active material having a higher energy density, a lithium nickel composite oxide represented by the general formula LixNiO 2 (where 0 <x <1) is expected, but the exothermic behavior of this compound is more remarkable. Yes, further safety measures are required. When a lithium-nickel composite oxide is used as the positive electrode active material, a part of Ni is replaced with a different element to improve the thermal stability during charging in order to ensure safety in an internal short circuit situation. This is disclosed in JP-A-2000-323143.
[0007]
Japanese Patent Application Laid-Open No. 05-151995 discloses a technique for suppressing overcharge deterioration of a negative electrode by using a mixture of LiCoO 2 as a main active material and Nb 2 O 5 as a sub-active material as a positive electrode active material. It has been disclosed. Further, as a positive electrode active material, a technique of using one or a mixture of two or more of Nb 2 O 5 , LiNiO 2 , LiCoO 2 , and Li x Mn 2 O 4 is disclosed in JP-A-08-306352. Although it is disclosed in 2000-164217 and the like, in each case, there is no description about a specific example in which LiNiO 2 and Nb 2 O 5 are mixed and used, and the effect thereof.
[0008]
However, as the size increases and the energy density increases, the above-described methods such as providing safety measures and providing a safety valve are not enough to ensure safety.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems in a non-aqueous electrolyte secondary battery using a lithium nickel composite oxide as a positive electrode active material, while maintaining a high energy density, during thermal runaway of the positive electrode active material. An object of the present invention is to provide a non-aqueous electrolyte secondary battery with improved safety by suppressing heat generation behavior.
[0010]
[Means for Solving the Problems]
The invention according to claim 1 is a non-aqueous electrolyte secondary battery including a positive electrode mixture layer containing a lithium nickel composite oxide and a negative electrode mixture layer containing a negative electrode active material capable of inserting and extracting lithium, wherein the positive electrode mixture characterized in that it contains 110 wt.% of niobium pentoxide (Nb 2 O 5) in the layer.
[0011]
According to the first aspect of the present invention, the amount of heat generated from the positive electrode mixture layer can be reduced, and as a result, a non-aqueous electrolyte secondary battery with high energy density and high safety can be obtained.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention provides a nonaqueous electrolyte secondary battery using a lithium nickel composite oxide as a positive electrode active material, characterized in that it contains 110 wt.% Of niobium pentoxide (Nb 2 O 5) in the positive electrode mix layer And
[0013]
Although it is not clear at present that the calorific value of the positive electrode mixture layer can be reduced when niobium pentoxide (Nb 2 O 5 ) is contained in the positive electrode mixture layer, it functions as a negative catalyst. Thus, it is estimated that the activity of the surface of the lithium nickel composite oxide decreases, and the decomposition reaction of the electrolytic solution is suppressed. In addition, a lithium compound is often found as a residue in the lithium-nickel composite oxide, and this alkali residue may react with diniobium pentoxide (Nb 2 O 5 ) as a reason. Since no effect is obtained, it is presumed that the above-mentioned activity suppressing catalyst is superior.
[0014]
The content of niobium pentoxide positive electrode layer (Nb 2 O 5) is required to be 110 wt.%. When the content is less than 1 wt%, the effect of reducing the calorific value of the positive electrode mixture layer cannot be obtained, and when it exceeds 10 wt%, the content ratio of the positive electrode active material in the positive electrode mixture layer decreases. Therefore, the discharge capacity of the battery decreases.
[0015]
In the non-aqueous electrolyte secondary battery of the present invention, as the positive electrode active material, conventionally, high energy density is possible, but the most exothermic behavior among the positive electrode active materials, it is said that more advanced safety measures are required. The lithium nickel composite oxide (LiNiO 2 ) used is used.
[0016]
Further, part of the nickel constituting the lithium nickel composite oxide was replaced with other elements, LiNi x Co y O 2 (provided that, x + y = 1), LiNi x Al y O 2 ( provided that, x + y = 1) , LiNi x Mg y O 2 (provided that, x + y = 1), LiNi x Co y Al z O 2 ( provided that x + y + z = 1) and LiNi x Co y Mn z O 2 ( provided that x + y + z = 1) lithium composite oxides such as By using one or a mixture of two or more, a non-aqueous electrolyte secondary battery with higher safety can be obtained.
[0017]
Incidentally, in addition to the niobium pentoxide (Nb 2 O 5) is in the positive electrode mix layer, as the niobium compound, monoxide one niobium (NbO), monoxide niobium (NbO 2), Nb 3n + 1 O 3n-2 And a niobium compound such as niobium chloride (NbCl 5 ) or lithium niobate LiNbO 3 can be added.
[0018]
As the negative electrode active material in the present invention, a material capable of inserting and extracting lithium ions is used. Specific examples of the carbon material include carbonaceous materials such as natural graphite, artificial graphite, coke, and carbon fiber; or base materials such as lithium metal, lithium alloy, and silicon oxide; and metal oxides such as tin oxide.
[0019]
As the solvent of the electrolytic solution used in the present invention, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1- Those containing any one or more of 3-dioxolane, methyl acetate, methyl propionate and the like are used.
[0020]
As an electrolyte of the electrolytic solution, lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) and the like are dissolved. Used.
[0021]
As the separator in the present invention, a polyolefin material having a thermoplastic shutdown function, such as polyethylene or polypropylene, or a material obtained by applying / bonding a heat-resistant porous layer to the material is used.
[0022]
【Example】
First, the calorific value when the lithium nickel composite oxide and the electrolyte coexisted was measured. LiNiO 2 having an average particle size of 10 μm was used as the lithium nickel composite oxide.
[0023]
LiNiO 2 as a lithium-nickel composite oxide is prepared by mixing nickel hydroxide as a nickel source and lithium hydroxide as a lithium source so that the ratio of lithium to nickel becomes 1.05, and 750 in an oxygen atmosphere. It was synthesized by firing at ℃.
[0024]
Nb 2 O 5 used was a reagent grade (average particle size 0.8 μm) manufactured by Nacalai Tesque.
[0025]
95 wt% of lithium nickel composite oxide (LiNiO 2 ) having an average particle diameter of 10 μm and 5 wt% of diniobium pentoxide (Nb 2 O 5 ) having an average particle diameter of 0.8 μm, and Nb 2 O 5 uniform on the surface of LiNiO 2 The mixture was stirred and mixed using a mixer so as to adhere to the surface. This mixture, acetylene black as a conductive additive, and polyvinylidene fluoride (PVdF) as a binder were mixed at a weight ratio of 88: 4: 8 to prepare a positive electrode mixture paste. This was applied to a 15 mm × 15 mm aluminum mesh current collector, dried and pressed to obtain a positive electrode for calorific value evaluation.
[0026]
1.2 mol / l lithium hexafluorophosphate (LiPF 6 ) was mixed with a mixture of the positive electrode, metallic lithium as a counter electrode, and ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 3: 7. Using the added electrolyte solution, a test glass cell was prepared, and a monopolar test was performed. The unipolar charge / discharge test was performed at room temperature, charged at a constant current of 1.0 mA / cm 2 to a constant current of 4.3 V, and then discharged at a constant current of 1.0 mA / cm 2 to a constant current of 3.0 V to confirm the capacity. . Thereafter, the battery was charged again at 1.0 mA / cm 2 to 4.3 V at a constant voltage for 24 hours, and then a positive electrode mixture was taken out from the positive electrode, and this was used as a positive electrode mixture A, and the calorific value was measured.
[0027]
As an electrolytic solution, a mixture was prepared by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 3: 7 and adding 1.2 mol / l lithium hexafluorophosphate (LiPF 6 ).
[0028]
1 mg of the above-mentioned electrolyte solution was added to 1 mg of the charged positive electrode mixture layer, and the mixture was sealed in a stainless steel sealed container for thermal analysis to obtain a calorific value measurement sample. Thermal analysis includes Seiko Instruments Inc. Differential Scanning Calorimeter DSC6200 manufactured by Toshiba Corporation was used. The temperature range was 50 to 450 ° C., and the rate of temperature rise was 10 ° C./min.
[0029]
In the same manner as in the positive electrode mixture A, a lithium nickel composite oxide (LiNiO 2 ) having an average particle diameter of 10 μm was used as the positive electrode active material, and a positive electrode mixture without addition of diniobium pentoxide (Nb 2 O 5 ) was produced. This was used as a positive electrode mixture B, and the calorific value was measured under the same conditions.
[0030]
A mixture of 95 wt% of lithium nickel composite oxide (LiNiO 2 ) having an average particle diameter of 10 μm and 5 wt% of titanium oxide (TiO 2 ) was used as a positive electrode active material, and a positive electrode mixture was prepared in the same manner as the positive electrode mixture A. This was used as a positive electrode mixture C, and the calorific value was measured under the same conditions.
[0031]
FIG. 1 shows the discharge curves of the positive electrode mixtures A, B and C in the monopolar test. Table 1 shows the charge / discharge electricity amount in the first cycle. In Table 1, the charge / discharge efficiency means the ratio (%) of the discharge capacity to the charge capacity, and the irreversible capacity means the difference between the charge capacity and the discharge capacity.
[0032]
[Table 1]
Figure 2004319268
[0033]
From Table 1, positive electrode composite was added Nb 2 O 5 A showed positive electrode B equivalent discharge capacity without added Nb 2 O 5, the positive electrode C was added TiO 2 It was found that polarization increased and capacity decreased.
[0034]
FIG. 2 shows the DSC characteristics of the positive electrode mixtures A, B, and C. In FIG. 2, the weight of the calorific value shown on the vertical axis is a value obtained from the weight of the positive electrode mixture containing no electrolytic solution. From Figure 2, the heating value of the positive electrode mixture A with the addition of Nb 2 O 5 were it is confirmed that the reduced than the heating value of the positive electrode mixture B without the addition of Nb 2 O 5. The calorific value of the positive electrode mixture C to which TiO 2 was added was slightly lower than that of the positive electrode mixture B. Thus, it is shown that the addition of diniobium pentoxide (Nb 2 O 5 ) is effective for LiNiO 2 .
[0035]
Next, batteries were prepared and their characteristics were compared.
[0036]
First, the batteries of Examples 1 to 5 and Comparative Examples 1 and 2 were produced, and the battery characteristics when the mixing ratio of LiNiO 2 and Nb 2 O 5 was changed were compared.
[0037]
<Example 1>
LiNiO 2 having an average particle size of 10 μm was used as a positive electrode active material. 99% by weight of this LiNiO 2 and 1% by weight of Nb 2 O 5 having an average particle size of 0.8 μm were stirred and mixed using a mixer. This mixture, acetylene black as a conductive additive, and PVdF as a binder were mixed at a weight ratio of 91: 3: 6 to obtain a positive electrode paste. This positive electrode paste was applied to both sides of a 20 μm-thick aluminum foil as a current collector, dried, and pressed to obtain a positive electrode plate having a positive electrode mixture layer on both sides of the aluminum foil.
[0038]
As the negative electrode active material, a mixture of artificial graphite and natural graphite in a weight ratio of 1: 1 was used. The negative electrode active material and PVdF as a binder were mixed at a weight ratio of 92: 8 to prepare a negative electrode paste. This negative electrode paste was applied to a 15-μm-thick copper foil as a current collector, dried, and pressed to obtain a negative electrode plate having a negative electrode mixture layer on both surfaces of the copper foil.
[0039]
The above-described positive electrode plate, polyethylene separator, negative electrode plate, and polyethylene separator were laminated in this order to form a power generating element, which was housed in a square battery can made of aluminum. Into this battery can, a mixture of EC and DEC at a volume ratio of 3: 7 was filled with an electrolytic solution in which 1.2 mol / l of LiPF 6 was dissolved, and the battery was sealed with a battery lid. And a rectangular non-aqueous electrolyte secondary battery having a nominal capacity of 700 mAh, which was designated as Battery A of Example 1.
[0040]
<Example 2>
Battery B of Example 2 was made in the same manner as Example 1 except that the mixing ratio of LiNiO 2 and Nb 2 O 5 was 98 wt% of LiNiO 2 and 2 wt% of Nb 2 O 5 .
[0041]
<Example 3>
Battery C of Example 3 was produced in the same manner as Example 1, except that the mixing ratio of LiNiO 2 and Nb 2 O 5 was 95 wt% of LiNiO 2 and 5 wt% of Nb 2 O 5 .
[0042]
<Example 4>
Battery D of Example 4 was made in the same manner as Example 1, except that the mixing ratio of LiNiO 2 and Nb 2 O 5 was 92 wt% of LiNiO 2 and 8 wt% of Nb 2 O 5 .
[0043]
<Example 5>
Battery E of Example 5 was fabricated in the same manner as Example 1, except that the mixing ratio of LiNiO 2 and Nb 2 O 5 was 90 wt% of LiNiO 2 and 10 wt% of Nb 2 O 5 .
[0044]
<Comparative Example 1>
Battery F of Comparative Example 1 was produced in the same manner as in Example 1, except that only LiNiO 2 was used without adding Nb 2 O 5 .
[0045]
<Comparative Example 2>
Battery G of Comparative Example 2 was produced in the same manner as in Example 1, except that the mixing ratio of LiNiO 2 and Nb 2 O 5 was 99.5 wt% of LiNiO 2 and 0.5 wt of Nb 2 O 5 .
[0046]
<Comparative Example 3>
Battery H of Comparative Example 3 was produced in the same manner as in Example 1, except that the mixing ratio of LiNiO 2 and Nb 2 O 5 was changed to 85 wt% of LiNiO 2 and 15 wt% of Nb 2 O 5 .
[0047]
For the batteries of Examples 1 to 5 and Comparative Examples 1 to 3, a capacity test and a safety confirmation test were performed under the following conditions. The charge / discharge test was performed at room temperature, the charge was performed at a constant current of 700 mA (1 CA) up to 4.2 V, and further at a constant voltage of 4.2 V for 3 hours. It was confirmed. Thereafter, the battery was charged again at a constant current of 700 mA (1 CA) to 4.2 V and further at a constant voltage of 4.2 V for 3 hours, and then a nail penetration test and an overcharge test were performed as safety confirmation tests. In the nail penetration test, a 2.5φ nail was pierced until the nail penetrated the battery, and in the overcharge test, constant voltage charging was continued at 12100 at a constant current of 2100 mA (3 CA) and further at 4.2 at a constant current of 4.2.
[0048]
Table 2 shows the test results. Incidentally, "the mixing ratio of Nb 2 O 5" in Table 2 denote the percentage of the Nb 2 O 5 to the total weight of LiNiO 2 and Nb 2 O 5 (wt%) .
[0049]
[Table 2]
Figure 2004319268
[0050]
From the results in Table 2, the following was found. The battery capacity of the battery H was significantly lower than 700 mAh, but the batteries A to G were 700 mAh or more. Further, in the nail penetration test, in the case of the battery F, the valve was activated immediately after the nail penetration and smoking was observed. In the case of the battery G, the valve was activated immediately after the nail penetration, but the batteries A to E were used. In the case of the battery H, no abnormality was observed. Further, in the overcharge test, in the case of the batteries F and G, the valve was operated at an overcharge of 170% of the battery capacity ratio, but in the case of the batteries A to E and the battery H, no abnormality was observed. Therefore, it was found that when Nb 2 O 5 was added in an amount of 1 to 10% by weight based on the total weight of LiNiO 2 and Nb 2 O 5 , a battery with high energy density and excellent safety was obtained.
[0051]
Next, the batteries of Examples 6 to 12 were prepared, and the battery characteristics when the composition of the lithium nickel composite oxide as the positive electrode active material was changed were compared. The mixing ratio in the positive electrode mixture was 95 wt% of lithium nickel composite oxide and 5 wt% of Nb 2 O 5 .
[0052]
<Example 6>
Battery I of Example 6 was made in the same manner as Example 3 except that LiNi 0.8 Co 0.2 O 2 was used instead of LiNiO 2 .
[0053]
<Example 7>
A battery J of Example 7 was made in the same manner as Example 3 except that LiNi 0.9 Al 0.1 O 2 was used instead of LiNiO 2 .
[0054]
Example 8
Battery K of Example 8 was made in the same manner as Example 3 except that LiNi 0.9 Mg 0.1 O 2 was used instead of LiNiO 2 .
[0055]
<Example 9>
A battery L of Example 9 was made in the same manner as Example 3 except that LiNi 0.82 Co 0.15 Al 0.03 O 2 was used instead of LiNiO 2 .
[0056]
<Example 10>
Battery M of Example 10 was made in the same manner as Example 3 except that LiNi 0.8 Co 0.1 Mn 0.1 O 2 was used instead of LiNiO 2 .
[0057]
<Example 11>
Instead of LiNiO 2, LiNiO 2 and LiNi 0.9 Al 0.1 O 2 and the weight ratio of 7: except for using a mixture of 3 in the same manner as in Example 3, to prepare a cell N of Example 11 .
[0058]
<Example 12>
In the same manner as in Example 3, except that a mixture of LiNi 0.8 Co 0.2 O 2 and LiNi 0.9 Mg 0.1 O 2 in a weight ratio of 8: 2 was used instead of LiNiO 2. Battery O of Example 12 was produced.
[0059]
For the batteries of Examples 6 to 12, a capacity test and a safety confirmation test were performed under the same conditions as in Example 1. Table 3 shows the results of the test.
[0060]
[Table 3]
Figure 2004319268
[0061]
From the results in Table 3, the following was found. The battery capacity of each battery was 700 mAh or more, and the results of the safety tests were all normal. Therefore, when a positive electrode active material in which a part of Ni of LiNiO 2 is replaced by another element is used and Nb 2 O 5 is added thereto, as in the case of not replacing, a high energy density and excellent safety are obtained. It turned out that a battery was obtained.
[0062]
Further, to produce a battery of Example 13 to 18 were compared with the battery characteristics when changing an average particle size of the Nb 2 O 5. Note that LiNiO 2 having an average particle diameter of 10 μm was used as the positive electrode active material, and the mixing ratio in the positive electrode mixture was 95 wt% of LiNiO 2 and 5 wt% of Nb 2 O 5 .
[0063]
<Example 13>
A battery P of Example 13 was made in the same manner as Example 3 except that Nb 2 O 5 having an average particle size of 0.05 μm was used.
[0064]
<Example 14>
Battery Q of Example 14 was made in the same manner as Example 3 except that Nb 2 O 5 having an average particle size of 0.1 μm was used.
[0065]
<Example 15>
A battery R of Example 15 was made in the same manner as Example 3 except that Nb 2 O 5 having an average particle size of 0.5 μm was used.
[0066]
<Example 16>
Battery S of Example 16 was made in the same manner as Example 3, except that Nb 2 O 5 having an average particle size of 1.5 μm was used.
[0067]
<Example 17>
A battery T of Example 17 was made in the same manner as Example 3 except that Nb 2 O 5 having an average particle size of 3 μm was used.
[0068]
<Example 18>
A battery U of Example 18 was made in the same manner as in Example 3, except that Nb 2 O 5 having an average particle size of 5 μm was used.
[0069]
For the batteries of Examples 13 to 18, a capacity test and a safety confirmation test were performed under the same conditions as in Example 1. Table 4 shows the results of the test.
[0070]
[Table 4]
Figure 2004319268
[0071]
From the results in Table 4, the following was found. The battery capacity of each battery was 700 mAh or more, and the results of the safety tests were all normal. Therefore, it was found that when the average particle size of Nb 2 O 5 was in the range of 0.05 to 5 μm, a battery having high energy density and excellent safety was obtained.
[0072]
Further, the batteries of Examples 18 to 22 were prepared, and the battery characteristics when the electrolyte solvent was changed were compared. The mixing ratio in the positive electrode mixture was 95% by weight of LiNiO 2 and 5% by weight of Nb 2 O 5, and an electrolytic solution obtained by dissolving 1.0 mol / l of LiPF 6 in an electrolytic solvent was used.
[0073]
<Example 18>
A battery V of Example 18 was made in the same manner as in Example 3, except that a mixture of EC and dimethyl carbonate (DMC) in a volume ratio of 3: 7 was used as an electrolyte solvent.
[0074]
<Example 19>
A battery W of Example 19 was produced in the same manner as in Example 3, except that a mixture of EC and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7 was used as an electrolyte solvent.
[0075]
<Example 20>
Battery X of Example 20 was made in the same manner as Example 3, except that a mixture of EC, DMC, and EMC in a volume ratio of 3: 3: 4 was used as the electrolyte solvent.
[0076]
<Example 21>
A battery Y of Example 21 was produced in the same manner as in Example 3, except that a mixture of EC, DMC, and DEC in a volume ratio of 3: 3: 4 was used as an electrolyte solvent.
[0077]
<Example 22>
Battery Z of Example 22 was made in the same manner as Example 3 except that a mixture of EC and 1,3-dimethoxyethane (DME) in a volume ratio of 2: 8 was used as the electrolyte solvent.
[0078]
For the batteries of Examples 18 to 22, a capacity test and a safety confirmation test were performed under the same conditions as in Example 1. Table 5 shows the results of the test.
[0079]
[Table 5]
Figure 2004319268
[0080]
From the results in Table 5, the following was found. The battery capacity was 700 mAh or more for all batteries, and the results of the safety tests were all normal. Therefore, it was found that a battery with high energy density and excellent safety was obtained even when the type of the electrolyte solvent was changed.
[0081]
In the same manner as in Example 13, when a lithium salt such as LiBF 4 or LiClO 4 other than LiPF 6 was used, a battery having high energy density and excellent safety was obtained.
[0082]
【The invention's effect】
As in the present invention, in a non-aqueous electrolyte secondary battery using a lithium nickel composite oxide as the positive electrode active material, by adding 1 to 10 wt% of Nb 2 O 5 in the positive electrode mixture layer, the non-aqueous electrolyte Heat generation behavior such as thermal runaway in the secondary battery can be suppressed, and a non-aqueous secondary battery with higher energy safety can be provided.
[Brief description of the drawings]
FIG. 1 is a view showing a discharge curve of a positive electrode mixture A, B and C in a single electrode test.
FIG. 2 is a view showing DSC characteristics of positive electrode mixtures A, B and C.

Claims (1)

リチウムニッケル複合酸化物を含む正極合材層とリチウムを吸蔵放出可能な負極活物質を含む負極合材層とを備えた非水電解質二次電池において、前記正極合材層中に五酸化二ニオブ(Nb)を1〜10wt%含有することを特徴とする非水電解質二次電池。In a nonaqueous electrolyte secondary battery including a positive electrode mixture layer containing a lithium-nickel composite oxide and a negative electrode mixture layer containing a negative electrode active material capable of inserting and extracting lithium, a niobium pentoxide is contained in the positive electrode mixture layer. A non-aqueous electrolyte secondary battery containing 1 to 10 wt% of (Nb 2 O 5 ).
JP2003111658A 2003-04-16 2003-04-16 Nonacqueous electrolyte secondary battery Pending JP2004319268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111658A JP2004319268A (en) 2003-04-16 2003-04-16 Nonacqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111658A JP2004319268A (en) 2003-04-16 2003-04-16 Nonacqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2004319268A true JP2004319268A (en) 2004-11-11

Family

ID=33472147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111658A Pending JP2004319268A (en) 2003-04-16 2003-04-16 Nonacqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2004319268A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016091633A (en) * 2014-10-30 2016-05-23 住友金属鉱山株式会社 Substituent element select method, battery positive electrode material manufacturing method, and battery positive electrode material
JP2016518012A (en) * 2013-07-30 2016-06-20 エルジー・ケム・リミテッド Positive electrode mixture for secondary battery containing irreversible additive
US10873077B2 (en) 2016-03-23 2020-12-22 Toyota Jidosha Kabushiki Kaisha Method for manufacturing lithium ion battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518012A (en) * 2013-07-30 2016-06-20 エルジー・ケム・リミテッド Positive electrode mixture for secondary battery containing irreversible additive
US10218002B2 (en) 2013-07-30 2019-02-26 Lg Chem, Ltd. Positive electrode mix for secondary batteries including irreversible additive
JP2016091633A (en) * 2014-10-30 2016-05-23 住友金属鉱山株式会社 Substituent element select method, battery positive electrode material manufacturing method, and battery positive electrode material
US10873077B2 (en) 2016-03-23 2020-12-22 Toyota Jidosha Kabushiki Kaisha Method for manufacturing lithium ion battery

Similar Documents

Publication Publication Date Title
JP5034136B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP4245532B2 (en) Nonaqueous electrolyte secondary battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
US20080118833A1 (en) Non-Aqueous Electrolyte Secondary Battery
JP2007165111A (en) Nonaqueous secondary battery
JP2008181830A (en) Nonaqueous electrolyte secondary battery
JP2008108689A (en) Nonaqueous electrolyte secondary battery
JP2011054516A (en) Lithium ion secondary battery
JP2008243810A (en) Nonaqueous electrolyte secondary battery
JP5103961B2 (en) Lithium ion secondary battery
JP3683144B2 (en) Non-aqueous electrolyte secondary battery with film
JP5241766B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
WO2006082720A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
JPH1092430A (en) Lithium secondary battery
JP5017010B2 (en) Lithium secondary battery
JP4232488B2 (en) Non-aqueous electrolyte secondary battery with film
JP2003297354A (en) Lithium secondary battery
JP2002170566A (en) Lithium secondary cell
JP2004220801A (en) Nonaqueous electrolyte secondary battery
JP2005025992A (en) Nonaqueous secondary battery
JP2008021538A (en) Nonaqueous electrolyte secondary battery
JP4530844B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2005116304A (en) Secondary battery
JP2004319268A (en) Nonacqueous electrolyte secondary battery
JP2010135115A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213