JP2004298818A - Pretreatment method and apparatus therefor in supercritical water treatment of organic material - Google Patents

Pretreatment method and apparatus therefor in supercritical water treatment of organic material Download PDF

Info

Publication number
JP2004298818A
JP2004298818A JP2003097623A JP2003097623A JP2004298818A JP 2004298818 A JP2004298818 A JP 2004298818A JP 2003097623 A JP2003097623 A JP 2003097623A JP 2003097623 A JP2003097623 A JP 2003097623A JP 2004298818 A JP2004298818 A JP 2004298818A
Authority
JP
Japan
Prior art keywords
pretreatment
fluid
supercritical
treated
inorganic salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003097623A
Other languages
Japanese (ja)
Inventor
Hideo Futami
英雄 二見
Naoto Mikami
直人 三神
Etsuro Ogawa
悦郎 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003097623A priority Critical patent/JP2004298818A/en
Publication of JP2004298818A publication Critical patent/JP2004298818A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatment Of Sludge (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating method for preventing bad conditions such as lowering of heat transfer by occurrence of inorganic salt precipitation, blocking of a fluid flow passage, and loss of catalytic activity, and to provide a treating apparatus for executing the treating method in a process for manufacturing fuel gas composed essentially of hydrogen, methane and the like by treating organic materials such as sewage sludge and biomass containing inorganic salts with supercritical water. <P>SOLUTION: Before performing decomposition and gasification of organic materials with supercritical water in a reactor, slurry obtained by suspending organic materials to be treated in water and grinding particles are maintained in a floating fluidized state in a pretreatment vessel, are heated to the supercritical state of water, deposits attached to a vessel wall or the like are exfoliated and removed by the grinding particles, and further inorganic salt depositing as a solid particulate is separated and removed. A processing method for performing gasification treatment of fluid to be treated after removing the inorganic salt, is included. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する分野】
本発明は、無機塩類の含有量が比較的多い下水汚泥等の有機物を超臨界水中で処理することにより水素、メタン等を含む可燃性ガスを製造する技術、特に有機物の分解・ガス化に先立つ無機塩類除去のための前処理に関するものである。
【0002】
【従来の技術】
下水汚泥等、無機物を含有する有機性汚泥を超臨界水中で空気或は酸素富化空気等により酸化して炭酸ガス、水及び灰分に分解する処理技術は幾つか開示されている(例えば、特表平6−511190号(特許第3036077号)、特開平11−90494号、特開平11−138198号等)。このような処理においては、被処理物をポンプ等の搬送手段により処理容器に供給する便宜のため、一般的に被処理物を水に懸濁したスラリーとして供給している。
【0003】
被処理物を超臨界水処理する過程において、被処理物のスラリーを水の超臨界状態(温度374.15℃、圧力22.1MPa)以上に加圧加熱する必要がある。従来、この加熱は一般的に長い管状反応器を電気抵抗発熱体を用いた電熱加熱により、或は二重管式熱交換器に熱源として高温熱媒体若しくは処理後の高温流体を通すことにより、行われている。
【0004】
しかし、被処理物に含有され或は同伴された無機物は、被処理物が水に懸濁される過程でスラリー中の水に溶解し、また加熱により被処理有機物が分解或は水に溶解するに伴い、これに含有されていた無機塩類が水に溶解する。溶解した無機塩類は水の超臨界状態に到達するに伴って溶解度が著しく減少するため、加熱による昇温過程或はガス化反応過程において、超臨界流体中及び/又は伝熱面や反応器壁に固体として析出する。
【0005】
超臨界流体中に無機塩類が固体微粒子として析出すると、ガス化反応に固定層触媒を用いる場合には充填された触媒の間隙を固体微粒子が閉塞することで、長期間安定した処理を継続することが困難となる。また、ガス化反応に流動層触媒を使用する場合には触媒の表面や細孔内に無機塩類が析出することにより、触媒の活性喪失や活性低下を引き起こしたり触媒の凝集塊を発生する等、円滑な処理の継続に障害となる。
【0006】
反応器において触媒を使用しない場合においても、析出した無機塩類が反応器の反応生成物流出口を閉塞したり、或は析出した無機塩類の固体微粒子を含有する超臨界流体をガスと水と灰分に分離する過程において、使用されるサイクロンなど分離器の器壁に固体微粒子が固着する等、円滑な処理に障害を生じる。
【0007】
また、熱交換器での被処理物の予熱或は反応器での加熱過程において、無機塩類が伝熱面や反応器壁、或はこれらの表面に付着したチャー等に固体として析出すると、伝熱面における熱伝導の低下や無機塩類の固体とチャーとの複合物による熱交換器内の流体流路の閉塞が発生するに到る。この結果、装置の操業を一旦停止して無機塩類やチャーを除去しなければならず、処理能力の低下、除去作業費や熱ロスの増加を招くことになる。
【0008】
【発明が解決しようとする課題】
本発明は、無機塩類を含有する下水汚泥等の有機物を超臨界水中で処理する際に上記のように無機塩類の析出により生じる障害を防止して、長期間安定した処理を円滑に継続することを目的とする。すなわち、有機性汚泥等の超臨界水処理において、被処理物が含有する無機塩類が処理中に析出することにより生じる伝熱の低下、流体流路の閉塞、触媒の失活等を防止するための処理方法及びこの処理方法を実施するために用いる装置の提供を課題とする。
【0009】
【課題を解決するための手段】
本発明によれば、有機物の分解・ガス化処理を行う前に、被処理物に含有され超臨界状態付近において析出してくる無機塩類を除去する前処理を行い、このような無機塩類を殆ど除去した超臨界流体を分解・ガス化処理に供することにより上記課題が達成される。この前処理と同時に有機物が分解して低分子量の成分に転換し、更に一部分はガス化されることもあるが、前処理の目的はあくまでも超臨界流体中の被処理有機物のガス化を長時間円滑に継続するために、前以て無機塩類を殆ど除去することにある。
【0010】
すなわち第1の本発明は、被処理有機物を水に懸濁させたスラリーを前処理容器に連続的に供給し、研削粒子を該容器内に浮遊流動状態において滞留させ、加熱により水の超臨界、臨界若しくは亜臨界状態に維持することにより被処理物が含有する無機塩類を固体微粒子として超臨界流体中に析出させ、該析出物を該容器外へ排出し分離することにより無機塩類を実質的に含有しない超臨界流体を得ることを特徴とする有機物の超臨界水処理における前処理方法の発明である。ここに云う研削粒子は、水に不溶且つ不活性の固体粒子であってグリッツ・ブラストによる粗面加工のように反応器壁、熱交換器の伝熱面を損傷することが起らない程度に硬い微粒子であり、平均粒径0.01−1mmが好ましい。
【0011】
上記研削粒子は、前処理容器内の超臨界状態付近にある流体中を浮遊しつつ容器内を流動し、しかも容器内に滞留する。ここに云う浮遊流動状態は、接触分解装置における流動層触媒のように、粒子が容器から流出せずに浮遊しつつ容器内を流動することにより容器内の或る部分空間を循環する状態である。容器内において研削粒子がこのように流動する流線を図2に一点鎖線で模式的に示した。被処理物中に含有され水に溶解していた無機塩類は、超臨界状態に変化すると溶解度が急激に低下するため、流体中に固体微粒子となって析出すると同時に、前処理容器の器壁表面や器壁に付着したチャーの表面、さらには研削粒子自体の表面にも析出する。
【0012】
無機塩類の固体微粒子は、見掛け比重が無機塩類析出物より重い研削粒子を浮遊流動させる条件下では、図2に実線で流線を模式的に示したように容器内の比較的上部で浮遊流動状態となるため、容器外へ排出される。研削粒子は浮遊流動することにより、無機塩類が器壁やチャーに析出して発生した固体を削り落とすように作用するのみならず、研削粒子自体の表面に析出した固体の無機塩類をも研削粒子相互の衝突で生じる摩擦により削り落とすように作用する。
【0013】
第2の本発明は、前記前処理容器から無機塩類の固体微粒子のみならず研削粒子も排出し分離する前処理方法の発明である。すなわち、被処理有機物を水に懸濁させたスラリーを前処理容器に連続的に供給し、該容器内において研削粒子を浮遊流動状態に維持し、加熱により水の超臨界、臨界若しくは亜臨界状態に維持することにより被処理物が含有する無機塩類を固体微粒子として超臨界流体中に析出させ、該析出物及び該研削粒子を該容器外へ排出し分離することにより無機塩類を実質的に含有しない超臨界流体を得ることを特徴とする有機物の超臨界水処理における前処理方法の発明である。
【0014】
無機塩類析出物の固体微粒子に近い粒径を有する粒子を含む研削粒子を使用することで、容器内を浮遊流動する両者の流線の空間的区別が無くなり、両者共に容器から排出される。排出により量的に不足する研削粒子は補給口から連続的又は間欠的に前処理容器に補給されるか、或は被処理物スラリーに添加することによりスラリーに同伴されて前処理容器に供給される。
【0015】
第3の本発明は、上記のように被処理物が含有する無機塩類を超臨界水処理により前以て除去した後の水と有機物を含む流体を超臨界状態において分解・ガス化する有機物の超臨界水処理方法の発明である。すなわち、第1処理帯域において被処理有機物に係る上記記載の前処理を行うことにより無機塩類を実質的に含有しない流体を取得し、次いで第2処理帯域へ該流体を導入し、触媒の存在下または不存在下において水の超臨界、臨界若しくは亜臨界状態に維持することにより前記有機物を可燃性ガスと水に分解することを特徴とする有機物の超臨界水処理方法の発明である。
【0016】
このように第1処理帯域において無機塩類を充分に除去した被処理流体を第2処理帯域に導入することで、第2処理帯域において無機塩類析出の障害に妨げられること無く分解・ガス化に最適な反応条件を選択することができるため、生成ガス組成の選択や反応効率の向上を図ることができる。ここで、第2処理帯域においては触媒を必ずしも使用しなくて良いが、活性炭等の触媒を浮遊状態の流動層として、或は固定した充填層として使用すると、水素やメタンを含有する可燃性ガスが効果的に得られるので好ましい。
【0017】
第4の本発明は、上記処理方法において被処理物スラリー又は流体が存在する第1処理帯域及び/又は第2処理帯域に気体状酸化剤、及び/又は生成ガスの一部を再び導入しつつ、触媒の存在下または不存在下において水の超臨界、臨界若しくは亜臨界状態に維持する処理方法の発明である。この生成ガスは、ガス化反応により生成した反応生成物を第2処理帯域から流出させた後に気体・液体分離により得ることができる。すなわち、気体状酸化剤又は生成ガスの何れか一方を前処理容器又はガス化反応器の何れか一方に導入する組合せが4種類あり、気体状酸化剤又は生成ガスの何れかを前処理容器に導入すると同時に重複する場合も含めて気体状酸化剤又は生成ガスの何れかをガス化反応器に導入する組合せが4種類ある。これら8種類の組合せは何れも効果があり、導入する組合せに係る選択は被処理有機物の種類や所望生成ガスの組成、処理の安定性などを勘案して決定する。これによりチャーやタールなど炭化物の発生が抑制され、被処理有機物の効果的な分解・ガス化が安定して継続される。
【0018】
第5の本発明は、被処理物が含有する無機塩類を超臨界水処理により除去する装置であって、少なくとも(a)被処理有機物を水に懸濁させたスラリーを導入する供給口と、前記スラリーを水の超臨界状態に加熱する手段と、処理後の超臨界流体を流出させる流出口と、超臨界流体中に析出した無機塩類の固体微粒子を該容器外へ連続的に排出する手段と、を備えた耐圧の前処理容器、及び(b)該前処理容器内において研削粒子を浮遊流動状態に維持する手段からなることを特徴とする有機物の超臨界水処理における前処理装置の発明である。
【0019】
また、前記析出した無機塩類の固体微粒子を前記前処理容器外へ連続的に排出する具体的手段としては、該容器内の比較的上部の空間に開口を有する垂直中空管であって、該容器底部から該容器外部へ垂直に導通するように設けた排出管が簡明な構成であり、好ましい。この垂直中空管の開口部に向かって下降する傾斜面を形成する集塵縁を備えることにより、流動する無機塩類の固体微粒子を開口部に一層集め易くなり、必須要素ではないが好ましい。
【0020】
第6の本発明は、被処理物が含有する無機塩類を超臨界水処理により除去する装置であって、少なくとも(a)被処理有機物を水に懸濁させたスラリーを供給する供給口と、前記スラリーを水の超臨界状態に加熱する手段と、処理された超臨界流体を研削粒子及び該超臨界流体中に析出した無機塩類の固体微粒子と共に連続的に流出させる流出口とを備えた耐圧の前処理容器、(b)該容器内において研削粒子を浮遊流動状態に維持する手段、及び(c)前記流出口から該容器外へ排出される無機塩類の固体微粒子及び前記研削粒子と超臨界流体とを連続的に分離する流体・固体分離手段を備えてなることを特徴とする有機物の超臨界水処理における前処理装置の発明である。この流体・固体分離手段には各種集塵器などを使用できるが、サイクロン分離器が機構的に簡明であり好ましい。
【0021】
更に、前記研削粒子を前記前処理容器内において浮遊流動状態に維持する具体的手段としては、各種の攪拌機構を用いることが可能であるが、被処理有機物を水に懸濁させて得たスラリーを前記供給口から前処理容器へ導入する際の線速度を調整し得るオリフィスとスラリーの供給量を調整し得るスラリーポンプとを用いることが機構的に簡明であり、好ましい。
【0022】
更に第7の本発明は、被処理有機物を超臨界水により処理する装置であって、(d)被処理有機物スラリーを予熱する予熱器と、(e)前記記載の前処理装置と、(f)少なくとも該前処理装置から流出する流体を導入する流入口および反応生成物流出口を備えた耐圧反応器と、からなることを特徴とする有機物の超臨界水処理による処理装置の発明である。無機塩類が充分に除去された流体が耐圧反応器(f)に流入するように、被処理物スラリーを前処理装置(e)に導入する直前に高温に加熱し、超臨界状態において所定滞留時間内に無機塩類を充分に析出させるために、スラリーの予熱器(d)が必要である。
【0023】
更に第8の本発明は、上記の超臨界水処理装置において(g)前記前処理装置により前処理された後の流体を前記耐圧反応器に導入する前に加熱する手段を備えてなる有機物の超臨界水処理装置の発明である。これは、前記反応容器における被処理流体を分解・ガス化反応に必要な温度まで再加熱する機能を有する。
【0024】
この加熱手段としては、熱交換器や加熱炉など各種加熱手段を用いることが可能であるが、前記ガス化反応で生じる生成ガスの一部を燃料として用いる直接加熱式加熱炉を用いることで、設備投資コストの節減、処理生成物の有効利用、伝熱における熱損失の低減などを図ることが可能であり好ましい。従来技術による超臨界水処理では、反応生成物が殆ど可燃性ガスを含まない炭酸ガスと水であったが、本発明の処理方法によれば可燃性ガスが得られ、ガス化処理する流体の加熱にこれを燃料として用いる加熱炉の使用が可能となった。
【0025】
【発明の実施の形態】
前処理装置に係る第5本発明の一実施態様を例示した図1に沿って、第1及び第5の本発明を説明する。図1(a)は竪型中空円筒形である前処理容器の概略構造を示すため、円筒の中心軸に沿って縦断した断面端部を示す断面図である。図1(b)には容器内部の平面図を示した。前処理容器1は耐圧製であり、側面下部にスラリーを供給する供給口8を備え、容器頂部に前処理した後の超臨界流体が流出する流出口9を備え、容器内部にスラリーを加熱する伝熱管11、12をヘッダー13、14により内外2列の円環状に連結して設けている。さらに、析出した無機塩類の固体微粒子を容器外へ連続的に排出する手段として、析出物排出管6を備えている。これは、容器内の比較的上部の空間に開いた水平開口部を有する垂直中空管であって、容器底部を重力の方向すなわち垂直に貫通し、容器内部と容器外部を導通するように設けている。この垂直中空管の開口部に向かって下降する傾斜面を形成する集塵縁61を備えると、流動する無機塩類の固体微粒子を開口部に集め易くなり、好ましい。
【0026】
スラリー調製装置(図示を省略)において微破砕した被処理物を水に懸濁して得たスラリーは、スラリーポンプ3、予熱器5、オリフィス4を経てスラリー供給口8から上記前処理容器内へ連続的に導入され、加熱手段である伝熱管により加熱される。スラリーの濃度は、被処理物の種類にもよるが、有機性汚泥の場合は固形分5−15重量%が好ましい。処理容器内の伝熱管11、12内には高温の熱媒体を流して熱源とする。または、分解・ガス化処理を済ませて反応器を流出する超臨界状態の反応生成物を流して熱源としても良い。被処理物が有機性汚泥の場合、加熱温度は概ね450−650℃程度が好ましい。
【0027】
スラリー予熱器5の熱源についても通常の熱媒体を使用する他に、上記と同様に分解・ガス化処理後の反応生成物を用いることができる。被処理物が有機性汚泥の場合、予熱器において水の超臨界状態に到達すると、溶解度の急変に因り予熱器内に無機塩類の析出が発生する。この析出を防止するため、予熱温度は水の臨界温度(374℃)以下であることが好ましい。
【0028】
第1発明の前処理方法において、研削粒子は前処理容器から殆ど排出されないので、予め前処理容器に仕込んでおくか又は予め所定量を懸濁したスラリーを前処理容器へ所定の流速で導入する。但し、長期間の運転により不足を生じる場合には、必要に応じて補給口10から補給することが好ましい。
【0029】
第1発明の実施に用いる研削粒子は、水に不溶且つ不活性の固体粒子であって無機塩類析出物より比重が重く、しかも硬度が前処理容器の内壁や伝熱管表面を損傷しない程度に硬い微粒子である。このような条件を満足するものであれば特に材質として限定されず、たとえば、一般に人造砥粒(abrasive)として使用される各種アルミナ、或はチタニア、ジルコニア等が用いられる。粒度は、浮遊流動状態を形成できる範囲であれば足りるが、平均粒径が0.01−1mmのものが好ましく、特に0.05−0.5mm程度が好ましい。
【0030】
研削粒子を浮遊流動させる手段として、スラリー供給口の容器外部側に開口度調節が可能なオリフィス4を設け、スラリーポンプ3による一定のスラリー供給量に関して供給口8におけるスラリーの線速度を調節する。使用する研削粒子の粒度と比重、スラリーの粘度に適切なようにスラリー導入の流速を調整することにより、研削粒子を前処理容器1から流出させずに容器内を浮遊流動しつつ循環させることができる。
【0031】
上記の状態において被処理物中の有機物は超臨界水に完全溶解し、一部は分解して低分子量成分に転換し、容器頂部に設けた流出口9から前処理済みの被処理物すなわち無機塩類の除去された超臨界流体が連続的に流出する。一方、無機物はスラリー中に懸濁したまま溶解しない固体微粒子、あるいは一旦溶解した後に前記のような溶解度の急激な変化により析出した固体微粒子として、研削粒子と共に前処理容器内を浮遊しつつ流動する。
【0032】
第1の本発明の方法において、無機塩類より比重が充分に重い材料の研削粒子を選択して用い、供給口から導入するスラリーの線速度を、研削粒子は充分に浮遊流動するが比重の軽い無機塩類固体粒子は流出口9から流出しない範囲に調節することで、析出物固体粒子も研削粒子も容器から流出せずに、容器内で夫々の比重に従って分離された部分空間を浮遊しつつ流動する状態を実現することができる。図2はこのような無機塩類固体粒子の動きを一点鎖線の矢印流線で、また研削粒子の動きを実線の矢印流線により模式的に示したものである。このようにして、結果的に析出物固体微粒子と研削粒子とが前処理容器内において巧みに分離される。
【0033】
図1において、析出物排出管6は垂直に設けられ、前処理容器1の底面を垂直に貫通し、容器内部と容器外部を導通する。析出物排出管の開口部より上方を浮遊流動する析出物固体粒子は、重力により開口部に向かって沈降して排出管内に取り込まれ、重力により排出管6を通過して前処理容器外部へ排出される。沈降する析出物を前処理容器外部において収容する容器として、析出物排出器62を排出管の下端に接続する。析出物排出器は少容量の耐圧容器であり、底面部分にロックホッパーシステム等を接続するために開閉する排出弁65を備える。
【0034】
析出物排出器に収容した固体微粒子を抜き出す装置について、代表的な2態様を説明する。図1(a)は、ロックホッパーシステムを示したものである。析出物排出器62は前処理容器と導通しているため、ロックホッパーシステムと接続する排出弁A65は常時閉鎖している。耐圧容器A63には生成ガス他の高圧ガスを導入する配管68が弁C67を介して接続されており、容器A63の内圧を上げることができる。また、この配管68を通してガスを放出して容器A63の内圧を大気圧まで下げることもできる設備になっている。また、大気下で析出物を収容する容器B64(搬送用容器)に弁B66を介して接続している。
【0035】
まず各弁A、B、Cが閉じた状態から弁C67を開き、容器A63の内圧を排出器62の内圧と等圧にする。次いで弁C67を閉じたのち弁A65を開き、析出物を排出器62から容器A63へ重力で移す。所定量の析出物を移したのち弁A65を閉じ、弁C67を開いてガスを放出ライン(図示せず)へ放出する。次いで容器A63内の析出物を容器B64へ重力で移し、各弁を閉じ、一連の操作を終了する。この操作は自動化されて間欠的に行われる。
【0036】
図4に示した固体粒子抜き出しの態様は、水に溶解して抜き出す装置を用いるものである。排出器62に弁A65を介して容器A63を接続し、容器A63には弁C67を介して常温若しくは加温した高圧水を導入できる配管69が接続されている。まず各弁A、B及びCが閉じている状態から弁A65を開き、析出物を排出器62の内圧により容器A63へ移す。所定量の析出物を抜き出したのち弁A65を閉じ、次いで弁C67を開いて高圧水を導入し、析出物を溶解しつつ弁B66を開いて装置外へ排出し、各弁を閉じ、一連の操作を終了する。この操作は自動化されて間欠的に行われる。
【0037】
図1に示した上記第5発明に係る前処理装置を用い、析出物の抜き出し方法に関して第2発明を実施することもできる。すなわち、無機塩類析出物の固体粒子に近い粒径を有する粒子を含む研削粒子を使用することで、前処理容器内を浮遊流動する両者の流線の空間的区別が無くなり、両者共に析出物排出管6に取り込まれ、前処理容器1から排出される。排出により量的に不足する研削粒子は補給口10から連続的又は間欠的に前処理容器に補給しても良いが、被処理有機物スラリーに混入して補給する方法が好ましい。
【0038】
上記第2発明の方法において、前処理容器のサイズ、研削粒子の種類等については第1発明の場合と特に相違を設ける必要がない。何れの方法を選択するかについては、前処理容器の直径、スラリーの導入量、研削粒子の比重や粒径などを考慮する。但し排出器62からの析出物抜き出しについては、無機塩類と共に排出する研削粒子が水に不溶であるため、ロックホッパーシステムが適しており、図4に示した水に溶解して抜き出す装置は使用できない。
【0039】
前処理装置に係る第6本発明の一実施態様を例示した図3に沿って、第2及び第6の本発明を説明する。図3は前処理装置に係る系統図である。図には竪型中空円筒形である前処理容器1の円筒の中心軸に沿って縦断した概略断面、析出した無機塩類の固体微粒子を研削粒子と共に流出口9から容器外へ連続的に流出させたのち超臨界流体から流体・固体分離する手段であるサイクロン分離器7の概略縦断面、サイクロン7により捕集されてサイクロン下部71に溜った微粒子を抜き出すロックホッパーシステム(詳細は図1の説明参照)、被処理有機物のスラリーを前処理容器1に供給すると共に析出物の固体微粒子と研削粒子を容器内で適切に浮遊流動させ容器から流出させる手段であるスラリーポンプ3とオリフィス4、及び前処理容器1に供給する前にスラリーを加熱する予熱器5の接続関係が図示されている。
【0040】
図3において、前処理容器1の内部にはスラリーを超臨界温度にまで加熱する伝熱管11等の伝熱面を備えている。第2発明においては、無機塩類析出物の固体粒子に近い粒径を有する粒子を含む研削粒子を使用するので、前処理容器内を浮遊流動する両者の流線は図3に実線で示したように空間的区別が無くなり、両者共に前処理容器1の流出口9から排出される。排出により不足する研削粒子は補給口(図示を省略)から連続的又は間欠的に容器1へ補給しても良いが、被処理有機物スラリーに混入して補給する方法が好ましい。
【0041】
図3において、サイクロンにより捕集されサイクロン下部71に集められた固体微粒子と研削粒子の混合物は、前記抜き出し方法において説明した操作方法により、高圧ガス及び大気圧放出ラインの配管を接続したロックホッパーシステムを用いてサイクロンから抜き出され、搬送用容器64に収容される。研削粒子は水に不溶であり、高圧水を用いる抜き出し装置はサイクロンに接続できない。
【0042】
有機物の超臨界水処理装置に係る第7発明の一実施態様を例示した図4に沿って、第3発明及び第7発明の実施形態を説明する。図4は超臨界水処理装置に係る系統図であり、前処理において析出した無機塩類の固体微粒子を容器外へ連続的に排出する析出物排出管6を備えた前記第5発明に係る前処理容器1及びスラリーポンプ3等の付属機器、析出物排出器62から析出物を排出する抜き出し装置、前処理を済ませた超臨界流体を分解・ガス化する反応器2、前処理容器1及び反応器2へ生成ガスの一部を導入する配管24、並びに前処理容器1及び反応器2へ気体状酸化剤を導入する配管25の接続関係が図示されている。但し、第3発明の実施において、前処理の装置及び付属する固体粒子排出・抜き出し装置並びに処理操作は既に説明した何れを用いても良い。
【0043】
本発明は、使用する反応器の型式に制約されない。反応器2の形式は、従来技術で使用される管型反応器を使用することができるほか、本発明者等が先に特許出願(特願2002−296409号)した竪型円筒形の反応塔等を用いることができる。本発明に係る超臨界水中での有機物のガス化反応は被処理物の性状に応じて無触媒で実施しても良く、活性炭等の炭素系触媒その他公知の触媒を使用しても良い。本発明において、前記前処理により無機塩類を除去した超臨界流体中に溶存する有機物を分解するので、触媒を固定層に充填して使用しても従来発生したような無機塩類析出物の固体粒子による触媒層閉塞等の支障は起らない。触媒に無機塩類が析出することに因る失活も起らないので、触媒を流動層として浮遊状態で使用しても処理を円滑に長時間継続できる。
【0044】
本発明の実施に使用する反応器内を水の臨界圧に昇圧し維持するため、当業界において通常使用される加圧及び圧力制御手段(図示を省略)を使用する。水の臨界温度に昇温し維持するために反応器に設ける加熱手段として、例えば管型反応器の場合には従来用いられる電気抵抗発熱体を用いた電熱加熱、或は二重管式熱交換器に熱源として高温熱媒体若しくは超臨界水処理後の高温流体を通すことによる加熱等を用いることができる。
【0045】
図4に沿って第4発明に係る方法の実施態様を説明する。第4発明に係る超臨界水処理方法においては、上記第3発明の説明に記載した実施態様に加え、反応器から流出した反応生成物から分離した生成ガスの一部を前処理容器及び/又は反応器の下部へリサイクルガス配管24により導入する。反応器へ流入する被処理流体に対して、導入するガスの割合は、常温状態の被処理物スラリーに対する標準状態のガスの体積比で20−150程度が好ましい。このうち40−80が特に好ましい。気体状酸化剤は、単独に導入しても良いがガスの導入と同時に行うのが好ましい。酸素、酸素富化空気などを反応器の下部へ導入する場合は、反応器へ流入する被処理流体に対して導入する酸素の割合は体積比で10−50程度が好ましい。これ等を導入することでチャーやタールの生成抑制、触媒活性の安定化により反応温度の制御が容易になり、生成ガスの組成を調整することができる等の利点がある。
【0046】
図5に沿って第8発明の実施態様を説明する。図5は超臨界水処理装置に係る系統図であり、前処理において析出した無機塩類の固体微粒子を研削粒子と共に前処理容器1外へ連続的に流出させたのち超臨界流体から流体・固体分離するサイクロン7を備えた前記第6発明に係る前処理容器1、スラリーポンプ3等の付属機器、サイクロン下部71に集められた固体微粒子と研削粒子を分離器の内圧と高圧ガスを用いて抜き出すロックホッパーシステム、前処理後の被処理流体を分解・ガス化に必要な温度まで昇温する加熱炉23、及び加熱された被処理流体を分解・ガス化する反応器2の接続関係が図示されている。
【0047】
但し、第8発明に係る装置において、前処理の装置及び処理操作は既に説明した何れを用いても良い。なお、反応器2へ導入する被処理流体を加熱する様式に関しては、この被処理流体が固体微粒子も研削粒子も含まないため、何ら制約を受けない。但し、生成ガスの一部を燃料として使用し、被処理流体が流れる伝熱管をバーナーにより直接加熱する加熱炉23を用いると伝熱効率が高く、場合により生成ガスの有効利用にもなり、特に好ましい。
【0048】
第8の本発明は使用する反応器の型式に制約されない。すなわち、第8発明に係る装置において、反応器2の形式は第7発明の場合と同様に、従来技術で使用される反応器を使用することができるほか、本発明者等が先に特許出願(特願2002−296409号)した竪型円筒形の反応塔等を用いることができる。本発明に係る超臨界水中での有機物のガス化反応は被処理物の性状に応じて無触媒で実施しても良く、活性炭等の炭素系触媒その他公知の触媒を使用しても良い。また、第4発明に係る方法において説明したように、前処理容器及び/又は反応器に生成ガス及び/又は気体状酸化剤を8種類の組み合わせから選択して導入しても良い。
【0049】
以上の記載により各発明の代表的な実施形態が明確に説明されたので、処理結果の詳細について以下に実施例により説明する。但し、本発明はこの実施例により何ら制約されるものではない。
[実施例1]
被処理物スラリーは、灰分と表現される無機塩類を含む有機性汚泥を乾燥物基準(dry−kg/h)で10重量%の濃度に水に懸濁して調製した。図4に示した処理装置を使用し、前処理方法として第1発明に係る方法を用いた。予熱温度は約350℃であり、前処理温度は約520℃であった。しかし、分解・ガス化方法としては第3発明に係る方法すなわち生成ガスも気体状酸化剤も導入しない方法を用いた。ガス化処理温度は約600℃であった。前処理およびガス化の圧力は約35MPaに維持した。処理は順調に7日間継続し、なお運転可能な状態で停止した。処理結果を元素分析による物質収支の形で表示した。
【0050】
【表1】

Figure 2004298818
表1に前処理容器に入る被処理物を、ガス化される有機物について元素分析値で、また無機物については灰分として示し、さらに流量を示した。スラリー濃度は乾燥物基準で10重量%で順調に処理できることが判る。
【0051】
【表2】
Figure 2004298818
表2に前処理容器から排出する析出物(灰分)および同伴して排出される有機性成分の組成、及び各流量を示した。この結果から、前処理装置に導入された無機塩類は実質的に全量が析出物排出器から排出されること、研削粒子は実質的に排出されないことが判る。
【0052】
【表3】
Figure 2004298818
表3にガス化反応器に流入する流体の組成及び流量を示した。この実施結果により、無機塩類や研削粒子を全く含有しない被処理有機物をガス化反応器に導入できることが判る。
【0053】
【表4】
Figure 2004298818
表4にガス化反応器から流出する反応生成物の成分と組成及び流量を示した。水の物質収支を見ると、先に表3に示した流入重量8.10に対し表4で流出重量7.75となっており一致しないが、その差0.35はガス化反応器において水素と炭酸ガスに転換したと考えられる。なお、表3に示した全物質の合計流入重量8.86と表4における全物質の合計流出重量8.86は一致し、物質収支としてバランスしている。この実施結果により、有機物は実質的に全量が分解されてガスとなること、生成ガスは水素・メタンを主成分とする可燃性ガスであること、有害ガス成分の発生は極く僅かであること、前処理を行わない従来技術に比べ安定運転の期間が大幅に延長できたことが示された。
【0054】
【発明の効果】
本発明に係る前処理方法において、有機汚泥等の被処理物に含まれる無機塩類の殆ど全量が溶解度の変化に因って固体微粒子として析出するか又は伝熱管の管壁等へ固体として付着し、付着した析出物は研削粒子により削り取られて固体微粒子となり、前処理容器の外へ除去される。その結果、無機塩類を実質的に含有しない被処理流体を得ることができると同時に、前処理装置自体が安定に長時間の運転を継続することができる。
【0055】
無機塩類を含有する有機物を超臨界水により処理する際に、全体の処理過程の機能を専ら本発明に係る前処理を行う第1帯域と、この前処理を済ませた流体を専ら超臨界状態で分解・ガス化する第2帯域とに機能分担したことにより、処理装置の安定的運転時間が従来の10倍程に飛躍的に増大し、また装置清掃等のコストも著しく低下し、有機物の超臨界水処理法の実用性が著しく改善された。
【0056】
これは、本発明において分解・ガス化反応器に流入する超臨界流体は無機塩類を実質的に含有しないので、反応器において従来起っていたような無機塩類析出に因る運転上の障害が殆ど発生しないため、処理装置の能力が著しく向上した結果である。
【図面の簡単な説明】
【図1】本発明に係る前処理装置の実施形態を例示する(a)縦断面図および(b)前処理容器内部の平面図
【図2】本発明に係る前処理容器における析出物固体粒子の流動状態と研削削粒子の浮遊流動状態を模式的に示す説明図
【図3】本発明に係る前処理装置について別の実施形態を例示する系統図
【図4】本発明に係る超臨界水処理装置の実施形態を説明する系統図
【図5】本発明に係る超臨界水処理装置について別の実施形態を説明する系統図
【符号の説明】
1 前処理容器
11、12伝熱管
13、14ヘッダー
2 ガス化反応器
21 被処理流体流入口
22 反応生成物流出口
23 加熱炉
24 リサイクルガス配管
25 気体状酸化剤配管
26、27 リサイクルガス選択弁
28、29 気体状酸化剤選択弁
3 スラリーポンプ
4 オリフィス 5 予熱器
6 析出物排出管
61集塵縁 62析出物排出器
63容器A 64容器B
65弁A 66弁B 67弁C
68高圧ガス配管 69高圧水配管
7 サイクロン
71サイクロン下部
8 スラリー供給口
9 流出口 10 補給口[0001]
[Field of the Invention]
The present invention is a technology for producing a combustible gas containing hydrogen, methane, and the like by treating organic substances such as sewage sludge having a relatively large content of inorganic salts in supercritical water, particularly prior to decomposition and gasification of organic substances. The present invention relates to a pretreatment for removing inorganic salts.
[0002]
[Prior art]
Several treatment techniques for oxidizing organic sludge containing inorganic substances, such as sewage sludge, in supercritical water with air or oxygen-enriched air to decompose it into carbon dioxide, water, and ash have been disclosed (for example, see Japanese Patent Laid-Open Publication No. H11-163,837). JP-A-6-511190 (Japanese Patent No. 3036077), JP-A-11-90494, JP-A-11-138198, and the like. In such a process, for the purpose of conveniently supplying an object to be processed to a processing container by a transport means such as a pump, the object is generally supplied as a slurry in which water is suspended in water.
[0003]
In the process of treating the object to be treated with supercritical water, it is necessary to pressurize and heat the slurry of the object to be treated to a supercritical state of water (temperature 374.15 ° C., pressure 22.1 MPa) or higher. Conventionally, this heating is generally performed by heating an elongated tubular reactor using an electric resistance heating element, or by passing a high-temperature heat medium or a treated high-temperature fluid as a heat source through a double-tube heat exchanger. Is being done.
[0004]
However, the inorganic substances contained or entrained in the object are dissolved in the water in the slurry while the object is suspended in water, and the organic matter to be processed is decomposed or dissolved in water by heating. At the same time, the inorganic salts contained therein dissolve in water. The solubility of the dissolved inorganic salts significantly decreases as the water reaches the supercritical state. Therefore, in the process of increasing the temperature by heating or the gasification reaction process, the dissolved inorganic salts are in the supercritical fluid and / or the heat transfer surface or the reactor wall. Precipitates as a solid.
[0005]
When inorganic salts precipitate as solid particles in the supercritical fluid, when using a fixed bed catalyst for gasification reaction, solid particles close the gap between the filled catalysts, so that long-term stable processing can be continued. Becomes difficult. In addition, when a fluidized bed catalyst is used for the gasification reaction, the inorganic salts precipitate on the surface or in the pores of the catalyst, causing a loss of activity or a decrease in activity of the catalyst, generating agglomerates of the catalyst, and the like. An obstacle to the continuation of smooth processing.
[0006]
Even when the catalyst is not used in the reactor, the precipitated inorganic salts may block the outlet of the reaction product stream of the reactor, or the supercritical fluid containing solid fine particles of the precipitated inorganic salts may be converted into gas, water, and ash. During the separation process, smooth processing is hindered, for example, solid fine particles adhere to the wall of a separator such as a cyclone used.
[0007]
In addition, during the preheating of the object to be treated in the heat exchanger or the heating process in the reactor, if inorganic salts precipitate as solids on the heat transfer surface, the reactor wall, or the char attached to these surfaces, the transfer may occur. The heat conduction on the hot surface is reduced, and the fluid flow path in the heat exchanger is blocked due to the compound of the inorganic salt solid and the char. As a result, it is necessary to temporarily stop the operation of the apparatus to remove the inorganic salts and chars, resulting in a reduction in the processing capacity, an increase in the removal work cost, and an increase in the heat loss.
[0008]
[Problems to be solved by the invention]
The present invention, when treating organic matter such as sewage sludge containing inorganic salts in supercritical water, to prevent the obstacles caused by the precipitation of inorganic salts as described above, to smoothly continue stable treatment for a long period of time With the goal. That is, in the treatment of supercritical water such as organic sludge, in order to prevent a decrease in heat transfer, blockage of a fluid passage, deactivation of a catalyst, etc. caused by precipitation of inorganic salts contained in a treatment object during treatment. It is an object of the present invention to provide a processing method and a device used for implementing the processing method.
[0009]
[Means for Solving the Problems]
According to the present invention, before performing the decomposition / gasification treatment of the organic matter, a pretreatment for removing the inorganic salts contained in the object to be treated and precipitated near the supercritical state is performed, and such inorganic salts are almost completely removed. The above object is achieved by subjecting the removed supercritical fluid to a decomposition / gasification treatment. At the same time as this pretreatment, organic substances are decomposed and converted into low molecular weight components, and some of them may be gasified.However, the purpose of the pretreatment is to prolong the gasification of the organic substances to be treated in a supercritical fluid for a long time. In order to continue smoothly, most of the inorganic salts are removed in advance.
[0010]
That is, the first aspect of the present invention is to continuously supply a slurry in which an organic substance to be treated is suspended in water to a pretreatment vessel, to retain the ground particles in a floating fluid state in the vessel, and to heat the supercritical water by heating. By maintaining a critical or subcritical state, the inorganic salts contained in the object to be treated are precipitated in a supercritical fluid as solid fine particles, and the precipitates are discharged out of the vessel and separated to substantially separate the inorganic salts. The present invention relates to a pretreatment method for supercritical water treatment of an organic substance, characterized by obtaining a supercritical fluid not contained in water. Grinding particles referred to here are solid particles that are insoluble and inert in water, and do not damage the reactor walls and the heat transfer surface of the heat exchanger unlike roughening by grit blasting. The fine particles are hard and preferably have an average particle diameter of 0.01 to 1 mm.
[0011]
The ground particles flow in the container while floating in a fluid near the supercritical state in the pretreatment container, and furthermore, stay in the container. The floating fluid state referred to herein is a state in which particles circulate in a certain partial space in the container by flowing in the container while floating without flowing out from the container, like a fluidized bed catalyst in a catalytic cracking device. . The streamline in which the abrasive particles flow in the container in this manner is schematically shown by a dashed line in FIG. The inorganic salts contained in the object to be treated and dissolved in water are rapidly reduced in solubility when they change to a supercritical state. It is also deposited on the surface of the char adhering to the vessel wall and also on the surface of the abrasive particles themselves.
[0012]
Under the condition that the solid particles of the inorganic salts float and flow the ground particles whose apparent specific gravity is heavier than the inorganic salt precipitates, the floating particles flow relatively high in the container as schematically shown by the solid lines in FIG. It is discharged to the outside of the container. As the abrasive particles float and flow, not only do the inorganic salts precipitate on the walls and chars of the vessel, but they also work to scrape off the solids generated.In addition, the abrasive particles also remove the solid inorganic salts that have precipitated on the surface of the abrasive particles themselves. It acts to scrape off by friction generated by mutual collision.
[0013]
A second aspect of the present invention is a pretreatment method for discharging and separating not only solid fine particles of inorganic salts but also ground particles from the pretreatment container. That is, a slurry in which the organic material to be treated is suspended in water is continuously supplied to a pretreatment vessel, the grinding particles are maintained in a floating fluid state in the vessel, and the supercritical, critical or subcritical state of water is heated by heating. Inorganic salts contained in the object to be treated are precipitated as solid fine particles in a supercritical fluid by maintaining the particles, and the precipitates and the ground particles are substantially discharged and separated from the vessel to substantially contain the inorganic salts. The present invention is directed to a pretreatment method for supercritical water treatment of organic matter, characterized in that a supercritical fluid is obtained.
[0014]
By using abrasive particles including particles having a particle size close to solid fine particles of inorganic salt precipitates, there is no spatial distinction between the two streamlines floating and flowing in the container, and both are discharged from the container. Grinding particles that are insufficient in quantity due to discharge are supplied to the pretreatment container continuously or intermittently from the supply port, or supplied to the pretreatment container together with the slurry by being added to the workpiece slurry. You.
[0015]
The third aspect of the present invention relates to an organic substance which decomposes and gasifies a fluid containing water and an organic substance in a supercritical state after previously removing inorganic salts contained in the substance to be treated by supercritical water treatment as described above. It is an invention of a supercritical water treatment method. That is, a fluid substantially free of inorganic salts is obtained by performing the above-described pretreatment of the organic material to be treated in the first treatment zone, and then the fluid is introduced into the second treatment zone, and the fluid is introduced in the presence of a catalyst. Alternatively, the present invention is directed to a method for treating a supercritical water with an organic substance, wherein the organic substance is decomposed into a combustible gas and water by maintaining the supercritical, critical or subcritical state of water in the absence.
[0016]
By introducing the fluid to be treated, from which inorganic salts have been sufficiently removed in the first treatment zone, to the second treatment zone, it is optimal for decomposition and gasification in the second treatment zone without being hindered by the failure of inorganic salts precipitation. Since such reaction conditions can be selected, it is possible to select the composition of the generated gas and to improve the reaction efficiency. Here, in the second treatment zone, a catalyst is not necessarily used. However, if a catalyst such as activated carbon is used as a fluidized bed in a floating state or as a fixed packed bed, a flammable gas containing hydrogen or methane is used. Is preferred because it can be effectively obtained.
[0017]
According to a fourth aspect of the present invention, a gaseous oxidizing agent and / or a part of a generated gas are introduced again into the first processing zone and / or the second processing zone where a slurry or a fluid to be processed is present in the processing method. And a treatment method for maintaining water in a supercritical, critical or subcritical state in the presence or absence of a catalyst. This generated gas can be obtained by gas / liquid separation after the reaction product generated by the gasification reaction is allowed to flow out of the second treatment zone. That is, there are four types of combinations for introducing either the gaseous oxidant or the product gas into either the pretreatment vessel or the gasification reactor, and the gaseous oxidant or the product gas is supplied to the pretreatment vessel. There are four types of combinations in which either the gaseous oxidizing agent or the product gas is introduced into the gasification reactor, including the case where the gaseous oxidizing agent and the product gas are simultaneously introduced. Any of these eight combinations is effective, and the selection of the combination to be introduced is determined in consideration of the type of the organic substance to be treated, the composition of the desired generated gas, the stability of the treatment, and the like. Thereby, generation of carbides such as char and tar is suppressed, and effective decomposition and gasification of the organic matter to be treated are stably continued.
[0018]
The fifth invention is an apparatus for removing inorganic salts contained in an object to be treated by supercritical water treatment, wherein at least (a) a supply port for introducing a slurry in which an organic substance to be treated is suspended in water; A means for heating the slurry to a supercritical state of water, an outlet for discharging the treated supercritical fluid, and a means for continuously discharging solid fine particles of inorganic salts precipitated in the supercritical fluid to the outside of the container And (b) a means for maintaining the abrasive particles in a floating fluid state in the pretreatment vessel, the invention comprising a pretreatment apparatus for supercritical water treatment of organic matter. It is.
[0019]
Further, as a specific means for continuously discharging the solid fine particles of the precipitated inorganic salts out of the pretreatment vessel, a vertical hollow tube having an opening in a relatively upper space in the vessel, A discharge pipe provided to conduct vertically from the container bottom to the outside of the container has a simple configuration and is preferable. By providing the dust collecting edge forming an inclined surface descending toward the opening of the vertical hollow tube, the solid fine particles of the inorganic salts which flow can be more easily collected in the opening, and are not an essential element, but are preferable.
[0020]
A sixth aspect of the present invention is an apparatus for removing inorganic salts contained in an object to be treated by supercritical water treatment, wherein at least (a) a supply port for supplying a slurry in which an organic substance to be treated is suspended in water; A pressure-resistant device comprising means for heating the slurry to a supercritical state of water, and an outlet for continuously discharging the treated supercritical fluid together with the abrasive particles and solid fine particles of inorganic salts precipitated in the supercritical fluid. (B) means for maintaining the abrasive particles in a floating fluid state in the container, and (c) solid fine particles of inorganic salts and the abrasive particles discharged from the outlet out of the container and supercritical It is an invention of a pretreatment device in supercritical water treatment of organic matter, characterized by comprising a fluid / solid separation means for continuously separating a fluid. Various dust collectors and the like can be used as the fluid / solid separating means, but a cyclone separator is mechanically simple and preferable.
[0021]
Further, as a specific means for maintaining the abrasive particles in a floating fluid state in the pretreatment vessel, various stirring mechanisms can be used, but a slurry obtained by suspending the organic material to be treated in water is used. It is mechanically simple and preferable to use an orifice capable of adjusting the linear velocity when introducing the slurry into the pretreatment vessel from the supply port and a slurry pump capable of adjusting the supply amount of the slurry.
[0022]
Further, a seventh aspect of the present invention is an apparatus for treating an organic substance to be treated with supercritical water, comprising: (d) a preheater for preheating an organic substance slurry to be treated; (e) a pretreatment apparatus as described above; A) A pressure-resistant reactor having at least an inlet for introducing a fluid flowing out of the pretreatment device and an outlet for a reaction product stream, which is an invention of a treatment device for supercritical water treatment of organic matter. The slurry to be treated is heated to a high temperature immediately before being introduced into the pretreatment device (e) so that the fluid from which the inorganic salts have been sufficiently removed flows into the pressure-resistant reactor (f). In order to sufficiently precipitate the inorganic salts therein, a slurry preheater (d) is required.
[0023]
Further, an eighth aspect of the present invention provides the supercritical water treatment apparatus as described above, wherein (g) an organic substance comprising means for heating the fluid after pretreatment by the pretreatment apparatus before introducing the fluid into the pressure-resistant reactor. It is an invention of a supercritical water treatment device. This has a function of reheating the fluid to be treated in the reaction vessel to a temperature required for the decomposition / gasification reaction.
[0024]
As the heating means, it is possible to use various heating means such as a heat exchanger and a heating furnace, but by using a direct heating heating furnace using a part of the product gas generated in the gasification reaction as fuel, It is possible and preferable to reduce capital investment costs, effectively use processed products, and reduce heat loss in heat transfer. In the supercritical water treatment according to the prior art, the reaction products were carbon dioxide gas and water containing almost no flammable gas. However, according to the treatment method of the present invention, a flammable gas is obtained and the fluid to be gasified is treated. It became possible to use a heating furnace that uses this as fuel for heating.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
The first and fifth aspects of the present invention will be described with reference to FIG. 1, which illustrates an embodiment of the fifth aspect of the pretreatment apparatus according to the present invention. FIG. 1A is a cross-sectional view showing a cross-sectional end portion taken along a central axis of a cylinder in order to show a schematic structure of a pretreatment container having a vertical hollow cylindrical shape. FIG. 1B shows a plan view of the inside of the container. The pretreatment vessel 1 is made of pressure-resistant, has a supply port 8 for supplying slurry at the lower part of the side face, has an outlet 9 at the top of the vessel through which a supercritical fluid after pretreatment flows out, and heats the slurry inside the vessel. The heat transfer tubes 11 and 12 are provided by connecting two rows of inner and outer rings by headers 13 and 14. Further, a precipitate discharge pipe 6 is provided as means for continuously discharging the precipitated solid fine particles of inorganic salts to the outside of the container. This is a vertical hollow tube having a horizontal opening that opens into a relatively upper space in the container, and is provided so as to penetrate the container bottom in the direction of gravity, that is, vertically, and to connect the inside of the container and the outside of the container. ing. It is preferable to provide the dust collecting edge 61 that forms an inclined surface that descends toward the opening of the vertical hollow tube, because the solid fine particles of the inorganic salts that flow can be easily collected in the opening.
[0026]
The slurry obtained by suspending the finely crushed object in water in a slurry preparation device (not shown) is continuously passed through a slurry pump 3, a preheater 5, and an orifice 4 from a slurry supply port 8 into the pretreatment vessel. And is heated by a heat transfer tube as a heating means. The concentration of the slurry depends on the type of the material to be treated, but in the case of organic sludge, the solid content is preferably 5 to 15% by weight. A high-temperature heat medium flows through the heat transfer tubes 11 and 12 in the processing vessel to serve as a heat source. Alternatively, the reaction product in a supercritical state flowing out of the reactor after the decomposition and gasification treatment may be used as a heat source. When the object to be treated is organic sludge, the heating temperature is preferably about 450 to 650 ° C.
[0027]
As a heat source of the slurry preheater 5, a reaction product after decomposition and gasification can be used in the same manner as described above, in addition to using a normal heat medium. When the object to be treated is organic sludge, when water reaches a supercritical state in the preheater, precipitation of inorganic salts occurs in the preheater due to a sudden change in solubility. In order to prevent this precipitation, the preheating temperature is preferably equal to or lower than the critical temperature of water (374 ° C.).
[0028]
In the pretreatment method of the first invention, since the abrasive particles are hardly discharged from the pretreatment vessel, they are charged in the pretreatment vessel in advance or a slurry in which a predetermined amount of the slurry is suspended is introduced into the pretreatment vessel at a predetermined flow rate. . However, when shortage occurs due to long-term operation, it is preferable to replenish from the supply port 10 as necessary.
[0029]
The ground particles used for carrying out the first invention are solid particles which are insoluble and inert in water, have a higher specific gravity than the inorganic salt precipitates, and have a hardness such that the inner wall of the pretreatment vessel and the surface of the heat transfer tube are not damaged. Fine particles. The material is not particularly limited as long as it satisfies such conditions. For example, various types of alumina, titania, zirconia, and the like generally used as artificial abrasive grains (abrasive) are used. The particle size is sufficient as long as it can form a floating fluid state, but the average particle size is preferably 0.01 to 1 mm, and particularly preferably about 0.05 to 0.5 mm.
[0030]
As a means for causing the abrasive particles to float and flow, an orifice 4 whose opening degree can be adjusted is provided on the outside of the container with respect to the slurry supply port, and the linear velocity of the slurry at the supply port 8 is adjusted with respect to a constant amount of slurry supplied by the slurry pump 3. By adjusting the flow rate of the slurry introduction so as to be appropriate for the particle size and specific gravity of the used abrasive particles and the viscosity of the slurry, the abrasive particles can be circulated in a floating state in the vessel without flowing out of the pretreatment vessel 1 without flowing out of the vessel. it can.
[0031]
In the above state, the organic matter in the object to be treated is completely dissolved in the supercritical water, a part thereof is decomposed and converted into a low molecular weight component, and the pretreated object, that is, the inorganic substance is discharged from the outlet 9 provided at the top of the container. The supercritical fluid from which the salts have been removed flows continuously. On the other hand, the inorganic substance flows while floating in the pretreatment container together with the abrasive particles as solid fine particles which are not dissolved while suspended in the slurry, or solid fine particles which are once dissolved and precipitated by the rapid change in solubility as described above. .
[0032]
In the method of the first aspect of the present invention, ground particles of a material having a specific gravity sufficiently higher than that of inorganic salts are selected and used, and the linear velocity of the slurry introduced from the supply port is adjusted so that the ground particles are sufficiently suspended and flow, but the specific gravity is light. By adjusting the inorganic salt solid particles so that they do not flow out of the outlet 9, neither the solid precipitate particles nor the abrasive particles flow out of the container, and flow while floating in the partial space separated according to their specific gravities in the container. Can be realized. FIG. 2 schematically shows the movement of such inorganic salt solid particles by a dashed-dotted arrow streamline, and the movement of ground particles by a solid-line arrow streamline. In this way, the solid precipitate fine particles and the ground particles are consequently cleverly separated in the pretreatment vessel.
[0033]
In FIG. 1, the precipitate discharge pipe 6 is provided vertically, penetrates vertically through the bottom surface of the pretreatment vessel 1, and connects the inside of the vessel and the outside of the vessel. The precipitate solid particles floating and flowing above the opening of the precipitate discharge pipe settle toward the opening by gravity, are taken into the discharge pipe, and are discharged to the outside of the pretreatment vessel through the discharge pipe 6 by gravity. Is done. A precipitate discharger 62 is connected to the lower end of the discharge pipe as a container for storing the precipitate that precipitates outside the pretreatment container. The deposit discharger is a small-capacity pressure-resistant container, and has a discharge valve 65 that opens and closes to connect a lock hopper system or the like to a bottom portion.
[0034]
Two typical modes of an apparatus for extracting solid fine particles accommodated in a deposit discharger will be described. FIG. 1A shows a lock hopper system. Since the deposit discharger 62 is in communication with the pretreatment container, the discharge valve A65 connected to the lock hopper system is always closed. A piping 68 for introducing a generated gas or other high-pressure gas is connected to the pressure-resistant container A63 via a valve C67, so that the internal pressure of the container A63 can be increased. Further, a facility is provided which can release gas through the pipe 68 to lower the internal pressure of the container A63 to atmospheric pressure. Further, it is connected via a valve B66 to a container B64 (transport container) that stores the precipitate under the atmosphere.
[0035]
First, the valve C67 is opened in a state where the valves A, B, and C are closed, and the internal pressure of the container A63 is made equal to the internal pressure of the discharger 62. Next, after closing the valve C67, the valve A65 is opened, and the precipitate is transferred from the discharger 62 to the container A63 by gravity. After transferring a predetermined amount of deposits, the valve A65 is closed and the valve C67 is opened to discharge gas to a discharge line (not shown). Next, the precipitate in the container A63 is transferred to the container B64 by gravity, each valve is closed, and a series of operations is completed. This operation is automated and performed intermittently.
[0036]
The mode of extracting solid particles shown in FIG. 4 uses an apparatus which dissolves and extracts in water. A container A63 is connected to the discharger 62 via a valve A65, and a pipe 69 through which room-temperature or heated high-pressure water can be introduced is connected to the container A63 via a valve C67. First, the valve A65 is opened from a state where the valves A, B and C are closed, and the deposit is transferred to the container A63 by the internal pressure of the discharger 62. After extracting a predetermined amount of deposits, the valve A65 was closed, then the valve C67 was opened to introduce high-pressure water, and while dissolving the deposits, the valve B66 was opened and discharged out of the apparatus, and each valve was closed. End the operation. This operation is automated and performed intermittently.
[0037]
Using the pretreatment apparatus according to the fifth invention shown in FIG. 1, the second invention can be implemented with respect to a method for extracting a precipitate. That is, by using the abrasive particles containing particles having a particle size close to the solid particles of the inorganic salt precipitates, there is no spatial distinction between the streamlines of the two particles floating and flowing in the pretreatment vessel, and both of them discharge the precipitates. It is taken into the tube 6 and discharged from the pretreatment container 1. Grinding particles that are insufficient in quantity due to discharge may be continuously or intermittently supplied to the pretreatment container from the supply port 10, but a method of mixing and supplying them to the organic slurry to be processed is preferable.
[0038]
In the method of the second aspect of the invention, there is no need to provide any particular difference in the size of the pretreatment container, the type of the abrasive particles, and the like from the case of the first aspect of the invention. Regarding which method is selected, the diameter of the pretreatment vessel, the amount of slurry introduced, the specific gravity and the particle size of the abrasive particles, etc. are taken into consideration. However, as for the extraction of the precipitate from the discharger 62, since the abrasive particles discharged together with the inorganic salts are insoluble in water, a rock hopper system is suitable, and the apparatus for dissolving and extracting in water shown in FIG. 4 cannot be used. .
[0039]
The second and sixth aspects of the present invention will be described with reference to FIG. 3, which illustrates one embodiment of the sixth aspect of the pretreatment apparatus according to the present invention. FIG. 3 is a system diagram relating to the pretreatment device. In the figure, a schematic cross-section taken along the central axis of the cylinder of the pretreatment container 1 which is a vertical hollow cylindrical shape, solid fine particles of precipitated inorganic salts are continuously discharged out of the container through the outlet 9 together with the abrasive particles. Thereafter, a schematic longitudinal section of a cyclone separator 7 which is a means for separating fluid and solid from a supercritical fluid, a lock hopper system for extracting fine particles collected by the cyclone 7 and accumulated in a lower portion 71 of the cyclone (for details, see the description of FIG. 1) ), A slurry pump 3 and an orifice 4, which are means for supplying a slurry of the organic substance to be treated to the pretreatment vessel 1, and for appropriately suspending and flowing solid fine particles and ground particles of the precipitate in the vessel to flow out of the vessel; A connection relation of a preheater 5 for heating the slurry before supplying the slurry to the container 1 is illustrated.
[0040]
In FIG. 3, the inside of the pretreatment vessel 1 is provided with a heat transfer surface such as a heat transfer tube 11 for heating the slurry to a supercritical temperature. In the second invention, since the ground particles containing particles having a particle size close to the solid particles of the inorganic salt precipitates are used, the flow lines of the two particles floating and flowing in the pretreatment vessel are as shown by solid lines in FIG. And both are discharged from the outlet 9 of the pretreatment container 1. Grinding particles deficient due to discharge may be continuously or intermittently supplied to the container 1 from a supply port (not shown), but a method of mixing and supplying to the slurry of the organic matter to be treated is preferable.
[0041]
In FIG. 3, a mixture of solid fine particles and ground particles collected by the cyclone and collected in the cyclone lower part 71 is supplied to the lock hopper system connected to the high pressure gas and the atmospheric pressure release line piping by the operation method described in the extraction method. And is taken out of the cyclone and stored in the transport container 64. The abrasive particles are insoluble in water and the extraction device using high-pressure water cannot be connected to a cyclone.
[0042]
Embodiments of the third invention and the seventh invention will be described with reference to FIG. 4 illustrating one embodiment of the seventh invention relating to the apparatus for treating organic supercritical water. FIG. 4 is a system diagram relating to the supercritical water treatment apparatus, wherein the pretreatment according to the fifth invention is provided with a precipitate discharge pipe 6 for continuously discharging solid fine particles of inorganic salts precipitated in the pretreatment to the outside of the container. Ancillary equipment such as a vessel 1 and a slurry pump 3, an extraction device for discharging precipitates from a precipitate discharger 62, a reactor 2 for decomposing and gasifying a pretreated supercritical fluid, a pretreatment container 1 and a reactor 2 shows a connection relationship between a pipe 24 for introducing a part of the generated gas to the reactor 2 and a pipe 25 for introducing a gaseous oxidant to the pretreatment vessel 1 and the reactor 2. However, in the embodiment of the third invention, any of the pretreatment device, the attached solid particle discharging / extracting device, and the processing operation described above may be used.
[0043]
The present invention is not limited by the type of reactor used. As the type of the reactor 2, a tubular reactor used in the prior art can be used, and a vertical cylindrical reaction tower which the present inventors previously applied for a patent (Japanese Patent Application No. 2002-296409). Etc. can be used. The gasification reaction of organic substances in supercritical water according to the present invention may be carried out without a catalyst depending on the properties of the material to be treated, or a carbon-based catalyst such as activated carbon or another known catalyst may be used. In the present invention, since the organic substances dissolved in the supercritical fluid from which the inorganic salts have been removed by the pretreatment are decomposed, solid particles of inorganic salt precipitates which are conventionally generated even when the catalyst is used in a fixed bed. There is no trouble such as blockage of the catalyst layer due to the above. Since deactivation due to precipitation of inorganic salts on the catalyst does not occur, the treatment can be smoothly continued for a long time even when the catalyst is used in a floating state as a fluidized bed.
[0044]
Pressurization and pressure control means (not shown) commonly used in the art are used to raise and maintain the critical pressure of water in the reactor used to practice the present invention. As a heating means provided in the reactor to raise and maintain the critical temperature of water, for example, in the case of a tubular reactor, electric heating using a conventional electric resistance heating element, or a double tube heat exchange Heating by passing a high-temperature heat medium or a high-temperature fluid after supercritical water treatment into the vessel as a heat source can be used.
[0045]
An embodiment of the method according to the fourth invention will be described with reference to FIG. In the supercritical water treatment method according to the fourth invention, in addition to the embodiment described in the description of the third invention, a part of the product gas separated from the reaction product flowing out of the reactor is pretreated and / or The gas is introduced into the lower part of the reactor through a recycle gas pipe 24. The ratio of the gas to be introduced to the fluid to be treated flowing into the reactor is preferably about 20 to 150 in terms of the volume ratio of the gas in the standard state to the slurry for the workpiece in the normal temperature state. Of these, 40-80 is particularly preferred. The gaseous oxidizing agent may be introduced alone, but is preferably added simultaneously with the introduction of the gas. When oxygen, oxygen-enriched air or the like is introduced into the lower part of the reactor, the ratio of oxygen introduced to the fluid to be treated flowing into the reactor is preferably about 10 to 50 by volume. By introducing these, there are advantages in that the production of char and tar can be suppressed, the reaction temperature can be easily controlled by stabilizing the catalytic activity, and the composition of the produced gas can be adjusted.
[0046]
An embodiment of the eighth invention will be described with reference to FIG. FIG. 5 is a system diagram relating to a supercritical water treatment apparatus, in which solid fine particles of inorganic salts precipitated in the pretreatment are continuously flown out of the pretreatment vessel 1 together with the abrasive particles, and then separated into a fluid and a solid from the supercritical fluid. The pretreatment vessel 1 according to the sixth aspect of the invention having the cyclone 7 to be provided, the auxiliary equipment such as the slurry pump 3, and a lock for extracting solid fine particles and ground particles collected in the cyclone lower part 71 by using the internal pressure of the separator and the high-pressure gas. The connection relationship of a hopper system, a heating furnace 23 for raising the temperature of a fluid to be treated after pretreatment to a temperature required for decomposition and gasification, and a reactor 2 for decomposing and gasifying the heated fluid to be treated is illustrated. I have.
[0047]
However, in the apparatus according to the eighth aspect, any of the apparatuses and processing operations of the pre-processing described above may be used. There is no restriction on the manner in which the fluid to be treated introduced into the reactor 2 is heated because the fluid to be treated does not contain solid fine particles or ground particles. However, it is particularly preferable to use a heating furnace 23 in which part of the generated gas is used as fuel and the heat transfer tube through which the fluid to be processed flows is directly heated by a burner. .
[0048]
The eighth invention is not restricted by the type of reactor used. That is, in the apparatus according to the eighth invention, the type of the reactor 2 can be the same as that used in the seventh invention, and the reactor used in the prior art can be used. A vertical cylindrical reaction tower (Japanese Patent Application No. 2002-296409) can be used. The gasification reaction of organic substances in supercritical water according to the present invention may be carried out without a catalyst depending on the properties of the material to be treated, or a carbon-based catalyst such as activated carbon or other known catalysts may be used. Further, as described in the method according to the fourth invention, the product gas and / or the gaseous oxidizing agent may be introduced into the pretreatment vessel and / or the reactor by selecting from eight combinations.
[0049]
Since the representative embodiment of each invention has been clearly described in the above description, the details of the processing results will be described below by way of examples. However, the present invention is not limited by this embodiment.
[Example 1]
The slurry to be treated was prepared by suspending organic sludge containing inorganic salts expressed as ash in water at a concentration of 10% by weight on a dry matter basis (dry-kg / h). The processing apparatus shown in FIG. 4 was used, and the method according to the first invention was used as a preprocessing method. The preheating temperature was about 350 ° C and the pretreatment temperature was about 520 ° C. However, as the decomposition / gasification method, the method according to the third invention, that is, the method in which neither product gas nor gaseous oxidizing agent is introduced, was used. The gasification temperature was about 600 ° C. The pretreatment and gasification pressure was maintained at about 35 MPa. The processing continued smoothly for 7 days and was stopped in a state where it was still operable. The treatment results were displayed in the form of a material balance by elemental analysis.
[0050]
[Table 1]
Figure 2004298818
In Table 1, the materials to be treated entering the pretreatment vessel are shown by elemental analysis values for organic substances to be gasified, and ash contents for inorganic substances, and further, the flow rates are shown. It can be seen that the slurry can be processed smoothly at a slurry concentration of 10% by weight on a dry matter basis.
[0051]
[Table 2]
Figure 2004298818
Table 2 shows the composition of the precipitate (ash) discharged from the pretreatment container, the organic components discharged together with the precipitate, and the respective flow rates. From this result, it can be seen that substantially all of the inorganic salts introduced into the pretreatment device are discharged from the precipitate discharger, and that the abrasive particles are not substantially discharged.
[0052]
[Table 3]
Figure 2004298818
Table 3 shows the composition and flow rate of the fluid flowing into the gasification reactor. The results show that organic substances to be treated containing no inorganic salts or ground particles can be introduced into the gasification reactor.
[0053]
[Table 4]
Figure 2004298818
Table 4 shows the components, compositions, and flow rates of the reaction products flowing out of the gasification reactor. Looking at the water mass balance, the outflow weight of 7.10 in Table 4 was 7.75 in comparison with the outflow weight of 7.10 shown in Table 3 above. It is thought that it was converted to carbon dioxide. In addition, the total inflow weight 8.86 of all the substances shown in Table 3 and the total outflow weight 8.86 of all the substances in Table 4 are the same, and are balanced as the material balance. As a result of this practice, substantially all organic substances are decomposed into gas, the generated gas is a flammable gas mainly composed of hydrogen and methane, and the generation of harmful gas components is extremely small. It was shown that the period of stable operation could be greatly extended as compared with the prior art without pretreatment.
[0054]
【The invention's effect】
In the pretreatment method according to the present invention, almost all of the inorganic salts contained in the material to be treated such as organic sludge precipitate as solid fine particles due to a change in solubility or adhere as solids to the tube wall of a heat transfer tube. The adhered precipitate is scraped off by the abrasive particles to become solid fine particles, and is removed out of the pretreatment vessel. As a result, a fluid to be treated substantially containing no inorganic salts can be obtained, and at the same time, the pretreatment device itself can stably operate for a long time.
[0055]
When treating organic substances containing inorganic salts with supercritical water, the first zone for performing the pretreatment according to the present invention exclusively for the function of the entire treatment process, and the fluid that has been subjected to this pretreatment in the supercritical state exclusively By sharing the function with the second zone that decomposes and gasifies, the stable operation time of the processing equipment is dramatically increased by about 10 times compared to the conventional one, and the cost of cleaning the equipment is significantly reduced. The practicality of the critical water treatment method has been significantly improved.
[0056]
This is because, in the present invention, the supercritical fluid flowing into the cracking / gasification reactor does not substantially contain inorganic salts, so that an operational obstacle due to the precipitation of inorganic salts that has conventionally occurred in the reactor is avoided. The result is that the capacity of the processing apparatus is remarkably improved because it hardly occurs.
[Brief description of the drawings]
FIG. 1A is a longitudinal sectional view illustrating an embodiment of a pretreatment device according to the present invention, and FIG. 1B is a plan view showing the inside of a pretreatment container.
FIG. 2 is an explanatory view schematically showing a flow state of solid precipitate particles and a floating flow state of ground particles in a pretreatment vessel according to the present invention.
FIG. 3 is a system diagram illustrating another embodiment of the pretreatment device according to the present invention.
FIG. 4 is a system diagram illustrating an embodiment of a supercritical water treatment apparatus according to the present invention.
FIG. 5 is a system diagram illustrating another embodiment of the supercritical water treatment apparatus according to the present invention.
[Explanation of symbols]
1 Pretreatment container
11, 12 heat transfer tubes
13, 14 header
2 Gasification reactor
21 Inflow port of fluid to be treated
22 Reaction product logistics outlet
23 heating furnace
24 Recycle gas piping
25 gaseous oxidizer piping
26, 27 Recycle gas selection valve
28, 29 Gaseous oxidizer selection valve
3 slurry pump
4 orifice 5 preheater
6 Precipitate discharge pipe
61 dust collecting edge 62 sediment discharger
63 container A 64 container B
65 valve A 66 valve B 67 valve C
68 High pressure gas piping 69 High pressure water piping
7 Cyclone
71 cyclone bottom
8 Slurry supply port
9 Outlet 10 Supply port

Claims (19)

被処理有機物を水に懸濁させたスラリーを前処理容器に連続的に供給し、
研削粒子を該容器内に浮遊流動状態において滞留させ、
加熱により水の超臨界、臨界若しくは亜臨界状態に維持することにより被処理物が含有する無機塩類を固体微粒子として超臨界流体中に析出させ、
該析出物を該容器外へ排出し分離することにより無機塩類を実質的に含有しない超臨界流体を得ること、
を特徴とする有機物の超臨界水処理における前処理方法。
A slurry in which the organic material to be treated is suspended in water is continuously supplied to a pretreatment container,
Causing the abrasive particles to stay in the container in a floating fluid state,
Supercritical water, by heating is maintained in a critical or subcritical state to precipitate inorganic salts contained in the object to be treated as solid fine particles in a supercritical fluid,
Obtaining a supercritical fluid substantially free of inorganic salts by discharging and separating the precipitate out of the vessel;
A pretreatment method in supercritical water treatment of organic matter, characterized by comprising:
前記被処理有機物は下水汚泥であり、前記研削粒子はα−アルミナ、チタニア若しくはジルコニアから選ばれた一種であり、該研削粒子の平均粒径が0.01−1mmである請求項1記載の前処理方法。2. The method according to claim 1, wherein the organic matter to be treated is sewage sludge, the ground particles are one kind selected from α-alumina, titania or zirconia, and the average particle size of the ground particles is 0.01-1 mm. Processing method. 被処理有機物を水に懸濁させたスラリーを前処理容器に連続的に供給し、
該容器内において研削粒子を浮遊流動状態に維持し、
加熱により水の超臨界、臨界若しくは亜臨界状態に維持することにより被処理物が含有する無機塩類を固体微粒子として超臨界流体中に析出させ、
該析出物及び該研削粒子を該容器外へ排出し分離することにより無機塩類を実質的に含有しない超臨界流体を得ること、
を特徴とする有機物の超臨界水処理における前処理方法。
A slurry in which the organic material to be treated is suspended in water is continuously supplied to a pretreatment container,
Maintaining the abrasive particles in a floating fluid state in the vessel;
Supercritical water, by heating is maintained in a critical or subcritical state to precipitate inorganic salts contained in the object to be treated as solid fine particles in a supercritical fluid,
Obtaining a supercritical fluid substantially free of inorganic salts by discharging and separating the precipitate and the ground particles out of the container;
A pretreatment method in supercritical water treatment of organic matter, characterized by comprising:
前記被処理有機物スラリーは、100℃以上374℃以下に予熱して前記前処理容器に導入することを特徴とする請求項1、2又は3記載の前処理方法。4. The pretreatment method according to claim 1, wherein the treatment target organic slurry is preheated to 100 ° C. or more and 374 ° C. or less and introduced into the pretreatment vessel. 5. 前記研削粒子を連続的又は間欠的に前記前処理容器へ補給することを特徴とする請求項3又は4記載の前処理方法。The pretreatment method according to claim 3, wherein the grinding particles are supplied to the pretreatment container continuously or intermittently. 前記被処理有機物は下水汚泥であり、前記研削粒子はα−アルミナ、チタニア若しくはジルコニアから選ばれた一種であり、該研削粒子の平均粒径が数10μm以上500μm未満である請求項3、4又は5記載の前処理方法。The organic matter to be treated is sewage sludge, the ground particles are a kind selected from α-alumina, titania or zirconia, and the average particle size of the ground particles is several tens μm or more and less than 500 μm. 5. The pretreatment method according to 5. 被処理有機物を水に懸濁させたスラリーを超臨界水処理する方法であって、
第1処理帯域において被処理有機物に係る請求項1−6のいずれか1項に記載の前処理を行うことにより無機塩類を実質的に含有しない流体を取得し、次いで第2処理帯域へ該流体を導入し、触媒の存在下または不存在下において水の超臨界、臨界若しくは亜臨界状態に維持することにより前記有機物を可燃性ガスと炭酸ガスに分解・ガス化すること、
を特徴とする有機物の超臨界水処理による処理方法。
A method for treating a slurry in which an organic substance to be treated is suspended in water with supercritical water,
A fluid substantially free of inorganic salts is obtained by performing the pretreatment according to any one of claims 1 to 6 on the organic matter to be treated in the first treatment zone, and then the fluid is transferred to the second treatment zone. To decompose and gasify the organic matter into a flammable gas and a carbon dioxide gas by maintaining a supercritical, critical or subcritical state of water in the presence or absence of a catalyst,
A method for treating organic matter by supercritical water treatment.
前記第1処理帯域及び/又は第2処理帯域へ気体状酸化剤及び/又は前記ガス化反応により生じた生成ガスの一部を連続的に導入することを特徴とする請求項7記載の有機物の超臨界水処理方法。The organic substance according to claim 7, wherein a gaseous oxidizing agent and / or a part of a product gas generated by the gasification reaction are continuously introduced into the first processing zone and / or the second processing zone. Supercritical water treatment method. 前記第2処理帯域から流出する流出物の全部または一部を前記被処理有機物スラリーの予熱に用いることを特徴とする請求項4−8のいずれか1項に記載の前処理方法若しくは有機物の超臨界水処理方法。The pretreatment method according to any one of claims 4 to 8, wherein all or a part of the effluent flowing out of the second treatment zone is used for preheating the slurry to be treated. Critical water treatment method. 前記第1処理帯域において無機塩類が除去され該帯域から流出した流体を加熱した後、第2処理帯域へ導入することを特徴とする請求項7−9のいずれか1項に記載の超臨界水処理方法。The supercritical water according to any one of claims 7 to 9, wherein after the inorganic salts are removed in the first treatment zone and the fluid flowing out of the zone is heated, the fluid is introduced into the second treatment zone. Processing method. 前記第1処理帯域において無機塩類が除去され該帯域から流出した流体を加熱する手段は、前記生成ガスの一部を燃料とする加熱炉による直接加熱である請求項10記載の超臨界水処理方法。The supercritical water treatment method according to claim 10, wherein the means for heating the fluid that has flowed out of the first treatment zone from which the inorganic salts have been removed is direct heating by a heating furnace using a part of the product gas as fuel. . 被処理物が含有する無機塩類を超臨界水処理により除去する装置であって、少なくとも
(a)被処理有機物を水に懸濁させたスラリーを供給する供給口と、
前記スラリーを水の超臨界状態に加熱する手段と、
処理後の超臨界流体を流出させる流出口と、
超臨界流体中に析出した無機塩類の固体微粒子を該容器外へ連続的に排出する手段と、を備えた耐圧の前処理容器、及び
(b)該前処理容器内において研削粒子を浮遊流動状態に維持する手段、
を備えてなることを特徴とする有機物の超臨界水処理における前処理装置。
An apparatus for removing inorganic salts contained in an object to be treated by supercritical water treatment, wherein at least (a) a supply port for supplying a slurry in which an object to be treated is suspended in water;
Means for heating the slurry to a supercritical state of water,
An outlet for discharging the supercritical fluid after the treatment,
Means for continuously discharging solid fine particles of inorganic salts precipitated in the supercritical fluid out of the vessel, and (b) grinding particles in a floating fluid state in the pretreatment vessel. Means to maintain,
A pretreatment apparatus for supercritical water treatment of organic matter, comprising:
前記析出した無機塩類の固体微粒子を前記前処理容器外へ連続的に排出する手段は、該容器内に開口を有する垂直中空管であって、該容器底部から該容器外部へ垂直に導通するように設けたことを特徴とする請求項12記載の前処理装置。The means for continuously discharging the solid fine particles of the precipitated inorganic salts to the outside of the pretreatment container is a vertical hollow tube having an opening in the container, and vertically communicates from the container bottom to the outside of the container. 13. The pre-processing device according to claim 12, wherein the pre-processing device is provided as described above. 被処理物が含有する無機塩類を超臨界水処理により除去する装置であって、少なくとも
(a)被処理有機物を水に懸濁させたスラリーを供給する供給口と、
前記スラリーを水の超臨界状態に加熱する手段と、
処理された超臨界流体を研削粒子及び該超臨界流体中に析出した無機塩類の固体微粒子とともに連続的に流出させる流出口と、を備えた耐圧の前処理容器
(b)該容器内において研削粒子を浮遊流動状態に維持する手段、及び
(c)前記流出口から該容器外へ排出される無機塩類の固体微粒子及び前記研削粒子と超臨界流体とを連続的に分離する流体・固体分離手段
を備えてなることを特徴とする有機物の超臨界水処理における前処理装置。
An apparatus for removing inorganic salts contained in an object to be treated by supercritical water treatment, wherein at least (a) a supply port for supplying a slurry in which an object to be treated is suspended in water;
Means for heating the slurry to a supercritical state of water,
An outlet through which the treated supercritical fluid is continuously discharged together with the grinding particles and solid fine particles of inorganic salts precipitated in the supercritical fluid; And (c) a fluid / solid separation means for continuously separating the solid fine particles of inorganic salts and the ground particles discharged from the outlet from the vessel and the supercritical fluid from the outflow port. A pretreatment device for supercritical water treatment of organic matter, comprising:
前記無機塩類の固体微粒子及び研削粒子と前記超臨界流体とを連続的に分離する流体・固体分離手段は、サイクロン分離器である請求項14記載の前処理装置。The pretreatment device according to claim 14, wherein the fluid / solid separation means for continuously separating the solid fine particles and ground particles of the inorganic salts from the supercritical fluid is a cyclone separator. 前記研削粒子を前記前処理容器内において浮遊流動状態に維持する手段は、前記供給口から導入するスラリーの線速度を調整し得るオリフィスとスラリーの供給量を調整し得るスラリーポンプとを用いることを特徴とする請求項12−15のいずれか1項に記載の前処理装置。The means for maintaining the abrasive particles in a floating fluid state in the pretreatment vessel may use an orifice capable of adjusting the linear velocity of the slurry introduced from the supply port and a slurry pump capable of adjusting the supply amount of the slurry. The pretreatment device according to any one of claims 12 to 15, wherein 被処理有機物を超臨界水により処理する装置であって、
(d)被処理有機物スラリーを予熱する予熱器と、
(e)請求項12−16のいずれか1項に記載の前処理装置と、
(f)少なくとも該前処理装置から流出する流体を導入する流入口、および反応生成物流出口を備えた耐圧反応器と、
からなることを特徴とする有機物の超臨界水処理による処理装置。
An apparatus for treating an organic material to be treated with supercritical water,
(D) a preheater for preheating the organic slurry to be treated;
(E) the pretreatment device according to any one of claims 12 to 16,
(F) a pressure-resistant reactor having at least an inlet for introducing a fluid flowing out of the pretreatment device, and a reaction product stream outlet;
A treatment apparatus for supercritical water treatment of organic matter, comprising:
被処理有機物を超臨界水により処理する装置であって、
(g)前記前処理装置により前処理された後の流体を前記耐圧反応器に導入する前に加熱する手段
を備えてなる請求項17記載の超臨界水処理装置。
An apparatus for treating an organic material to be treated with supercritical water,
The supercritical water treatment apparatus according to claim 17, further comprising: (g) means for heating the fluid pretreated by the pretreatment apparatus before introducing the fluid into the pressure-resistant reactor.
前記前処理装置により前処理された後の流体を加熱する手段は、前記反応生成物の一部を燃料として用いる直接加熱式の加熱炉である請求項18記載の超臨界水処理装置。19. The supercritical water treatment apparatus according to claim 18, wherein the means for heating the fluid after the pretreatment by the pretreatment apparatus is a direct heating type heating furnace using a part of the reaction product as fuel.
JP2003097623A 2003-04-01 2003-04-01 Pretreatment method and apparatus therefor in supercritical water treatment of organic material Pending JP2004298818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097623A JP2004298818A (en) 2003-04-01 2003-04-01 Pretreatment method and apparatus therefor in supercritical water treatment of organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097623A JP2004298818A (en) 2003-04-01 2003-04-01 Pretreatment method and apparatus therefor in supercritical water treatment of organic material

Publications (1)

Publication Number Publication Date
JP2004298818A true JP2004298818A (en) 2004-10-28

Family

ID=33409362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097623A Pending JP2004298818A (en) 2003-04-01 2003-04-01 Pretreatment method and apparatus therefor in supercritical water treatment of organic material

Country Status (1)

Country Link
JP (1) JP2004298818A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169329A (en) * 2004-12-14 2006-06-29 Hiroshima Univ Method for gasifying organic matter
JP2006274013A (en) * 2005-03-29 2006-10-12 Hiroshima Univ Biomass gasification system
JP2006281096A (en) * 2005-03-31 2006-10-19 Osaka Gas Co Ltd Sludge treating apparatus and sludge treating method using it
JP2007023214A (en) * 2005-07-20 2007-02-01 Hiroshima Univ Method and system for biomass gasification
JP2007269945A (en) * 2006-03-31 2007-10-18 Hiroshima Univ Biomass gasification apparatus using supercritical water and system including the same
US7897126B2 (en) 2007-12-28 2011-03-01 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US7901644B2 (en) 2007-12-28 2011-03-08 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US7922782B2 (en) 2006-06-01 2011-04-12 Greatpoint Energy, Inc. Catalytic steam gasification process with recovery and recycle of alkali metal compounds
US7926750B2 (en) 2008-02-29 2011-04-19 Greatpoint Energy, Inc. Compactor feeder
US8114176B2 (en) 2005-10-12 2012-02-14 Great Point Energy, Inc. Catalytic steam gasification of petroleum coke to methane
US8114177B2 (en) 2008-02-29 2012-02-14 Greatpoint Energy, Inc. Co-feed of biomass as source of makeup catalysts for catalytic coal gasification
US8123827B2 (en) 2007-12-28 2012-02-28 Greatpoint Energy, Inc. Processes for making syngas-derived products
US8163048B2 (en) 2007-08-02 2012-04-24 Greatpoint Energy, Inc. Catalyst-loaded coal compositions, methods of making and use
US8192716B2 (en) 2008-04-01 2012-06-05 Greatpoint Energy, Inc. Sour shift process for the removal of carbon monoxide from a gas stream
US8202913B2 (en) 2008-10-23 2012-06-19 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8268899B2 (en) 2009-05-13 2012-09-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
JP2012193110A (en) * 2008-03-28 2012-10-11 Hanwha Chemical Corp Carbon nanotube, and continuous surface treating apparatus of the same
US8286901B2 (en) 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8297542B2 (en) 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8328890B2 (en) 2008-09-19 2012-12-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8349039B2 (en) 2008-02-29 2013-01-08 Greatpoint Energy, Inc. Carbonaceous fines recycle
US8361428B2 (en) 2008-02-29 2013-01-29 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
US8366795B2 (en) 2008-02-29 2013-02-05 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
US8479834B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8479833B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8502007B2 (en) 2008-09-19 2013-08-06 Greatpoint Energy, Inc. Char methanation catalyst and its use in gasification processes
US8557878B2 (en) 2010-04-26 2013-10-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with vanadium recovery
US8647402B2 (en) 2008-09-19 2014-02-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8648121B2 (en) 2011-02-23 2014-02-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
US8652696B2 (en) 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8652222B2 (en) 2008-02-29 2014-02-18 Greatpoint Energy, Inc. Biomass compositions for catalytic gasification
US8653149B2 (en) 2010-05-28 2014-02-18 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
US8669013B2 (en) 2010-02-23 2014-03-11 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8709113B2 (en) 2008-02-29 2014-04-29 Greatpoint Energy, Inc. Steam generation processes utilizing biomass feedstocks
US8728183B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8728182B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8734547B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed carbonaceous particulate
US8733459B2 (en) 2009-12-17 2014-05-27 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8734548B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
US8748687B2 (en) 2010-08-18 2014-06-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US8999020B2 (en) 2008-04-01 2015-04-07 Greatpoint Energy, Inc. Processes for the separation of methane from a gas stream
US9012524B2 (en) 2011-10-06 2015-04-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9034061B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9127221B2 (en) 2011-06-03 2015-09-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9234149B2 (en) 2007-12-28 2016-01-12 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US9273260B2 (en) 2012-10-01 2016-03-01 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
US9353322B2 (en) 2010-11-01 2016-05-31 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
CN109734170A (en) * 2018-11-24 2019-05-10 中海油能源发展股份有限公司 A kind of reaction system suitable for supercritical water oxidation continuous operation
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
CN109990973A (en) * 2019-04-29 2019-07-09 西安交通大学 For testing the device of supercritical water recirculating fluidized bed Multiphase Flow and heat-transfer character
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169329A (en) * 2004-12-14 2006-06-29 Hiroshima Univ Method for gasifying organic matter
JP2006274013A (en) * 2005-03-29 2006-10-12 Hiroshima Univ Biomass gasification system
JP2006281096A (en) * 2005-03-31 2006-10-19 Osaka Gas Co Ltd Sludge treating apparatus and sludge treating method using it
JP2007023214A (en) * 2005-07-20 2007-02-01 Hiroshima Univ Method and system for biomass gasification
US8114176B2 (en) 2005-10-12 2012-02-14 Great Point Energy, Inc. Catalytic steam gasification of petroleum coke to methane
JP2007269945A (en) * 2006-03-31 2007-10-18 Hiroshima Univ Biomass gasification apparatus using supercritical water and system including the same
US7922782B2 (en) 2006-06-01 2011-04-12 Greatpoint Energy, Inc. Catalytic steam gasification process with recovery and recycle of alkali metal compounds
US8163048B2 (en) 2007-08-02 2012-04-24 Greatpoint Energy, Inc. Catalyst-loaded coal compositions, methods of making and use
US7897126B2 (en) 2007-12-28 2011-03-01 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US7901644B2 (en) 2007-12-28 2011-03-08 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US9234149B2 (en) 2007-12-28 2016-01-12 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US8123827B2 (en) 2007-12-28 2012-02-28 Greatpoint Energy, Inc. Processes for making syngas-derived products
US8297542B2 (en) 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8709113B2 (en) 2008-02-29 2014-04-29 Greatpoint Energy, Inc. Steam generation processes utilizing biomass feedstocks
US8652222B2 (en) 2008-02-29 2014-02-18 Greatpoint Energy, Inc. Biomass compositions for catalytic gasification
US8286901B2 (en) 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US7926750B2 (en) 2008-02-29 2011-04-19 Greatpoint Energy, Inc. Compactor feeder
US8349039B2 (en) 2008-02-29 2013-01-08 Greatpoint Energy, Inc. Carbonaceous fines recycle
US8361428B2 (en) 2008-02-29 2013-01-29 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
US8366795B2 (en) 2008-02-29 2013-02-05 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
US8114177B2 (en) 2008-02-29 2012-02-14 Greatpoint Energy, Inc. Co-feed of biomass as source of makeup catalysts for catalytic coal gasification
JP2012193110A (en) * 2008-03-28 2012-10-11 Hanwha Chemical Corp Carbon nanotube, and continuous surface treating apparatus of the same
US8192716B2 (en) 2008-04-01 2012-06-05 Greatpoint Energy, Inc. Sour shift process for the removal of carbon monoxide from a gas stream
US8999020B2 (en) 2008-04-01 2015-04-07 Greatpoint Energy, Inc. Processes for the separation of methane from a gas stream
US8502007B2 (en) 2008-09-19 2013-08-06 Greatpoint Energy, Inc. Char methanation catalyst and its use in gasification processes
US8647402B2 (en) 2008-09-19 2014-02-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8328890B2 (en) 2008-09-19 2012-12-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8202913B2 (en) 2008-10-23 2012-06-19 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8734548B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
US8734547B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed carbonaceous particulate
US8268899B2 (en) 2009-05-13 2012-09-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8728183B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8728182B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8479833B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8479834B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8733459B2 (en) 2009-12-17 2014-05-27 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8669013B2 (en) 2010-02-23 2014-03-11 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8652696B2 (en) 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8557878B2 (en) 2010-04-26 2013-10-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with vanadium recovery
US8653149B2 (en) 2010-05-28 2014-02-18 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
US8748687B2 (en) 2010-08-18 2014-06-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9353322B2 (en) 2010-11-01 2016-05-31 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US8648121B2 (en) 2011-02-23 2014-02-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
US9127221B2 (en) 2011-06-03 2015-09-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9012524B2 (en) 2011-10-06 2015-04-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9273260B2 (en) 2012-10-01 2016-03-01 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9034061B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
CN109734170A (en) * 2018-11-24 2019-05-10 中海油能源发展股份有限公司 A kind of reaction system suitable for supercritical water oxidation continuous operation
CN109734170B (en) * 2018-11-24 2024-03-19 中海油能源发展股份有限公司 Reaction system suitable for supercritical water oxidation continuous operation
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
CN109990973A (en) * 2019-04-29 2019-07-09 西安交通大学 For testing the device of supercritical water recirculating fluidized bed Multiphase Flow and heat-transfer character
CN109990973B (en) * 2019-04-29 2024-03-29 西安交通大学 Device for testing multiphase flow and heat transfer characteristics of supercritical water circulating fluidized bed

Similar Documents

Publication Publication Date Title
JP2004298818A (en) Pretreatment method and apparatus therefor in supercritical water treatment of organic material
US5354345A (en) Reactor arrangement for use in beneficiating carbonaceous solids; and process
DE102005047583C5 (en) Method and device for the controlled supply of fuel dust into an entrained flow gasifier
CN102249461B (en) Supercritical water oxidation treatment system for high-salt high-chlorine organic wastewater
CN103261100B (en) Method and apparatus for being handled process water
NL1039006C2 (en) A process for the gasification of wet biomass.
CN105008490A (en) Turbulent vacuum thermal separation methods and systems
KR102088217B1 (en) Multi-stage circulating fluidized bed syngas cooling
EP3458419A1 (en) A supercritical water oxidation reactor and process
CN103635449A (en) Systems for converting fuel
US10654738B2 (en) Apparatus for salt separation under supercritical water conditions
JP3032007B2 (en) Solid supply system and method for supplying a fluidized bed
WO2000021655A2 (en) Fluidized bed method and reactor for the treatment of catalysts and catalyst carriers
CN1319635C (en) Separation process of synthetic oil catalyst prepared in slurry bed reactor
GB2348437A (en) Formation, processing, transportation and storage of solid gas hydrates
JP4997546B2 (en) Supercritical water biomass gasifier and system including the same
EP0015736A2 (en) Method of recovering coal by coal handling operations and system therefor
JPS5956489A (en) Method of periodically carrying out residue produced upon gasification of ash content-containing fuel
JPH03226481A (en) Recovery of black residual oil
JP2004131560A (en) Method for recovering energy by supercritical water treatment of organic material and apparatus therefor
JPH0417354B2 (en)
CN109809553A (en) A kind of large arch dam organic liquid waste supercritical water oxidation processing continuous experiment system
AU764501B2 (en) Process to remove solid slag particles from a mixture of solid slag particles and water
US4765912A (en) Geothermal brine clarifier process for removing solids from geothermal brine
CN215627213U (en) Oil-containing phenol water separation device