JP2004297851A - Power supply for controlling motor - Google Patents

Power supply for controlling motor Download PDF

Info

Publication number
JP2004297851A
JP2004297851A JP2003083190A JP2003083190A JP2004297851A JP 2004297851 A JP2004297851 A JP 2004297851A JP 2003083190 A JP2003083190 A JP 2003083190A JP 2003083190 A JP2003083190 A JP 2003083190A JP 2004297851 A JP2004297851 A JP 2004297851A
Authority
JP
Japan
Prior art keywords
battery
power supply
power
management unit
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003083190A
Other languages
Japanese (ja)
Inventor
Kazuo Suekane
和男 末包
Hiroshi Hiramatsu
浩 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2003083190A priority Critical patent/JP2004297851A/en
Publication of JP2004297851A publication Critical patent/JP2004297851A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply with high power conversion efficiency which is equipped with a backup battery for power outage and operates a load for driving a motor, capable of maintaining a battery capacitance at power outage with high reliability, and also capable of corresponding when the power outage extends. <P>SOLUTION: A power storage means to which fuel cell equipped with a counter flow blocking means is connected to a DC bus line, parallel to a storage battery, for energization only in the direction from the fuel cell to the storage battery side. In order to realize the equipment of high power conversion efficiency by reducing the power loss of a switching element, a bidirectional converter is interposed between the DC bus line and the storage battery which comprises a converter function for stepping up the discharging from the storage battery side to the DC bus line but stepping down the charging in the reverse direction. A battery management unit which always monitors the storage battery to detect the capacitance of the storage battery for commanding refresh charging and a control circuit that receives the signal from the unit for automatic charge control, constitute the bidirectional converter. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
商用交流受電時に交流を直流に変換してモータの前段のインバータに供給しつつバッテリーを充電し,商用交流電源が停電時には無瞬断でバッテリーから該インバータに直流電力を供給し長時間停電に対しては,燃料電池からも補助的に直流電力を供給する装置で,停電回復するとバッテリーを監視しながら自動充電を行い完全充電状態を保持しつつ電力をモータに供給する電源装置に関する。
【0002】
【従来の技術】
蓄電池又は電力貯蔵装置の電圧を利用する電気駆動システムにおいて,蓄電池の信頼性を高めるとともに,性能が向上してコストが下げられる装置を提供する事を目的とした技術の開示として次に述べる特許文献1があり,長時間の停電に対処して無停電で電力を供給する装置の技術として特許文献2がある。
【特許文献1】
「特開平6ー276609号公報」電気駆動システムの,従来の技術として,段落(0003)に「インバータの中で費用のかかる部品である電力用半導体については,直流電圧を高くする事で,コストが下げられ性能が改善されるが,蓄電池の直列接続個数が増えてくる。例えば2Vの単電池(セル)毎の容量不釣合(ミスマッチ)による蓄電池の信頼性及び寿命を低下させてしまう。」段落(0010)に「蓄電池の容量に著しい劣化が生じる欠点がある。」との記述がある。この改良案として,実施例の記述の段落(0020)には,「3つの蓄電池と3つの対応する直流・直流コンバータとの接続体を並列接続し,故障に対する寛容度を有する。」ようにしたり「短絡または開路が検出されたときその回路を不動作(ディセーブル)され,2/3の容量(3並列のうちの2並列)で運転される。」との説明がある。
【0003】
図4は「特開平6ー276609号公報」電気駆動システムの発明による実施例の回路図(図4)として示されたものを,理解を容易にするためブロック図として表現したものもある。直流・直流コンバータ63,64,65と蓄電池60,61,62の接続体を3並列接続して直流電源とし,その出力端にコンデンサCdcを接続し,該コンデンサの両端の電圧Vdcが直流リンク電圧である。この直流をインバータ10で交流に変換しモータM1に接続されている。
【0004】
長時間の自家発電機能を維持する事を目的とした技術の開示として次に述べる特許文献がある。
【特許文献2】
「特開平10−144327号公報」ハイブリッド式電源設備の,従来の技術として,段落(0015)に「固体高分子型の燃料電池モジュールと,リチウムイオン電池或は酸化銀亜鉛電池のごとき蓄電池を,充放電管理装置を介してモータや他の作動システムに給電される」との記述がある。段落(0021)に「燃料電池の発電が急に停止するような非常事態に際しても,二次電池が給電する」との記述があり,段落(0022)に「燃料電池の出力が所定値以下になると,燃料電池の発電を停止させて二次電池のみを作動システムの電源として接続させる」との記述がある。この特許文献2では,燃料電池の弱点を補完するための二次電池の働きを重視しており,燃料電池のバックアップとして二次電池がその役目を担っている。しかし,二次電池に充電された容量が完全充電状態に維持するための手段が,「燃料電池からフロート充電をうける」との記載(段落0004)と,「外部電源からも充電可能に設けられる」との記述(段落0007)があるが,二次電池のフロート充電使用状態における容量低下や寿命に近づいたかどうかが不明のままであるから,電池容量が所定容量以下の為すぐに放電し尽くしてしまう危険性があり,信頼性の確保手段を持つ電源装置を提供することが本発明の目的である。
【0005】
【発明が解決しようとする課題】
上記特許文献1による直流電源の信頼性向上の技術は,電気接続回路の冗長設計の基本である並列接続が具体的に示されている。稀硫酸を電解液とした鉛蓄電池の性能は,単電池電圧2Vの鉛蓄電池の組み合わせによって改良したシステムとする限りにおいては,『劣化が進行中の蓄電池の並列接続は危険であり,益々劣化を速めることになる』という鉛蓄電池特有の欠点は内在したままであって,この欠点を排除しなければならない。前記の欠点を排除して停電時には無瞬断で電力貯蔵手段から負荷に供給し,停電から復旧すると電力貯蔵手段を監視しながら自動充電を行い完全充電状態を保持しつつ電力を負荷に供給するモータ用制御電源装置を提供し,且つバッテリーや電気二重層コンデンサの電気容量では放電し尽くしてしまうような長時間の停電に対処しようとすることが本発明の課題である。
【0006】
【課題を解決するための手段】
バッテリーを最良の状態で待機させる技術を駆使して電源装置を実現する手段として,電解液である稀硫酸の中に浸された鉛化合物電極がサルフェーション(結晶化した硫酸鉛になって充電しても元に戻らない電極になる事)して,充電しても容量が永久に回復しない性質を原理的に持っている鉛蓄電池ではなくて,鉛蓄電池以外のバッテリーを電力貯蔵手段として接続したシステムにすることに着眼した。
【0007】
請求項1に関しては,商用交流電源に接続した整流器及とバッテリーの間に,バッテリーマネジメントユニットと制御回路を具備した双方向コンバータが接続され,該双方向コンバータを駆動する制御回路はバッテリーマネジメントユニットからの信号も受けて充電の制御をするように整流器とバッテリーとの間に介在させる。商用交流が停電時にバッテリーから負荷に直流電力を供給し,停電が復旧すると同時に該双方向コンバータからバッテリーを最適の充電量だけ自動充電して後,バッテリーのコンディションを最良の充電完了状態に保持することを特徴とした電源装置とした。
【0008】
請求項2に関しては,バッテリーと燃料電池の並列接続体である電力貯蔵手段が,燃料電池側への逆電流阻止手段が直列接続された燃料電池に対しバッテリーが並列接続された電力貯蔵手段である請求項1記載の電源装置とした。
【0009】
請求項3に関しては,バッテリーがサルフェーションという充電可能な容量が減退する現象を生じない,鉛蓄電池以外の蓄電池であり電解液の点険・補充を必要としない密封された,例えばニッケル水素蓄電池,または電気二重層蓄電器である請求項1乃至2記載の電源装置とした。
【0010】
請求項4に関しては,バッテリーマネジメントユニットは,単セル毎に,または複数個の単セルを集合したユニットセル毎に検知リード線が接続され,測定される放電容量などの電気的特性を監視して所定の限界を超えている場合にリフレッシュ充電などの指令信号を前記制御回路に与えるバッテリーマネジメントユニットである請求項1乃至3記載の電源装置とした。
【0011】
請求項5に関しては,バッテリーの寿命が末期に近づいて充電してもバッテリー容量の回復が定格容量に比べて大幅に低下したことを,日常的に点検できるように,バッテリーマネジメントユニットは,単セル毎に,または,複数個の単セルを集合したユニットセル毎に端子電圧測定や内部インピーダンス測定などの検知リード線を接続し,測定される電気的特性を監視して所定の限界を超えている場合に,バッテリー寿命末期を示すと判断されるときは警告を発信するか又は充電電流を微少電流に制御又は停止する指令信号を制御回路に与えるバッテリーマネジメントユットである請求項1乃至4記載の無停電電源装置とした。
【0012】
請求項6に関しては,バッテリーマネジメントユニットは,単セル毎に,または,複数個の単セルを集合したユニットセル毎に,或いは代表的なセルにおいて温度センサが接続され,測定されるセル温度データが所定の限界を超えていて,蓄電池の異常状態と判断されるときは警報発信,又は充電電流を停止したり微少電流に制御する指令信号を制御回路に与えるバッテリーマネジメントユニットである請求項1乃至5記載の無停電電源装置とした。
【0013】
請求項7に関しては,双方向コンバータは,バッテリー放電時には昇圧コンバータとしての通電回路を形成し,バッテリー充電時には降圧コンバータとしての通電回路を形成して,電流方向がバッテリー側から負荷側方向には昇圧し,整流器側からバッテリー側方向には降圧する電気特性で,双方向に夫々電気特性を無接点で切り替えて作動する双方向コンバータである請求項1乃至6記載の無停電電源装置とした。
【0014】
【発明の実施の形態】
本発明による実施の形態を説明する。図1は本発明による一実施形態を説明する回路図。図1において,商用交流電源端子1に整流器2が接続されて交流を直流に整流し,直流母線3を経て電力インバータ10で直流を交流に変換して負荷であるモータM2に交流を供給している。このように商用交流電源が受電中は負荷に交流を供給している。例えば負荷はモータで駆動されるものでモータをインバータで速度制御するものが多い。モータ運転中に商用交流が停電したとき,短時間の停電を補償する容量のバッテリー4が放電してモータに電力を瞬間の切れ目もなく供給するので運転を継続することが出来るように接続されている。バッテリー4を取り替える時など以外は開閉器9は閉じている。燃料電池Fが逆方向阻止手段12を介してバッテリー4に並列に接続されている。図2に示すように,逆方向阻止手段12は矢印Cの方向のみ通電し,その逆方向すなわちバッテリー4から燃料電池Fへ流れる方向に通電しないようにして,燃料電池Fからバッテリー4へ充電しながら直流母線3へ通電できるようにバッテリー4より燃料電池Fの電圧が高いときのみ通電する半導体スイッチ素子のような逆方向阻止手段である。制御回路102が停電を検出して燃料電池起動指令信号を出して燃料電池の出力電圧が定常値に達した後,逆方向阻止手段12が正方向に導通し,バッテリー側に直流を給電する。ところがバッテリーが劣化して燃料電池の出力電圧が所定値に達するまでの所定時間の運転が出来ないことがあった。このようなトラブルを未然に防ぐようにして信頼性の高い軽量小型の無停電電源装置を経済的に供給する為に,バッテリー4を常に最良の充電完了状態に保持する手段として,以下に述べる双方向コンバータ5が構成され該双方向コンバータを介してバッテリー4が直流母線3に接続されている。
【0015】
双方向コンバータ5は次のように構成されている。整流器の出力端子P(正)及び,出力端子N(負)の間に平滑コンデンサ6が接続されていて整流器の出力電圧を平滑している。PN間の電圧はバッテリー4の端子電圧より高い電圧に選ばれる。例えばバッテリー4の端子電圧が充電時に79Vから165Vまで変化するようにニッケル水素蓄電池72セルで構成されている。これに対しPN間の電圧は130Vから180Vの間に制御できるようにしている,この電圧をリンク電圧と呼ぶ。このリンク電圧をスイッチング素子51のPWM制御によって,バッテリー4の充電中は平滑コンデンサ7の端子電圧が79Vから115Vに降圧されて,例えばバッテリー4に対し電流値2Aで定電流充電が制御回路102の信号によって行われ,充電終末の検出をして微少電流に制御する。
【0016】
スイッチング素子51と52で直流を降圧する作用を説明する。スイッチング素子52はオフ,51はスイッチングの導通期間と不導通期間の比率を変化させる(PWM制御する)ことによって幅の広いパルスや狭いパルスを生成させることが出来,この出力波形を平滑リアクトル8と平滑コンデンサ7で平滑化して直流の平均値を下げる作用をし,バッテリー開閉器9が閉じた状態でバッテリー4を充電する。
【0017】
スイッチング素子51と52で直流を昇圧する作用を説明する。バッテリー4から直流母線3に放電する場合に,スイッチング素子51はオフ,52はスイッチングの導通期間と不導通期間の比率を変化させる(PWM制御する)ことによって放電電流平均値の大きさを変化させる。スイッチング素子52がオン,平滑リアクトル8に放電電流が流れたとき,平滑リアクトル8にエネルギーが蓄積される。次にスイッチング素子52がオフの期間,平滑リアクトル8に蓄積されたエネルギーが放出される。この時の電流はスイッチング素子51に逆並列接続されたダイオード53を通電して平滑コンデンサ6を充電する。平滑コンデンサ6の端子間にはバッテリー4の放電電圧の略2倍まで高められている。この理由は,平滑コンデンサ7の端子間電圧と略同じ電圧が平滑リアクトル8に蓄積され,両者に蓄積された電圧が加算された電圧で平滑コンデンサ6の端子間を充電するからであり,負荷電流の大きさによって直流電圧が低下するから大電流,例えば50Aを負荷に流した時は,バッテリー電圧(単セル1.1Vを72セル直列で)79Vの2倍よりもやや低下した電圧130Vとなって出力端子P(正)及び出力端子N(負)の間に出力される。
【0018】
双方向コンバータ5は,このようにバッテリー4から直流母線3に対して電流が流れる方向と,逆の方向とでは昇圧作用と,降圧作用とに無接点で切り替わる特性を持っている。バッテリー4を静電容量の極めて大きい電気二重層コンデンサと置き換えることも有効である。
【0019】
双方向コンバータ5には,バッテリーマネジメントユニット101と制御回路102を具備しており,図3のフローチャートに示す作用がある。図1を参照しながら図3の作用を説明すると,図3の停電回復(ステップ150)でバッテリー4に定電流充電を開始する(ステップ151 ),バッテリー4が例えば,定格容量10Ahの密閉型ニッケル水素蓄電池であり,前記のように72セル直列で使用する場合について述べる。充電電流2Aで定電流充電を開始した電池電圧の時間的変化は79.2V(単セル1.1V)から緩やかに上昇し続けて充電終末に115.2V(単セル1.6V)程度まで上昇する。この充電終末電圧(単セル1.6V)はバッテリー温度が高い程,低い値に留まる特性(−4mV/℃セル)があり,単セル1.6V以下の或る電圧で最大値となり,この最大電圧を経て徐々に低下する。そこで最大電圧値と低下した電圧値との差−ΔVを検出して(ステップ152)充電が終末に近くなったと判定する。−ΔVの値は,単セル当たり略−10mV乃至−20mVである。更に厳密に述べるならば,電圧−ΔVを検出する時刻に注意が必要である。放電した直後の蓄電池が定電流充電開始に切換えられたとき単セル当たり1.4V付近の充電電圧から数分間の間に電圧が低下して来る事がある。これは放電直後の電池内部の抵抗が高く,通電中に徐々に低くなってくるからである。このような現象を考慮に入れて充電開始してから10分間を経た後の−ΔVを検出するようにした。
【0020】
充電が終末近くなったと判定したとき,トリクル充電(ステップ153)に切り替わり自己放電を補うだけの微少電流で充電を続ける,バッテリーの自己放電で失われる容量を補う意味で補償充電とも呼ばれる。例えば,定格容量10Ahの密閉型ニッケル水素蓄電池で0.2乃至0.5Aの電流でトリクル充電が行われる例が多い。
【0021】
バッテリーの−ΔVを検出できない(ステップ152でN判定)充電終末に達していない期間で,バッテリー温度が正常(ステップ202でY判定)の時は定電流充電が続行される。バッテリー温度の検出にはサーミスタを単セル毎,或は複数の単セルを集合したユニットセル毎にサーミスタを固着させて,リード線をバッテリーマネジメントユニット101に接続している。例えば4セルを組電池として,その中央部に温度検出器を接触させ,72個のセルを18ユニットの組電池に構成して18組のリード線をバッテリーマネジメントユニット101に接続し,各組電池の温度を順次切換えて測定する事で組電池間の温度データを比較し,突出した組電池を「異常電池あり」と判定させる。
【0022】
バッテリーの−ΔVを検出できない(ステップ152でN判定)で,バッテリー温度が正常でない(ステップ202でN判定)の時は間欠充電や小電流に充電電流制御されるか,充電停止(ステップ203)されて警報(ステップ204)が出される。これは正常な場合の定電流充電で益々内部劣化を進行させないためである。簡略化された装置では,例えば単セルの温度が48℃を超過したら正常でないと(N判定)される。
【0023】
バッテリー温度の検出に置き換えて,バッテリーマネジメントユニット101から単セル毎,または複数の単セルを纏めたユニットセル毎に電気信号で電池の内部インピ−ダンスを計測するよう配線が接続されていて,例えば或るユニットセルが他に比べて突出していたら正常でないと判定されて警報表示される。
【0024】
バッテリーの容量検査指令(ステップ154)は,バッテリーマネジメントユニット101から例えば6ヶ月毎に指令信号がだされ,放電電流を検出(ステップ155)する電流検出器11が接続されていて,例えば1.0V/セルの144倍に相当する144Vの電圧(放電終止電圧)に到達する時間を計り,電流値×時間を制御回路102で演算してバッテリー容量積算する(ステップ156),ここで得られたバッテリー容量積算値とバッテリーマネジメントユニット101に記憶させてあるバッテリー定格容量とを比較して(ステップ157)定格容量の50%あるか判定して50%以上あれば(Y判定)定電流充電開始(ステップ151)する。定格容量の50%あるか判定して50%以下ならば(N判定)で報知し(ステップ158)リフレッシュ充電(ステップ159)を指令する。このように6ヶ月毎に指令信号が出されバッテリーの放電容量が確認されて所定の容量に達していない時はリフレッシュ充電と放電容量確認が繰返されてバッテリー容量が回復する。例えば報知(ステップ158)で放電容量積算が繰返された回数,放電容量の値を表示されるのでバッテリーの容量回復履歴がわかり,バッテリー交換の必要な時期が近いかどうかを知ることができ停電時のバックアップ信頼性が高い装置が得られた。バッテリーに並列に接続された燃料電池の起動に要する時間だけ確実にバッテリー容量が確保できればよいから,バッテリの容量及び寸法が小型になり,リフレッシュ充電の際の予備放電電流が小さくて良いから放電回路部品が小型化できる。
【0025】
バッテリーに並列に接続するか,又はバッテリーに置き換えて電気二重層コンデンサを用いる事も有効である。
【0026】
【発明の効果】
本発明によれば,従来の欠点であったバッテリーの放電可能な容量が不足しているために不意の停電でバックアップすべきバッテリーが機能達成できず,モータが停止してしまうと言う不具合が排除できた。燃料電池が逆電流阻止手段を介して接続されたので,バッテリーの定格容量を小さくして長時間の停電に対処できた。バッテリーの容量回復履歴がわかるのでバッテリー交換の必要な時期が事前に知ることができ,停電時のバックアップ信頼性が向上した。バッテリーマネジメントユニットでバッテリが最良状態に保持管理されるのでバッテリーの直列個数を多くすることができた。直流電圧を高くする事が出来た結果,電流が減らせる為スイッチング回路の電力ロスが少なくなった。電圧が高くなったのでインバータは小電流のスイッチング素子でよく,素子と放熱フィン寸法が小さくてよいから装置全体が小型軽量になり,省資源,省エネルギーにも寄与し工業的価値は大きい。
【図面の簡単な説明】
【図1】本発明による一実施形態を説明する回路図。
【図2】本発明による一実施形態を説明する要部回路図
【図3】本発明による一実施形態を説明するフローチャート。
【図4】従来の装置の構成図。
【符号の説明】
1 商用交流電源端子
2 整流器
3 直流母線
4 バッテリー
5 双方向コンバータ
6 平滑コンデンサ
7 平滑コンデンサ
8 平滑リアクトル
9 バッテリー開閉器
10 インバータ
11 電流検出器
12 逆電流阻止手段
F 燃料電池
M1 モータ
M2 モータ
51 スイッチング素子(降圧用)
52 スイッチング素子(昇圧用)
53,54 ダイオード
60,61,62 蓄電池
63,64,65 直流・直流コンバータ
101 バッテリーマネジメントユニット
102 制御回路
Cdc コンデンサ
P 出力端子(プラス端子)
N 出力端子(マイナス端子)
Vdc 直流リンク電圧
[0001]
TECHNICAL FIELD OF THE INVENTION
When receiving commercial AC power, convert the AC to DC and supply the battery to the inverter in front of the motor while charging the battery. When the commercial AC power fails, supply DC power to the inverter from the battery without interruption without interruption for a long time. The present invention also relates to a power supply device that supplies DC power from a fuel cell in an auxiliary manner, and automatically recovers power while monitoring a battery when a power failure recovers, and supplies power to a motor while maintaining a fully charged state.
[0002]
[Prior art]
In the electric drive system using the voltage of a storage battery or a power storage device, the following patent document discloses a technology for improving the reliability of the storage battery and providing a device capable of improving performance and reducing cost. Patent Literature 2 discloses a technology of an apparatus for supplying power without interruption in response to a long-term power failure.
[Patent Document 1]
[Patent Document 1] Japanese Unexamined Patent Application Publication No. Hei 6-276609. As a conventional technology of an electric drive system, a paragraph (0003) describes that "power semiconductors, which are expensive parts in an inverter, are cost-effective by increasing the DC voltage. However, the number of storage batteries connected in series is increased, for example, the reliability and life of the storage batteries are reduced due to mismatch in capacity of each 2 V unit cell (cell). " (0010) states that "there is a disadvantage that the capacity of the storage battery is significantly deteriorated." As an improvement, the paragraph (0020) in the description of the embodiment may be such that "a connection body of three storage batteries and three corresponding DC / DC converters is connected in parallel and has tolerance to failure". There is a description that "when a short circuit or an open circuit is detected, the circuit is disabled (disabled) and operated with a capacity of 2/3 (two out of three parallels)."
[0003]
FIG. 4 is a circuit diagram (FIG. 4) of an embodiment of the electric drive system disclosed in Japanese Patent Application Laid-Open No. Hei 6-276609 which is expressed as a block diagram for easy understanding. DC / DC converters 63, 64, 65 and storage batteries 60, 61, 62 are connected in parallel to form a DC power supply, and a capacitor Cdc is connected to the output terminal of the DC / DC converter. The voltage Vdc across the capacitor is a DC link voltage. It is. This direct current is converted to alternating current by the inverter 10 and connected to the motor M1.
[0004]
There is a patent document described below as a disclosure of a technique aiming at maintaining the private power generation function for a long time.
[Patent Document 2]
[Patent Document 1] Japanese Patent Application Laid-Open No. H10-144327 discloses a prior art of a hybrid power supply system. In paragraph (0015), a “polymer electrolyte fuel cell module and a storage battery such as a lithium ion battery or a silver zinc oxide battery are described. Power is supplied to the motor and other operating systems via the charge / discharge management device. " In paragraph (0021), there is a description that "the secondary battery supplies power even in an emergency such as when the power generation of the fuel cell suddenly stops." In paragraph (0022), "the output of the fuel cell falls below a predetermined value. Then, the power generation of the fuel cell is stopped and only the secondary battery is connected as the power supply of the operating system. " In Patent Document 2, the function of a secondary battery for complementing the weak points of a fuel cell is emphasized, and the secondary battery plays a role as a backup of the fuel cell. However, the means for maintaining the charged capacity of the secondary battery in a fully charged state is described as “float charging from the fuel cell” (paragraph 0004) and “provided to be chargeable from an external power supply”. (Paragraph 0007), it remains unknown whether the secondary battery has reached the end of its life or its capacity has been reduced in the float charging use state. SUMMARY OF THE INVENTION It is an object of the present invention to provide a power supply device which has a risk of causing a risk and has a means for ensuring reliability.
[0005]
[Problems to be solved by the invention]
In the technique for improving the reliability of a DC power supply according to Patent Document 1, parallel connection which is the basis of a redundant design of an electric connection circuit is specifically shown. The performance of a lead-acid battery using dilute sulfuric acid as an electrolyte is as follows: as long as the system is improved by combining lead-acid batteries with a cell voltage of 2 V, "parallel connection of batteries that are undergoing deterioration is dangerous, The shortcoming inherent in lead-acid batteries, which will be faster, remains inherent and must be eliminated. Eliminating the above drawbacks, the power is supplied from the power storage means to the load without any interruption during a power failure, and when the power is restored, the power is automatically supplied while monitoring the power storage means and the power is supplied to the load while maintaining the fully charged state It is an object of the present invention to provide a control power supply device for a motor and to cope with a long-term power failure in which the electric capacity of a battery or an electric double layer capacitor is completely discharged.
[0006]
[Means for Solving the Problems]
As a means of realizing a power supply device by making full use of technology to make a battery stand by in the best condition, a lead compound electrode immersed in dilute sulfuric acid as an electrolyte is charged with sulfation (crystallized lead sulfate and charged. A system in which a battery other than a lead-acid battery is connected as a power storage means, instead of a lead-acid battery that has the principle that its capacity does not recover forever even when charged. I focused on what to do.
[0007]
According to claim 1, a bidirectional converter having a battery management unit and a control circuit is connected between the rectifier and the battery connected to the commercial AC power supply, and the control circuit for driving the bidirectional converter is provided by the battery management unit. And intervene between the rectifier and the battery to control charging. In the event of a commercial AC power failure, DC power is supplied from the battery to the load, and at the same time that the power failure is restored, the bidirectional converter automatically charges the battery by the optimal amount of charge, and then keeps the battery condition in the best charged state. A power supply device characterized by this.
[0008]
According to claim 2, the power storage means, which is a parallel connection of the battery and the fuel cell, is a power storage means in which the battery is connected in parallel to the fuel cell in which the reverse current blocking means to the fuel cell is connected in series. The power supply device according to claim 1 is provided.
[0009]
According to claim 3, the battery is a storage battery other than a lead storage battery and does not require a rechargeable capacity called sulfation, which does not require electrolyte replenishment, and is sealed, for example, a nickel hydrogen storage battery, or The power supply device according to claim 1 or 2, which is an electric double layer capacitor.
[0010]
According to claim 4, the battery management unit is connected to the detection lead wire for each single cell or for each unit cell in which a plurality of single cells are assembled, and monitors the electrical characteristics such as the measured discharge capacity. The power supply device according to any one of claims 1 to 3, wherein the power supply device is a battery management unit that supplies a command signal such as refresh charge to the control circuit when a predetermined limit is exceeded.
[0011]
According to claim 5, the battery management unit includes a single cell so that it can be checked on a daily basis that the recovery of the battery capacity has significantly decreased compared to the rated capacity even when the battery is nearing the end of its life and charged. A detection lead wire for terminal voltage measurement, internal impedance measurement, etc. is connected for each unit cell or for each unit cell in which a plurality of single cells are assembled, and the measured electrical characteristics are monitored to exceed a predetermined limit. 5. The battery management unit according to claim 1, wherein when the battery management unit is determined to indicate the end of battery life, a warning is issued or a command signal for controlling or stopping the charging current to a very small current is given to a control circuit. Power failure power supply.
[0012]
According to claim 6, the battery management unit is connected to a temperature sensor for each single cell, for each unit cell obtained by assembling a plurality of single cells, or for a representative cell. 6. A battery management unit which, when exceeding a predetermined limit and determines that the storage battery is in an abnormal state, sends a warning to the control circuit or issues a command signal for stopping the charging current or controlling the charging current to a very small current to the control circuit. The uninterruptible power supply described.
[0013]
According to claim 7, the bidirectional converter forms an energizing circuit as a boost converter when discharging the battery, and forms an energizing circuit as a step-down converter when charging the battery, so that the current direction increases from the battery side to the load side. The uninterruptible power supply device according to any one of claims 1 to 6, wherein the bidirectional converter is an electric characteristic that is stepped down from the rectifier side to the battery side and that operates by contactlessly switching the electric characteristic in both directions without contact.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment according to the present invention will be described. FIG. 1 is a circuit diagram illustrating an embodiment according to the present invention. In FIG. 1, a rectifier 2 is connected to a commercial AC power supply terminal 1 to rectify AC into DC, convert DC to AC through a DC bus 3 and supply AC to a motor M2 as a load. I have. As described above, the alternating current is supplied to the load while the commercial alternating current power is being received. For example, the load is driven by a motor and the speed of the motor is often controlled by an inverter. When a commercial AC power failure occurs during motor operation, the battery 4 having a capacity that compensates for a short-time power failure discharges and supplies electric power to the motor without interruption, so that the motor 4 is connected so that operation can be continued. I have. The switch 9 is closed except when the battery 4 is replaced. The fuel cell F is connected in parallel to the battery 4 via the reverse blocking means 12. As shown in FIG. 2, the reverse direction blocking means 12 charges only the direction of the arrow C and does not supply current in the opposite direction, that is, the direction from the battery 4 to the fuel cell F, and charges the battery 4 from the fuel cell F. A reverse blocking means such as a semiconductor switch element that energizes only when the voltage of the fuel cell F is higher than the battery 4 so that the DC bus 3 can be energized. After the control circuit 102 detects the power failure and issues a fuel cell start command signal and the output voltage of the fuel cell reaches a steady value, the reverse blocking means 12 conducts in the forward direction and supplies DC to the battery side. However, the operation of the fuel cell for a predetermined time until the output voltage of the fuel cell reaches a predetermined value may not be performed due to deterioration of the battery. In order to economically supply a reliable, lightweight, and uninterruptible power supply with high reliability by preventing such troubles beforehand, as a means for always keeping the battery 4 in the best charge-completed state, both means described below are used. The battery 4 is connected to the DC bus 3 via the bidirectional converter.
[0015]
The bidirectional converter 5 is configured as follows. A smoothing capacitor 6 is connected between the output terminal P (positive) and the output terminal N (negative) of the rectifier to smooth the output voltage of the rectifier. The voltage between PN is selected to be higher than the terminal voltage of the battery 4. For example, the battery 4 is composed of 72 cells of a nickel-metal hydride storage battery such that the terminal voltage of the battery 4 changes from 79 V to 165 V during charging. On the other hand, the voltage between PN can be controlled between 130 V and 180 V. This voltage is called a link voltage. The terminal voltage of the smoothing capacitor 7 is reduced from 79 V to 115 V during charging of the battery 4 by the PWM control of the switching element 51 by the PWM control of the switching element 51. This is performed by a signal, and the end of charging is detected to control to a very small current.
[0016]
The operation of stepping down the direct current by the switching elements 51 and 52 will be described. The switching element 52 is turned off, and the pulse 51 is changed (by PWM control) to change the ratio between the on-period and the off-period of the switching, so that a wide pulse or a narrow pulse can be generated. The battery 4 is charged in a state where the battery switch 9 is closed by smoothing by the smoothing capacitor 7 to lower the average value of DC.
[0017]
The operation of boosting the direct current by the switching elements 51 and 52 will be described. When discharging from the battery 4 to the DC bus 3, the switching element 51 is turned off, and the switching element 52 changes the ratio of the switching conduction period to the non-conduction period (by performing PWM control) to change the magnitude of the discharge current average value. . When the switching element 52 is turned on and a discharge current flows through the smoothing reactor 8, energy is accumulated in the smoothing reactor 8. Next, while the switching element 52 is off, the energy stored in the smoothing reactor 8 is released. The current at this time passes through the diode 53 connected in anti-parallel to the switching element 51 to charge the smoothing capacitor 6. The voltage between the terminals of the smoothing capacitor 6 is increased to approximately twice the discharge voltage of the battery 4. This is because a voltage substantially equal to the voltage between the terminals of the smoothing capacitor 7 is accumulated in the smoothing reactor 8, and the voltage accumulated in both is charged between the terminals of the smoothing capacitor 6 by the added voltage. When a large current, for example, 50 A is applied to the load, the voltage becomes 130 V, which is slightly lower than twice the battery voltage (79 V in a single cell of 1.1 V in series with 72 cells). Is output between the output terminal P (positive) and the output terminal N (negative).
[0018]
The bidirectional converter 5 has a characteristic of switching between a step-up operation and a step-down operation without contact in the direction in which current flows from the battery 4 to the DC bus 3 and in the opposite direction. It is also effective to replace the battery 4 with an electric double layer capacitor having an extremely large capacitance.
[0019]
The bidirectional converter 5 includes a battery management unit 101 and a control circuit 102, and has an operation shown in the flowchart of FIG. Referring to FIG. 1, the operation of FIG. 3 will be described. In the power failure recovery (step 150) of FIG. 3, constant current charging of the battery 4 is started (step 151). A case of a hydrogen storage battery, which is used in series with 72 cells as described above, will be described. The temporal change of the battery voltage at which constant-current charging was started at a charging current of 2 A continued to increase gradually from 79.2 V (single cell 1.1 V), and then to 115.2 V (single cell 1.6 V) at the end of charging. I do. This end-of-charge voltage (single cell 1.6 V) has a characteristic (-4 mV / ° C. cell) that the lower the battery temperature, the lower the value. At a certain voltage of 1.6 V or less, the maximum value is reached. It gradually decreases through voltage. Therefore, the difference-[Delta] V between the maximum voltage value and the lowered voltage value is detected (step 152), and it is determined that the charging is near the end. The value of −ΔV is approximately −10 mV to −20 mV per single cell. To be more precise, it is necessary to pay attention to the time at which the voltage −ΔV is detected. When the storage battery immediately after discharging is switched to the start of constant current charging, the voltage may drop from a charging voltage of around 1.4 V per cell for several minutes. This is because the resistance inside the battery immediately after discharge is high and gradually decreases during energization. Taking such a phenomenon into consideration, -ΔV after 10 minutes from the start of charging is detected.
[0020]
When it is determined that the charging is near the end, the charging is switched to trickle charging (step 153), and the charging is continued with a small current sufficient to compensate for the self-discharge. For example, in many cases, trickle charging is performed with a current of 0.2 to 0.5 A in a sealed nickel-metal hydride storage battery having a rated capacity of 10 Ah.
[0021]
When the battery temperature is normal (Y determination in step 202) during a period in which the battery has not reached the end of charging (-ΔV cannot be detected (N determination in step 152)), constant current charging is continued. To detect the battery temperature, a thermistor is fixed to each single cell or to each unit cell in which a plurality of single cells are assembled, and a lead wire is connected to the battery management unit 101. For example, assuming four cells as a battery pack, a temperature detector is brought into contact with the center of the battery pack, 72 cells are formed into 18 battery packs, and 18 sets of lead wires are connected to the battery management unit 101. The temperature data between the assembled batteries is compared by sequentially switching and measuring the temperatures of the assembled batteries, and the protruding assembled battery is determined to be “abnormal battery”.
[0022]
When -ΔV of the battery cannot be detected (N determination in step 152) and the battery temperature is not normal (N determination in step 202), the charging current is controlled to intermittent charging or a small current, or charging is stopped (step 203). Then, an alarm (step 204) is issued. This is to prevent internal deterioration from progressing more and more with constant current charging in a normal case. In the simplified device, for example, if the temperature of the single cell exceeds 48 ° C., it is determined that the temperature is not normal (N determination).
[0023]
In place of battery temperature detection, wiring is connected from the battery management unit 101 so as to measure the internal impedance of the battery with an electric signal for each single cell or for each unit cell obtained by combining a plurality of single cells. If a certain unit cell protrudes as compared to the other, it is determined that the unit cell is not normal and an alarm is displayed.
[0024]
The battery capacity inspection command (step 154) is issued, for example, every six months from the battery management unit 101, and the current detector 11 for detecting the discharge current (step 155) is connected. The time to reach a voltage of 144 V (discharge end voltage) corresponding to 144 times the cell / time (discharge end voltage) is measured, and the current value × time is calculated by the control circuit 102 to integrate the battery capacity (step 156). The integrated capacity value is compared with the rated battery capacity stored in the battery management unit 101 (step 157), and it is determined whether the rated capacity is 50% or more. 151). It is determined whether the capacity is 50% of the rated capacity. If the capacity is not more than 50% (N determination), a notification is issued (step 158) and a refresh charge (step 159) is commanded. In this way, a command signal is issued every six months and the discharge capacity of the battery is confirmed. If the discharge capacity does not reach the predetermined capacity, refresh charge and discharge capacity confirmation are repeated to recover the battery capacity. For example, the number of times the discharge capacity integration is repeated and the value of the discharge capacity are displayed in the notification (step 158), so that the history of the capacity recovery of the battery can be known, so that it is possible to know whether the time to replace the battery is near or not. A device with high backup reliability was obtained. It is only necessary to ensure the battery capacity for the time required to start the fuel cell connected in parallel with the battery, so the capacity and size of the battery can be reduced, and the preliminary discharge current during refresh charge can be small. Parts can be downsized.
[0025]
It is also effective to connect the battery in parallel or use an electric double layer capacitor instead of the battery.
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the fault that the battery which should be backed up by an unexpected power failure due to the shortage of the dischargeable capacity of the battery, which cannot be achieved by the conventional technology, and the motor stops can be eliminated. did it. Since the fuel cell was connected via the reverse current blocking means, the rated capacity of the battery could be reduced to cope with a long-term power failure. Since the history of battery capacity recovery can be known, it is possible to know in advance when battery replacement is necessary, and backup reliability in the event of a power failure has been improved. Since the battery is maintained and managed in the best condition by the battery management unit, the number of batteries in series can be increased. As a result of being able to increase the DC voltage, the power loss of the switching circuit was reduced because the current could be reduced. Since the voltage has been increased, the inverter may be a switching element with a small current, and the dimensions of the element and the radiation fin may be small. Therefore, the whole device is small and lightweight, which contributes to resource and energy saving and has a large industrial value.
[Brief description of the drawings]
FIG. 1 is a circuit diagram illustrating an embodiment according to the present invention.
FIG. 2 is a main part circuit diagram illustrating an embodiment according to the present invention. FIG. 3 is a flowchart illustrating an embodiment according to the present invention.
FIG. 4 is a configuration diagram of a conventional device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Commercial AC power supply terminal 2 Rectifier 3 DC bus 4 Battery 5 Bidirectional converter 6 Smoothing capacitor 7 Smoothing capacitor 8 Smoothing reactor 9 Battery switch 10 Inverter 11 Current detector 12 Reverse current blocking means F Fuel cell M1 Motor M2 Motor 51 Switching element (For step-down)
52 Switching element (for boosting)
53, 54 Diodes 60, 61, 62 Storage batteries 63, 64, 65 DC / DC converter 101 Battery management unit 102 Control circuit Cdc Capacitor P Output terminal (plus terminal)
N output terminal (minus terminal)
Vdc DC link voltage

Claims (7)

商用交流に接続した整流器とモータ用インバータとが接続された直流母線に,電圧検出手段が接続されたバッテリーと燃料電池の並列接続体である電力貯蔵手段が接続され,該電力貯蔵手段から停電時に無瞬断でモータ用インバータに電力を供給し続ける電源装置において,バッテリーマネジメントユニットと制御回路とを具備した双方向コンバータを該直流母線とバッテリーの間に介在させ,商用交流が停電時に該バッテリーから双方向コンバータを介して直流母線に通電し,停電が長時間に及ぶ時は該制御回路が該バッテリーの電圧を検出して発電起動指令し,発電する該燃料電池から該バッテリーに充電しながら双方向コンバータを介して直流母線に通電して,停電回復と同時に該制御回路が停電回復を検出して停止指令し,該燃料電池の発電を停止させ,前記整流器から該双方向コンバータとバッテリーマネジメントユニットと制御回路とによってバッテリーを充電開始し最適充電量だけ自動充電制御した後,バッテリーを最良の充電完了状態に保持するとともに,バッテリー性能の良否を判定する制御回路を一体化したことを特徴としたモータ制御用電源装置。A power storage means, which is a parallel connection of a battery and a fuel cell, to which a voltage detection means is connected is connected to a DC bus to which a rectifier connected to a commercial AC and a motor inverter are connected. In a power supply device that continuously supplies power to a motor inverter without a momentary interruption, a bidirectional converter having a battery management unit and a control circuit is interposed between the DC bus and the battery, and when a commercial AC power failure occurs, the bidirectional converter is disconnected from the battery. When the DC bus is energized through a bidirectional converter, and the power failure is long, the control circuit detects the voltage of the battery and issues a power generation start command. The control circuit detects the recovery of the power failure and issues a stop command at the same time as the recovery from the power failure. The battery is started to be charged from the rectifier by the bidirectional converter, the battery management unit, and the control circuit, and the automatic charge is controlled by an optimum amount of charge. A motor control power supply device, wherein a control circuit for judging performance is integrated. バッテリーと燃料電池の並列接続体である電力貯蔵手段が,燃料電池側への逆電流阻止手段が直列接続された燃料電池に対しバッテリーが並列接続された電力貯蔵手段である請求項1記載のモータ制御用電源装置。2. The motor according to claim 1, wherein the power storage means, which is a parallel connection of the battery and the fuel cell, is a power storage means in which a battery is connected in parallel to a fuel cell in which reverse current blocking means to the fuel cell is connected in series. Power supply for control. バッテリーが鉛蓄電池以外の電解液の点険・補充を必要としない密封された蓄電池,または電気二重層蓄電器である請求項1及び2記載のモータ制御用電源装置。The motor control power supply device according to claim 1 or 2, wherein the battery is a sealed storage battery that does not require dipping and replenishment of an electrolytic solution other than a lead storage battery, or an electric double layer storage device. バッテリーマネジメントユニットは,単セル毎に,または複数個の単セルを集合したユニットセル毎に検知手段を接続して測定される電気的特性等のデータを監視して,測定データが所定の限界を超えている場合にリフレッシュ充電などの指令信号を前記制御回路に伝達するバッテリーマネジメントユニットである請求項1乃至3記載のモータ制御用電源装置。The battery management unit monitors the data such as the electrical characteristics measured by connecting the detecting means for each single cell or for each unit cell in which a plurality of single cells are aggregated. 4. The motor control power supply device according to claim 1, wherein the power supply device is a battery management unit that transmits a command signal for refresh charging or the like to the control circuit when the charge amount exceeds the limit. バッテリーマネジメントユニットは,単セル毎に,または,複数個の単セルを集合したユニットセル毎に測定されるデータが所定の限界を超えていて,蓄電池の寿命末期が近づいた状態などの異常状態を判断したときは報知,或は充電電流を微少電流に制御又は停止する指令信号を制御回路に与えるバッテリーマネジメントユニットである請求項1乃至4記載のモータ制御用電源装置。The battery management unit detects abnormal conditions such as a condition in which the data measured for each single cell or for each unit cell in which a plurality of single cells are aggregated exceeds a predetermined limit and the end of life of the storage battery is approaching. 5. The motor control power supply device according to claim 1, wherein the battery control unit is a battery management unit that notifies the control circuit when the determination is made or supplies a control signal to control or stop the charging current to a very small current. バッテリーマネジメントユニットは,単セル毎に,または,複数個の単セルを集合したユニットセル毎に,或いは代表セルにおいて測定されるセル温度データが所定の限界を超えていて,蓄電池が異常状態であると判断したときは警報,又は充電電流を微少電流に制御又は停止する指令信号を制御回路に与えるバッテリーマネジメントユニットである請求項1乃至5記載のモータ制御用電源装置。The battery management unit is in an abnormal state because the cell temperature data measured for each single cell, for each unit cell obtained by assembling a plurality of single cells, or for the representative cell exceeds a predetermined limit. 6. The motor control power supply device according to claim 1, wherein the battery management unit is a battery management unit that gives an alarm or a command signal for controlling or stopping the charging current to a very small current to the control circuit when it is determined that the charging current is small. 双方向コンバータは,バッテリーから直流母線側へ放電中には昇圧コンバータとしての通電回路が形成され,直流母線側からのバッテリー充電中には降圧コンバータとしての通電回路が形成されて,バッテリーから直流母線側への方向では昇圧に,直流母線側からバッテリーへの方向では降圧に,それぞれ電気特性が切り替わる特性を有する双方向コンバータである請求項1乃至6記載のモータ制御用電源装置。In the bidirectional converter, an energizing circuit as a boost converter is formed during discharging from the battery to the DC bus side, and an energizing circuit as a step-down converter is formed during charging of the battery from the DC bus side. 7. The motor control power supply device according to claim 1, wherein the bidirectional converter has a characteristic in which an electric characteristic is switched in a step-up direction to a step-up voltage and in a direction from a DC bus side to a battery in a step-down direction.
JP2003083190A 2003-03-25 2003-03-25 Power supply for controlling motor Pending JP2004297851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083190A JP2004297851A (en) 2003-03-25 2003-03-25 Power supply for controlling motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083190A JP2004297851A (en) 2003-03-25 2003-03-25 Power supply for controlling motor

Publications (1)

Publication Number Publication Date
JP2004297851A true JP2004297851A (en) 2004-10-21

Family

ID=33398726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083190A Pending JP2004297851A (en) 2003-03-25 2003-03-25 Power supply for controlling motor

Country Status (1)

Country Link
JP (1) JP2004297851A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274880A (en) * 2006-03-09 2007-10-18 Nagaoka Univ Of Technology Power system
JP2009077492A (en) * 2007-09-19 2009-04-09 Fuji Electric Systems Co Ltd Power conversion system and electric drive vehicle
JP2011129389A (en) * 2009-12-18 2011-06-30 Toyota Motor Corp Air-cell conditioning method and air-cell manufacturing method
RU2442924C2 (en) * 2006-05-24 2012-02-20 Белимо Холдинг Аг Protective drive device for damper or valve
KR20130047144A (en) * 2011-10-31 2013-05-08 엘지전자 주식회사 Motor driver and cleaner including the same
KR20140023697A (en) * 2012-08-17 2014-02-27 현대모비스 주식회사 Converter for micro-hybrid converter for preventing reverse current on initial start-up and method thereof
KR101587358B1 (en) * 2014-09-02 2016-02-02 엘에스산전 주식회사 A hybrid vehicle
JP2019052377A (en) * 2013-07-19 2019-04-04 ヌヴェラ・フュエル・セルズ,エルエルシー System and method for tuning an electrochemical cell stack
CN109861341A (en) * 2019-03-20 2019-06-07 卢丽芬 A kind of hybrid power system
US11171507B2 (en) 2017-12-22 2021-11-09 Litech Laboratories, Inc. Connection of battery system to electrical distribution bus
US11695293B2 (en) 2017-12-22 2023-07-04 Litech Laboratories, Llc Power system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982426B2 (en) 2006-03-09 2011-07-19 National University Corporation, Nagaoka University of Technology Electric power system
JP2007274880A (en) * 2006-03-09 2007-10-18 Nagaoka Univ Of Technology Power system
RU2442924C2 (en) * 2006-05-24 2012-02-20 Белимо Холдинг Аг Protective drive device for damper or valve
JP2009077492A (en) * 2007-09-19 2009-04-09 Fuji Electric Systems Co Ltd Power conversion system and electric drive vehicle
JP2011129389A (en) * 2009-12-18 2011-06-30 Toyota Motor Corp Air-cell conditioning method and air-cell manufacturing method
KR101864278B1 (en) 2011-10-31 2018-06-04 엘지전자 주식회사 MOtor driver and cleaner including the same
KR20130047144A (en) * 2011-10-31 2013-05-08 엘지전자 주식회사 Motor driver and cleaner including the same
KR20140023697A (en) * 2012-08-17 2014-02-27 현대모비스 주식회사 Converter for micro-hybrid converter for preventing reverse current on initial start-up and method thereof
JP2019052377A (en) * 2013-07-19 2019-04-04 ヌヴェラ・フュエル・セルズ,エルエルシー System and method for tuning an electrochemical cell stack
KR101587358B1 (en) * 2014-09-02 2016-02-02 엘에스산전 주식회사 A hybrid vehicle
US11171507B2 (en) 2017-12-22 2021-11-09 Litech Laboratories, Inc. Connection of battery system to electrical distribution bus
TWI750432B (en) * 2017-12-22 2021-12-21 美商立泰克實驗室公司 Backup system for power supply unit providing power to load via distribution bus
US11695293B2 (en) 2017-12-22 2023-07-04 Litech Laboratories, Llc Power system
CN109861341A (en) * 2019-03-20 2019-06-07 卢丽芬 A kind of hybrid power system

Similar Documents

Publication Publication Date Title
JP7212650B2 (en) Systems and methods for series battery charging and formation
US9627720B2 (en) Battery pack, apparatus including battery pack, and method of managing battery pack
KR101097261B1 (en) Energy storage system and controlling method thereof
JP3364836B2 (en) Voltage equalizer device and method thereof
US8330418B2 (en) Power supply device capable of equalizing electrical properties of batteries
JP5155373B2 (en) Grid-linked power storage system and method for controlling the same
KR101174891B1 (en) Energy storage system and controlling method of the same
EP2605362B1 (en) Power supply device
US9269989B2 (en) Electric power supply system
KR20150081731A (en) Battery pack, energy storage system including the battery pack, and method of operating the battery pack
JP2013192389A (en) Discharge control system and discharge control method for battery pack
US8957545B2 (en) Prioritization circuit and electric power supply system
US20230420948A1 (en) Energy storage system and power supply method for battery management system
JP2004297851A (en) Power supply for controlling motor
CN113572183A (en) Intelligent maintenance circuit and maintenance method for station storage battery
KR20180104873A (en) Lithium battery protection system
JP2004159405A (en) Uninterruptible power supply device
JP2015122841A (en) Power storage system and power generation system
CN114884168B (en) Transformer substation direct current system based on lithium iron phosphate storage battery
JP5582898B2 (en) Lithium ion battery system
JP6795082B2 (en) DC power supply system
JP2004304931A (en) Charging method and charging device for electric storage device
JP2013192388A (en) Discharge control system and discharge control method for battery pack
CN210807132U (en) Solar power generation system with lithium battery
JP3495606B2 (en) Power storage system using sodium sulfur battery and charge / discharge control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205