JP2004254386A - Dc power supply device - Google Patents

Dc power supply device Download PDF

Info

Publication number
JP2004254386A
JP2004254386A JP2003040327A JP2003040327A JP2004254386A JP 2004254386 A JP2004254386 A JP 2004254386A JP 2003040327 A JP2003040327 A JP 2003040327A JP 2003040327 A JP2003040327 A JP 2003040327A JP 2004254386 A JP2004254386 A JP 2004254386A
Authority
JP
Japan
Prior art keywords
voltage
current
power supply
detecting means
switch means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003040327A
Other languages
Japanese (ja)
Inventor
Shinichiro Watari
真一郎 渡利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003040327A priority Critical patent/JP2004254386A/en
Publication of JP2004254386A publication Critical patent/JP2004254386A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/18Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to reversal of direct current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a voltage drop in a forward direction when a current flows in the forward direction, and to prevent the current from flowing in the opposite direction, in a circuit that prevents a reverse flow of the current in a DC power supply device. <P>SOLUTION: The DC power supply device supplies electric power from a DC power supply (solar cell 1) to a load (for example, a load 4) by a switch means 6. It comprises a first voltage detecting means 7 provided between the DC power supply and the switch means, a second voltage detecting means 8 provided between the switch means 6 and the load 4, and a current direction detecting means 10 connected in series to either the front stage or the post stage of the switching means 6. The switch means 6 is closed for conduction only when a voltage detected by the first voltage detecting means 7 is equal to or higher than a voltage detected by the second voltage detecting means 8. If the current direction detecting means 10 detects that a current flows from the load 4 side to the DC power supply side, the switch means 6 is opened to cut off a flow of the current. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、太陽光発電や風力発電による電源等の直流電源からの電力を、スイッチ手段を介して負荷に供給するための直流電源装置に関し、特に蓄電池等の負荷側から直流電源側に電流が逆流するのを防止する逆流防止回路を備えた直流電源装置に関する。
【0002】
【従来の技術】
従来の太陽光発電システムについて、図4に基づき説明する。太陽電池1により光電変換された発電電力は、蓄電池の過充電と過放電を保護する充電制御コントローラ2に入力される。この充電制御コントローラ2は蓄電池3と負荷4に接続されており、天候や昼夜の別により変動する太陽電池1の発電電力を、蓄電池3を介して安定に負荷4に供給できる。太陽電池1は日中などの光が当っている間は、光電変換により電圧を発生し発電電流を蓄電池3に充電しているが、例えば夜間等暗闇においては太陽電池1に光が当たらないため、光電変換が起こらず電圧が発生しない。従って、夜間等においては蓄電池3の電圧が太陽電池1より高くなり、蓄電池3から太陽電池1に電流が流れることになる。
【0003】
そこで、充電制御コントローラー2には、太陽電池1と蓄電池3の間に直列にダイオード5を挿入し、夜間に蓄電池3から太陽電池1に電流が逆流することを防いでいた。ここで、電流を一方向に流し逆流を防止するダイオード5は、安価で単純な構成であることから、太陽光発電システムの逆流防止機能を果たすものとして好適である。
【0004】
ところが、ダイオード5には順方向に電流が流れるときに順方向電圧降下があり、これによる太陽光発電システムの発電損失が発生することに加え、太陽光発電システムの規模が大きくなり、ダイオード5に流れる電流が大きくなると、ダイオード5の順方向電圧降下による電力損失が大きくなり、ダイオード5自身の温度上昇や充電制御コントローラーの温度上昇により、放熱部品を必要とするなどの問題が生じる。
【0005】
以上の問題を解決するために、一般的な手段として電圧効果の比較的小さいショットキーバリヤー型ダイオードを使用したり、一次電源側の電圧低下を検出して逆流防止用のダイオードの両端を短絡するリレーの接点を開閉するものが提案されている(例えば、特許文献1を参照)。
【0006】
また、図5に示すように、電磁リレー6の電流コイルを逆流防止用半導体ダイオードであるダイオード5と直列に挿入し、電磁リレー6の接点でダイオード6の両端を閉じて、ダイオード5に流れる電流をバイパスしてダイオード5による順方向挿入損失を低減する方法が提案されている(例えば、特許文献2を参照)。
【0007】
また、上記のように電磁リレー6といった接点を使用せずに、半導体スイッチング素子をダイオード5に対し並列に接続し、別途設けた電流検出手段の信号で半導体スイッチング素子を開閉するよう構成した方法も提案されている(例えば、特許文献3を参照)。
【0008】
〔特許文献1〕
特開平2−168819号公報
〔特許文献2〕
特開平7−147738号公報
〔特許文献3〕
特開平8−251818号公報
【0009】
【発明が解決しようとする課題】
逆流防止用のダイオードとして順方向損失の少ないショットキーバリヤー型のダイオードを適用する場合、現在の技術では高電圧(100V以上)の逆耐圧品の製作は難しく、順方向電圧降下もシリコンダイオード並である。また、上述した特許文献1の直流電源装置では、逆流防止用のダイオードと並列にリレー接点を設け、順方向に電流が流れている間は、接点を閉じてダイオードの両端を短絡し、ダイオードで生じる順方向電圧降下による電力損失を抑止している。
【0010】
ところが、電流が逆流することを検出する手段として一次側電源の電圧が低下することを検出するものであるため、太陽電池と蓄電池の間に逆流防止手段を設ける場合、太陽電池の電圧が蓄電池の電圧に等しくなり、電流が逆流しても太陽電池の電圧低下を検出することが困難となる。このため、逆流防止の機能を果たすことができない。
【0011】
また、特許文献2に開示された逆流防止方法では、太陽電池で発電した電流で電磁リレーのコイルを駆動するため、太陽電池の発電電流が天候で大きく増減しても、安定して接点が閉じていられるように、特殊な電磁リレーを使用する必要があるうえ、電磁リレーに電流が流れて接点が閉じるために、電磁リレーと直列に接続するダイオードが必要となり、電磁リレーが駆動できる電流値に達するまではダイオードによる順方向電圧降下の損失を抑止することができない。
【0012】
また、特許文献3に開示された電流検出手段を有する方法では、電流検出手段に流れる電流により順方向に電圧が流れているか、逆方向に電流が流れているかを判断するため、リレー接点または半導体等によるスイッチング手段と並列にダイオードが必要であり、電流検出手段により順方向に電流が流れると判断される電流値に達するまでは、ダイオードによる順方向電圧降下による損失を抑止することができない。また、リレー接点を開閉する制御は電流の方向によって決定するため、電流の向きが順方向から逆方向またはその反対に切り替わるポイントでチャタリング現象が出やすく、機器の消耗を加速させ信頼性を低下させる。
【0013】
そこで本発明は、ダイオードを使用せずに逆流防止を行うことができ、順方向に電流が流れているときに電圧降下による損失を極力抑えることができる、優れた逆流防止回路を備えた直流電源装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記課題を解決するため、本発明の直流電源装置は、直流電源からの電力をスイッチ手段を介して負荷に供給するための直流電源装置であって、前記直流電源と前記スイッチ手段との間に設けた第1電圧検出手段と、前記スイッチ手段と前記負荷との間に設けた第2電圧検出手段と、前記スイッチ手段の前段及び後段のいずれかに直列接続した電流方向検出手段とを備えて成り、前記第1電圧検出手段により検出した電圧が前記第2電圧検出手段により検出した電圧以上のときにのみ前記スイッチ手段を閉成して導通させ、前記電流方向検出手段が前記負荷側から前記直流電源側に電流が流れていることを検出したときに、前記スイッチ手段を開放して電流の流れを遮断するようにしたことを特徴とする。
【0015】
これにより、例えば、スイッチ手段の前段に太陽電池を接続し、スイッチ手段の後段に蓄電池を接続した場合、太陽電池から蓄電池へ順方向の電流が流れるときにスイッチ手段は閉じ、蓄電池から太陽電池へ電流が逆流すればスイッチ手段を開く簡便な逆流防止回路を構成することができる。
【0016】
【発明の実施の形態】
以下に、本発明を太陽光発電システムに適用した実施形態について、模式的に図示した図面に基づき詳細に説明する。
【0017】
図1に示すように、直流電源である太陽電池1により発電された電力は、逆流防止回路を備えた充電コントローラ2を経由して負荷である蓄電池3やその他の負荷4に接続され負荷(蓄電池3やその他の負荷4)に電力を供給する。ここで、太陽電池1としては、多結晶シリコン太陽電池、単結晶シリコン太陽電池、アモルファスシリコン、及び化合物半導体等から1種以上を用いたバルクもしくは薄膜等の各種太陽電池を使用することができ、複数の太陽電池セルを接続してなる太陽電池モジュールや、それをさらに直並列に接続してなる太陽電池アレイを用いることができる。
【0018】
充電コントローラ2は、図2に示すように、例えばトランジスタやFET(電界効果トランジスタ)等の半導体素子や接点式で構成されたスイッチ手段6と分圧抵抗や抵抗アレイ等で構成された太陽電池側の電圧を検出する第1電圧検出手段7及び、第1電圧検出手段7と同様な構成で負荷(蓄電池3やその他の負荷4)側の電圧を検出する第2電圧検出手段8、オペアンプやコンパレータ等で構成された電圧比較器9、シャント抵抗やホール素子のような電流センサー等で構成された電流方向検出器10からなる逆流防止回路と、特に図示しないが電圧検出器、温度検出器、電流スイッチ等からなる充電制御回路等で構成される。また、図1における蓄電池3が過放電状態になったら負荷への電力供給を停止する過放電防止制御を含む回路を備えるようにしても良い。
【0019】
このようにして構成された逆流防止回路は、第1電圧検出手段7及び第2電圧検出手段8で検出された電圧を電圧比較器9で比較し、第1電圧検出手段7により検出した電圧が第2電圧検出手段8により検出した電圧以上の場合、スイッチ手段6を閉成して導通させる制御(スイッチ手段が接点式の場合、接点を閉じる制御)を行う。また、電流方向検出器10が検出した電流方向が逆流方向の場合、スイッチ手段6を開放して電流を遮断する制御(スイッチ手段が接点式の場合、接点を開く制御)を行う。
【0020】
すなわち、直流電源(太陽電池1)からの電力をスイッチ手段6を介して負荷(蓄電池3やその他の負荷4)に供給するための太陽光発電システムにおいて、直流電源とスイッチ手段との間に設けた直流電源側の電圧(例えば、発電電圧)を検出する第1電圧検出手段7と、スイッチ手段6と負荷との間に設けた負荷側電圧を検出する第2電圧検出手段8と、スイッチ手段6の前段及び後段のいずれかに直列接続した電流方向検出手段10とを備えて成り、第1電圧検出手段7により検出した電圧が第2電圧検出手段8により検出した電圧以上のときにのみスイッチ手段6を閉成して導通させ、電流方向検出手段10が負荷側から直流電源側に電流が流れていることを検出したときに、スイッチ手段6を開放して電流の流れを遮断するようにして逆流防止回路を構成している。
【0021】
次に、上記のように構成された逆流防止回路の具体的な動作を説明する。夜間等、暗闇においては太陽電池1の受光面に光が当たらないため光電変換が起こらず電圧が発生しない。このとき、スイッチ手段6の接点は開放されており逆流防止回路に電流は流れない。
【0022】
一方、例えば夜が明けて周囲が明るくなると、太陽電池1の受光面に光があたり電圧が発生し徐々に電圧が上昇してくる。このとき、第1電圧検出手段7及び第2電圧検出手段8で検出された電圧を電圧比較器9で比較し、第1電圧検出手段7の電圧が第2電圧検出手段8の電圧以上になるまではスイッチ手段6は開放状態を維持したままである。
【0023】
太陽電池の発電電圧が上昇してきて、第1電圧検出手段7で検出した電圧が第2電圧検出手段8で検出した電圧より大きくなると、電圧比較器9からスイッチ手段6を閉成するべく信号が出力される。この信号を受けてスイッチ手段6が閉じると、第1電圧検出手段7と第2電圧検出手段8の電圧は同じ電圧となるが、これは太陽電池の発電電力が負荷側に電流を供給することにより動作点が移動する現象であるので、電圧比較器9は電圧遮断手段6の閉成状態を維持する信号は送出し続ける。
【0024】
さらに、太陽電池1に太陽光が強く当たるようになると、太陽電池1が発電した電流が逆流防止回路を通って蓄電池3に流れるが、スイッチ手段6の接点は電気抵抗の殆ど無い機械的接点または電気抵抗の極めて小さな(例えば、0.02Ω程度)半導体スイッチ(例えば、MOSFET)等の微小抵抗のスイッチ手段を使用することにより、順方向電力損失を極力小さくすることができる。また、電流方向検出器10はスイッチ手段6と直列に挿入されるため抵抗損失となりやすいが、本発明の回路では電流の流れる方向を検出するだけでよいため、極めて小さな挿入損失の電流検出器でよく、これによる順方向電力損失は非常に小さい。
【0025】
かくして、本実施形態によれば、順方向に電流が流れる場合にはスイッチ手段を閉成して順方向電圧降下による損失を抑止することができ、逆流を防止するときはスイッチ手段が開放して逆方向の電流を阻止するため、逆流防止用のダイオードを省くことが可能になる。また、逆流防止用のダイオードに比較して損失が減少するため、トランジスタやFET等の半導体素子で構成されるスイッチ手段の温度上昇を低減させることができる。
【0026】
また、本実施形態の逆流防止回路を、例えば蓄電池のない系統連系システムにおいて、複数の太陽電池モジュールを直列接続したストリングを複数、並列に接続するための接続箱または接続箱機能つきパワーコンディショナに使用されている逆流防止用のダイオードのかわりに適用することにより、接続箱の温度上昇やパワーコンディショナの温度上昇を低減させ、放熱のために必要としていた箱体の小型化や軽量化を図ることが可能になる。
【0027】
さらに、スイッチ手段を開閉するときは開閉電圧,電流ともに小さな電圧,電流であるので、開閉時のストレスが少なく、機械式接点をスイッチ手段として用いた場合にその寿命を極力延ばすことができる。
【0028】
図3に他の実施形態を示す。この実施形態では、ホール素子を用いて、電線の周囲に発生する磁界の方向を検出することで、電流方向を検出する電流方向検出器を使用した例である。なお、太陽光発電システムの基本構成は図1に示す通りとする。
【0029】
この実施形態を作用・効果について説明する。例えば夕方になって、太陽電池1の発電が低下し、太陽電池1の開放電圧が蓄電池3の電圧より低下すると、蓄電池3から太陽電池1へ電流が逆流し始める。電流方向検出器10は電流の向きが逆方向になったことを検出して、スイッチ手段6に接点を開くよう信号を送る。接点が開くと逆電流が流れなくなり、図示のA点とB点の電圧は同一ではなくなる。すなわち、太陽電池1側の電圧(A点の電圧)が蓄電池3側の電圧(B点の電圧)より低下しているため、電圧比較器9からスイッチ手段6を閉成させる信号は送出されず、開放状態となったままになる。電流方向検出器10が逆電流を検出するということは、逆電流が流れていることになるが、太陽光発電システムでは少しの逆電流があっても故障したりすることはなく、信頼性を損ねることはない。
【0030】
また、この実施形態の特徴としてスイッチ手段が開閉するときに、例えば機械式接点のスイッチ手段を用いた場合にも、特に過大な負荷がかかることがなく接点を電気的に磨耗させる要素が小さいため、機械式接点でスイッチ手段の開閉を行っても接点の寿命を長く持たせることができる。すなわち、第1電圧検出手段7の電圧が第2電圧検出手段8の電圧以上になったとき、接点の両端の電圧は小さく太陽電池の動作点は開放電圧に近いポイントにあり、太陽電池からは小さな電流しか出力されない。従って接点に過大な負担を引き起こすことはない。また、電流方向検出器10が逆流の電流方向を検出したときも、スイッチ手段6の接点を開いた後の接点における両端の電圧は差が小さく、また逆流も小さな電流で検出できるようにすれば接点に過大な電流アークが発生することもなく接点に過大な負担を引き起こすことはない。
【0031】
なお、本実施形態では直流電源として太陽電池を用いた太陽光発電システムを例にとり説明したが、これに限定されるものではなく、風力発電による電源等の直流電源からの電力を使用した場合にも適用可能であることは容易に理解できる。また、このような直流電源からの電力をスイッチ手段を介して負荷に供給したり、DC/ACコンバータを介して商用電力系統に供給する直流電源装置や、バッテリー充電器などのような負荷側に直流電力を生じさせる電源を有するシステムについても適用可能であり、本発明の要旨を逸脱しない範囲で適宜変更し実施が可能である。
【0032】
【発明の効果】
以上詳述したように、本発明の直流電源装置によれば、順方向に電流が流れる場合にはスイッチ手段を閉成して順方向電圧降下による損失を抑止することができ、逆流を防止するときはスイッチ手段が開放して逆方向の電流を阻止するため、逆流防止用のダイオードが不要になる。
【0033】
また、逆流防止用のダイオードに比較して損失が減少するため、スイッチ手段としてトランジスタやFET等の半導体素子を使用したときに、その温度上昇を低減させることができ、信頼性の高い直流電源装置を提供できる。
【0034】
また、系統連系システムにおいて、複数の太陽電池モジュールを直列接続したストリングを並列に接続するための接続箱または接続箱機能つきパワーコンディショナに使用されている逆流防止ダイオードの代わりに、本発明を適用することにより、接続箱の温度上昇やパワーコンディショナの温度上昇を低減させることができ、従来、放熱のために必要としていた箱体の小型化や軽量化を図ることが可能になる。
【0035】
さらに、スイッチ手段を開閉するときは、開閉電圧,電流ともに小さな電圧,電流ですむので、開閉時のストレスが少なく、接点式をスイッチ手段として用いた場合に、その寿命を極力延ばすことができる。
【図面の簡単な説明】
【図1】本発明に係る逆流防止回路の実施形態を模式的に説明する概略回路構成図である。
【図2】本発明に係る太陽光発電システムにおける実施例を説明するブロック図である。
【図3】本発明に係る請求項2の逆流防止回路の実施形態を模式的に説明する概略回路図である。
【図4】従来の逆流防止回路の一例を模式的に説明する概略構成図である。
【図5】従来の逆流防止回路の他の例を模式的に説明する概略構成図である。
【符号の説明】
1:太陽電池
2:充電コントローラ
3:蓄電池(負荷)
4:その他の負荷
5:ダイオード
6:スイッチ手段
7:第1電圧検出手段
8:第2電圧検出手段
9:電圧比較器
10:電流方向検出器
11:リレーコイル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a DC power supply device for supplying power from a DC power supply such as a power supply by solar power generation or wind power generation to a load via a switch means, and in particular, a current is supplied from a load side such as a storage battery to a DC power supply side. The present invention relates to a DC power supply device provided with a backflow prevention circuit for preventing backflow.
[0002]
[Prior art]
A conventional solar power generation system will be described with reference to FIG. The generated power photoelectrically converted by the solar cell 1 is input to a charge control controller 2 that protects the storage battery from overcharging and overdischarging. The charge control controller 2 is connected to the storage battery 3 and the load 4, and can stably supply the power generated by the solar cell 1 that fluctuates depending on weather or day or night to the load 4 via the storage battery 3. The solar cell 1 generates a voltage by photoelectric conversion and charges the storage battery 3 while the light is shining in the daytime or the like, but the light does not shine on the solar cell 1 in darkness such as at night. No photoelectric conversion occurs and no voltage is generated. Therefore, at night or the like, the voltage of the storage battery 3 becomes higher than that of the solar cell 1, and a current flows from the storage battery 3 to the solar cell 1.
[0003]
Therefore, a diode 5 is inserted into the charge control controller 2 in series between the solar battery 1 and the storage battery 3 to prevent a current from flowing back from the storage battery 3 to the solar battery 1 at night. Here, the diode 5 that allows a current to flow in one direction to prevent backflow is inexpensive and has a simple configuration, and thus is suitable for performing a backflow prevention function of the photovoltaic power generation system.
[0004]
However, the diode 5 has a forward voltage drop when a current flows in the forward direction, which causes a power generation loss of the photovoltaic power generation system and increases the scale of the photovoltaic power generation system. When the flowing current increases, the power loss due to the forward voltage drop of the diode 5 increases, and the temperature rise of the diode 5 itself and the temperature rise of the charge controller cause problems such as the necessity of a heat radiating component.
[0005]
In order to solve the above problems, a Schottky barrier type diode having a relatively small voltage effect is used as a general means, or a voltage drop on the primary power supply side is detected to short-circuit both ends of the diode for backflow prevention. A device that opens and closes the contacts of a relay has been proposed (for example, see Patent Document 1).
[0006]
Also, as shown in FIG. 5, a current coil of the electromagnetic relay 6 is inserted in series with the diode 5 which is a semiconductor diode for backflow prevention. A method has been proposed to reduce the forward insertion loss caused by the diode 5 by bypassing (see, for example, Patent Document 2).
[0007]
Further, as described above, a method in which a semiconductor switching element is connected in parallel to the diode 5 without using a contact such as the electromagnetic relay 6 and the semiconductor switching element is opened / closed by a signal of a separately provided current detecting means. It has been proposed (see, for example, Patent Document 3).
[0008]
[Patent Document 1]
JP-A-2-168819 [Patent Document 2]
Japanese Patent Application Laid-Open No. 7-147738 [Patent Document 3]
JP-A-8-251818
[Problems to be solved by the invention]
When applying a Schottky barrier type diode having a small forward loss as a diode for preventing a backflow, it is difficult to manufacture a high voltage (100 V or more) reverse breakdown voltage product with the current technology, and the forward voltage drop is as low as a silicon diode. is there. In the DC power supply device of Patent Document 1 described above, a relay contact is provided in parallel with a diode for preventing backflow, and while current flows in the forward direction, the contact is closed and both ends of the diode are short-circuited. The power loss due to the generated forward voltage drop is suppressed.
[0010]
However, since the means for detecting the backflow of the current is to detect a decrease in the voltage of the primary power supply, when the backflow prevention means is provided between the solar battery and the storage battery, the voltage of the solar battery is reduced. It becomes equal to the voltage, and it becomes difficult to detect the voltage drop of the solar cell even if the current flows backward. Therefore, the function of preventing backflow cannot be achieved.
[0011]
Further, in the backflow prevention method disclosed in Patent Document 2, since the coil of the electromagnetic relay is driven by the current generated by the solar cell, the contacts are stably closed even if the generated current of the solar cell greatly increases or decreases due to the weather. As shown in the figure, it is necessary to use a special electromagnetic relay, and because a current flows through the electromagnetic relay and the contacts close, a diode connected in series with the electromagnetic relay is required. Until it reaches, the loss of the forward voltage drop by the diode cannot be suppressed.
[0012]
Further, in the method having the current detecting means disclosed in Patent Document 3, it is determined whether a voltage is flowing in the forward direction or the current is flowing in the reverse direction by the current flowing in the current detecting means. A diode is necessary in parallel with the switching means, and the loss due to the forward voltage drop due to the diode cannot be suppressed until the current detection means reaches a current value at which the current is determined to flow in the forward direction. Also, since the control for opening and closing the relay contacts is determined by the direction of the current, chattering tends to occur at the point where the direction of the current switches from the forward direction to the reverse direction or vice versa, accelerating the wear of equipment and reducing reliability. .
[0013]
Accordingly, the present invention provides a DC power supply having an excellent backflow prevention circuit, which can perform backflow prevention without using a diode and can minimize loss due to voltage drop when current flows in the forward direction. It is intended to provide a device.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, a DC power supply device of the present invention is a DC power supply device for supplying power from a DC power supply to a load via a switch means, wherein a DC power supply is provided between the DC power supply and the switch means. A first voltage detecting means provided, a second voltage detecting means provided between the switch means and the load, and a current direction detecting means connected in series to one of a preceding stage and a succeeding stage of the switching means. Only when the voltage detected by the first voltage detecting means is equal to or higher than the voltage detected by the second voltage detecting means, the switch means is closed and turned on, and the current direction detecting means detects the current direction from the load side. When detecting that a current is flowing to the DC power supply side, the switch means is opened to cut off the current flow.
[0015]
Thus, for example, when a solar cell is connected to the front of the switch and a storage battery is connected to the rear of the switch, the switch is closed when a forward current flows from the solar to the storage, and the storage is connected to the solar cell. A simple backflow prevention circuit that opens the switch means when the current flows backward can be configured.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a photovoltaic power generation system will be described in detail with reference to the drawings schematically illustrated.
[0017]
As shown in FIG. 1, power generated by a solar cell 1 as a DC power supply is connected to a storage battery 3 as a load and another load 4 via a charge controller 2 having a backflow prevention circuit, and the load (storage battery). 3 and other loads 4). Here, as the solar cell 1, various solar cells such as bulk or thin film using one or more of polycrystalline silicon solar cells, single crystal silicon solar cells, amorphous silicon, and compound semiconductors can be used. A solar cell module formed by connecting a plurality of solar cells and a solar cell array formed by connecting the solar cell modules in series and parallel can be used.
[0018]
As shown in FIG. 2, the charge controller 2 includes, for example, a semiconductor element such as a transistor or an FET (field effect transistor) or a switch means 6 configured by a contact type, and a solar cell side configured by a voltage dividing resistor or a resistor array. Voltage detecting means 7 for detecting the voltage of the first and second voltage detecting means 8 for detecting the voltage of the load (the storage battery 3 and the other load 4) on the same side as the first voltage detecting means 7, an operational amplifier and a comparator And a backflow prevention circuit including a current direction detector 10 including a current sensor such as a shunt resistor or a Hall element, and a voltage detector, a temperature detector, and a current detector (not shown). It is composed of a charge control circuit composed of switches and the like. Further, a circuit including overdischarge prevention control for stopping power supply to the load when the storage battery 3 in FIG. 1 is in an overdischarged state may be provided.
[0019]
The backflow prevention circuit thus configured compares the voltage detected by the first voltage detecting means 7 and the voltage detected by the second voltage detecting means 8 with the voltage comparator 9, and detects the voltage detected by the first voltage detecting means 7 When the voltage is equal to or higher than the voltage detected by the second voltage detecting means 8, control is performed to close the switch means 6 to make it conductive (when the switch means is a contact type, control to close the contact) is performed. When the current direction detected by the current direction detector 10 is the reverse flow direction, control is performed to open the switch means 6 and cut off the current (when the switch means is a contact type, control to open a contact).
[0020]
That is, in a photovoltaic power generation system for supplying power from a DC power supply (solar cell 1) to a load (storage battery 3 or other load 4) via the switch means 6, the power supply is provided between the DC power supply and the switch means. First voltage detecting means 7 for detecting a voltage (for example, generated voltage) on the DC power supply side, second voltage detecting means 8 for detecting a load side voltage provided between the switch means 6 and the load, and a switch means And a current direction detecting means 10 connected in series to any one of the preceding stage and the succeeding stage, and the switch is provided only when the voltage detected by the first voltage detecting means 7 is equal to or higher than the voltage detected by the second voltage detecting means 8. When the current direction detecting means 10 detects that a current is flowing from the load side to the DC power supply side, the switch means 6 is opened to interrupt the current flow. Constitute the backflow prevention circuit Te.
[0021]
Next, a specific operation of the backflow prevention circuit configured as described above will be described. In darkness, such as at night, no light hits the light receiving surface of the solar cell 1, so that no photoelectric conversion occurs and no voltage is generated. At this time, the contact of the switch means 6 is open and no current flows in the backflow prevention circuit.
[0022]
On the other hand, when the surroundings become brighter at dawn, for example, light hits the light receiving surface of the solar cell 1 and a voltage is generated, and the voltage gradually increases. At this time, the voltages detected by the first voltage detecting means 7 and the second voltage detecting means 8 are compared by the voltage comparator 9, and the voltage of the first voltage detecting means 7 becomes equal to or higher than the voltage of the second voltage detecting means 8. Until this time, the switch means 6 remains open.
[0023]
When the power generation voltage of the solar cell rises and the voltage detected by the first voltage detecting means 7 becomes larger than the voltage detected by the second voltage detecting means 8, a signal from the voltage comparator 9 to close the switch means 6 is issued. Is output. When this signal is received and the switch means 6 is closed, the voltages of the first voltage detection means 7 and the second voltage detection means 8 become the same voltage, but this is because the power generated by the solar cell supplies a current to the load side. Therefore, the voltage comparator 9 keeps sending the signal for maintaining the closed state of the voltage cut-off means 6.
[0024]
Further, when the sunlight hits the solar cell 1 strongly, the current generated by the solar cell 1 flows to the storage battery 3 through the backflow prevention circuit. By using a switch means having a very small electric resistance (for example, about 0.02Ω) and a semiconductor switch (for example, a MOSFET) having a very small resistance, the forward power loss can be minimized. Although the current direction detector 10 is inserted in series with the switch means 6 and easily causes a resistance loss, the circuit of the present invention only needs to detect the direction of current flow. Often, this results in very little forward power loss.
[0025]
Thus, according to the present embodiment, when current flows in the forward direction, the switch means can be closed to suppress loss due to forward voltage drop, and when reverse current is prevented, the switch means is opened. Since the reverse current is blocked, it is possible to omit the diode for preventing the reverse current. Further, the loss is reduced as compared with the diode for preventing the backflow, so that the temperature rise of the switch means composed of semiconductor elements such as transistors and FETs can be reduced.
[0026]
Further, the backflow prevention circuit of the present embodiment may be used as a connection box or a power conditioner with a connection box function for connecting a plurality of strings in which a plurality of solar cell modules are connected in series, for example, in a system interconnection system without a storage battery. By reducing the temperature rise of the junction box and the power conditioner by applying a diode instead of the backflow prevention diode used in the above, the size and weight of the box required for heat dissipation can be reduced. It becomes possible to plan.
[0027]
Further, since both the switching voltage and the current are small when opening and closing the switching means, the stress at the time of opening and closing is small, and when the mechanical contact is used as the switching means, the life can be extended as much as possible.
[0028]
FIG. 3 shows another embodiment. This embodiment is an example of using a current direction detector that detects a current direction by detecting a direction of a magnetic field generated around an electric wire using a Hall element. The basic configuration of the photovoltaic power generation system is as shown in FIG.
[0029]
The operation and effects of this embodiment will be described. For example, in the evening, when the power generation of the solar cell 1 decreases and the open voltage of the solar cell 1 becomes lower than the voltage of the storage battery 3, a current starts to flow backward from the storage battery 3 to the solar cell 1. The current direction detector 10 detects that the direction of the current has been reversed, and sends a signal to the switch means 6 to open the contact. When the contacts are opened, the reverse current stops flowing, and the voltages at points A and B shown in the figure are not the same. That is, since the voltage on the solar cell 1 side (voltage at the point A) is lower than the voltage on the storage battery 3 side (voltage at the point B), a signal for closing the switch means 6 is not sent from the voltage comparator 9. , Remain open. The fact that the current direction detector 10 detects the reverse current means that the reverse current is flowing. However, in the photovoltaic power generation system, even if there is a slight reverse current, the photovoltaic power system does not break down and the reliability is improved. It won't hurt.
[0030]
Further, as a feature of this embodiment, when the switch means opens and closes, for example, when using a switch means of a mechanical contact, the element for electrically wearing the contact is small without applying an excessive load. Even if the switch means is opened and closed with a mechanical contact, the life of the contact can be extended. That is, when the voltage of the first voltage detecting means 7 becomes equal to or higher than the voltage of the second voltage detecting means 8, the voltage at both ends of the contact is small and the operating point of the solar cell is close to the open-circuit voltage. Only a small current is output. Therefore, no excessive load is caused on the contacts. Also, when the current direction detector 10 detects the reverse current direction, if the voltage at both ends of the contact after opening the contact of the switch means 6 has a small difference, and the reverse current can be detected with a small current. No excessive current arc is generated at the contacts, and no excessive load is applied to the contacts.
[0031]
In the present embodiment, a solar power generation system using a solar cell as a DC power supply has been described as an example.However, the present invention is not limited to this, and when power from a DC power supply such as a power supply by wind power generation is used. It can be easily understood that this is also applicable. In addition, power from such a DC power supply is supplied to a load via a switch means, a DC power supply apparatus which supplies a power to a commercial power system via a DC / AC converter, or a load side such as a battery charger. The present invention is also applicable to a system having a power supply that generates DC power, and can be appropriately modified and implemented without departing from the gist of the present invention.
[0032]
【The invention's effect】
As described in detail above, according to the DC power supply device of the present invention, when a current flows in the forward direction, the switch means can be closed to suppress the loss due to the forward voltage drop and prevent the reverse current. At this time, the switch means is opened to block the reverse current, so that the diode for preventing the backflow is not required.
[0033]
Further, since the loss is reduced as compared with a diode for preventing a backflow, when a semiconductor element such as a transistor or an FET is used as a switch means, the temperature rise can be reduced, and a highly reliable DC power supply device Can be provided.
[0034]
Further, in a system interconnection system, instead of a backflow prevention diode used in a junction box for connecting strings in which a plurality of solar cell modules are connected in series or a power conditioner with a junction box function, the present invention is provided. By applying, it is possible to reduce the temperature rise of the connection box and the temperature of the power conditioner, and it is possible to reduce the size and weight of the box body conventionally required for heat radiation.
[0035]
Further, when the switching means is opened and closed, only small voltages and currents are required for both the switching voltage and the current. Therefore, stress at the time of opening and closing is small, and the life can be extended as much as possible when a contact type is used as the switching means.
[Brief description of the drawings]
FIG. 1 is a schematic circuit configuration diagram schematically illustrating an embodiment of a backflow prevention circuit according to the present invention.
FIG. 2 is a block diagram illustrating an embodiment of the photovoltaic power generation system according to the present invention.
FIG. 3 is a schematic circuit diagram schematically illustrating an embodiment of a backflow prevention circuit according to claim 2 of the present invention.
FIG. 4 is a schematic configuration diagram schematically illustrating an example of a conventional backflow prevention circuit.
FIG. 5 is a schematic configuration diagram schematically illustrating another example of the conventional backflow prevention circuit.
[Explanation of symbols]
1: solar cell 2: charge controller 3: storage battery (load)
4: Other load 5: Diode 6: Switching means 7: First voltage detecting means 8: Second voltage detecting means 9: Voltage comparator 10: Current direction detector 11: Relay coil

Claims (1)

直流電源からの電力をスイッチ手段を介して負荷に供給するための直流電源装置であって、前記直流電源と前記スイッチ手段との間に設けた第1電圧検出手段と、前記スイッチ手段と前記負荷との間に設けた第2電圧検出手段と、前記スイッチ手段の前段及び後段のいずれかに直列接続した電流方向検出手段とを備えて成り、前記第1電圧検出手段により検出した電圧が前記第2電圧検出手段により検出した電圧以上のときにのみ前記スイッチ手段を閉成して導通させ、前記電流方向検出手段が前記負荷側から前記直流電源側に電流が流れていることを検出したときに、前記スイッチ手段を開放して電流の流れを遮断するようにしたことを特徴とする直流電源装置。A DC power supply device for supplying power from a DC power supply to a load via a switch means, wherein the first voltage detection means provided between the DC power supply and the switch means, the switch means and the load And a current direction detecting means connected in series to any one of a preceding stage and a succeeding stage of the switch means, and a voltage detected by the first voltage detecting means is provided by the first voltage detecting means. (2) When the switch is closed and turned on only when the voltage is equal to or higher than the voltage detected by the voltage detector, and when the current direction detector detects that a current is flowing from the load side to the DC power supply side, A DC power supply device, wherein the switch means is opened to interrupt the flow of current.
JP2003040327A 2003-02-18 2003-02-18 Dc power supply device Pending JP2004254386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040327A JP2004254386A (en) 2003-02-18 2003-02-18 Dc power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040327A JP2004254386A (en) 2003-02-18 2003-02-18 Dc power supply device

Publications (1)

Publication Number Publication Date
JP2004254386A true JP2004254386A (en) 2004-09-09

Family

ID=33024250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040327A Pending JP2004254386A (en) 2003-02-18 2003-02-18 Dc power supply device

Country Status (1)

Country Link
JP (1) JP2004254386A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662631A3 (en) * 2004-11-29 2009-05-27 Seiko Epson Corporation Method and apparatus for power supply control
JP2012249223A (en) * 2011-05-31 2012-12-13 Seiko Npc Corp Single-line serial interface
JP2012253848A (en) * 2011-05-31 2012-12-20 Toshiba Corp Photovoltaic power generation system
JP2013501495A (en) * 2009-08-06 2013-01-10 エスエムエー ソーラー テクノロジー アーゲー Reverse current sensor
JPWO2012046331A1 (en) * 2010-10-07 2014-02-24 東芝三菱電機産業システム株式会社 Failure detection device
CN110235332A (en) * 2017-02-14 2019-09-13 株式会社自动网络技术研究所 Power supply control apparatus
JP2020010534A (en) * 2018-07-10 2020-01-16 住友電気工業株式会社 Dc power supply circuit, photovoltaic power generation system and control method of dc power supply circuit

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662631A3 (en) * 2004-11-29 2009-05-27 Seiko Epson Corporation Method and apparatus for power supply control
US7638975B2 (en) 2004-11-29 2009-12-29 Seiko Epson Corporation Power supply control circuit, electronic apparatus, semiconductor device, control method for power supply control circuit, and control method for electronic apparatus
JP2013501495A (en) * 2009-08-06 2013-01-10 エスエムエー ソーラー テクノロジー アーゲー Reverse current sensor
US8749934B2 (en) 2009-08-06 2014-06-10 Sma Solar Technology Ag Reverse current sensor
JPWO2012046331A1 (en) * 2010-10-07 2014-02-24 東芝三菱電機産業システム株式会社 Failure detection device
US9153953B2 (en) 2010-10-07 2015-10-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation Fault detection apparatus
EP2626712A4 (en) * 2010-10-07 2017-02-22 Toshiba Mitsubishi-Electric Industrial Systems Corporation Failure detecting apparatus
JP2012249223A (en) * 2011-05-31 2012-12-13 Seiko Npc Corp Single-line serial interface
JP2012253848A (en) * 2011-05-31 2012-12-20 Toshiba Corp Photovoltaic power generation system
CN110235332A (en) * 2017-02-14 2019-09-13 株式会社自动网络技术研究所 Power supply control apparatus
JP2020010534A (en) * 2018-07-10 2020-01-16 住友電気工業株式会社 Dc power supply circuit, photovoltaic power generation system and control method of dc power supply circuit
JP7115086B2 (en) 2018-07-10 2022-08-09 住友電気工業株式会社 DC power supply circuit, photovoltaic power generation system, and control method for DC power supply circuit

Similar Documents

Publication Publication Date Title
US11979037B2 (en) Photovoltaic module
US6051954A (en) Charge control apparatus
US5726505A (en) Device to prevent reverse current flow, rectifier device and solar generator system
US8610405B2 (en) Charge and discharge circuit of secondary battery and battery pack
US9124103B2 (en) Electrical storage apparatus
JP3329168B2 (en) Backflow prevention device
US20120194003A1 (en) Bypass and protection circuit for a solar module and method of controlling a solar module
US9356456B2 (en) Charging device
US20140176043A1 (en) Charging control unit
EP2380070B1 (en) Power control of serially connected cells
JP2004289159A (en) Circuit structure, additional module and solar device system
CN108604607B (en) Protection circuit for a Photovoltaic (PV) module, method for operating the protection circuit and Photovoltaic (PV) system comprising such a protection circuit
CN1334630A (en) Shunt voltage regulator with self-contained safety heat short-circuit protection
JP4126167B2 (en) Charge / discharge circuit for series connected battery group
US20210384720A1 (en) Protection circuit for battery management system
JP2004254386A (en) Dc power supply device
US10141754B2 (en) Integration of battery management system and battery charger
JP3522802B2 (en) Overcharge prevention circuit for solar battery storage battery
JP3322925B2 (en) Battery charging control system
JPH0715889A (en) Control circuit for solar battery
US6853219B2 (en) Charging circuit
US11929740B2 (en) Relay control apparatus
FR3112436A1 (en) Device for protecting an electrical energy distribution circuit
CN116264407A (en) Protection circuit of silicon-oxygen negative electrode battery and silicon-oxygen negative electrode battery
JPH10243574A (en) Power supply part, photovoltaic generator provided with this power supply part and photovoltaic application system using this photovolatic generator