JP2004244490A - Carbon nanotube-containing resin composite and method for producing the same, and high-modulus film - Google Patents

Carbon nanotube-containing resin composite and method for producing the same, and high-modulus film Download PDF

Info

Publication number
JP2004244490A
JP2004244490A JP2003034721A JP2003034721A JP2004244490A JP 2004244490 A JP2004244490 A JP 2004244490A JP 2003034721 A JP2003034721 A JP 2003034721A JP 2003034721 A JP2003034721 A JP 2003034721A JP 2004244490 A JP2004244490 A JP 2004244490A
Authority
JP
Japan
Prior art keywords
resin composite
cnt
carbon nanotube
resin
containing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003034721A
Other languages
Japanese (ja)
Other versions
JP4222048B2 (en
Inventor
Takeshi Saito
毅 斎藤
Jun Tsukamoto
遵 塚本
Junji Sanada
淳二 真多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003034721A priority Critical patent/JP4222048B2/en
Publication of JP2004244490A publication Critical patent/JP2004244490A/en
Application granted granted Critical
Publication of JP4222048B2 publication Critical patent/JP4222048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon nanotube-containing resin composite which is imparted with excellent mechanical properties inherent in a carbon nanotube. <P>SOLUTION: The carbon nanotube-containing resin composite is a resin composite in which a monolayer and/or a multilayer carbon nanotube coated with a conjugated polymer is dispersed in a resin with a side chain structure, wherein a percentage composition of a carbon nanotube to the resin is from 0.01 wt% to 1 wt%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高弾性率を有するカーボンナノチューブ含有樹脂コンポジットとその製造方法、および該樹脂コンポジットからなる高弾性フィルムに関するものである。
【0002】
【従来の技術】
樹脂へのフィラー添加は、力学的性質、例えば引張強度や弾性率等を改良し、所望の性質をもった樹脂コンポジットを得るための手法として、これまで広く使われてきた。このような強化用のフィラーとしては繊維状または針状のフィラーが強化用充填材として用いられ、例えば繊維状のフィラーとしてはガラス繊維や炭素繊維、アラミド繊維など、針状のものではウオラストナイト、ゾノトライトなどが知られている。
【0003】
樹脂の強化用のフィラーとして要求される性質としては、1.強度および弾性率が高いこと、2.密度が小さいこと、3.大きさのばらつきが少ないこと、4.樹脂との接着性のよいこと等が挙げられる。
【0004】
近年、上記のうち1〜3に関して有望な繊維状フィラーとしてナノチューブが注目を集めている。ナノチューブは化学結合のネットワークにより形成されるチューブ状分子であり、グラファイト型炭素がチューブ状ネットワークを形成しているカーボンナノチューブ(以下、CNTと言う)が代表的であるが、他にも炭素原子の一部又は全部がホウ素(B)や窒素(N)に置き換わったBCNナノチューブやBNナノチューブについても発見が報告されている。また、CNTは酸処理を施すことによりグラファイト構造の欠陥部分やナノチューブの末端部分にカルボキシル基を導入することができることなど、比較的容易に化学的修飾を施すことが可能であることが報告されている。例えば、このカルボキシル基をアンカーとしてエステル化やアミド化などによって様々な官能基を導入した化学修飾CNTやグラファイト構造をフッ素化したフッ素化CNT等が知られている。
【0005】
ナノチューブは1本の長さが数十nm〜数十μm程度であるのに対し、直径が約1〜50nmと非常に微細かつ細長く、アスペクト比の大きい形態をしている。また、チューブ形状をしていることから密度が小さい。とりわけCNTは既存のいかなる材料と比較しても高弾性、高強度であること、また、高温まで構造が変化しないこと等の有用な特性を持つことから、力学特性に優れた構造材料や樹脂コンポジットとして応用開発が進められている。
【0006】
これまでCNTを樹脂の強化用フィラーとして用いた樹脂コンポジットとしてはいくつかの例が報告されている。例えば、非特許文献1ではポリメチルメタクリレート(PMMA)をマトリックス樹脂としてCNTを分散する製造方法が記載されているが、この方法では繰り返し工程を数百回以上も経なければ一様なCNTの分散が得られず、非常に煩雑で非効率的な方法である。また、この文献にはCNTを分散した後延伸したファイバーで弾性率が増大することが記載されているが、CNTを分散することによる効果のみを評価することができると考えられる延伸していないときの弾性率の値を同文献のデータから外挿するとほとんど向上がみられない。
【0007】
【非特許文献1】
「ケミカル・フィジックス・レターズ(Chemical Physics Letters)」、第330巻、2000年、219頁
【0008】
【発明が解決しようとする課題】
上述のように従来の方法では、CNT含有樹脂コンポジットにおけるマトリックス樹脂とCNTとの間に働く相互作用は一般に小さく、従って樹脂コンポジットにCNTの本来有する優れた力学特性を十分に反映させることが困難であるという問題点があった。
【0009】
そこで本発明は上記問題点を解決すべく、マトリックス樹脂単体に比べて弾性率が向上したCNT含有樹脂コンポジットを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、CNT含有高弾性樹脂コンポジットを製造すべく鋭意検討した結果、特定の化学構造を有するマトリックス樹脂との相互作用の強い共役系重合体を選択し、その共役系重合体でCNT表面を覆った状態で上記マトリックス樹脂中に均一に分散させてCNT含有樹脂コンポジットを製造することによって、CNTの優れた力学特性を樹脂コンポジットに反映させ、弾性率を向上させることができることを見出し、本発明に到達した。
【0011】
すなわち本発明は、側鎖構造を有する樹脂中に共役系重合体で被覆された単層および/または多層CNTが分散した樹脂コンポジットであってCNTの前記樹脂に対する組成分率が0.01重量%以上1重量%以下であるCNT含有樹脂コンポジット、共役系重合体をCNTに被覆する工程および前記工程で得られた共役系重合体で被覆されたCNTを側鎖構造を有する樹脂または該樹脂溶液に混合分散させる工程を含むCNT含有樹脂コンポジットの製造方法、および上記CNT含有樹脂コンポジットからなる高弾性フィルムである。
【0012】
【発明の実施の形態】
本発明のCNT含有樹脂コンポジットおよびその製造方法を具体的に以下に述べる。
【0013】
本発明のCNT含有樹脂コンポジットを構成するCNTは単層および/または多層のCNTであり、該CNTは共役系重合体で被覆されている必要がある。CNTを覆う共役系重合体は、CNTとの相互作用の強い重合体である共役系重合体で、且つマトリックス樹脂である側鎖構造を有する樹脂との相互作用の強いものであることが好ましい。CNTとの相互作用が強いものとして具体的には直鎖状共役系重合体が好ましい。直鎖状共役系重合体としては、ポリチオフェン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリフェニレン系重合体、ポリフェニレンビニレン系重合体等が挙げられる。ポリチオフェン系重合体、ポリピロール系重合体はそれぞれチオフェン環、ピロール環の2、5位でモノマーユニットがつながったもの、また、ポリフェニレン系重合体ではフェニレン基がパラ位で連なっているポリ−p−フェニレン系重合体、ポリフェニレンビニレン系重合体ではフェニレン基とビニレン基がパラ位で連なっているポリ−p−フェニレンビニレン系重合体であることが好ましい。
【0014】
上記直鎖状共役系重合体の中でも、特に、ポリチオフェン系重合体が好ましい。ここでポリチオフェン系重合体とはポリチオフェン構造の骨格を持つ重合体に側鎖が付いた構造を有するものであり、この側鎖の効果により溶媒に可溶となることから、取り扱いが容易であり成形性や加工性に優れている。具体例としては、ポリ−3−メチルチオフェン、ポリ−3−ブチルチオフェン、ポリ−3−ヘキシルチオフェン、ポリ−3−オクチルチオフェン、ポリ−3−ドデシルチオフェン等のポリ−3−アルキルチオフェン(アルキル基の炭素数は特に制限はないが好ましくは1〜12)、ポリ−3−メトキシチオフェン、ポリ−3−エトキシチオフェン、ポリ−3−ドデシルオキシチオフェン等のポリ−3−アルコキシチオフェン(アルコキシ基の炭素数はとくに制限はないが好ましくは1〜12)、ポリ−3−メトキシ−4−メチルチオフェン、ポリ−3−ドデシルオキシ−4−メチルチオフェン等のポリ−3−アルコキシ−4−アルキルチオフェン(アルコキシ基およびアルキル基の炭素数は特に制限はないが好ましくは1〜12)、ポリ−3−チオヘキシルチオフェンやポリ−3−チオドデシルチオフェンなどのポリ−3−チオアルキルチオフェン(アルキル基の炭素数は特に制限はないが好ましくは1〜12)が好ましく挙げられ、1種もしくは2種以上を用いることができる。中でも、ポリ−3−アルキルチオフェン、ポリ−3−アルコキシチオフェンが好ましく、前者としては特にポリ−3−ヘキシルチオフェンが好ましい。好ましい分子量は重量平均分子量で800〜100000である。また、上記重合体は必ずしも高分子量である必要はなく、直鎖状共役系からなるオリゴマーであってもよい。
【0015】
本発明においてCNTは、現時点でもっとも一般的に用いられているCNTの他に、種々の化学修飾が付加されたCNTや、CNTの炭素原子の一部または全部がホウ素(B)や窒素(N)に置き換わったBCNナノチューブやBNナノチューブであってもよい。
【0016】
化学修飾されたCNTに導入された官能基として、具体的にはカルボキシル基、水酸基、アミド基、エステル基、チオエステル基、ハロゲン基等の少なくとも1種が挙げられるが、これらに限定されるものではない。
【0017】
上記CNTはアーク放電法、化学気相成長法(CVD法)、レーザー・アブレーション法等によって作製されるが、本発明において使用されるCNTはいずれの方法によって得られたものであってもよい。また、CNTには1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNTと、2枚のグラフェン・シートが同心円状に巻かれた2層CNTと、複数のグラフェン・シートが同心円状に巻かれた多層CNTとがあり、本発明においてそれぞれ単体で、もしくは複数を同時に使用できる。
【0018】
本発明のCNT含有樹脂コンポジットにおいて、上記CNTを分散させるマトリックス樹脂は、側鎖構造を有する樹脂である必要がある。側鎖構造を有する樹脂としては、具体的にはポリスチレン、ポリアクリロニトリル、ポリ酢酸ビニル等のビニル系樹脂やポリメチルメタクリレート等のアクリル系樹脂が好ましく挙げられ、特にポリスチレン、ポリメチルメタクリレートが好ましいが、これらに限定されるものではなく、上記に挙げた以外の樹脂、例えば主鎖の構造がナイロン系、ポリエステル系等の熱可塑性樹脂や、エポキシ系、メラミン系、ポリイミド系等の熱硬化性樹脂等や、あるいはビニル系のモノマーとアクリル系のモノマーとで構成されるような共重合体樹脂等であっても側鎖構造を有するものであれば、弾性率をマトリックス樹脂単体と比較して15%以上向上させた、本発明のCNT含有樹脂コンポジットとすることができる。
【0019】
一般に樹脂コンポジットに含有されるフィラーの添加量を増やすと樹脂コンポジットの弾性率は増加し、通常、数%以上のフィラー濃度で使用される。しかしながら本発明においては、フィラーであるCNTの量は側鎖構造を有する樹脂に対し0.01〜1重量%であり、1重量%以下というわずかな添加量で樹脂の弾性率を高めることができることも本発明の特徴である。この範囲にあることでマトリックス樹脂の特性を生かしつつ、かつCNTによる特性の向上を図ることができる。CNTの量が0.01重量%未満であると弾性率の向上が十分でなく、1重量%を超えると、CNTの均一な分散が困難となる傾向にある。
【0020】
また光学特性を考慮し着色性を配慮しなけらばならない場合は、0.01〜0.5重量%であることが好ましい。この範囲にあることでCNTは目視で確認することは難しく、膜・フィルムなどの透過率をあまり下げることがない。
【0021】
次に本発明のCNT含有樹脂コンポジットの製造方法の一例について説明する。本発明のCNT含有樹脂コンポジットは、例えば、共役系重合体をCNTに被覆する工程、および前記工程で得られた共役系重合体で被覆されたCNTを側鎖構造を有する樹脂または該樹脂溶液に混合分散させる工程を経て製造することができる。
【0022】
共役系重合体をCNTに被覆する工程では、例えば次のような方法を用いることができる。すなわち、(A)溶融した共役系重合体の中にCNTを添加して混合させる方法、(B)共役系重合体を溶媒中に溶解させこの中にCNTを添加して混合させる方法、(C)CNTを溶媒中で予め超音波などで予備分散しておいた所に共役系重合体を添加し混合させる方法、(D)溶媒中に共役系重合体とCNTを入れ、この混合系に超音波を照射して混合させる方法等である。本発明では何れかの方法を単独で用いるか、あるいは何れかの方法を組み合わせても良い。中でも(D)の溶媒中に共役系重合体とCNTを入れ、この混合系に超音波を照射して混合させる方法が好ましい。
【0023】
CNTは共役系重合体に覆われた状態において、CNT同士の間に働くファンデルワールス相互作用が緩和され溶媒中で高度に分散する。
【0024】
次に、共役系重合体で被覆されたCNTを側鎖構造を有する樹脂または該樹脂溶液に混合分散させる工程について説明する。共役系重合体で被覆されたCNTを混合分散させるに際し、(1)共役系重合体の中にCNTを添加し分散した共役系重合体とCNTの混合物をそのまま用いる方法と、(2)共役系重合体とCNTの混合物を孔径0.1μm程度のフィルターでCNTをろ別することにより余剰の共役系重合体を除去してから用いる方法等がある。後者(2)のろ別する方法を用いた場合においても、共役系重合体はCNTとの相互作用が強いためCNTの表面を被覆している。CNTの表面に共役系重合体が被覆していることは種々の元素分析、表面分析装置で確認することができる。
【0025】
混合分散の手順としては、(i)溶媒中に共役系重合体で覆われたCNTを再分散させ、そこへ側鎖構造を有する樹脂を溶解させる方法、(ii)側鎖構造を有する樹脂溶液の中に共役系重合体で覆われたCNTを添加し分散させる方法、(iii)液状の側鎖構造を有する樹脂に対して直接添加し分散させる方法等がある。 また混合分散の手段としては、撹拌、超音波処理、振動分散、混練等が挙げられ、濃度や粘度に応じて手段を選択する必要がある。例えば撹拌による分散方法としては、フラスコや蓋付きの容器を回転させたり、スクリュー型やブラシ型の撹拌羽根が高速に回転する装置を用いることができる。超音波処理による分散方法としては、超音波洗浄機の槽の中に側鎖構造を有する樹脂と共役系重合体で覆われたCNTの入った容器を設置したり、あるいは超音波振動子を該容器の中に入れて処理するなどの方法がある。混練による分散方法としては、セラミックスの微粒子を用いたビーズミル装置やボールミル装置、三本ローラー等を用いることができる。本発明のCNT含有樹脂コンポジットの製造方法においては、撹拌混合をした後、超音波処理を施すことが好ましいが、これに限定されるものではない。こうして共役系重合体で覆われたCNTをマトリックス樹脂である側鎖構造を有する樹脂の中に分散させることで、CNTとマトリックス樹脂との間に共役系重合体の層を有するCNT含有樹脂コンポジットを得ることができる。
【0026】
なお、上記本発明のCNT含有樹脂コンポジットの製造方法において用いられる溶媒としては、メタノール、エタノール、ブタノール、トルエン、キシレン、o−クロロフェノール、アセトン、酢酸エチル、エチレングリコール、クロロホルム、クロロベンゼン、ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン、γ−ブチロラクトン、1,1,1,3,3,3−ヘキサフロロ−2−プロパノールなどが挙げられるがこれらに限定されるものではなく、必要に応じて溶媒を選ぶことができる。
【0027】
このようにして得られたCNT含有樹脂コンポジットを加工することで、板に代表される各種構造材料、光学樹脂などの機能性材料、金属材料など他の材料との複合材料へ応用することができる。
【0028】
上記本発明のCNT含有樹脂コンポジットは高弾性を有する特徴があるため、マトリックス樹脂である側鎖構造を有する樹脂に適する成形を行うことによって高弾性フィルム、高弾性繊維等の高弾性プラスチック製品を製造することが可能であり、特に高弾性フィルムとして好ましく使用することができる。
【0029】
フィルム成形の具体的な方法としては、例えば、流動状態にあるCNT含有樹脂コンポジットまたは樹脂コンポジット溶液を型または面に流して固化させる注型成形、押し出し機を使用してCNT含有樹脂コンポジットを加熱軟化して押し出す押し出し成形、環状の穴から溶融樹脂コンポジットを押し出して筒状のフィルムを成形するインフレーション成形、CNT含有樹脂コンポジットを2本の加熱したロールの間で圧延するカレンダー成形などが挙げられる。
【0030】
また、繊維製造のための紡糸方法としては、溶融樹脂コンポジットを冷却室に紡出する溶融紡糸、揮発性の溶媒中にCNT含有樹脂コンポジットを分散した液を乾燥室に紡出する乾式紡糸、溶媒中にCNT含有樹脂コンポジットを分散した液を非溶媒を含む溶液の中に紡出する湿式紡糸などが挙げられるが、本発明のCNT含有樹脂コンポジットの成形法はこれらに限定されるものではなく、用いるマトリックス樹脂の素材、樹脂コンポジットの可溶性、要求される製品の性質などを考慮して成形することによってフィルムや繊維等に加工することが可能である。
【0031】
【実施例】
以下、本発明を実施例に基づきさらに具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
【0032】
実施例1
まず、クロロホルム30mLに単層CNT(以下SWCNTと言う)(CNI社製、純度95%)3mgを加え、共役系重合体としてポリ−3−ヘキシルチオフェン(アルドリッチ社製、分子量:Mw20000)3mgを加えて氷冷しながら超音波ホモジナイザー(SONICS社製VCX−500)を用いて出力250Wで30分間超音波攪拌してSWCNT分散液を得た。
【0033】
得られたSWCNT分散液0.5mLにポリメチルメタクリレート(以下、PMMAと言う)(住友化学工業(株)製“スミペックス”、分子量:Mw500000)50mgをクロロホルム4.5mLに溶解したマトリックス樹脂溶液を加え、超音波洗浄機(井内盛栄堂(株)製US−2、出力120W、2.6L)を用いて30分間超音波攪拌することによりSWCNT含有PMMAペーストを得た。
【0034】
次いで得られたペースト1mLを周縁部に厚み100μmの粘着テープを貼った50mm角のガラス基板に滴下し、ブレードコーター(英RK Print−Coat Instruments社製)を30mm/secの速さで移動させることにより均一な塗膜面を形成したのち、基板ごと50℃のオーブンに5分間入れ、最後に真空乾燥機で2時間溶媒を除去することで厚み20μmの塗膜を作製し、基板から剥がしてSWCNT0.1重量%含有PMMA膜を得た。
【0035】
次に該SWCNT0.1重量%含有PMMA膜とSWCNTを含まないこと以外は上記方法と同様にして得られたPMMA膜の引張弾性率を広域動的粘弾性測定装置(レオロジ(株)製DVE−V4 FTレオスペクトラー)を用いて−20〜100℃の温度範囲で測定した(図1)。前者の20℃での引張弾性率(E´)は4.21GPaであり、SWCNTの含有量が極めてわずかであるにも関わらず、後者のマトリックス樹脂であるPMMA膜の弾性率2.25GPaに比べて87%増加した。
【0036】
実施例2
実施例1と同様のSWCNT分散液0.5mLにポリスチレン(和光純薬(株)製、重合度:約3000)50mgをクロロホルム4.5mLに溶解したマトリックス樹脂溶液を加え、実施例1と同様の超音波洗浄機を用いて30分間超音波攪拌することによりSWCNT含有ポリスチレンペーストを得た。該ペーストを用いて上記と同様の方法により厚み10μmの塗膜を作製した。
【0037】
このSWCNT0.1重量%含有ポリスチレン膜およびSWCNTを含まないこと以外は上記方法と同様にして得られたポリスチレン膜の20℃での引張弾性率を実施例1と同様に測定したところ、前者の引張弾性率は3.16GPaであり、SWCNTの含有量が極めてわずかであるにも関わらず、後者のマトリックス樹脂であるポリスチレン膜の20℃での引張弾性率(E´)2.39GPaに比べて32%増加した。
【0038】
実施例3
まず、SWCNT50mgを硫酸(和光純薬工業(株)製、純度95%以上)と硝酸(和光純薬工業(株)製、密度1.38)の体積比率が3:1の混酸200mLに入れ、超音波洗浄機を用いて10時間超音波攪拌した後、この混酸とSWCNTの混合物をポリ4フッ化エチレン(PTFE)メンブレンフィルター(ミリポアコーポレーション製、フィルタータイプ:JH)でろ過することによりカルボキシル基を導入したSWCNT(以下c−SWCNTと言う)をろ別した。
【0039】
得られたc−SWCNT3mgと、実施例1と同様に共役系重合体としてポリ−3−ヘキシルチオフェン3mgを用いてクロロホルム30mLを溶媒とした分散液を得た。この分散液0.5mLにPMMA50mgをクロロホルム4.5mLに溶解したマトリックス樹脂溶液を加え、実施例1と同様の超音波洗浄機を用いて30分間超音波攪拌することによりc−SWCNT含有PMMAペーストを得、実施例1と同様の方法にてc−SWCNT0.1重量%含有PMMA膜を得た。
【0040】
このc−SWCNT0.1重量%含有PMMA膜の20℃での引張弾性率を実施例1と同様に測定したところ3.65GPaであり、マトリックス樹脂であるPMMA膜の20℃での引張弾性率(E´)2.25GPaに比べて62%増加した。
【0041】
比較例1
共役系重合体を用いないこと以外は上記実施例1と同様の操作を行ってSWCNT0.1重量%含有PMMA膜を得た。この膜の引張弾性率を実施例1と同様に広域動的粘弾性測定装置で測定したところ、20℃での引張弾性率は2.44GPaで、マトリックス樹脂であるPMMA膜の弾性率と同程度であった。
【0042】
比較例2
マトリックス樹脂として、側鎖構造をもたない樹脂である6−ナイロンを用いた以外は上記実施例1と同様の操作を行ってSWCNT0.1重量%含有6−ナイロン膜を得た。この膜の引張弾性率を実施例1と同様に広域動的粘弾性測定装置で測定したところ、20℃での引張弾性率は2.40GPaで、SWCNTを含まないこと以外は上記方法と同様にして得られた6−ナイロン膜の弾性率2.27GPaよりも5.7%程度しか増加しなかった。
【0043】
【発明の効果】
本発明によれば、共役系重合体で被覆したCNTを特定のマトリックス樹脂に分散させることで、煩雑な工程を経ることなく、CNTとマトリックス樹脂の両方を共役系重合体を介して強く結びつけると共に、CNTをマトリックス樹脂中に均一分散させることができるため、わずかなCNT添加量であっても、CNTの特性が有効に発揮され、樹脂コンポジットの弾性率を飛躍的に向上させることができる。また、該樹脂コンポジットから高弾性のフィルムが得られる。
【図面の簡単な説明】
【図1】実施例1で得られた各PMMA膜の引張弾性率の温度特性を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a carbon nanotube-containing resin composite having a high elastic modulus, a method for producing the same, and a high elastic film comprising the resin composite.
[0002]
[Prior art]
Addition of fillers to resins has been widely used as a technique for improving mechanical properties, for example, tensile strength and elastic modulus, and for obtaining resin composites having desired properties. As such a reinforcing filler, a fibrous or needle-like filler is used as a reinforcing filler.For example, as a fibrous filler, glass fiber, carbon fiber, aramid fiber, etc. , Zonotrites and the like are known.
[0003]
Properties required as a filler for resin reinforcement include: 1. High strength and elastic modulus; 2. low density; 3. small variation in size; Good adhesiveness with a resin is mentioned.
[0004]
In recent years, nanotubes have been attracting attention as a promising fibrous filler for the above 1 to 3 above. A nanotube is a tubular molecule formed by a network of chemical bonds. A typical example is a carbon nanotube (hereinafter, referred to as CNT) in which a graphite-type carbon forms a tubular network. Discovery has also been reported for BCN nanotubes and BN nanotubes that are partially or entirely replaced by boron (B) or nitrogen (N). In addition, it has been reported that CNT can be chemically modified relatively easily, such as by introducing a carboxyl group into a defect portion of a graphite structure or a terminal portion of a nanotube by performing an acid treatment. I have. For example, chemically modified CNT in which various functional groups are introduced by esterification or amidation using the carboxyl group as an anchor, fluorinated CNT in which graphite structure is fluorinated, and the like are known.
[0005]
Each nanotube has a length of about several tens nm to several tens μm, while the diameter is about 1 to 50 nm, which is very fine and elongated, and has a large aspect ratio. Further, the density is small because of the tube shape. In particular, CNTs have high elasticity and high strength compared to any existing materials, and have useful properties such as the structure does not change even at high temperatures. Therefore, CNTs are structural materials and resin composites with excellent mechanical properties. Application development is under way.
[0006]
Some examples of a resin composite using CNT as a filler for reinforcing a resin have been reported so far. For example, Non-Patent Document 1 discloses a method of dispersing CNTs using polymethyl methacrylate (PMMA) as a matrix resin. In this method, uniform dispersion of CNTs is required unless repeated steps are performed several hundred times or more. Is very complicated and inefficient. Further, this document describes that the elastic modulus increases in the fiber drawn after dispersing the CNT, but it is considered that only the effect of dispersing the CNT can be evaluated. Extrapolation of the elastic modulus value from the data of the same document shows little improvement.
[0007]
[Non-patent document 1]
"Chemical Physics Letters", Vol. 330, 2000, p. 219
[Problems to be solved by the invention]
As described above, in the conventional method, the interaction between the matrix resin and the CNT in the CNT-containing resin composite is generally small. Therefore, it is difficult to sufficiently reflect the excellent mechanical properties inherent to the CNT in the resin composite. There was a problem.
[0009]
Therefore, an object of the present invention is to provide a CNT-containing resin composite having an improved elastic modulus as compared with a matrix resin alone in order to solve the above problems.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to produce a CNT-containing high-elastic resin composite, and as a result, selected a conjugated polymer having a strong interaction with a matrix resin having a specific chemical structure. By producing a CNT-containing resin composite by uniformly dispersing it in the matrix resin while covering the surface, it has been found that the excellent mechanical properties of CNT can be reflected in the resin composite and the elastic modulus can be improved, The present invention has been reached.
[0011]
That is, the present invention provides a resin composite in which a single-layer and / or multilayer CNT coated with a conjugated polymer is dispersed in a resin having a side chain structure, wherein the CNT has a composition fraction of 0.01% by weight with respect to the resin. A CNT-containing resin composite of not less than 1% by weight, a step of coating the CNT with a conjugated polymer, and a step of coating the CNT coated with the conjugated polymer obtained in the step with a resin having a side chain structure or the resin solution. A method for producing a CNT-containing resin composite including a step of mixing and dispersing, and a highly elastic film comprising the CNT-containing resin composite.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The CNT-containing resin composite of the present invention and a method for producing the same will be specifically described below.
[0013]
The CNT constituting the CNT-containing resin composite of the present invention is a single-layer and / or multilayer CNT, and the CNT needs to be coated with a conjugated polymer. The conjugated polymer covering the CNT is preferably a conjugated polymer having a strong interaction with the CNT and having a strong interaction with a matrix resin having a side chain structure. Specifically, a linear conjugated polymer is preferably used as one having a strong interaction with CNT. Examples of the linear conjugated polymer include a polythiophene polymer, a polypyrrole polymer, a polyaniline polymer, a polyacetylene polymer, a polyphenylene polymer, and a polyphenylenevinylene polymer. Polythiophene-based polymers and polypyrrole-based polymers are those in which monomer units are connected at positions 2 and 5 of the thiophene ring and pyrrole ring, respectively. In polyphenylene-based polymers, poly-p-phenylene in which phenylene groups are connected in para-position The poly- or polyphenylene-vinylene-based polymer is preferably a poly-p-phenylene-vinylene-based polymer in which a phenylene group and a vinylene group are connected in the para position.
[0014]
Among the linear conjugated polymers, a polythiophene polymer is particularly preferable. Here, the polythiophene-based polymer is a polymer having a polythiophene skeleton with a side chain attached to the polymer, and is soluble in a solvent due to the effect of the side chain. Excellent workability and workability. Specific examples include poly-3-alkylthiophene (alkyl group) such as poly-3-methylthiophene, poly-3-butylthiophene, poly-3-hexylthiophene, poly-3-octylthiophene, and poly-3-dodecylthiophene. Is not particularly limited, but is preferably 1 to 12), and poly-3-alkoxythiophenes such as poly-3-methoxythiophene, poly-3-ethoxythiophene, poly-3-dodecyloxythiophene (carbon of alkoxy group) Although the number is not particularly limited, preferably 1 to 12), poly-3-alkoxy-4-alkylthiophene (alkoxy) such as poly-3-methoxy-4-methylthiophene and poly-3-dodecyloxy-4-methylthiophene The carbon number of the group and the alkyl group is not particularly limited, but is preferably 1 to 12), and poly-3 Poly-3-thioalkylthiophenes (the number of carbon atoms of the alkyl group is not particularly limited, but preferably 1 to 12) such as thiohexylthiophene and poly-3-thiododecylthiophene are preferably mentioned, and one or more kinds may be used. Can be used. Among them, poly-3-alkylthiophene and poly-3-alkoxythiophene are preferable, and as the former, poly-3-hexylthiophene is particularly preferable. The preferred molecular weight is 800 to 100,000 in terms of weight average molecular weight. The polymer does not necessarily have to have a high molecular weight, and may be an oligomer composed of a linear conjugated system.
[0015]
In the present invention, in addition to CNTs most commonly used at the present time, CNTs to which various chemical modifications are added, and CNTs in which some or all of the carbon atoms are boron (B) or nitrogen (N ) May be replaced with a BCN nanotube or a BN nanotube.
[0016]
Specific examples of the functional group introduced into the chemically modified CNT include at least one of a carboxyl group, a hydroxyl group, an amide group, an ester group, a thioester group, and a halogen group, but are not limited thereto. Absent.
[0017]
The CNT is produced by an arc discharge method, a chemical vapor deposition method (CVD method), a laser ablation method, or the like. The CNT used in the present invention may be obtained by any method. The CNT includes a single-layer CNT in which one carbon film (graphene sheet) is wound in a cylindrical shape, a two-layer CNT in which two graphene sheets are concentrically wound, and a plurality of graphene sheets. Is a multilayer CNT wound concentrically, and in the present invention, a single CNT or a plurality of CNTs can be used simultaneously.
[0018]
In the CNT-containing resin composite of the present invention, the matrix resin for dispersing the CNT needs to be a resin having a side chain structure. As the resin having a side chain structure, specifically, polystyrene, polyacrylonitrile, vinyl resins such as polyvinyl acetate and acrylic resins such as polymethyl methacrylate are preferably exemplified, and particularly polystyrene and polymethyl methacrylate are preferable. It is not limited to these, and resins other than those mentioned above, for example, a thermoplastic resin such as a nylon-based or polyester-based main chain structure, or an epoxy-based, melamine-based, or polyimide-based thermosetting resin or the like Even if a copolymer resin or the like composed of a vinyl monomer and an acrylic monomer has a side chain structure, its elastic modulus is 15% as compared with the matrix resin alone. The improved CNT-containing resin composite of the present invention can be obtained.
[0019]
Generally, when the amount of filler contained in the resin composite is increased, the elastic modulus of the resin composite increases, and the resin composite is usually used at a filler concentration of several% or more. However, in the present invention, the amount of CNT as a filler is 0.01 to 1% by weight based on the resin having a side chain structure, and the elastic modulus of the resin can be increased with a small addition amount of 1% by weight or less. Is also a feature of the present invention. By being in this range, the characteristics of the matrix resin can be utilized while the characteristics of the CNTs can be improved. When the amount of CNT is less than 0.01% by weight, the elastic modulus is not sufficiently improved, and when it exceeds 1% by weight, uniform dispersion of CNT tends to be difficult.
[0020]
When it is necessary to consider coloring properties in consideration of optical characteristics, the content is preferably 0.01 to 0.5% by weight. When it is within this range, it is difficult to visually confirm the CNT, and the transmittance of the film / film is not significantly reduced.
[0021]
Next, an example of the method for producing the CNT-containing resin composite of the present invention will be described. The CNT-containing resin composite of the present invention includes, for example, a step of coating a conjugated polymer on a CNT, and a step of coating the CNT coated with the conjugated polymer obtained in the step with a resin having a side chain structure or the resin solution. It can be manufactured through a process of mixing and dispersing.
[0022]
In the step of coating the CNT with the conjugated polymer, for example, the following method can be used. That is, (A) a method of adding and mixing CNT into a molten conjugated polymer, (B) a method of dissolving a conjugated polymer in a solvent and adding and mixing CNT therein, (C) ) A method of adding and mixing a conjugated polymer in a place where CNTs are preliminarily dispersed in a solvent by ultrasonic waves or the like; (D) putting a conjugated polymer and CNTs in a solvent, For example, a method of irradiating a sound wave and mixing. In the present invention, any of the methods may be used alone, or any of the methods may be combined. Among them, a method in which the conjugated polymer and CNT are put into the solvent (D), and the mixed system is irradiated with ultrasonic waves to be mixed.
[0023]
When the CNTs are covered with the conjugated polymer, van der Waals interactions acting between the CNTs are alleviated and the CNTs are highly dispersed in the solvent.
[0024]
Next, the step of mixing and dispersing the CNT coated with the conjugated polymer in a resin having a side chain structure or the resin solution will be described. In mixing and dispersing the CNTs coated with the conjugated polymer, (1) a method in which CNT is added to the conjugated polymer and the mixture of the conjugated polymer and CNT is used as it is; There is a method in which a mixture of the polymer and CNT is used after removing an excess conjugated polymer by filtering the CNT through a filter having a pore diameter of about 0.1 μm. Even when the latter method (2) is used for filtering, the conjugated polymer has a strong interaction with the CNT and thus covers the surface of the CNT. The fact that the conjugated polymer is coated on the surface of the CNT can be confirmed by various elemental analysis and surface analyzers.
[0025]
The procedure of mixing and dispersing includes (i) a method in which CNT covered with a conjugated polymer is redispersed in a solvent and a resin having a side chain structure is dissolved therein, and (ii) a resin solution having a side chain structure And a method in which CNT covered with a conjugated polymer is added and dispersed, and (iii) a method in which CNT is directly added to and dispersed in a resin having a liquid side chain structure. Examples of the mixing and dispersing means include stirring, ultrasonic treatment, vibration dispersion, and kneading, and it is necessary to select a means according to the concentration and viscosity. For example, as a dispersion method by stirring, a device in which a flask or a container with a lid is rotated or a screw-type or brush-type stirring blade rotates at high speed can be used. As a dispersion method by ultrasonic treatment, a container containing CNTs covered with a resin having a side chain structure and a conjugated polymer is installed in a tank of an ultrasonic cleaner, or an ultrasonic vibrator is used. There is a method such as putting it in a container for processing. As a dispersion method by kneading, a bead mill, a ball mill, a three-roller or the like using ceramic fine particles can be used. In the method for producing a CNT-containing resin composite of the present invention, it is preferable to perform ultrasonic treatment after stirring and mixing, but it is not limited thereto. By dispersing the CNT covered with the conjugated polymer in a resin having a side chain structure as a matrix resin, a CNT-containing resin composite having a conjugated polymer layer between the CNT and the matrix resin is obtained. Obtainable.
[0026]
The solvent used in the method for producing a CNT-containing resin composite of the present invention includes methanol, ethanol, butanol, toluene, xylene, o-chlorophenol, acetone, ethyl acetate, ethylene glycol, chloroform, chlorobenzene, dimethylformamide, Dimethyl sulfoxide, N-methylpyrrolidone, γ-butyrolactone, 1,1,1,3,3,3-hexafluoro-2-propanol, and the like, but are not limited thereto, and a solvent is selected as necessary. be able to.
[0027]
By processing the CNT-containing resin composite thus obtained, it can be applied to various structural materials typified by plates, functional materials such as optical resins, and composite materials with other materials such as metal materials. .
[0028]
Since the CNT-containing resin composite of the present invention has a characteristic of having high elasticity, it is possible to produce a high elasticity plastic product such as a high elasticity film and a high elasticity fiber by performing molding suitable for a resin having a side chain structure as a matrix resin. It can be used particularly preferably as a highly elastic film.
[0029]
As a specific method of film forming, for example, a CNT-containing resin composite or a resin composite solution in a fluidized state is poured into a mold or a surface to be solidified, and the CNT-containing resin composite is heated and softened using an extruder. Extrusion molding, inflation molding for extruding a molten resin composite from an annular hole to form a cylindrical film, and calender molding for rolling a CNT-containing resin composite between two heated rolls.
[0030]
Further, as a spinning method for producing fibers, there are melt spinning in which a molten resin composite is spun into a cooling chamber, dry spinning in which a liquid in which a CNT-containing resin composite is dispersed in a volatile solvent is spun into a drying chamber, Examples include wet spinning in which a liquid in which the CNT-containing resin composite is dispersed is spun into a solution containing a non-solvent, but the method of forming the CNT-containing resin composite of the present invention is not limited thereto. Films and fibers can be processed by molding in consideration of the material of the matrix resin to be used, the solubility of the resin composite, the required properties of the product, and the like.
[0031]
【Example】
Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to these examples.
[0032]
Example 1
First, 3 mg of single-walled CNT (hereinafter referred to as SWCNT) (manufactured by CNI, purity: 95%) was added to 30 mL of chloroform, and 3 mg of poly-3-hexylthiophene (manufactured by Aldrich, molecular weight: Mw 20,000) was added as a conjugated polymer. The mixture was subjected to ultrasonic agitation for 30 minutes at an output of 250 W using an ultrasonic homogenizer (VCX-500 manufactured by SONICS) while cooling with ice, to obtain a SWCNT dispersion.
[0033]
A matrix resin solution obtained by dissolving 50 mg of polymethyl methacrylate (hereinafter, referred to as PMMA) (“SUMIPEX” manufactured by Sumitomo Chemical Co., Ltd., molecular weight: Mw 500000) in 0.5 mL of chloroform is added to 0.5 mL of the obtained SWCNT dispersion liquid. Using an ultrasonic cleaner (US-2, produced by Inuchi Seieido Co., Ltd., output: 120 W, 2.6 L), a SWCNT-containing PMMA paste was obtained by ultrasonically stirring for 30 minutes.
[0034]
Next, 1 mL of the obtained paste is dropped on a 50 mm square glass substrate having a 100 μm-thick adhesive tape adhered to the periphery, and a blade coater (manufactured by RK Print-Coat Instruments, UK) is moved at a speed of 30 mm / sec. After forming a more uniform coating surface, the substrate was put into an oven at 50 ° C. for 5 minutes, and finally the solvent was removed with a vacuum dryer for 2 hours to form a 20 μm-thick coating film. A PMMA film containing 0.1% by weight was obtained.
[0035]
Next, the tensile elastic modulus of the PMMA film obtained in the same manner as above except that the PMMA film containing 0.1% by weight of the SWCNT and the SWCNT were not included was used to measure the tensile elasticity of a wide area dynamic viscoelasticity analyzer (DVE- manufactured by Rheology Co., Ltd.). V4 FT Rheospectral) in a temperature range of -20 to 100 ° C (FIG. 1). The former has a tensile modulus at 20 ° C. (E ′) of 4.21 GPa, which is very small compared to 2.25 GPa of the latter, which is a PMMA film which is a matrix resin, despite the very small content of SWCNT. 87%.
[0036]
Example 2
A matrix resin solution in which 50 mg of polystyrene (manufactured by Wako Pure Chemical Industries, Ltd., degree of polymerization: about 3000) was dissolved in 4.5 mL of chloroform was added to 0.5 mL of the same SWCNT dispersion liquid as in Example 1, and the same as in Example 1 was added. Ultrasonic stirring was performed for 30 minutes using an ultrasonic washer to obtain a SWCNT-containing polystyrene paste. Using the paste, a coating film having a thickness of 10 μm was prepared in the same manner as described above.
[0037]
When the tensile elastic modulus at 20 ° C. of the polystyrene film obtained in the same manner as described above except that the polystyrene film containing 0.1% by weight of SWCNT and the SWCNT were not contained was measured in the same manner as in Example 1, the tensile strength of the former was measured. The modulus of elasticity is 3.16 GPa, and despite the fact that the content of SWCNT is extremely low, the tensile modulus (E ') at 20 ° C. of the latter matrix resin, polystyrene film, is 32 compared with 2.39 GPa. % Increased.
[0038]
Example 3
First, 50 mg of SWCNT is put into 200 mL of a mixed acid having a 3: 1 volume ratio of sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd., purity: 95% or more) and nitric acid (manufactured by Wako Pure Chemical Industries, Ltd., density: 1.38). After ultrasonically stirring using an ultrasonic cleaner for 10 hours, the mixture of the mixed acid and SWCNT was filtered through a polytetrafluoroethylene (PTFE) membrane filter (manufactured by Millipore Corporation, filter type: JH) to remove carboxyl groups. The introduced SWCNT (hereinafter referred to as c-SWCNT) was filtered off.
[0039]
Using 3 mg of the obtained c-SWCNT and 3 mg of poly-3-hexylthiophene as a conjugated polymer in the same manner as in Example 1, a dispersion was prepared using 30 mL of chloroform as a solvent. A matrix resin solution obtained by dissolving 50 mg of PMMA in 4.5 mL of chloroform was added to 0.5 mL of the dispersion, and the mixture was ultrasonically stirred for 30 minutes using the same ultrasonic cleaner as in Example 1 to obtain a PMMA paste containing c-SWCNT. Thus, a PMMA film containing 0.1% by weight of c-SWCNT was obtained in the same manner as in Example 1.
[0040]
When the tensile modulus at 20 ° C. of the PMMA film containing 0.1% by weight of c-SWCNT was measured in the same manner as in Example 1, it was 3.65 GPa, and the tensile modulus at 20 ° C. of the PMMA film as a matrix resin ( E ') It increased by 62% compared to 2.25 GPa.
[0041]
Comparative Example 1
A PMMA film containing 0.1% by weight of SWCNT was obtained in the same manner as in Example 1 except that the conjugated polymer was not used. The tensile modulus of this film was measured with a wide range dynamic viscoelasticity measuring device in the same manner as in Example 1. The tensile modulus at 20 ° C. was 2.44 GPa, which was almost the same as that of the PMMA film as a matrix resin. Met.
[0042]
Comparative Example 2
A 6-nylon film containing 0.1% by weight of SWCNT was obtained in the same manner as in Example 1 except that 6-nylon, a resin having no side chain structure, was used as the matrix resin. The tensile elastic modulus of this film was measured with a wide-range dynamic viscoelasticity measuring device in the same manner as in Example 1. The tensile elastic modulus at 20 ° C. was 2.40 GPa, and was the same as the above method except that SWCNT was not included. The modulus of elasticity of the obtained 6-nylon film increased only about 5.7% from 2.27 GPa.
[0043]
【The invention's effect】
According to the present invention, by dispersing the CNT coated with the conjugated polymer in a specific matrix resin, both the CNT and the matrix resin are strongly bound via the conjugated polymer without going through complicated steps. Since the CNTs can be uniformly dispersed in the matrix resin, even with a small amount of CNT added, the properties of the CNTs can be effectively exhibited, and the elastic modulus of the resin composite can be dramatically improved. Further, a highly elastic film can be obtained from the resin composite.
[Brief description of the drawings]
FIG. 1 is a graph showing the temperature characteristics of the tensile modulus of each PMMA film obtained in Example 1.

Claims (11)

側鎖構造を有する樹脂中に共役系重合体で被覆された単層および/または多層カーボンナノチューブが分散した樹脂コンポジットであって、カーボンナノチューブの前記樹脂に対する組成分率が0.01重量%以上、1重量%以下であるカーボンナノチューブ含有樹脂コンポジット。A resin composite in which single-walled and / or multi-walled carbon nanotubes coated with a conjugated polymer are dispersed in a resin having a side chain structure, wherein a composition ratio of the carbon nanotubes to the resin is 0.01% by weight or more, A carbon nanotube-containing resin composite having a content of 1% by weight or less. 共役系重合体が直鎖状共役系重合体である請求項1記載のカーボンナノチューブ含有樹脂コンポジット。2. The carbon nanotube-containing resin composite according to claim 1, wherein the conjugated polymer is a linear conjugated polymer. 直鎖状共役系重合体がポリチオフェン系重合体である請求項2記載のカーボンナノチューブ含有樹脂コンポジット。The carbon nanotube-containing resin composite according to claim 2, wherein the linear conjugated polymer is a polythiophene polymer. ポリチオフェン系重合体がポリ−3−アルキルチオフェン、ポリ−3−アルコキシチオフェン、ポリ−3−チオアルキルチオフェンの少なくとも1種である請求項3記載のカーボンナノチューブ含有樹脂コンポジット。The carbon nanotube-containing resin composite according to claim 3, wherein the polythiophene-based polymer is at least one of poly-3-alkylthiophene, poly-3-alkoxythiophene, and poly-3-thioalkylthiophene. 側鎖構造を有する樹脂がビニル系樹脂、アクリル系樹脂の少なくとも1種である請求項1記載のカーボンナノチューブ含有樹脂コンポジット。The carbon nanotube-containing resin composite according to claim 1, wherein the resin having a side chain structure is at least one of a vinyl resin and an acrylic resin. ビニル系樹脂がポリスチレンである請求項5記載のカーボンナノチューブ含有樹脂コンポジット。The carbon nanotube-containing resin composite according to claim 5, wherein the vinyl resin is polystyrene. アクリル系樹脂がポリメチルメタクリレートである請求項5記載のカーボンナノチューブ含有樹脂コンポジット。The carbon nanotube-containing resin composite according to claim 5, wherein the acrylic resin is polymethyl methacrylate. カーボンナノチューブに官能基が導入されている請求項1記載のカーボンナノチューブ含有樹脂コンポジット。The carbon nanotube-containing resin composite according to claim 1, wherein a functional group is introduced into the carbon nanotube. 官能基がカルボキシル基、水酸基、アミド基、エステル基、チオエステル基、ハロゲン基の少なくとも1種である請求項8記載のカーボンナノチューブ含有樹脂コンポジット。The carbon nanotube-containing resin composite according to claim 8, wherein the functional group is at least one of a carboxyl group, a hydroxyl group, an amide group, an ester group, a thioester group, and a halogen group. 共役系重合体をカーボンナノチューブに被覆する工程、前記工程で得られた共役系重合体で被覆されたカーボンナノチューブを側鎖構造を有する樹脂または該樹脂溶液に混合分散させる工程を含むカーボンナノチューブ含有樹脂コンポジットの製造方法。A step of coating the conjugated polymer on the carbon nanotubes, and a step of mixing and dispersing the carbon nanotubes coated with the conjugated polymer obtained in the step in a resin having a side chain structure or the resin solution. Composite manufacturing method. 請求項1〜9のいずれか1項に記載のカーボンナノチューブ含有樹脂コンポジットからなる高弾性フィルム。A highly elastic film comprising the carbon nanotube-containing resin composite according to claim 1.
JP2003034721A 2003-02-13 2003-02-13 Carbon nanotube-containing resin composite, method for producing the same, and highly elastic film Expired - Fee Related JP4222048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034721A JP4222048B2 (en) 2003-02-13 2003-02-13 Carbon nanotube-containing resin composite, method for producing the same, and highly elastic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034721A JP4222048B2 (en) 2003-02-13 2003-02-13 Carbon nanotube-containing resin composite, method for producing the same, and highly elastic film

Publications (2)

Publication Number Publication Date
JP2004244490A true JP2004244490A (en) 2004-09-02
JP4222048B2 JP4222048B2 (en) 2009-02-12

Family

ID=33020327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034721A Expired - Fee Related JP4222048B2 (en) 2003-02-13 2003-02-13 Carbon nanotube-containing resin composite, method for producing the same, and highly elastic film

Country Status (1)

Country Link
JP (1) JP4222048B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131428A (en) * 2004-11-02 2006-05-25 National Institute Of Advanced Industrial & Technology Carbon nanotube and method for manufacturing the same
WO2006136715A1 (en) * 2005-06-24 2006-12-28 Arkema France Polymer materials containing carbon nanotubes, method for preparing same from a premix with a dispersant
JP2007138037A (en) * 2005-11-18 2007-06-07 Teijin Ltd Aromatic polyamide molded article and method for producing the same
JP2007191645A (en) * 2006-01-20 2007-08-02 Sanyo Chem Ind Ltd Modifier for thermoplastic resin
JP2007197555A (en) * 2006-01-26 2007-08-09 Teijin Ltd Heat-resistant resin composition and method for producing the same
JP2007197596A (en) * 2006-01-27 2007-08-09 Teijin Ltd Heat-resistant resin composition with excellent mechanical properties and method for producing the same
JP2007197594A (en) * 2006-01-27 2007-08-09 Teijin Ltd Reinforced phenoxy resin-based composition and method for producing the same
JP2007197597A (en) * 2006-01-27 2007-08-09 Teijin Ltd Resin composition with both high heat resistance and dimensional stability and method for producing the same
JP2007197595A (en) * 2006-01-27 2007-08-09 Teijin Ltd Polyethersulfone-based resin composition with high thermal stability and method for producing the same
WO2007091737A1 (en) 2006-02-10 2007-08-16 Teijin Limited Resin composition and method for producing same
JP2007231155A (en) * 2006-03-01 2007-09-13 Teijin Ltd Heat-resistant resin composition and its manufacturing method
JP2007246780A (en) * 2006-03-17 2007-09-27 Shinshu Univ Carbon fiber-conductive polymer composite film and method for producing the same
KR100815028B1 (en) 2005-10-05 2008-03-18 삼성전자주식회사 Dispersant for carbon nanotube and composition comprising the same
JP2008515668A (en) * 2004-10-06 2008-05-15 ザ リサーチ ファウンデーション オブ ステイト ユニバーシティー オブ ニューヨーク High flow rate and low adhesion filtration media
JP2008143934A (en) * 2006-12-06 2008-06-26 Teijin Ltd Heat-resistant resin composite composition and method for producing the same
WO2008123326A1 (en) * 2007-03-23 2008-10-16 Teijin Limited Thermosetting resin composite composition, resin molded body, and method for producing the composition
JP2008280450A (en) * 2007-05-11 2008-11-20 Dainichiseika Color & Chem Mfg Co Ltd Coating liquid
WO2008146400A1 (en) * 2007-05-25 2008-12-04 Teijin Limited Resin composition
JP2009507338A (en) * 2005-09-06 2009-02-19 エルジー・ケム・リミテッド Composite binder containing carbon nanotube and lithium secondary battery using the same
CN100489028C (en) * 2007-05-23 2009-05-20 中国科学院长春应用化学研究所 High conductivity polythiophene composite material and preparing method thereof
CN100503651C (en) * 2006-07-12 2009-06-24 同济大学 Method for preparing carbon nano-tube used for RAFT polymerization chain transfer agent
JP2009256534A (en) * 2008-04-21 2009-11-05 Teijin Ltd Polymer electrolyte composition having excellent mechanical characteristics and dimensional stability, and method for manufacturing the same
JP2009275225A (en) * 2008-05-14 2009-11-26 Qinghua Univ Carbon nanotube/polymer composite material
JP2012138065A (en) * 2010-12-27 2012-07-19 Qinghua Univ Touch pen
US8236269B2 (en) 2006-02-14 2012-08-07 Lg Chem, Ltd. Rigid random coils and composition comprising the same
JP2016216888A (en) * 2004-11-09 2016-12-22 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Production and application of nanofiber ribbon and sheet and nanofiber twisted yarn and non-twisted yarn
US9836133B2 (en) 2010-12-27 2017-12-05 Tsinghua University Touch pen
KR101802545B1 (en) 2010-04-22 2017-12-28 아르끄마 프랑스 Thermoplastic and/or elastomeric composite material containing carbon nanotubes and graphenes
CN113235227A (en) * 2021-04-19 2021-08-10 华南理工大学 Preparation method and application of composite film

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008515668A (en) * 2004-10-06 2008-05-15 ザ リサーチ ファウンデーション オブ ステイト ユニバーシティー オブ ニューヨーク High flow rate and low adhesion filtration media
JP2006131428A (en) * 2004-11-02 2006-05-25 National Institute Of Advanced Industrial & Technology Carbon nanotube and method for manufacturing the same
JP2016216888A (en) * 2004-11-09 2016-12-22 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Production and application of nanofiber ribbon and sheet and nanofiber twisted yarn and non-twisted yarn
WO2006136715A1 (en) * 2005-06-24 2006-12-28 Arkema France Polymer materials containing carbon nanotubes, method for preparing same from a premix with a dispersant
JP2009507338A (en) * 2005-09-06 2009-02-19 エルジー・ケム・リミテッド Composite binder containing carbon nanotube and lithium secondary battery using the same
KR100815028B1 (en) 2005-10-05 2008-03-18 삼성전자주식회사 Dispersant for carbon nanotube and composition comprising the same
JP2007138037A (en) * 2005-11-18 2007-06-07 Teijin Ltd Aromatic polyamide molded article and method for producing the same
JP2007191645A (en) * 2006-01-20 2007-08-02 Sanyo Chem Ind Ltd Modifier for thermoplastic resin
JP2007197555A (en) * 2006-01-26 2007-08-09 Teijin Ltd Heat-resistant resin composition and method for producing the same
JP2007197595A (en) * 2006-01-27 2007-08-09 Teijin Ltd Polyethersulfone-based resin composition with high thermal stability and method for producing the same
JP2007197597A (en) * 2006-01-27 2007-08-09 Teijin Ltd Resin composition with both high heat resistance and dimensional stability and method for producing the same
JP2007197594A (en) * 2006-01-27 2007-08-09 Teijin Ltd Reinforced phenoxy resin-based composition and method for producing the same
JP2007197596A (en) * 2006-01-27 2007-08-09 Teijin Ltd Heat-resistant resin composition with excellent mechanical properties and method for producing the same
WO2007091737A1 (en) 2006-02-10 2007-08-16 Teijin Limited Resin composition and method for producing same
JP5311298B2 (en) * 2006-02-10 2013-10-09 帝人株式会社 Resin composition and method for producing the same
US8236269B2 (en) 2006-02-14 2012-08-07 Lg Chem, Ltd. Rigid random coils and composition comprising the same
JP2007231155A (en) * 2006-03-01 2007-09-13 Teijin Ltd Heat-resistant resin composition and its manufacturing method
JP2007246780A (en) * 2006-03-17 2007-09-27 Shinshu Univ Carbon fiber-conductive polymer composite film and method for producing the same
CN100503651C (en) * 2006-07-12 2009-06-24 同济大学 Method for preparing carbon nano-tube used for RAFT polymerization chain transfer agent
JP2008143934A (en) * 2006-12-06 2008-06-26 Teijin Ltd Heat-resistant resin composite composition and method for producing the same
WO2008123326A1 (en) * 2007-03-23 2008-10-16 Teijin Limited Thermosetting resin composite composition, resin molded body, and method for producing the composition
JP2008280450A (en) * 2007-05-11 2008-11-20 Dainichiseika Color & Chem Mfg Co Ltd Coating liquid
CN100489028C (en) * 2007-05-23 2009-05-20 中国科学院长春应用化学研究所 High conductivity polythiophene composite material and preparing method thereof
WO2008146400A1 (en) * 2007-05-25 2008-12-04 Teijin Limited Resin composition
JP2009256534A (en) * 2008-04-21 2009-11-05 Teijin Ltd Polymer electrolyte composition having excellent mechanical characteristics and dimensional stability, and method for manufacturing the same
JP2009275225A (en) * 2008-05-14 2009-11-26 Qinghua Univ Carbon nanotube/polymer composite material
KR101802545B1 (en) 2010-04-22 2017-12-28 아르끄마 프랑스 Thermoplastic and/or elastomeric composite material containing carbon nanotubes and graphenes
JP2012138065A (en) * 2010-12-27 2012-07-19 Qinghua Univ Touch pen
US9836133B2 (en) 2010-12-27 2017-12-05 Tsinghua University Touch pen
CN113235227A (en) * 2021-04-19 2021-08-10 华南理工大学 Preparation method and application of composite film
CN113235227B (en) * 2021-04-19 2024-04-16 华南理工大学 Preparation method and application of composite film

Also Published As

Publication number Publication date
JP4222048B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP4222048B2 (en) Carbon nanotube-containing resin composite, method for producing the same, and highly elastic film
Yuen et al. Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite
Xiong et al. The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite
Tijing et al. Characterization and mechanical performance comparison of multiwalled carbon nanotube/polyurethane composites fabricated by electrospinning and solution casting
US7906043B2 (en) Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
KR101537987B1 (en) Fabrication method of composite carbon nanotube fibers/yarns
Chen et al. Synthesis of poly (L‐lactide)‐functionalized multiwalled carbon nanotubes by ring‐opening polymerization
Choudhary et al. Polymer/carbon nanotube nanocomposites
Wang et al. Enhancement of interfacial adhesion and dynamic mechanical properties of poly (methyl methacrylate)/multiwalled carbon nanotube composites with amine-terminated poly (ethylene oxide)
Wang et al. Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite
Jing et al. Preparation, characterization and properties of polycaprolactone diol-functionalized multi-walled carbon nanotube/thermoplastic polyurethane composite
Wang et al. Polymeric carbon nanocomposites from multiwalled carbon nanotubes functionalized with segmented polyurethane
Yang et al. Synthesis and self‐assembly of polystyrene‐grafted multiwalled carbon nanotubes with a hairy‐rod nanostructure
Ben Doudou et al. Hybrid carbon nanotube—silica/polyvinyl alcohol nanocomposites films: preparation and characterisation
JP2004002621A (en) Carbon nanotube-containing paste, carbon nanotube-dispersed composite, and method for producing carbon nanotube-dispersed composite
Kaffashi et al. Improving rheological properties of covalently MWCNT/epoxy nanocomposites via surface re-modification
JP2010216018A (en) Polyvinyl alcohol-based composite fiber and method for producing the same
JP5134945B2 (en) Carbon nanotube-containing composition and cured product
JP2015530455A (en) Thermoplastic polymer bonded with carbon nanomaterial and method for producing the same
CN107312328B (en) A kind of method that solid state shear prepares polymer grafting carbon nanomaterial
Zhang et al. Fabrication and viscoelastic characteristics of amino-functionalized multi-walled carbon nanotube/poly (methyl methacrylate) nanocomposites
Xie et al. Ultraviolet-curable polymers with chemically bonded carbon nanotubes for microelectromechanical system applications
Fathy et al. Nano composites of polystyrene divinylbenzene resin based on oxidized multi-walled carbon nanotubes
TWI595029B (en) Nanobiocomposite comprising polymer and natural fibers coated with carbon nano materials
Krestinin The efficiency of carbon nanotubes in reinforcing structural polymers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees