JP2004224579A - Winding type carbon nanotube and its manufacturing method - Google Patents

Winding type carbon nanotube and its manufacturing method Download PDF

Info

Publication number
JP2004224579A
JP2004224579A JP2003010539A JP2003010539A JP2004224579A JP 2004224579 A JP2004224579 A JP 2004224579A JP 2003010539 A JP2003010539 A JP 2003010539A JP 2003010539 A JP2003010539 A JP 2003010539A JP 2004224579 A JP2004224579 A JP 2004224579A
Authority
JP
Japan
Prior art keywords
graphite
carbon nanotube
graphene
polymer
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003010539A
Other languages
Japanese (ja)
Other versions
JP3735669B2 (en
Inventor
Hiroshi Shioyama
洋 塩山
Tomoki Akita
知樹 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003010539A priority Critical patent/JP3735669B2/en
Publication of JP2004224579A publication Critical patent/JP2004224579A/en
Application granted granted Critical
Publication of JP3735669B2 publication Critical patent/JP3735669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for manufacturing a carbon nanotube by which the design and the structure control of the carbon nanotube is facilitated. <P>SOLUTION: The winding type carbon nanotube has a structure formed by winding one layer of graphene originating from a graphite material. The method for manufacturing the carbon nanotube having a structure formed by winding one layer of graphene originating from a graphite material is provided with: a process (1) for forming a graphite intercalation compound by intercalating an alkali metal between the graphite layers of the graphite material; a process (2) for forming a high polymer by introducing an unsaturated hydrocarbon between the graphite layers of the graphite intercalation compound obtained in the process (1) and polymerizing the unsaturated hydrocarbon using the alkali metal as a catalyst; and a process (3) for dissolving and removing the high polymer by dipping the graphite material containing the high polymer formed in the process (2) in a solvent. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、新規な構造を有するカーボンナノチューブとその製造方法に関する。
【0002】
【従来の技術】
従来、カーボンナノチューブの製造方法としては、カーボン材料に対しアーク放電を行う方法、カーボン材料に対しレーザー照射を行う方法、金属微粒子を触媒として炭化水素ガスをCVDにより分解する方法などが知られている。これらの方法においては、いずれも昇華或いは熱分解によって解離もしくは生成した炭素原子がナノチューブ状に再構成されることにより、カーボンナノチューブが製造されている。
【0003】
従来のカーボンナノチューブの製造方法は、炭素原子の再構成現象を利用しているため、カーボンナノチューブの直径、長さ、形状などは、合成装置、合成条件などの多くの変動要因に依存して定まる。従って、その直径、長さ、形状などを予め設計し或いは構造制御することは非常に困難であり、限定された直径、長さ、形状などを有する製品を経験則に基づいて製造しているのが現状である。
【0004】
本発明者は、先に、「アルカリ金属−黒鉛層間化合物の黒鉛層間に不飽和炭化水素を導入し、アルカリ金属を触媒として不飽和炭化水素の重合を行った後、得られた黒鉛−高分子複合体を熱処理することを特徴とする黒鉛材料の製造方法」を提案した(特許文献1)。しかしながら、この方法により得られた無機−有機複合体中には、高分子が残存しており、かつ黒鉛材料に由来するグラフェンの一部が巻回するにとどまっており、カーボンナノチューブと見なしうる炭素材料の生成には至っていない。
【0005】
【特許文献1】特開平11−70612号公報
【0006】
【本発明が解決しようとする課題】
従って、本発明は、カーボンナノチューブの設計および構造制御を簡便に行うことができるカーボンナノチューブの製造技術を提供することを主な目的とする。
【0007】
【課題を解決するための手段】
本発明者は、上記の目的を達成するために研究を進めた結果、炭素原子が平面配列した単原子層(グラフェン)が積層した構造をとっている黒鉛の層間において、不飽和炭化水素を重合させた後、生成した高分子を溶媒により除去するという簡便な化学的手法により、新規な構造を有するカーボンナノチューブを製造することに成功した。
【0008】
すなわち、本発明は、下記の下記のカーボンナノチューブおよびその製造方法を提供するものである:
1.一層のグラフェンが巻回した構造を有する巻回型カーボンナノチューブ。
2.(1)黒鉛材料の黒鉛層間にアルカリ金属をインターカレートさせて黒鉛層間化合物を形成させる工程、
(2)工程(1)で得られた黒鉛層間化合物の黒鉛層間に不飽和炭化水素を導入し、アルカリ金属を触媒とし、不飽和炭化水素を重合させて高分子を形成させる工程、および
(3)工程(2)で形成された高分子を含む黒鉛材料を溶媒に浸漬し、高分子を溶解除去することにより、巻回した単層のグラフェンからなるカーボンナノチューブを形成させる工程
を備えたことを特徴とする巻回型カーボンナノチューブの製造方法。
【0009】
【発明の実施の形態】
以下、図面を参照しつつ、本発明をさらに詳細に説明する。
本発明においては、公知の手法により(例えば、前記特許文献1参照)、まず黒鉛材料の黒鉛層間にアルカリ金属をインターカレートさせて、黒鉛層間化合物(Graphite Intercalation Compound:以下“GIC”という)を形成させる(図1参照)。この様なGICは、インターカレートさせたアルカリ金属が、例えばカリウムである場合には、カリウム−GIC(あるいはK−GIC)と呼ばれる(図1参照)。他のアルカリ金属をインターカレートさせる場合にも、それぞれの金属について、同様に呼ばれる。或いは、別の観点から、特にインターカレートされたアルカリ金属の種類とその存在量とに着目して、例えば、KC、KC24、KC36などと呼ばれることもある。本発明で使用するGICにおいては、アルカリ金属の種類とその存在量には、特に制限はないが、以下においては、記述を簡略化するために、“KC”をもって、アルカリ金属−GICを代表させる。
【0010】
次いで、得られたKCに対し、減圧下に易重合性の不飽和炭化水素(重合開始剤の存在下に、常温=約25℃、1気圧以下という穏和な条件下に反応する不飽和炭化水素を意味する;例えば、常温大気圧下で液体のスチレン、イソプレンなど、常温大気圧下で液体の1,3−ブタジエンなどが挙げられる)を接触させて、前者の黒鉛層間に不飽和炭化水素を導入する。易重合性の不飽和炭化水素の種類、導入量などにも、有機溶媒により溶解除去できる重合体が形成される限り、特に制限はない。以下においては、記述を簡略化するために、KCとスチレンとの組み合わせをもって代表させるが、本発明においては、他のアルカリ金属と他の不飽和炭化水素の組み合わせも使用可能であることは言うまでもない。
【0011】
この黒鉛層間への不飽和炭化水素の導入およびその重合は、前述の特許文献1に開示されている手法と同様にして行うことが出来る。例えば、KCを収容する減圧容器(通常、P≦10−2Torr、より好ましくはP≦10−3Torr)にスチレンモノマーを導入する場合には、KCの黒鉛層間にスチレンモノマーが侵入して、黒鉛のc軸方向に非常に緩やかに膨張が始まるとともに、Kを重合開始剤としてスチレンモノマーの重合が始まる。一定時間が経過すると、黒鉛−スチレンポリマー複合体が形成される(図1参照)。KCに対するスチレン導入量は、後述のグラフェンの単離を行いうる程度にKCを膨張させる量以上であれば良いが、KCの20〜1000倍程度(重量比)の範囲にある。
【0012】
次いで、得られた黒鉛−高分子複合体を、高分子を溶解することのできる溶媒、例えば、N−メチル−2−ピロリドン、テトラヒドロフラン、ニトロベンゼンなどに所定時間浸漬することにより、黒鉛層間の高分子成分を溶解除去させる。これらの溶媒中では、高分子成分の溶解能に優れたN−メチル−2−ピロリドンがより好ましい。
【0013】
かくして、黒鉛−高分子複合体の構造中に分散して存在していたグラフェンは、高分子成分の除去により単離される。単離されたグラフェンは、拡がった状態で存在すると表面エネルギーが高いので、Van der Waals結合により、自らと結合して表面エネルギーが低い状態になろうとする。すなわち、単離したグラフェンは巻き上がり、その結果、図1に模式的に示す形態を有する巻回型カーボンナノチューブが形成される。
【0014】
なお、黒鉛−高分子複合体中の高分子を除去する方法ために、加熱による高分子の分解・蒸発除去を行う場合には(特許文献1およびShioyama, J. Mat. Sci.Lett., 20 (2001) 499参照)、グラフェンの剥離を経由したために生じたと考えられる一部グラフェンの巻き上がりは認められるが、大部分のグラフェンは再積層しており、本発明によるカーボンナノチューブを製造することはできない。
【0015】
【発明の効果】
本発明によれば、化学的操作によって、グラフェンが巻き上がった構造をとる新規なカーボンナノチューブが製造できる。この場合、グラフェンが巻き上がることにより、その表面エネルギーは低減する。得られるナノチューブの直径は、この表面エネルギー低減量とグラフェン1枚が曲げられることによるエネルギー増加のバランスによって決定されると考えられる。このエネルギー増加量は、曲げ剛性によって決定されるので、逆にグラフェン1枚の曲げ剛性値は、ナノチューブの直径を測ることにより、見積もることが可能となる。すなわち、本発明によれば、ナノスケール材料の材料力学特性の測定が可能となる。
【0016】
また、巻回生成物の「締め上げ度」(或いは巻回の程度)は、ナノチューブが、化学処理により生成する際の溶媒の種類および温度、高分子の種類などによって変わると想定されるので、本発明方法によれば、処理に使用する溶媒とその温度などを変えることによる直径の制御、巻く−解くという動作をするナノマシン、他物質の巻き込みによる巻きずし状ナノ複合材料、など新しいナノテクノロジーへの展開も可能となる。
【0017】
【実施例】
以下、実施例を示し、本発明の特徴とするところをより一層明確にする。本発明は、実施例により何ら限定されるものではない。
実施例1
高配向性熱分解黒鉛(HOPG; 米国Advanced Ceramics Corp. 社製)を使用して、2−バルブ法(「新・炭素材料入門」、(株)リアライズ社(1996)、pp159−160参照)により、KCを合成し、密閉容器に収容し、容器圧力を予め10−3Torr以下の真空にした後、室温(約25℃)で、スチレンの室温での蒸気圧に相当するスチレン蒸気を導入し、反応させた。なお、スチレンは、予めモレキュラーシーブ4Aを用いて脱水した後、真空蒸留により、精製しておいた。
【0018】
反応開始から24時間後に得られた黒鉛−高分子複合体は、黒色で、弾力性があり、膨脹黒鉛様の材料であり、KC重量を基準として、約400倍量のスチレンが吸蔵された。
【0019】
得られた黒鉛−高分子複合体のうちの50 mgを100 mlのN−メチル−2−ピロリドン中に浸漬し、時々攪拌しながら8週間放置すると、ポリスチレン成分が溶出して、黒色の微粉末が得られた。
得られた黒色の微粉末を透過型電子顕微鏡により観察したところ、図2に示す様に、外径26 nm、内径16 nmの円筒型で、グラフェンが15重に積層しているカーボンナノチューブであることが確認された。
実施例2
高配向性熱分解黒鉛(HOPG; 米国Advanced Ceramics Corp. 社製)を使用して、2−バルブ法(「新・炭素材料入門」、(株)リアライズ社(1996)、pp159−160参照)により、KC24を合成し、密閉容器に収容し、容器圧力を予め10−3Torr以下の真空にした後、室温(約25℃)で、イソプレンの室温での蒸気圧に相当するイソプレン蒸気を導入し、反応させた。なお、イソプレンは、予めモレキュラーシーブ4Aを用いて脱水した後、真空蒸留により、精製しておいた。
【0020】
反応開始から24時間後に得られた黒鉛−高分子複合体は、黒色で、弾力性があり、膨脹黒鉛様の材料であり、KC24重量を基準として、約173倍量のイソプレンが吸蔵された。
【0021】
得られた黒鉛−高分子複合体のうちの50 mgを100 mlのN−メチル−2−ピロリドン中に浸漬し、時々攪拌しながら8週間放置すると、イソプレン成分が溶出して、黒色の微粉末が得られた。
【0022】
得られた黒色の微粉末を透過型電子顕微鏡により観察したところ、カーボンナノチューブであることが確認された。
実施例3
不飽和炭化水素としてボンベ詰めされた気体状の1,3−ブタジエン(純度99.5%以上)を使用し、ブタジエン圧力を500Torrとしたこと以外は実施例2の手法に準じて、黒鉛−高分子複合体を調製した。
【0023】
得られた黒鉛−高分子複合体は、黒色で、弾力性があり、膨脹黒鉛様の材料であり、KC24重量を基準として、約153倍量のスチレンが吸蔵された。
得られた黒鉛−高分子複合体のうちの50 mgを100 mlのN−メチル−2−ピロリドン中に浸漬し、時々攪拌しながら8週間放置すると、ポリブタジエン成分が溶出して、黒色の微粉末が得られた。
【0024】
得られた黒色の微粉末を透過型電子顕微鏡により観察したところ、カーボンナノチューブであることが確認された。
【図面の簡単な説明】
【図1】本発明によるカーボンナノチューブの製造方法を模式的に示す図面である。
【図2】本発明方法により得られたカーボンナノチューブの積層構造を示す透過型電子顕微鏡写真である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbon nanotube having a novel structure and a method for producing the same.
[0002]
[Prior art]
Conventionally, methods for producing carbon nanotubes include a method of performing arc discharge on a carbon material, a method of performing laser irradiation on a carbon material, and a method of decomposing a hydrocarbon gas by CVD using metal fine particles as a catalyst. . In each of these methods, carbon nanotubes are produced by reconstituting or generating carbon atoms in a nanotube shape by sublimation or thermal decomposition.
[0003]
Conventional methods for producing carbon nanotubes utilize the reconstitution phenomenon of carbon atoms, so the diameter, length, shape, etc. of carbon nanotubes are determined depending on many variables such as the synthesis apparatus and synthesis conditions. . Therefore, it is very difficult to design or control the diameter, length, shape, and the like in advance, and products having limited diameters, lengths, shapes, and the like are manufactured based on empirical rules. Is the current situation.
[0004]
The present inventor previously described, "After introducing unsaturated hydrocarbons between the graphite layers of the alkali metal-graphite intercalation compound and polymerizing the unsaturated hydrocarbons using the alkali metal as a catalyst, the obtained graphite-polymer was obtained. A method for producing a graphite material characterized by heat-treating a composite "(Patent Document 1). However, in the inorganic-organic composite obtained by this method, a polymer remains, and a part of the graphene derived from the graphite material is only wound, and a carbon that can be regarded as a carbon nanotube is obtained. No material has been produced.
[0005]
[Patent Document 1] Japanese Patent Application Laid-Open No. 11-70612
[Problems to be solved by the present invention]
Accordingly, it is a main object of the present invention to provide a technique for manufacturing carbon nanotubes that can easily design and control the structure of carbon nanotubes.
[0007]
[Means for Solving the Problems]
The present inventors have conducted research to achieve the above object, and as a result, polymerized unsaturated hydrocarbons between graphite layers having a structure in which monoatomic layers (graphene) in which carbon atoms are arranged in a plane are stacked. After that, carbon nanotubes having a novel structure were successfully manufactured by a simple chemical technique of removing the generated polymer with a solvent.
[0008]
That is, the present invention provides the following carbon nanotubes and a method for producing the same:
1. A wound carbon nanotube having a structure in which one layer of graphene is wound.
2. (1) a step of intercalating an alkali metal between graphite layers of a graphite material to form a graphite interlayer compound;
(2) a step of introducing an unsaturated hydrocarbon between the graphite layers of the graphite intercalation compound obtained in the step (1), polymerizing the unsaturated hydrocarbon with an alkali metal as a catalyst, and forming a polymer, and (3) A) a step of immersing the graphite material containing the polymer formed in the step (2) in a solvent and dissolving and removing the polymer to form a wound single-layer graphene carbon nanotube; A method for producing rolled carbon nanotubes, which is characterized by the following.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings.
In the present invention, a graphite intercalation compound (Graphite Intercalation Compound: hereinafter referred to as “GIC”) is obtained by intercalating an alkali metal between graphite layers of a graphite material by a known method (for example, see Patent Document 1). (See FIG. 1). Such a GIC is called potassium-GIC (or K-GIC) when the intercalated alkali metal is, for example, potassium (see FIG. 1). When other alkali metals are intercalated, each metal is similarly referred to. Alternatively, from another viewpoint, particularly focusing on the type of intercalated alkali metal and its abundance, it may be called, for example, KC 8 , KC 24 , KC 36, or the like. In the GIC used in the present invention, the kind of alkali metal and its abundance are not particularly limited. However, in the following, for simplicity of description, “KC 8 ” is used to represent alkali metal-GIC. Let it.
[0010]
Next, the obtained KC 8 is reacted with an easily polymerizable unsaturated hydrocarbon under reduced pressure (under the presence of a polymerization initiator, at room temperature = about 25 ° C., under a mild condition of 1 atmosphere or less). Hydrogen, which includes, for example, liquid styrene, isoprene, and the like at room temperature and atmospheric pressure, and liquid 1,3-butadiene at room temperature and atmospheric pressure. Is introduced. There is no particular limitation on the type and amount of the easily polymerizable unsaturated hydrocarbon as long as a polymer that can be dissolved and removed with an organic solvent is formed. In the following, for simplicity of description, a combination of KC 8 and styrene is represented, but in the present invention, it is needless to say that a combination of another alkali metal and another unsaturated hydrocarbon can also be used. No.
[0011]
The introduction of the unsaturated hydrocarbon between the graphite layers and the polymerization thereof can be carried out in the same manner as in the method disclosed in Patent Document 1. For example, the decompression container (typically, P ≦ 10 -2 Torr, and more preferably P ≦ 10 -3 Torr) for accommodating the KC 8 when introduced into the styrene monomer, the styrene monomer is inserted between the graphite layers of KC 8 Thus, the expansion of graphite in the c-axis direction starts very slowly, and the polymerization of styrene monomer starts using K as a polymerization initiator. After a certain period of time, a graphite-styrene polymer composite is formed (see FIG. 1). Styrene introduction amount for KC 8 is may be at least the amount of expanding the KC 8 to the extent that may be carried out in the isolation of graphene will be described later, is in the range of about 20 to 1000 fold (weight ratio) of KC 8.
[0012]
Next, the obtained graphite-polymer composite is immersed in a solvent capable of dissolving the polymer, for example, N-methyl-2-pyrrolidone, tetrahydrofuran, nitrobenzene, or the like for a predetermined time, so that the polymer between the graphite layers is formed. The components are dissolved and removed. Among these solvents, N-methyl-2-pyrrolidone which is excellent in dissolving ability of the polymer component is more preferable.
[0013]
Thus, the graphene that was dispersed in the structure of the graphite-polymer composite is isolated by removing the polymer component. Since isolated graphene has a high surface energy when present in a spread state, the graphene tends to bond with itself and become low in surface energy by Van der Waals bonding. That is, the isolated graphene is rolled up, and as a result, a rolled carbon nanotube having a form schematically shown in FIG. 1 is formed.
[0014]
In addition, in order to remove the polymer in the graphite-polymer composite, when the polymer is decomposed and evaporated and removed by heating (Patent Document 1 and Shioyama, J. Mat. Sci. Lett., 20). (2001) 499), although some of the graphene may be rolled up, which is considered to have been caused by exfoliation of graphene, most of the graphene has been re-laminated, and it is not possible to produce carbon nanotubes according to the present invention. Can not.
[0015]
【The invention's effect】
According to the present invention, a novel carbon nanotube having a structure in which graphene is rolled up can be produced by a chemical operation. In this case, the surface energy of the graphene is reduced by winding the graphene. It is considered that the diameter of the obtained nanotube is determined by the balance between the surface energy reduction amount and the energy increase due to bending of one graphene sheet. Since the amount of energy increase is determined by the bending stiffness, the bending stiffness value of one graphene can be estimated by measuring the diameter of the nanotube. That is, according to the present invention, it is possible to measure the mechanical properties of the nanoscale material.
[0016]
In addition, the "tightening degree" (or the degree of winding) of the wound product is assumed to vary depending on the type and temperature of the solvent and the type of the polymer when the nanotube is produced by the chemical treatment. According to the method of the present invention, control of the diameter by changing the solvent used in the treatment and its temperature, etc., nanomachines that perform the operation of winding and unwinding, and unwound nanocomposites by involving other substances, such as new nanotechnology, Deployment is also possible.
[0017]
【Example】
Hereinafter, examples will be shown to further clarify features of the present invention. The present invention is not limited at all by the examples.
Example 1
Using highly oriented pyrolytic graphite (HOPG; manufactured by Advanced Ceramics Corp., U.S.A.), a 2-valve method (see "Introduction to New Carbon Materials", Realize Inc. (1996), pp. 159-160) , was synthesized KC 8, housed in a sealed container, was below the vacuum vessel pressure advance 10 -3 Torr, at room temperature (about 25 ° C.), introducing the styrene vapor corresponding to the vapor pressure at room temperature of styrene And reacted. In addition, styrene was previously dehydrated using a molecular sieve 4A, and then purified by vacuum distillation.
[0018]
The graphite-polymer composite obtained 24 hours after the start of the reaction is a black, resilient, expanded graphite-like material in which about 400 times the amount of styrene has been absorbed based on 8 weights of KC. .
[0019]
50 mg of the obtained graphite-polymer composite was immersed in 100 ml of N-methyl-2-pyrrolidone, and left standing for 8 weeks with occasional stirring. was gotten.
Observation of the obtained black fine powder with a transmission electron microscope revealed that it was a carbon nanotube having a cylindrical shape with an outer diameter of 26 nm and an inner diameter of 16 nm and graphene laminated with 15 layers, as shown in FIG. It was confirmed that.
Example 2
Using highly oriented pyrolytic graphite (HOPG; manufactured by Advanced Ceramics Corp., U.S.A.), a 2-valve method (see "Introduction to New Carbon Materials", Realize Inc. (1996), pp. 159-160) , And KC 24 , and housed in a closed vessel. After the vessel pressure was previously reduced to 10 −3 Torr or less, at room temperature (about 25 ° C.), isoprene vapor corresponding to the vapor pressure of isoprene at room temperature was introduced. And reacted. It should be noted that isoprene was previously dehydrated using a molecular sieve 4A and then purified by vacuum distillation.
[0020]
The graphite-polymer composite obtained 24 hours after the start of the reaction is a black, resilient, expanded graphite-like material, in which about 173 times the amount of isoprene was absorbed based on 24 weights of KC. .
[0021]
50 mg of the obtained graphite-polymer composite was immersed in 100 ml of N-methyl-2-pyrrolidone, and left for 8 weeks with occasional stirring. was gotten.
[0022]
Observation of the obtained black fine powder with a transmission electron microscope confirmed that it was a carbon nanotube.
Example 3
According to the method of Example 2, except that gaseous 1,3-butadiene (purity of 99.5% or more) packed in a cylinder was used as an unsaturated hydrocarbon and the butadiene pressure was set to 500 Torr. A molecular conjugate was prepared.
[0023]
The resulting graphite-polymer composite was a black, resilient, expanded graphite-like material, storing about 153 times the amount of styrene based on 24 weights of KC.
50 mg of the obtained graphite-polymer complex was immersed in 100 ml of N-methyl-2-pyrrolidone and left for 8 weeks with occasional stirring, whereby the polybutadiene component was eluted and a black fine powder was obtained. was gotten.
[0024]
Observation of the obtained black fine powder with a transmission electron microscope confirmed that it was a carbon nanotube.
[Brief description of the drawings]
FIG. 1 is a view schematically showing a method for producing a carbon nanotube according to the present invention.
FIG. 2 is a transmission electron micrograph showing a laminated structure of carbon nanotubes obtained by the method of the present invention.

Claims (2)

一層のグラフェンが巻回した構造を有する巻回型カーボンナノチューブ。A wound carbon nanotube having a structure in which one layer of graphene is wound. (1)黒鉛材料の黒鉛層間にアルカリ金属をインターカレートさせて黒鉛層間化合物を形成させる工程、
(2)工程(1)で得られた黒鉛層間化合物の黒鉛層間に不飽和炭化水素を導入し、アルカリ金属を触媒とし、不飽和炭化水素を重合させて高分子を形成させる工程、および
(3)工程(2)で形成された高分子を含む黒鉛材料を溶媒に浸漬し、高分子を溶解除去することにより、巻回した単層のグラフェンからなるカーボンナノチューブを形成させる工程
を備えたことを特徴とする巻回型カーボンナノチューブの製造方法。
(1) a step of intercalating an alkali metal between graphite layers of a graphite material to form a graphite interlayer compound;
(2) a step of introducing an unsaturated hydrocarbon between the graphite layers of the graphite intercalation compound obtained in the step (1), polymerizing the unsaturated hydrocarbon with an alkali metal as a catalyst, and forming a polymer, and (3) A) a step of immersing the graphite material containing the polymer formed in the step (2) in a solvent and dissolving and removing the polymer to form a wound single-layer graphene carbon nanotube; A method for producing rolled carbon nanotubes, which is characterized by the following.
JP2003010539A 2003-01-20 2003-01-20 Winding carbon nanotube and method for producing the same Expired - Lifetime JP3735669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003010539A JP3735669B2 (en) 2003-01-20 2003-01-20 Winding carbon nanotube and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003010539A JP3735669B2 (en) 2003-01-20 2003-01-20 Winding carbon nanotube and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004224579A true JP2004224579A (en) 2004-08-12
JP3735669B2 JP3735669B2 (en) 2006-01-18

Family

ID=32899701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010539A Expired - Lifetime JP3735669B2 (en) 2003-01-20 2003-01-20 Winding carbon nanotube and method for producing the same

Country Status (1)

Country Link
JP (1) JP3735669B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535464A (en) * 2004-04-27 2007-12-06 ナノソース インコーポレイテッド Nanotube structure manufacturing system and method
JP2008120660A (en) * 2006-11-16 2008-05-29 Toshio Sugita Graphene sheet for producing carbon tube and graphene sheet for graphene sheet formed article
WO2009139049A1 (en) * 2008-05-14 2009-11-19 Sugita Toshio Graphene sheet for producing carbon tube and graphene sheet for molded graphene sheet article
US7718156B2 (en) 2006-12-20 2010-05-18 Headwaters Technology Innovation, Llc Method for manufacturing carbon nanostructures having minimal surface functional groups
US7718155B2 (en) 2005-10-06 2010-05-18 Headwaters Technology Innovation, Llc Carbon nanostructures manufactured from catalytic templating nanoparticles
JP2010535690A (en) * 2007-08-09 2010-11-25 サントル ナショナル ドゥ ラ ルシェルシュ スィヤンティフィック(セーエヌエルエス) Graphene solution
CN101898758A (en) * 2010-06-29 2010-12-01 清华大学 Composite structure of carbon nano tube
US7887771B2 (en) 2005-10-06 2011-02-15 Headwaters Technology Innovation, Llc Carbon nanorings manufactured from templating nanoparticles
US7935276B2 (en) 2006-02-09 2011-05-03 Headwaters Technology Innovation Llc Polymeric materials incorporating carbon nanostructures
US8133637B2 (en) 2005-10-06 2012-03-13 Headwaters Technology Innovation, Llc Fuel cells and fuel cell catalysts incorporating a nanoring support
CN103241721A (en) * 2013-05-13 2013-08-14 中国科学院苏州纳米技术与纳米仿生研究所 Preparation method of graphene/carbon nanotube composite system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224545A (en) * 2004-04-27 2012-11-15 Nanosource Inc System and method of manufacturing nanotube structures
JP2007535464A (en) * 2004-04-27 2007-12-06 ナノソース インコーポレイテッド Nanotube structure manufacturing system and method
US7887771B2 (en) 2005-10-06 2011-02-15 Headwaters Technology Innovation, Llc Carbon nanorings manufactured from templating nanoparticles
US7718155B2 (en) 2005-10-06 2010-05-18 Headwaters Technology Innovation, Llc Carbon nanostructures manufactured from catalytic templating nanoparticles
US8133637B2 (en) 2005-10-06 2012-03-13 Headwaters Technology Innovation, Llc Fuel cells and fuel cell catalysts incorporating a nanoring support
US7935276B2 (en) 2006-02-09 2011-05-03 Headwaters Technology Innovation Llc Polymeric materials incorporating carbon nanostructures
JP2008120660A (en) * 2006-11-16 2008-05-29 Toshio Sugita Graphene sheet for producing carbon tube and graphene sheet for graphene sheet formed article
US7718156B2 (en) 2006-12-20 2010-05-18 Headwaters Technology Innovation, Llc Method for manufacturing carbon nanostructures having minimal surface functional groups
JP2010535690A (en) * 2007-08-09 2010-11-25 サントル ナショナル ドゥ ラ ルシェルシュ スィヤンティフィック(セーエヌエルエス) Graphene solution
JP2015013803A (en) * 2007-08-09 2015-01-22 サントル ナショナル ドゥ ラ ルシェルシュ スィヤンティフィック(セーエヌエルエス)Centre National De La Recherche Scientifique(Cnrs) Graphene solution
US9120675B2 (en) 2007-08-09 2015-09-01 Centre National De La Recherche Scientifique-Cnrs Graphene solutions
WO2009139049A1 (en) * 2008-05-14 2009-11-19 Sugita Toshio Graphene sheet for producing carbon tube and graphene sheet for molded graphene sheet article
CN101898758A (en) * 2010-06-29 2010-12-01 清华大学 Composite structure of carbon nano tube
CN101898758B (en) * 2010-06-29 2012-08-29 清华大学 Composite structure of carbon nano tube
CN103241721A (en) * 2013-05-13 2013-08-14 中国科学院苏州纳米技术与纳米仿生研究所 Preparation method of graphene/carbon nanotube composite system

Also Published As

Publication number Publication date
JP3735669B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
Liu et al. Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments
Wang et al. The effect of hydrogen on the formation of carbon nanotubes and fullerenes
Terrones et al. Pyrolytically grown BxCyNz nanomaterials: nanofibres and nanotubes
Jin et al. Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature
US7419650B2 (en) Method for the production of functionalised short carbon nanotubes and functionalised short carbon nanotubes obtainable by said method
US9440857B2 (en) Process for high-yield production of graphene via detonation of carbon-containing material
JP5613230B2 (en) Graphene nanoribbons produced from carbon nanotubes by alkali metal exposure
Valentini et al. Sidewall functionalization of single-walled carbon nanotubes through CF4 plasma treatment and subsequent reaction with aliphatic amines
US7842271B2 (en) Mass production of carbon nanostructures
Gomez et al. Enhanced purification of carbon nanotubes by microwave and chlorine cleaning procedures
JP3735669B2 (en) Winding carbon nanotube and method for producing the same
US20030059364A1 (en) Method for poduction of nanostructures
Zhao et al. Study on purification and tip-opening of CNTs fabricated by CVD
Omurzak et al. Synthesis of hollow carbon nano-onions using the pulsed plasma in liquid
JP4642658B2 (en) Method for producing single-walled carbon nanotubes with uniform diameter
Zhong et al. Single-step CVD growth of high-density carbon nanotube forests on metallic Ti coatings through catalyst engineering
KR20160114372A (en) A method for producing graphene with rapid expansion and graphene made thereby
CN107792846A (en) The purification process of CNT
An et al. Transformation of singlewalled carbon nanotubes to multiwalled carbon nanotubes and onion-like structures by nitric acid treatment
JP2992630B2 (en) Graphite-polymer composite and method for producing the same
Dailly et al. Purification of carbon single-wall nanotubes by potassium intercalation and exfoliation
Bell et al. Characterisation of the growth mechanism during PECVD of multiwalled carbon nanotubes
JP3747243B2 (en) Material for reversibly storing and releasing hydrogen and hydrogen storage device filled with the material
WO1999056870A1 (en) Gas-occluding material and method for occluding gas
JP7276625B2 (en) Method for producing boron nitride nanotubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

R150 Certificate of patent or registration of utility model

Ref document number: 3735669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term