JP2004134369A - Lithium secondary battery and electric automobile - Google Patents

Lithium secondary battery and electric automobile Download PDF

Info

Publication number
JP2004134369A
JP2004134369A JP2003189937A JP2003189937A JP2004134369A JP 2004134369 A JP2004134369 A JP 2004134369A JP 2003189937 A JP2003189937 A JP 2003189937A JP 2003189937 A JP2003189937 A JP 2003189937A JP 2004134369 A JP2004134369 A JP 2004134369A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
secondary battery
lithium secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003189937A
Other languages
Japanese (ja)
Inventor
Yoshin Yagi
八木 陽心
Kenji Nakai
中井 賢治
Kenji Hara
原 賢二
Kensuke Hironaka
弘中 健介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2003189937A priority Critical patent/JP2004134369A/en
Publication of JP2004134369A publication Critical patent/JP2004134369A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery having a long service life with suppressed reduction in maintaining rate for capacity or output associated with charge/discharge cycles. <P>SOLUTION: This cylindrical lithium ion battery uses a positive electrode made of a lithium manganate powder having a layered rock-salt type crystal structure, and a negative electrode made of a graphite powder having a specific surface area of 2.4m<SP>2</SP>/g. A negative electrode binder is prepared by mixing a thermosetting polyvinylalcohol-based resin with an acrylic resin-based plasticizer, and mixed into a negative electrode mixture in an amount of 5.8volume%. Separation or dropping-off of the negative electrode mixture associated with charge/discharge of the cylindrical lithium ion battery is thereby prevented. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はリチウム二次電池及び電気自動車に係り、特に、黒鉛質炭素とバインダとを含む負極合剤が金属集電体の両面に実質的に均等に塗着された負極と、正極とを有するリチウム二次電池及び該リチウム二次電池を動力用電源とした電気自動車に関する。
【0002】
【従来の技術】
リチウム二次電池は、高エネルギー密度であるメリットを活かして、主にVTRカメラやノートパソコン、携帯電話等のポータブル機器の電源に使用されている。この電池の内部構造は、通常以下に示されるような捲回式とされている。電極は正極、負極共に活物質がバインダ(結着剤)により金属箔に塗着された帯状であり、セパレータを挟んで正負極が直接接触しないように断面が渦巻状に捲回され、捲回群を形成している。この捲回群が電池容器となる円筒状の電池缶に収容され、電解液注液後、封口されている。
【0003】
一般的な円筒型リチウム二次電池の寸法は、18650型と呼ばれる、直径が18mm、高さ65mmであり、小形民生用リチウムイオン電池として広く普及している。18650型リチウム二次電池の正極活物質には、高容量、長寿命を特徴とするコバルト酸リチウムが主として用いられており、電池容量は、おおむね1.3Ah〜1.7Ah、出力はおよそ10W程度である。
【0004】
一方、自動車産業界においては環境問題に対応すべく、排出ガスのない、動力源を完全に電池のみにした電気自動車(EV)と、内燃機関エンジンと電池との両方を動力源とするハイブリッド(電気)自動車の開発が加速され、一部は実用化されている。このような電気自動車の電源としてリチウム二次電池を用いるには、高容量化だけではなく、加速性能などを左右する高出力化、つまり電池の内部抵抗の低減が求められる。また、電気自動車の長期の使用期間に対応すべく電池の長寿命化も求められる。ここでいう長寿命化は、電池容量のみならず、出力の低下を抑制し、電気自動車を走行させるに必要な電気エネルギー供給能力を長期に亘って満足することである。
【0005】
ところが、リチウム二次電池では、充放電サイクルに伴い正負極の活物質が膨張・収縮を繰り返すため、集電体から活物質の剥離・脱落が生ずる。また、活物質の膨張・収縮により、正負極間にかかる圧力(捲回圧)が変化するため、特に高温環境下で活物質が剥離・脱落し易くなり容量、出力が低下する、という問題がある。活物質の剥離・脱落を抑制するために、バインダとして用いられるポリフッ化ビニリデンの重量平均分子量を制限することで、集電体への正負極合剤の結着性を確保する技術が開示されている(例えば、特許文献1参照)。
【0006】
【特許文献1】
特開2002−270182号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上述した特許文献1の技術では、バインダとして用いられるポリフッ化ビニリデンが熱可塑性を有することから、50°C以上の高温状態では軟化する。このため、高温環境、特にEV等のエンジンルームのように50°C程度に達する環境下における充放電サイクルでは、正負極合剤と集電体との結着性が十分に確保できるとはいえない。従って、高温環境下の充放電サイクルでも正負極合剤の剥離・脱落を防止して容量、出力の低下を抑制可能な長寿命のリチウム二次電池が得られれば、EV等の普及を加速することが期待できる。
【0008】
本発明は上記事案に鑑み、充放電サイクルに伴う容量や出力の維持率の低下を抑制でき、長寿命のリチウム二次電池及び該リチウム二次電池を動力用電源に用いた電気自動車を提供することを課題とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明の第1の態様は、黒鉛質炭素とバインダとを含む負極合剤が金属集電体の両面に実質的に均等に塗着された負極と、正極とを有するリチウム二次電池において、前記バインダが、熱硬化性を有し可塑化されたポリビニルアルコール系樹脂であることを特徴とする。
【0010】
充放電サイクルによるリチウムイオンの吸蔵・放出に伴い、負極活物質である黒鉛質炭素の膨張・収縮が繰り返されると、負極合剤が剥離・脱落して容量や出力の低下を招き、特にエンジンルームのように50°C程度の高温環境下ではこの低下が顕著に現れる。本態様では、負極のバインダに熱硬化性を有し可塑化されたポリビニルアルコール系樹脂を用いることで、黒鉛質炭素の膨張・収縮に対する抵抗力が増加して負極合剤の剥離・脱落が抑制されるので、得られるリチウム二次電池の容量維持率、出力維持率の低下を抑制することができると共に、熱硬化性を有し可塑化されたポリビニルアルコール系樹脂により黒鉛質炭素の表面が適切に被覆され、初充電時に電解液又は固体電解質の液成分の分解による黒鉛質炭素の表面でのガス化などの副反応の発生が抑制されるので、リチウム二次電池の電池容量の初期低下を防止することができる。
【0011】
この場合において、熱硬化性を有し可塑化されたポリビニルアルコール系樹脂の含有量が負極合剤の4体積%未満では、黒鉛質炭素表面の被覆が不十分なため副反応が生じて容量が減少し、熱硬化性を有し可塑化されたポリビニルアルコール系樹脂の含有量が負極合剤の9体積%を超えると抵抗成分が増大して出力が低下するので、ポリビニルアルコール系樹脂の含有量を負極合剤の4体積%〜9体積%とすることが好ましい。また、負極活物質である黒鉛質炭素の比表面積が4m/gを超えると副反応が発生し易くなり初期容量が低下するので、黒鉛質炭素の比表面積を4m/g以下とすることが好ましい。
【0012】
また、正極活物質にリチウム遷移金属複酸化物を用いた場合は、充放電によるリチウム遷移金属複酸化物の膨張・収縮に伴い、負極にかかる捲回圧又は積層圧が変化し、特に高温で負極合剤が剥離・脱落し易くなる。負極のバインダに熱硬化性を有し可塑化されたポリビニルアルコール系樹脂を用いることで、負極合剤の剥離・脱落を抑制することができるので、正極活物質に収縮性の大きなリチウム遷移金属複酸化物を用いても、高容量、高出力を維持することができ、リチウム二次電池の長寿命化を実現することができる。このような正極活物質には、スピネル結晶構造を有するリチウム遷移金属複酸化物を使用してもよい。スピネル結晶構造のリチウム遷移金属複酸化物が熱安定性に優れるため、高温環境下でも容量、出力を維持することができる。又は、正極活物質には、層状結晶構造を有するリチウム遷移金属複酸化物を使用してもよい。層状結晶構造を有するリチウム遷移金属複酸化物は、充電により結晶の層間距離が拡大して膨張するため、正負極間に圧力がかかり負極合剤の剥離・脱落が抑制されると共に、負極バインダのポリビニルアルコール系樹脂により負極合剤の結着性が確保されるので、高容量、高出力を維持することができる。
【0013】
本発明の第2の態様は、上述した第1の態様のリチウム二次電池を動力用電源に用いた電気自動車である。本態様によれば、出力及び容量の低下が抑制されたリチウム二次電池を動力源に用いられるので、充電、走行(放電)を繰り返しても、加速性能、連続走行距離の低下が少ない電気自動車を実現することができる。
【0014】
【発明の実施の形態】
以下、図面を参照して、本発明をゴルフカートの動力用電源として用いられる円筒型リチウムイオン電池に適用した実施の形態について説明する。
【0015】
図1に示すように、ゴルフカート30は、基体となるシャーシ31を備えている。シャーシ31の略中央部には、後述する円筒型リチウムイオン電池20を複数個直列に接続して収容した電池箱36が固定されている。電池箱36の上にはクッション35が配置されており、電池箱36とクッション35とで前部座席が構成されている。
【0016】
シャーシ31の前方には、円筒型リチウムイオン電池20を動力源とするモータやモータ軸の回転駆動力を車輪へ伝達する動力伝達機構がシャーシ31に固定されており、動力伝達機構がタイヤを回転させる構造とされている。前部座席に着席したドライバの足元の位置にはゴルフカート30の前進速度を調節する加速用ペダル37が配置されている。加速用ペダル37には踏み込み量に連動する可変抵抗器が接続されており、ゴルフカート30はドライバが加速用ペダル37を踏み込むことにより踏み込み量に応じて前進する構造とされている。
【0017】
電池箱36に収容された円筒型リチウムイオン電池20は以下のように作製したものである。
【0018】
(正極板の作製)
図2に示すように、正極活物質のコバルト酸リチウム(LiCoO)粉末又はスピネル結晶構造を有するマンガン酸リチウム(LiMn)粉末又は層状岩塩型結晶構造を有するマンガン酸リチウム(LiMnO)粉末と、導電材の黒鉛粉末及びアセチレンブラックと、バインダ(結着剤)のポリフッ化ビニリデン(以下、PVDFという。)と、を質量比85:9:2:4で混合し、これに分散溶媒のN−メチル−2−ピロリドン(以下、NMPという。)を添加、混練したスラリを、厚さ20μmのアルミニウム箔W1(正極集電体)の両面に塗布した。このとき、正極板長寸方向の一方の側縁に幅30mmの未塗布部を残した。その後乾燥、プレス、裁断して幅82mm、長さ374cm、活物質合剤塗布部厚さ111μmの正極板を得た。正極活物質合剤層W2のかさ密度は2.65g/cmとした。側縁に残した未塗布部に切り欠きを入れ、切り欠き残部を正極リード片2とした。隣り合う正極リード片2を50mm間隔とし、正極リード片2の幅を5mmとした。
【0019】
(負極板の作製)
負極活物質として所定の比表面積を持つ黒鉛粉末と、導電材としてアセチレンブラック粉末と、を質量比95:5で混合し、これに後述するように熱硬化性を有し可塑化されたポリビニルアルコール系樹脂(以下、PVAという。)をバインダとして所定体積比で混合し、更に分散溶媒のNMPを添加、混練してスラリを得た。得られたスラリを厚さ10μmの圧延銅箔W3(負極集電体)の両面に均等に塗布した。このとき、負極板長寸方向の一方の側縁に幅30mmの未塗布部を残した。その後乾燥、プレス、裁断して幅86mm、長さ386cm、活物質合剤塗布部厚さ79μmの負極板を得た。負極活物質合剤層W4のかさ密度は1.00g/cmとした。側縁に残した未塗布部に正極板と同様に切り欠きを入れ、切り欠き残部を負極リード片3とした。隣り合う負極リード片3を50mm間隔とし、負極リード片3の幅を5mmとした。
【0020】
PVAは、熱硬化性ポリビニルアルコール系樹脂からなる第一の樹脂成分と、アクリル樹脂系可塑剤からなる第二の樹脂成分とが、適当な有機溶媒中(本実施例では、NMP)に混合溶解される。第一の樹脂成分である熱硬化性ポリビニルアルコール系樹脂は、平均重合度約2000程度のポリビニルアルコール系樹脂に、例えばコハク酸無水物等の環状酸無水物を、NMP等の有機溶媒中、トリエチルアミン等の触媒存在下で実質的に無水の状態で反応させて得られる。ポリビニルアルコール系樹脂と環状酸無水物の反応割合は、ポリビニルアルコール系樹脂のアルコール性ヒドロキシル基1当量に対し、環状酸無水物の無水物基が約0.1当量とされている。第二の樹脂成分であるアクリル樹脂系可塑剤は、ラウリルアクリレート/アクリル酸共重合物と二官能型エポキシ樹脂との反応物が相応しい。
【0021】
第一の樹脂成分は、次のように合成した。攪拌機、温度計、冷却管、留出管、窒素ガス導入管を装備したセパラブルフラスコに、けん化度約98%のポリビニルアルコール51g、NMP650g及びトルエン10gを投入し、窒素バブリングと撹拌をしながら約30分かけて195゜Cに昇温した。同温度で2時間保温し、トルエンを還流させることによって水分を共沸させ、フラスコ内の水分を留去させた。次いでトルエンを留去して120゜Cまで冷却し、同温度で保温しながら、コハク酸無水物7.7gを添加、1時間反応させた(ポリビニルアルコールのアルコール性ヒドロキシル基1当量に対し、酸無水物基が、約0.07当量)。室温まで冷却し、第一の樹脂成分が約8質量%のNMP溶液を得た。
【0022】
第二の樹脂成分は、次のように合成した。攪拌機、温度計、冷却管、留出管、窒素ガス導入管を装備したセパラブルフラスコに、重量平均分子量約3100の無溶剤型ラウリルアクリレート/アクリル酸共重合体を110gと、ビスフェノールA型エポキシ樹脂71g(無溶剤型ラウリルアクリレート/アクリル酸共重合体のカルボキシル基1当量に対し、エポキシ基として約2当量)を投入し、窒素バブリングと撹拌をしながら約15分間かけて150゜Cに昇温した。同温度で2時間保温して反応を進めた後、ここにNMP78gを添加、室温まで冷却させて、第二の樹脂成分約70重量%のNMP溶液を得た。
【0023】
第一の樹脂成分8質量%のNMP溶液と第二の樹脂成分約70重量%のNMP溶液とを、それぞれの樹脂成分の質量換算で100:10の割合で混合し、PVAのNMP溶液を得た。
【0024】
(電池の作製)
作製した正極板と負極板とを、これら両極板が直接接触しないように幅90mm、厚さ40μmのポリエチレン製セパレータW5と共に捲回した。捲回の中心には、ポリプロピレン製の中空円筒状の軸芯1を用いた。このとき、正極リード片2と負極リード片3とが、それぞれ捲回群6の互いに反対側の両端面に位置するようにした。また、正極板、負極板、セパレータの長さを調整し、捲回群6の直径を38±0.1mmとした。
【0025】
正極リード片2を変形させ、その全てを、捲回群6の軸芯1のほぼ延長線上にある正極集電リング4の周囲から一体に張り出した鍔部周面付近に集合、接触させた後、正極リード片2と鍔部周面とを超音波溶接して正極リード片2を鍔部周面に接続した。一方、負極集電リング5と負極リード片3との接続操作も、正極集電リング4と正極リード片2との接続操作と同様に実施した。
【0026】
その後、正極集電リング4の鍔部周面全周に絶縁被覆を施した。この絶縁被覆には、基材がポリイミドで、その片面にヘキサメタアクリレートからなる粘着剤を塗布した粘着テープを用いた。この粘着テープを鍔部周面から捲回群6外周面に亘って一重以上巻いて絶縁被覆とし、捲回群6を電池容器7内に挿入した。電池容器7には、外径40mm、内径39mmでニッケルメッキが施されたスチール製の容器を用いた。
【0027】
負極集電リング5には予め電気的導通のための負極リード板8が溶接されており、電池容器7に捲回群6を挿入後、電池容器7の底部と負極リード板8とを溶接した。
【0028】
一方、正極集電リング4には、予め複数枚のアルミニウム製のリボンを重ね合わせて構成した正極リード9を溶接しておき、正極リード9の他端を、電池容器7を封口するための電池蓋の下面に溶接した。電池蓋には、円筒型リチウムイオン電池20の内圧上昇に応じて開裂する内圧開放機構としての開裂弁11が設けられている。開裂弁11の開裂圧は、約9×10Paに設定した。電池蓋は、蓋ケース12と、蓋キャップ13と、気密を保つ弁押え14と、開裂弁11とで構成されており、これらが積層されて蓋ケース12の周縁をカシメることによって組立てられている。
【0029】
非水電解液を所定量電池容器7内に注液し、その後、正極リード9を折りたたむようにして電池蓋で電池容器7に蓋をし、EPDM樹脂製ガスケット10を介してカシメて密封することにより円筒型リチウムイオン電池20を完成させた。
【0030】
非水電解液には、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートの体積比1:1:1の混合溶媒中へ6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものを用いた。
【0031】
【実施例】
次に、本実施形態に従って作製した円筒型リチウムイオン電池20及びゴルフカート30の実施例について説明する。以下、円筒型リチウムイオン電池20については実施例1〜実施例8に、ゴルフカート30については実施例9〜実施例13に詳述する。なお、比較のために作製した比較例の電池及びゴルフカートについても併記する。
【0032】
(実施例1)
下表1に示すように、実施例1では、正極活物質にコバルト酸リチウム(LiCoO)粉末を用い、負極活物質に比表面積が3.1m/gの黒鉛粉末を用い、負極バインダにPVAを用いた。バインダ含有量を負極合剤の体積比3.2%とした。
【0033】
【表1】

Figure 2004134369
【0034】
(実施例2〜6)
表1に示すように、実施例2〜実施例6では、黒鉛の比表面積及びPVAの含有量を種々変更した以外は実施例1と同様にした。実施例2では、黒鉛の比表面積を3.9m/g、バインダ含有量を4.1%とし、実施例3では、黒鉛の比表面積を2.4m/g、バインダ含有量を5.8%とし、実施例4では、黒鉛の比表面積を6.4m/g、バインダ含有量を5.8%とし、実施例5では、黒鉛の比表面積を2.3m/g、バインダ含有量を9.0%とし、実施例6では、黒鉛の比表面積を3.1m/g、バインダ含有量を11.3%とした。
【0035】
(実施例7)
表1に示すように、実施例7では、正極活物質にスピネル結晶構造を有するマンガン酸リチウム(LiMn)粉末を用い、負極活物質に比表面積が2.6m/gの黒鉛粉末を用い、負極バインダにPVAを用いた。バインダ含有量を5.8%とした。
【0036】
(実施例8)
表1に示すように、実施例8では、正極活物質に層状岩塩型結晶構造を有するマンガン酸リチウム(LiMnO)粉末を用い、負極活物質に比表面積が2.4m/gの黒鉛粉末を用い、負極バインダにPVAを用いた。バインダ含有量を5.8%とした。
【0037】
(実施例9〜13)
実施例9〜実施例13では、実施例2、実施例3、実施例5、実施例7及び実施例8の円筒型リチウムイオン電池20をそれぞれ72本直列に接続してゴルフカート30に搭載した。
【0038】
(比較例1)
表1に示すように、比較例1では、負極バインダにPVDFを用いた以外は、実施例3と同様にして円筒型リチウムイオン電池を作製した。
【0039】
(比較例2)
表1に示すように、比較例2では、正極活物質にスピネル結晶構造を有するマンガン酸リチウム(LiMn)粉末を用い、負極バインダにPVDFを用いた以外は、実施例3と同様にして円筒型リチウムイオン電池を作製した。
【0040】
(比較例3)
表1に示すように、比較例3では、正極活物質に層状岩塩型結晶構造を有するマンガン酸リチウム(LiMnO)粉末を用い、負極バインダにPVDFを用いた以外は、実施例3と同様にして円筒型リチウムイオン電池を作製した。
【0041】
(比較例4〜6)
比較例4〜比較例6では、比較例1〜比較例3で作製した円筒型リチウムイオン電池をそれぞれ72本直列に接続してゴルフカートに搭載した。
【0042】
<試験・評価>
次に、以上のようにして作製した実施例及び比較例の各電池及びゴルフカートについて、以下の一連の試験を行った。
【0043】
実施例及び比較例の各電池を充電した後放電し、環境温度25±2°Cの雰囲気において、放電容量を測定した。充電条件は、4.1V定電圧、制限電流5A、2.5時間とし、放電条件は、1A定電流、終止電圧2.7Vとした。初期及び後述するパルスサイクル試験後の放電容量を測定し、初期の放電容量に対するパルスサイクル試験後の放電容量の割合を百分率で求め、容量維持率とした。
【0044】
また、各電池を上述した充電条件で充電(満充電状態)した後、環境温度25±2°Cの雰囲気において、出力を測定した。測定条件は、10A、30A、90Aの電流値で各10秒間放電し、横軸電流値に対して、各5秒目の電池電圧値を縦軸にプロットし、3点を直線近似した直線が終止電圧である2.7Vと交差する点の電流値を読み取り、この電流値と2.7Vとの積をその電池の出力とした。初期及びパルスサイクル試験後の出力を測定し、初期の出力に対するパルスサイクル試験後の出力の割合を百分率で求め、出力維持率とした。
【0045】
各電池のパルスサイクル試験は、50±3°Cの雰囲気において各電池に約50Aの高負荷電流を充電方向及び放電方向ともに約5秒間通電し、休止時間も含め1サイクル約30秒のパルスサイクル試験を連続して10万回繰り返した。
【0046】
ゴルフカートの試験では、満充電状態の電池を搭載して定速走行を開始し、ゴルフカートが定速を維持することができなくなるまでの連続走行距離を測定した。また、満充電状態の電池を搭載して発進し、ゴルフカートが所定速度に達するまでの所要時間を測定し、加速時間とした。電池をゴルフカートからはずし、上述したパルスサイクル試験を行った後、再びゴルフカートに搭載して連続走行距離及び加速時間を同様に測定した。初期の連続走行距離及び加速時間に対するパルスサイクル試験後の連続走行距離及び加速時間の割合を百分率で求め、連続走行距離維持率及び加速時間変化率とした。
【0047】
各電池の試験結果を下表2に、ゴルフカートの試験結果を下表3にそれぞれ示す。
【0048】
【表2】
Figure 2004134369
【0049】
表2に示すように、正極活物質にコバルト酸リチウムを用い、負極バインダにPVAを用いた実施例1〜実施例6の各電池では、容量維持率が84%以上、出力維持率も90%以上を示した。また、正極活物質にスピネル結晶構造を有するマンガン酸リチウムを用い、負極バインダにPVAを用いた実施例7の電池では、初期放電容量、初期出力、容量維持率及び出力維持率がいずれも高い結果を示した。更に、正極活物質に層状岩塩型結晶構造を有するマンガン酸リチウムを用い、負極バインダにPVAを用いた実施例8の電池では、初期放電容量、初期出力及び容量維持率、出力維持率がいずれにおいても優れた値を示した。これに対して、負極バインダにPVDFを用いた比較例1〜比較例3の各電池では、容量維持率及び出力維持率がともに70%以下となり、十分な性能を得ることができなかった。従って、実施例1〜実施例8の各電池は、長寿命の電池である。
【0050】
また、バインダ含有量が体積比4%未満の実施例1の電池では、容量維持率、出力維持率は良好なものの、初期放電容量が3.38Ahと若干低い値となった。また、バインダ含有量が体積比9%より大きい実施例6の電池では、初期出力が890Wと若干低い結果となった。従って、PVAの含有量は負極合剤中の体積比4%〜9%の範囲とすることが好ましいことが分かった。
【0051】
更に、黒鉛の比表面積が4m/gより大きい実施例4の電池では、初期放電容量が3.32Ahと若干低い値を示した。従って、黒鉛の比表面積は4m/g以下とすることが好ましいことが分かった。
【0052】
【表3】
Figure 2004134369
【0053】
表3に示すように、実施例2、実施例3、実施例5、実施例7及び実施例8の電池をそれぞれ搭載した実施例9〜実施例13のゴルフカート30は、比較例1、比較例2及び比較例3の電池をそれぞれ搭載した比較例4、比較例5及び比較例6のゴルフカートに比べて、連続走行距離維持率及び加速時間変化率共に高い値を示した。仮想的な充電、走行の繰り返しに相当するパルスサイクル試験後においても連続走行距離及び加速時間の低下が極めて低く抑えられ、高性能なゴルフカートとなった。また、表2及び表3から、電池の容量維持率とゴルフカートの連続走行距離維持率、電池の出力維持率とゴルフカートの加速時間変化率は、それぞれ相関があることが判明した。
【0054】
本実施形態の円筒型リチウムイオン電池20は、負極のバインダにPVAを用いることで、負極活物質の黒鉛表面がPVAで適切に被覆されるので、ガス化などの副反応を発生する反応点が減少して初期の放電容量を向上させることができる。また、充放電による黒鉛の膨張・収縮に対して抵抗力が増加されるため、負極合剤の剥離・脱落(崩壊)が抑制されるので、容量及び出力の低下を抑制し長寿命の電池を得ることができる。また、PVAの含有量が負極合剤の体積比4%未満では黒鉛表面の被覆が不十分なため副反応が生じて容量が減少し、反対に体積比9%を超えると抵抗成分が増大するため出力が低下する。このため、PVAの含有量は負極合剤の体積比で4%〜9%の範囲が好ましい。更に、負極活物質である黒鉛の比表面積が4m/gを超えると副反応が発生しやすくなるため初期放電容量が低下する。このため、黒鉛の比表面積は4m/g以下とすることが好ましい。
【0055】
また、正極活物質にスピネル結晶構造を有するマンガン酸リチウム(LiMn)を用いた場合、スピネル結晶構造を有するマンガン酸リチウムは充電によって収縮する特性があり、充電時には、負極に捲回圧がかからなくなり、特に高温では負極合剤の剥離・脱落が起こりやすくなる。従来使用されているPVDFを負極バインダに用いたときは、負極合剤の剥離・脱落が起こり易いため、高温サイクル、高温保存時の容量の低下、出力の低下ともに大きい。負極バインダにPVAを用いたときは、負極合剤の剥離・脱落が抑制されるので、正極活物質に収縮性の大きなスピネル結晶構造を有するマンガン酸リチウムを用いても、長寿命の電池を得ることができる。又は、正極活物質に層状結晶構造を有するマンガン酸リチウム(LiMnO)を用いた場合、層状結晶構造を有するマンガン酸リチウムは、充電によりリチウムイオンを放出すると酸素間斥力のために層間距離が拡大する特性があり、負極にかかる捲回圧が増大する。このため、充電時には、負極合剤の剥離・脱落が抑制されると共に、負極バインダにPVAを用いることにより負極合剤が確実に保持されるので、容量、出力ともに維持することができ長寿命の電池を得ることができる。これらの電池を搭載したゴルフカート30は、充電、走行を繰り返しても連続走行距離、加速時間の低下が少なく、高性能なゴルフカートとすることができる。
【0056】
なお、本実施形態では、円筒型リチウムイオン電池20について例示したが、本発明は電池の形状については限定されず、角形、その他の多角形の電池にも適用可能である。また、本発明の適用可能な構造としては、上述した電池容器に電池蓋がカシメによって封口されている構造の電池以外であっても構わない。このような構造の一例として正負極外部端子が電池蓋を貫通し、電池容器内で軸芯を介して正負外部端子が押し合っている状態の電池を挙げることができる。更に本発明は、正極及び負極を捲回式の構造とせず、積層式の構造としたリチウム二次電池にも適用可能である。
【0057】
また、本実施形態では、正極活物質にコバルト酸リチウム(LiCoO)、スピネル結晶構造を有するマンガン酸リチウム(LiMn)、層状岩塩型結晶構造を有するマンガン酸リチウム(LiMnO)を用いた例を示したが、本発明のリチウム二次電池用正極活物質としては、リチウムイオンを挿入・脱離可能な材料であり、予め十分な量のリチウムイオンを挿入したリチウム遷移金属複酸化物であればよい。例えば、リチウムマンガン複酸化物、リチウムコバルト複酸化物、リチウムニッケル複酸化物等でも同様の効果が得られる。さらにこれらのリチウム遷移金属複酸化物結晶中の遷移金属やリチウムの一部をそれら以外の元素、例えば、Fe、Co、Ni、Cr、A1、Mg、等の元素で置換あるいはドープした材料や結晶中の酸素の一部をS、P等の元素で置換あるいはドープした材料を使用するようにしてもよい。更には、電池電圧として5V級が可能なリチウムマンガン複酸化物を用いても、本発明の効果には変わりない。
【0058】
更に、本実施形態では、負極活物質に黒鉛を用いた例を示したが、本発明はこれに限定されるものではなく、黒鉛質炭素であればよい。ここでいう黒鉛質炭素は、必ずしも高結晶性の黒鉛を示すのではなく、メソフェーズ系黒鉛のような、X線回折による層間距離d002が0.3354nmを超える黒鉛でもよい。X線回折で、hkl指数付けが可能な回折線が現れるものでもよい。また、粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。
【0059】
また更に、本実施形態では、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートを体積比1:1:1で混合した混合溶媒にLiPFを溶解した非水電解液を例示したが、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液を用いてもよく、本発明は用いられるリチウム塩や有機溶媒には特に制限されない。例えば、電解質としては、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を用いることができる。また、有機溶媒としては、プロピレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等、又はこれらの2種類以上を混合した混合溶媒を用いることができ、更に、混合配合比についても限定されるものではない。このような非水電解液を用いることにより電池容量の向上や寒冷地での使用にも適合させることが可能となる。更に、固体電解質を用いてもよい。
【0060】
更にまた、上記実施形態では、円筒型リチウムイオン電池20のみを動力源としたゴルフカート30を例示したが、本発明はこれに限定されることはなく、内燃機関エンジンと併用するようにしてもよい。また、電気自動車に搭載する電池の本数は、所望の出力、容量により適宜組み合わせればよく、電池の設置場所についても特に制限されない。
【0061】
そして、本実施形態では、正極、負極集電体に金属箔(アルミニウム箔、銅箔)を用いた例を示したが、本発明はこれに限定されるものではなく、メッシュ状の金属集電体を用いてもよい。
【0062】
【発明の効果】
以上説明したように、本発明によれば、負極のバインダに熱硬化性を有し可塑化されたポリビニルアルコール系樹脂を用いることで、黒鉛質炭素の膨張・収縮に対する抵抗力が増加して負極合剤の剥離・脱落が抑制されるので、得られるリチウム二次電池の容量維持率、出力維持率の低下を抑制することができると共に、熱硬化性を有し可塑化されたポリビニルアルコール系樹脂により黒鉛質炭素の表面が適切に被覆され、初充電時に電解液又は固体電解質の液成分の分解による黒鉛質炭素の表面でのガス化などの副反応の発生が抑制されるので、リチウム二次電池の電池容量の初期低下を防止することができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な実施形態のゴルフカートを模式的に示す側面図である。
【図2】本発明が適用可能な実施形態の円筒型リチウムイオン電池の断面図である。
【符号の説明】
6 捲回群(電極群)
20 円筒型リチウムイオン電池(リチウム二次電池)
30 ゴルフカート(電気自動車)
35 前部座席
36 電池箱[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium secondary battery and an electric vehicle, and in particular, includes a negative electrode in which a negative electrode mixture containing graphitic carbon and a binder is substantially evenly applied to both surfaces of a metal current collector, and a positive electrode. The present invention relates to a lithium secondary battery and an electric vehicle using the lithium secondary battery as a power source for power.
[0002]
[Prior art]
Lithium secondary batteries are mainly used as power supplies for portable devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of their high energy density. The internal structure of this battery is usually of a wound type as shown below. The electrode is a belt-shaped electrode in which the active material is coated on the metal foil with a binder (binder) for both the positive electrode and the negative electrode. The cross section is spirally wound so that the positive and negative electrodes do not come into direct contact with each other across the separator. Form a group. The wound group is housed in a cylindrical battery can serving as a battery container, and is sealed after the electrolyte is injected.
[0003]
A general cylindrical lithium secondary battery has a size of 18650, a diameter of 18 mm and a height of 65 mm, and is widely used as a small consumer lithium ion battery. As the positive electrode active material of the 18650 type lithium secondary battery, lithium cobalt oxide having high capacity and long life is mainly used. The battery capacity is approximately 1.3 Ah to 1.7 Ah, and the output is about 10 W. It is.
[0004]
On the other hand, in the automotive industry, in order to cope with environmental problems, an electric vehicle (EV) having no exhaust gas and a power source entirely using only batteries, and a hybrid (power source using both an internal combustion engine and a battery) ( The development of electric vehicles has been accelerated and some of them have been put into practical use. In order to use a lithium secondary battery as a power source of such an electric vehicle, not only high capacity but also high output which affects acceleration performance and the like, that is, reduction in internal resistance of the battery is required. In addition, it is required to extend the life of the battery in order to cope with a long use period of the electric vehicle. To extend the life here means to suppress not only a decrease in the battery capacity but also a decrease in output, and to satisfy the electric energy supply capacity necessary for running an electric vehicle for a long period of time.
[0005]
However, in the lithium secondary battery, the active material of the positive and negative electrodes repeatedly expands and contracts with the charge / discharge cycle, so that the active material is separated and dropped from the current collector. In addition, since the pressure (winding pressure) applied between the positive and negative electrodes changes due to expansion and contraction of the active material, the active material tends to peel off and fall off particularly in a high-temperature environment, and the capacity and output decrease. is there. A technique has been disclosed for securing the binding property of the positive and negative electrode mixture to the current collector by limiting the weight average molecular weight of polyvinylidene fluoride used as a binder in order to suppress peeling and falling off of the active material. (For example, see Patent Document 1).
[0006]
[Patent Document 1]
JP-A-2002-270182
[Problems to be solved by the invention]
However, in the technique of Patent Document 1 described above, since polyvinylidene fluoride used as a binder has thermoplasticity, it softens at a high temperature of 50 ° C. or higher. For this reason, in a charge / discharge cycle in a high-temperature environment, particularly an environment reaching about 50 ° C. such as an engine room such as an EV, it is possible to sufficiently secure the binding property between the positive and negative electrode mixture and the current collector. Absent. Accordingly, if a long-life lithium secondary battery capable of preventing the positive / negative electrode mixture from peeling and falling off and suppressing the reduction in capacity and output even in a charge / discharge cycle under a high-temperature environment is obtained, the spread of EV and the like is accelerated. Can be expected.
[0008]
The present invention has been made in view of the above circumstances, and provides a long-life lithium secondary battery capable of suppressing a decrease in the capacity and output maintenance rate due to a charge / discharge cycle, and an electric vehicle using the lithium secondary battery as a power supply. That is the task.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, a first aspect of the present invention is a negative electrode in which a negative electrode mixture containing graphitic carbon and a binder is substantially evenly applied to both surfaces of a metal current collector, Wherein the binder is a thermosetting and plasticized polyvinyl alcohol-based resin.
[0010]
If the expansion and contraction of the graphitic carbon, which is the negative electrode active material, is repeated with the occlusion and release of lithium ions by the charge and discharge cycle, the negative electrode mixture peels and falls off, causing a reduction in capacity and output, especially in the engine room. In a high-temperature environment of about 50 ° C. as shown in FIG. In this embodiment, by using a thermosetting and plasticized polyvinyl alcohol-based resin for the binder of the negative electrode, the resistance to expansion and contraction of the graphitic carbon is increased, and the peeling and falling off of the negative electrode mixture is suppressed. Therefore, it is possible to suppress a decrease in the capacity maintenance rate and output maintenance rate of the obtained lithium secondary battery, and to make the surface of the graphitic carbon appropriate by a plasticized polyvinyl alcohol-based resin having thermosetting properties. To prevent the occurrence of side reactions such as gasification on the surface of the graphitic carbon due to the decomposition of the electrolyte component or the liquid component of the solid electrolyte at the time of the first charge, thereby preventing the initial decrease in the battery capacity of the lithium secondary battery. Can be prevented.
[0011]
In this case, when the content of the thermosetting and plasticized polyvinyl alcohol-based resin is less than 4% by volume of the negative electrode mixture, the side surface reaction occurs due to insufficient coating on the surface of the graphitic carbon, and the capacity is reduced. When the content of the plasticized polyvinyl alcohol-based resin having a thermosetting property exceeds 9% by volume of the negative electrode mixture, the resistance component increases and the output decreases, so that the content of the polyvinyl alcohol-based resin is reduced. Is preferably 4 to 9% by volume of the negative electrode mixture. Further, if the specific surface area of the graphitic carbon as the negative electrode active material exceeds 4 m 2 / g, a side reaction is likely to occur and the initial capacity decreases, so the specific surface area of the graphitic carbon is set to 4 m 2 / g or less. Is preferred.
[0012]
Further, when a lithium transition metal double oxide is used as the positive electrode active material, the winding pressure or lamination pressure applied to the negative electrode changes with expansion and contraction of the lithium transition metal double oxide due to charge and discharge, and particularly at high temperatures. The negative electrode mixture is easily peeled and dropped. By using a thermosetting and plasticized polyvinyl alcohol-based resin for the binder of the negative electrode, peeling and falling off of the negative electrode mixture can be suppressed. Even when an oxide is used, high capacity and high output can be maintained, and a long life of the lithium secondary battery can be realized. As such a positive electrode active material, a lithium transition metal double oxide having a spinel crystal structure may be used. Since the lithium transition metal double oxide having a spinel crystal structure has excellent thermal stability, the capacity and output can be maintained even in a high temperature environment. Alternatively, a lithium transition metal double oxide having a layered crystal structure may be used as the positive electrode active material. The lithium transition metal complex oxide having a layered crystal structure expands the interlayer distance of the crystal due to charging, and expands. Therefore, pressure is applied between the positive and negative electrodes, and peeling and falling off of the negative electrode mixture are suppressed, and the negative electrode binder is removed. Since the binding property of the negative electrode mixture is ensured by the polyvinyl alcohol-based resin, high capacity and high output can be maintained.
[0013]
A second aspect of the present invention is an electric vehicle using the lithium secondary battery of the first aspect as a power source for power. According to this aspect, since the lithium secondary battery whose output and capacity are suppressed from being reduced is used as the power source, even if charging and running (discharging) are repeated, there is little decrease in acceleration performance and continuous running distance. Can be realized.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a cylindrical lithium ion battery used as a power source for driving a golf cart will be described with reference to the drawings.
[0015]
As shown in FIG. 1, the golf cart 30 includes a chassis 31 serving as a base. At a substantially central portion of the chassis 31, a battery box 36 accommodating a plurality of cylindrical lithium ion batteries 20, which will be described later, connected in series is fixed. A cushion 35 is arranged on the battery box 36, and the battery box 36 and the cushion 35 constitute a front seat.
[0016]
In front of the chassis 31, a motor using the cylindrical lithium-ion battery 20 as a power source and a power transmission mechanism for transmitting the rotational driving force of the motor shaft to the wheels are fixed to the chassis 31, and the power transmission mechanism rotates the tires. It is a structure to make it. An acceleration pedal 37 for adjusting the forward speed of the golf cart 30 is arranged at the position of the feet of the driver sitting on the front seat. The acceleration pedal 37 is connected to a variable resistor that is linked to the amount of depression, and the golf cart 30 is structured so that when the driver depresses the acceleration pedal 37, the golf cart 30 moves forward according to the amount of depression.
[0017]
The cylindrical lithium ion battery 20 housed in the battery box 36 is manufactured as follows.
[0018]
(Production of positive electrode plate)
As shown in FIG. 2, lithium cobalt oxide (LiCoO 2 ) powder or lithium manganate (LiMn 2 O 4 ) powder having a spinel crystal structure or lithium manganate (LiMnO 2 ) having a layered rock salt type crystal structure as a positive electrode active material The powder, graphite powder and acetylene black as a conductive material, and polyvinylidene fluoride (hereinafter referred to as PVDF) as a binder (binder) are mixed at a mass ratio of 85: 9: 2: 4, and a dispersion solvent is added thereto. N-methyl-2-pyrrolidone (hereinafter referred to as NMP) was added and kneaded, and the slurry was applied to both surfaces of an aluminum foil W1 (positive electrode current collector) having a thickness of 20 μm. At this time, an uncoated portion having a width of 30 mm was left on one side edge in the longitudinal direction of the positive electrode plate. Thereafter, drying, pressing, and cutting were performed to obtain a positive electrode plate having a width of 82 mm, a length of 374 cm, and a thickness of 111 μm in the active material mixture application portion. The bulk density of the positive electrode active material mixture layer W2 was 2.65 g / cm 3 . A notch was made in the uncoated portion left on the side edge, and the remaining notch was used as a positive electrode lead piece 2. Adjacent positive electrode lead pieces 2 were set at intervals of 50 mm, and the width of the positive electrode lead pieces 2 was set at 5 mm.
[0019]
(Production of negative electrode plate)
A graphite powder having a specific surface area as a negative electrode active material and an acetylene black powder as a conductive material are mixed at a mass ratio of 95: 5, and a thermosetting plasticized polyvinyl alcohol is added thereto as described later. A system resin (hereinafter referred to as PVA) was mixed at a predetermined volume ratio as a binder, and NMP as a dispersion solvent was added and kneaded to obtain a slurry. The obtained slurry was uniformly applied to both surfaces of a rolled copper foil W3 (negative electrode current collector) having a thickness of 10 μm. At this time, an uncoated portion having a width of 30 mm was left on one side edge in the longitudinal direction of the negative electrode plate. Thereafter, drying, pressing, and cutting were performed to obtain a negative electrode plate having a width of 86 mm, a length of 386 cm, and a thickness of the active material mixture application portion of 79 μm. The bulk density of the negative electrode active material mixture layer W4 was 1.00 g / cm 3 . A notch was made in the uncoated portion left on the side edge in the same manner as the positive electrode plate, and the remaining notch was used as a negative electrode lead piece 3. Adjacent negative electrode lead pieces 3 were set at intervals of 50 mm, and the width of the negative electrode lead pieces 3 was set at 5 mm.
[0020]
PVA is obtained by mixing and dissolving a first resin component composed of a thermosetting polyvinyl alcohol-based resin and a second resin component composed of an acrylic resin-based plasticizer in an appropriate organic solvent (in this embodiment, NMP). Is done. The thermosetting polyvinyl alcohol resin as the first resin component is obtained by adding a cyclic acid anhydride such as succinic anhydride to a polyvinyl alcohol resin having an average degree of polymerization of about 2,000 in an organic solvent such as NMP and triethylamine. And in the presence of such a catalyst in a substantially anhydrous state. The reaction ratio between the polyvinyl alcohol resin and the cyclic acid anhydride is such that the anhydride group of the cyclic acid anhydride is about 0.1 equivalent to 1 equivalent of the alcoholic hydroxyl group of the polyvinyl alcohol resin. As the acrylic resin-based plasticizer as the second resin component, a reaction product of a lauryl acrylate / acrylic acid copolymer and a bifunctional epoxy resin is suitable.
[0021]
The first resin component was synthesized as follows. In a separable flask equipped with a stirrer, a thermometer, a cooling pipe, a distilling pipe, and a nitrogen gas introducing pipe, 51 g of polyvinyl alcohol having a degree of saponification of about 98%, 650 g of NMP and 10 g of toluene were charged, and the mixture was stirred with nitrogen bubbling and stirring. The temperature was raised to 195 ° C over 30 minutes. The solution was kept at the same temperature for 2 hours, and toluene was refluxed to azeotropically evaporate water, thereby distilling off water in the flask. Then, toluene was distilled off, the mixture was cooled to 120 ° C., and 7.7 g of succinic anhydride was added thereto while keeping the temperature at the same temperature, and the mixture was reacted for 1 hour (per 1 equivalent of alcoholic hydroxyl group of polyvinyl alcohol, acid was added). Anhydride groups are about 0.07 equivalents). After cooling to room temperature, an NMP solution containing about 8% by mass of the first resin component was obtained.
[0022]
The second resin component was synthesized as follows. In a separable flask equipped with a stirrer, a thermometer, a cooling pipe, a distilling pipe, and a nitrogen gas introducing pipe, 110 g of a solventless lauryl acrylate / acrylic acid copolymer having a weight average molecular weight of about 3100, and a bisphenol A type epoxy resin 71 g (about 2 equivalents of epoxy group per 1 equivalent of carboxyl group of the solvent-free lauryl acrylate / acrylic acid copolymer) was added, and the temperature was raised to 150 ° C. over about 15 minutes with nitrogen bubbling and stirring. did. After keeping the temperature at the same temperature for 2 hours to advance the reaction, 78 g of NMP was added thereto and cooled to room temperature to obtain an NMP solution of about 70% by weight of the second resin component.
[0023]
An NMP solution of 8% by weight of the first resin component and an NMP solution of about 70% by weight of the second resin component are mixed at a ratio of 100: 10 in terms of mass of each resin component to obtain an NMP solution of PVA. Was.
[0024]
(Production of battery)
The produced positive electrode plate and negative electrode plate were wound together with a polyethylene separator W5 having a width of 90 mm and a thickness of 40 μm so that these two electrode plates did not come into direct contact with each other. At the center of the winding, a hollow cylindrical shaft core 1 made of polypropylene was used. At this time, the positive electrode lead piece 2 and the negative electrode lead piece 3 were located on both end surfaces of the winding group 6 on the opposite sides. The lengths of the positive electrode plate, the negative electrode plate, and the separator were adjusted, and the diameter of the winding group 6 was set to 38 ± 0.1 mm.
[0025]
After the positive electrode lead pieces 2 are deformed, and all of them are gathered and brought into contact with the vicinity of a flange peripheral surface integrally projecting from the periphery of the positive electrode current collecting ring 4 substantially on the extension of the shaft core 1 of the winding group 6, Then, the positive electrode lead 2 and the flange peripheral surface were ultrasonically welded to connect the positive electrode lead 2 to the flange peripheral surface. On the other hand, the connection operation between the negative electrode current collector ring 5 and the negative electrode lead piece 3 was also performed in the same manner as the connection operation between the positive electrode current collector ring 4 and the positive electrode lead piece 2.
[0026]
Thereafter, an insulating coating was applied to the entire periphery of the flange peripheral surface of the positive electrode current collecting ring 4. For this insulating coating, a pressure-sensitive adhesive tape was used in which the base material was polyimide and one side thereof was coated with a pressure-sensitive adhesive composed of hexamethacrylate. This adhesive tape was wound one or more times from the peripheral surface of the flange portion to the outer peripheral surface of the winding group 6 to form an insulating coating, and the winding group 6 was inserted into the battery container 7. A nickel-plated steel container having an outer diameter of 40 mm and an inner diameter of 39 mm was used as the battery container 7.
[0027]
A negative electrode lead plate 8 for electrical conduction is welded to the negative electrode current collecting ring 5 in advance. After the winding group 6 is inserted into the battery container 7, the bottom of the battery container 7 and the negative electrode lead plate 8 are welded. .
[0028]
On the other hand, a positive electrode lead 9 formed by laminating a plurality of aluminum ribbons in advance is welded to the positive electrode current collecting ring 4, and the other end of the positive electrode lead 9 is sealed with a battery for closing the battery container 7. Welded to the underside of the lid. The battery lid is provided with a cleavage valve 11 as an internal pressure release mechanism that is opened in accordance with an increase in the internal pressure of the cylindrical lithium ion battery 20. The cleavage pressure of the cleavage valve 11 was set to about 9 × 10 5 Pa. The battery lid is composed of a lid case 12, a lid cap 13, a valve retainer 14 for keeping airtightness, and a cleavage valve 11, and these are stacked and assembled by caulking the periphery of the lid case 12. I have.
[0029]
A predetermined amount of non-aqueous electrolyte is injected into the battery container 7, and then the battery cover 7 is covered with the battery cover so that the positive electrode lead 9 is folded, and caulked and sealed via an EPDM resin gasket 10. Thus, the cylindrical lithium ion battery 20 was completed.
[0030]
As the non-aqueous electrolyte, a solution prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a mole ratio of 1 mol / L in a mixed solvent of ethylene carbonate, dimethyl carbonate and diethyl carbonate at a volume ratio of 1: 1: 1 was used.
[0031]
【Example】
Next, examples of the cylindrical lithium ion battery 20 and the golf cart 30 manufactured according to the present embodiment will be described. Hereinafter, the cylindrical lithium-ion battery 20 will be described in detail in Examples 1 to 8, and the golf cart 30 will be described in Examples 9 to 13. A battery and a golf cart of a comparative example produced for comparison are also described.
[0032]
(Example 1)
As shown in Table 1 below, in Example 1, lithium cobalt oxide (LiCoO 2 ) powder was used for the positive electrode active material, graphite powder having a specific surface area of 3.1 m 2 / g was used for the negative electrode active material, and the negative electrode binder was used for the negative electrode binder. PVA was used. The binder content was set to 3.2% by volume of the negative electrode mixture.
[0033]
[Table 1]
Figure 2004134369
[0034]
(Examples 2 to 6)
As shown in Table 1, Examples 2 to 6 were the same as Example 1 except that the specific surface area of graphite and the content of PVA were variously changed. In Example 2, the specific surface area of graphite was 3.9 m 2 / g, and the binder content was 4.1%. In Example 3, the specific surface area of graphite was 2.4 m 2 / g, and the binder content was 5. In Example 4, the specific surface area of graphite was 6.4 m 2 / g and the binder content was 5.8%. In Example 5, the specific surface area of graphite was 2.3 m 2 / g and the binder content was In Example 6, the specific surface area was 3.1 m 2 / g, and the binder content was 11.3%.
[0035]
(Example 7)
As shown in Table 1, in Example 7, lithium manganate (LiMn 2 O 4 ) powder having a spinel crystal structure was used for the positive electrode active material, and graphite powder having a specific surface area of 2.6 m 2 / g was used for the negative electrode active material. And PVA was used for the negative electrode binder. The binder content was 5.8%.
[0036]
(Example 8)
As shown in Table 1, in Example 8, a lithium manganate (LiMnO 2 ) powder having a layered rock salt type crystal structure was used for the positive electrode active material, and a graphite powder having a specific surface area of 2.4 m 2 / g was used for the negative electrode active material. And PVA was used for the negative electrode binder. The binder content was 5.8%.
[0037]
(Examples 9 to 13)
In the ninth to thirteenth examples, 72 cylindrical lithium-ion batteries 20 of the second, third, fifth, seventh, and eighth examples were connected in series and mounted on the golf cart 30. .
[0038]
(Comparative Example 1)
As shown in Table 1, in Comparative Example 1, a cylindrical lithium ion battery was manufactured in the same manner as in Example 3, except that PVDF was used as the negative electrode binder.
[0039]
(Comparative Example 2)
As shown in Table 1, Comparative Example 2 was performed in the same manner as in Example 3 except that lithium manganate (LiMn 2 O 4 ) powder having a spinel crystal structure was used for the positive electrode active material and PVDF was used for the negative electrode binder. Thus, a cylindrical lithium ion battery was manufactured.
[0040]
(Comparative Example 3)
As shown in Table 1, Comparative Example 3 was performed in the same manner as in Example 3 except that lithium manganate (LiMnO 2 ) powder having a layered rock salt type crystal structure was used for the positive electrode active material and PVDF was used for the negative electrode binder. Thus, a cylindrical lithium ion battery was manufactured.
[0041]
(Comparative Examples 4 to 6)
In Comparative Examples 4 to 6, 72 cylindrical lithium ion batteries produced in Comparative Examples 1 to 3 were connected in series and mounted on a golf cart.
[0042]
<Test / Evaluation>
Next, the following series of tests were performed on the batteries and golf carts of the examples and comparative examples manufactured as described above.
[0043]
The batteries of the example and the comparative example were discharged after being charged, and the discharge capacity was measured in an atmosphere at an environmental temperature of 25 ± 2 ° C. The charging conditions were a constant voltage of 4.1 V, a limiting current of 5 A, and 2.5 hours, and the discharging conditions were a constant current of 1 A and a final voltage of 2.7 V. The discharge capacity after the pulse cycle test at the initial stage and after the pulse cycle test described later was measured, and the ratio of the discharge capacity after the pulse cycle test to the initial discharge capacity was determined as a percentage, which was defined as the capacity retention ratio.
[0044]
After charging each battery under the above-described charging conditions (fully charged state), the output was measured in an atmosphere at an environmental temperature of 25 ± 2 ° C. The measurement conditions were as follows: the battery was discharged for 10 seconds at current values of 10 A, 30 A, and 90 A, and the battery voltage value at each 5 seconds was plotted on the vertical axis against the horizontal axis current value. A current value at a point crossing 2.7 V, which is the final voltage, was read, and the product of this current value and 2.7 V was used as the output of the battery. The output after the initial cycle and after the pulse cycle test was measured, and the ratio of the output after the pulse cycle test to the initial output was calculated as a percentage, which was defined as the output maintenance rate.
[0045]
In the pulse cycle test of each battery, a high load current of about 50 A is applied to each battery in an atmosphere of 50 ± 3 ° C for about 5 seconds in both the charging direction and the discharging direction, and a pulse cycle of about 30 seconds per cycle including a pause time. The test was repeated 100,000 times continuously.
[0046]
In the golf cart test, the vehicle was driven at a constant speed with a fully charged battery, and the continuous running distance until the golf cart could not maintain the constant speed was measured. The time required for the golf cart to start with the fully charged battery and to reach the predetermined speed was measured and defined as the acceleration time. After removing the battery from the golf cart and performing the pulse cycle test described above, the battery was mounted again on the golf cart, and the continuous running distance and the acceleration time were measured in the same manner. The percentages of the continuous running distance and the acceleration time after the pulse cycle test with respect to the initial continuous running distance and the acceleration time were determined as percentages, and were defined as the continuous running distance maintenance rate and the acceleration time change rate.
[0047]
The test results for each battery are shown in Table 2 below, and the test results for the golf cart are shown in Table 3 below.
[0048]
[Table 2]
Figure 2004134369
[0049]
As shown in Table 2, in each of the batteries of Examples 1 to 6 using lithium cobalt oxide as the positive electrode active material and PVA as the negative electrode binder, the capacity retention rate was 84% or more and the output retention rate was 90%. The above is shown. Further, in the battery of Example 7 using lithium manganate having a spinel crystal structure as the positive electrode active material and using PVA as the negative electrode binder, the initial discharge capacity, the initial output, the capacity retention, and the output retention were all high. showed that. Furthermore, in the battery of Example 8 using lithium manganate having a layered rock salt type crystal structure for the positive electrode active material and using PVA for the negative electrode binder, the initial discharge capacity, the initial output and the capacity retention rate, Also showed excellent values. On the other hand, in each of the batteries of Comparative Examples 1 to 3 using PVDF as the negative electrode binder, both the capacity retention ratio and the output retention ratio were 70% or less, and sufficient performance could not be obtained. Therefore, the batteries of Examples 1 to 8 are long-life batteries.
[0050]
Further, in the battery of Example 1 in which the binder content was less than 4% by volume, the capacity retention ratio and the output retention ratio were good, but the initial discharge capacity was a slightly lower value of 3.38 Ah. In the battery of Example 6 in which the binder content was larger than 9% by volume, the initial output was slightly lower at 890 W. Therefore, it was found that the content of PVA is preferably in the range of 4% to 9% by volume in the negative electrode mixture.
[0051]
Furthermore, in the battery of Example 4 in which the specific surface area of graphite was larger than 4 m 2 / g, the initial discharge capacity showed a slightly low value of 3.32 Ah. Therefore, it was found that the specific surface area of graphite is preferably 4 m 2 / g or less.
[0052]
[Table 3]
Figure 2004134369
[0053]
As shown in Table 3, the golf carts 30 of Examples 9 to 13 equipped with the batteries of Example 2, Example 3, Example 5, Example 7, and Example 8 respectively correspond to Comparative Example 1 and Comparative Example 1. Both the continuous running distance maintenance rate and the acceleration time change rate showed higher values as compared with the golf carts of Comparative Examples 4, 5 and 6 equipped with the batteries of Example 2 and Comparative Example 3, respectively. Even after the pulse cycle test corresponding to the repetition of virtual charging and running, the reduction of the continuous running distance and the acceleration time was suppressed extremely low, and a high-performance golf cart was obtained. Further, from Tables 2 and 3, it was found that the battery capacity maintenance rate and the golf cart continuous running distance maintenance rate, and the battery output maintenance rate and the golf cart acceleration time change rate had correlations.
[0054]
In the cylindrical lithium-ion battery 20 of the present embodiment, by using PVA for the binder of the negative electrode, the graphite surface of the negative electrode active material is appropriately coated with PVA, so that the reaction point at which a side reaction such as gasification occurs is reduced. Thus, the initial discharge capacity can be improved. In addition, since the resistance to the expansion and contraction of graphite due to charge and discharge is increased, peeling and falling off (collapse) of the negative electrode mixture is suppressed. Obtainable. When the content of PVA is less than 4% by volume of the negative electrode mixture, the graphite surface is insufficiently coated, so that a side reaction occurs to reduce the capacity, and when the content exceeds 9%, the resistance component increases. Therefore, the output decreases. Therefore, the content of PVA is preferably in the range of 4% to 9% by volume of the negative electrode mixture. Further, when the specific surface area of graphite as the negative electrode active material exceeds 4 m 2 / g, a side reaction is likely to occur, so that the initial discharge capacity decreases. For this reason, it is preferable that the specific surface area of graphite be 4 m 2 / g or less.
[0055]
In addition, when lithium manganate having a spinel crystal structure (LiMn 2 O 4 ) is used as the positive electrode active material, lithium manganate having a spinel crystal structure has a property of contracting upon charging. In particular, at high temperatures, the negative electrode mixture tends to peel off or fall off. When a conventionally used PVDF is used for the negative electrode binder, the negative electrode mixture is apt to peel off and fall off, so that both the high-temperature cycle, the reduction in capacity during high-temperature storage, and the reduction in output are large. When PVA is used for the negative electrode binder, peeling and falling off of the negative electrode mixture is suppressed, so that a long-life battery is obtained even when lithium manganate having a large shrinkable spinel crystal structure is used for the positive electrode active material. be able to. Alternatively, when lithium manganate having a layered crystal structure (LiMnO 2 ) is used as the positive electrode active material, the lithium manganate having the layered crystal structure emits lithium ions upon charging, and the interlayer distance increases due to repulsion between oxygen. And the winding pressure applied to the negative electrode increases. For this reason, at the time of charging, peeling and falling off of the negative electrode mixture are suppressed, and since the negative electrode mixture is reliably held by using PVA for the negative electrode binder, both capacity and output can be maintained, and a long life can be maintained. You can get a battery. The golf cart 30 equipped with these batteries can be a high-performance golf cart with little decrease in continuous running distance and acceleration time even when charging and running are repeated.
[0056]
In the present embodiment, the cylindrical lithium-ion battery 20 has been described as an example. However, the present invention is not limited to the shape of the battery, and can be applied to a square or other polygonal battery. The structure to which the present invention can be applied may be a battery other than the above-described battery container in which the battery lid is sealed by caulking. As an example of such a structure, a battery in a state where positive and negative external terminals penetrate a battery lid and positive and negative external terminals are pressed together via a shaft core in a battery container can be given. Further, the present invention is also applicable to a lithium secondary battery having a stacked structure without using a positive electrode and a negative electrode in a wound structure.
[0057]
In the present embodiment, lithium cobaltate (LiCoO 2 ), lithium manganate having a spinel crystal structure (LiMn 2 O 4 ), and lithium manganate having a layered rock salt type crystal structure (LiMnO 2 ) are used as the positive electrode active material. The positive electrode active material for a lithium secondary battery of the present invention is a material capable of inserting and removing lithium ions, and a lithium transition metal complex oxide in which a sufficient amount of lithium ions has been inserted in advance. Should be fine. For example, a similar effect can be obtained with a lithium manganese double oxide, a lithium cobalt double oxide, a lithium nickel double oxide, or the like. Further, a material or crystal in which a part of the transition metal or lithium in these lithium transition metal double oxide crystals is substituted or doped with another element such as Fe, Co, Ni, Cr, A1, Mg, or the like. It is also possible to use a material in which a part of the oxygen inside is replaced or doped with an element such as S or P. Further, even if a lithium manganese double oxide capable of providing a battery voltage of 5V class is used, the effect of the present invention is not changed.
[0058]
Furthermore, in the present embodiment, an example in which graphite is used as the negative electrode active material has been described, but the present invention is not limited to this, and any graphite graphite may be used. Graphitic carbon referred to herein do not necessarily indicate highly crystalline graphite, such as mesophase graphite, the interlayer distance d 002 by X-ray diffraction may be a graphite exceeds 0.3354 nm. In X-ray diffraction, a diffraction line that can be assigned an hkl index may be used. Also, the particle shape is not particularly limited, such as a flake shape, a spherical shape, a fibrous shape, and a massive shape.
[0059]
Furthermore, in this embodiment, a non-aqueous electrolyte in which LiPF 6 is dissolved in a mixed solvent of ethylene carbonate, dimethyl carbonate, and diethyl carbonate mixed at a volume ratio of 1: 1: 1 has been described. As the electrolyte, a non-aqueous electrolyte obtained by dissolving this in an organic solvent may be used, and the present invention is not particularly limited to the lithium salt and the organic solvent used. For example, as the electrolyte, LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof can be used. Examples of the organic solvent include propylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3-dioxolan, diethyl ether, Sulfolane, methylsulfolane, acetonitrile, propionitrile, and the like, or a mixed solvent obtained by mixing two or more thereof can be used, and the mixing ratio is not limited. By using such a non-aqueous electrolyte, it is possible to improve the battery capacity and adapt the battery to use in cold regions. Further, a solid electrolyte may be used.
[0060]
Furthermore, in the above-described embodiment, the golf cart 30 using only the cylindrical lithium ion battery 20 as a power source is illustrated, but the present invention is not limited to this, and may be used in combination with an internal combustion engine. Good. Further, the number of batteries mounted on the electric vehicle may be appropriately combined depending on the desired output and capacity, and the location of the batteries is not particularly limited.
[0061]
In the present embodiment, an example in which metal foils (aluminum foil, copper foil) are used for the positive electrode and the negative electrode current collector has been described. However, the present invention is not limited to this, and a mesh-shaped metal current collector is used. A body may be used.
[0062]
【The invention's effect】
As described above, according to the present invention, by using a thermosetting and plasticized polyvinyl alcohol-based resin for the binder of the negative electrode, the resistance to expansion and contraction of the graphitic carbon increases, Since the exfoliation and falling off of the mixture are suppressed, a decrease in the capacity retention rate and output retention rate of the obtained lithium secondary battery can be suppressed, and a thermosetting plasticized polyvinyl alcohol-based resin. This ensures that the surface of the graphitic carbon is appropriately covered, and suppresses the occurrence of side reactions such as gasification on the surface of the graphitic carbon due to decomposition of the electrolytic solution or the liquid component of the solid electrolyte at the time of the first charge. The effect of being able to prevent the initial decrease in the battery capacity of the battery can be obtained.
[Brief description of the drawings]
FIG. 1 is a side view schematically showing a golf cart according to an embodiment to which the present invention can be applied.
FIG. 2 is a sectional view of a cylindrical lithium ion battery according to an embodiment to which the present invention can be applied.
[Explanation of symbols]
6 Winding group (electrode group)
20 Cylindrical lithium-ion battery (lithium secondary battery)
30 golf cart (electric car)
35 Front seat 36 Battery box

Claims (7)

黒鉛質炭素とバインダとを含む負極合剤が金属集電体の両面に実質的に均等に塗着された負極と、正極とを有するリチウム二次電池において、前記バインダが、熱硬化性を有し可塑化されたポリビニルアルコール系樹脂であることを特徴とするリチウム二次電池。In a lithium secondary battery having a negative electrode in which a negative electrode mixture containing graphitic carbon and a binder is substantially uniformly applied to both surfaces of a metal current collector, and a positive electrode, the binder has thermosetting properties. A lithium secondary battery comprising a plasticized polyvinyl alcohol-based resin. 前記ポリビニルアルコール系樹脂の含有量は、前記負極合剤の4体積%以上9体積%以下であることを特徴とする請求項1に記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the content of the polyvinyl alcohol-based resin is 4% by volume or more and 9% by volume or less of the negative electrode mixture. 前記黒鉛質炭素の比表面積は、4m/g以下であることを特徴とする請求項1又は請求項2に記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the specific surface area of the graphitic carbon is 4 m 2 / g or less. 前記正極の活物質は、リチウム遷移金属複酸化物であることを特徴とする請求項1乃至請求項3のいずれか1項に記載のリチウム二次電池。4. The lithium secondary battery according to claim 1, wherein the positive electrode active material is a lithium transition metal double oxide. 5. 前記正極の活物質は、スピネル結晶構造を有するリチウム遷移金属複酸化物であることを特徴とする請求項1乃至請求項4のいずれか1項に記載のリチウム二次電池。5. The lithium secondary battery according to claim 1, wherein the active material of the positive electrode is a lithium transition metal double oxide having a spinel crystal structure. 6. 前記正極の活物質は、層状結晶構造を有するリチウム遷移金属複酸化物であることを特徴とする請求項1乃至請求項4のいずれか1項に記載のリチウム二次電池。The lithium secondary battery according to any one of claims 1 to 4, wherein the active material of the positive electrode is a lithium transition metal double oxide having a layered crystal structure. 請求項1乃至請求項6のいずれか1項に記載のリチウム二次電池を動力用電源として用いたことを特徴とする電気自動車。An electric vehicle using the lithium secondary battery according to any one of claims 1 to 6 as a power source for power.
JP2003189937A 2002-08-13 2003-07-02 Lithium secondary battery and electric automobile Abandoned JP2004134369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189937A JP2004134369A (en) 2002-08-13 2003-07-02 Lithium secondary battery and electric automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002235343 2002-08-13
JP2003189937A JP2004134369A (en) 2002-08-13 2003-07-02 Lithium secondary battery and electric automobile

Publications (1)

Publication Number Publication Date
JP2004134369A true JP2004134369A (en) 2004-04-30

Family

ID=32301022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189937A Abandoned JP2004134369A (en) 2002-08-13 2003-07-02 Lithium secondary battery and electric automobile

Country Status (1)

Country Link
JP (1) JP2004134369A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008113133A1 (en) * 2007-03-20 2008-09-25 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device
JP2009238681A (en) * 2008-03-28 2009-10-15 Nissan Motor Co Ltd Electrode for lithium-ion battery
JP2012134129A (en) * 2010-11-29 2012-07-12 Sumitomo Chemical Co Ltd Electrode mixture paste, electrode, and nonaqueous electrolytic secondary battery
US8585921B2 (en) 2006-01-18 2013-11-19 Lg Chem, Ltd. Electrode material containing polyvinyl alcohol as binder and rechargeable lithium battery comprising the same
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9263746B2 (en) 2012-08-01 2016-02-16 Samsung Sdi Co., Ltd. Binder for electrode of lithium rechargeable battery and electrode for rechargeable battery comprising the same
US9318743B2 (en) 2012-08-01 2016-04-19 Samsung Sdi Co., Ltd. Binder for electrode of lithium rechargeable battery and electrode for rechargeable battery comprising the same
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8585921B2 (en) 2006-01-18 2013-11-19 Lg Chem, Ltd. Electrode material containing polyvinyl alcohol as binder and rechargeable lithium battery comprising the same
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
JP2010521783A (en) * 2007-03-20 2010-06-24 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Optimized energy storage device
AU2008229650B2 (en) * 2007-03-20 2012-02-16 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
WO2008113133A1 (en) * 2007-03-20 2008-09-25 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device
JP2009238681A (en) * 2008-03-28 2009-10-15 Nissan Motor Co Ltd Electrode for lithium-ion battery
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508986B2 (en) 2010-11-29 2016-11-29 Sumitomo Chemical Company, Limited Electrode mixture paste, electrode, and non-aqueous electrolyte rechargeable battery
JP2012134129A (en) * 2010-11-29 2012-07-12 Sumitomo Chemical Co Ltd Electrode mixture paste, electrode, and nonaqueous electrolytic secondary battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
US9318743B2 (en) 2012-08-01 2016-04-19 Samsung Sdi Co., Ltd. Binder for electrode of lithium rechargeable battery and electrode for rechargeable battery comprising the same
US9263746B2 (en) 2012-08-01 2016-02-16 Samsung Sdi Co., Ltd. Binder for electrode of lithium rechargeable battery and electrode for rechargeable battery comprising the same

Similar Documents

Publication Publication Date Title
JP7120307B2 (en) Battery electrode and manufacturing method thereof
US9214671B2 (en) Nonaqueous electrolyte battery, battery pack and rechargeable vacuum cleaner
US7923152B2 (en) Nonaqueous electrolyte battery, battery pack and vehicle
CN102842733B (en) Lithium rechargeable battery, lithium ion secondary battery negative pole and set of cells
US20060134515A1 (en) Energy device and various applications using the same
JP2002358966A (en) Lithium secondary battery positive electrode plate and lithium secondary battery
EP2565968A1 (en) Active material, electrode, secondary battery, battery pack, electric vehicle, electric energy storage system, electric power tool, and electronic unit
EP3637491A1 (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic apparatus
JP2008243729A (en) Nonaqueous electrolyte battery, battery pack, and automobile
JP2010160982A (en) Anode for lithium-ion secondary battery and lithium-ion secondary battery
JP2007257862A (en) Electrode for secondary battery, and secondary battery
JP2003308842A (en) Nonaqueous electrolyte lithium secondary battery
JP2010160985A (en) Lithium ion secondary cell negative electrode and lithium ion secondary cell using the same
JP2004134369A (en) Lithium secondary battery and electric automobile
JP2020053407A (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool and electronic equipment
JP2004134208A (en) Lithium secondary battery and electric vehicle
JP3591506B2 (en) Non-aqueous electrolyte secondary battery
JP2004134365A (en) Lithium secondary battery and electric automobile
JP4048763B2 (en) Non-aqueous electrolyte secondary battery
JP2010073420A (en) Non-aqueous electrolyte secondary battery
JP4238657B2 (en) Lithium secondary battery and electric vehicle
JP6849066B2 (en) Rechargeable batteries, battery packs, electric vehicles, power storage systems, power tools and electronics
JP5320854B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4839518B2 (en) Non-aqueous electrolyte secondary battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20081016