JP2004134134A - Porous gas diffusion body, and reversible cell using it - Google Patents

Porous gas diffusion body, and reversible cell using it Download PDF

Info

Publication number
JP2004134134A
JP2004134134A JP2002295294A JP2002295294A JP2004134134A JP 2004134134 A JP2004134134 A JP 2004134134A JP 2002295294 A JP2002295294 A JP 2002295294A JP 2002295294 A JP2002295294 A JP 2002295294A JP 2004134134 A JP2004134134 A JP 2004134134A
Authority
JP
Japan
Prior art keywords
cell
gas diffuser
ptfe
reversible
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002295294A
Other languages
Japanese (ja)
Other versions
JP4355828B2 (en
Inventor
Kazuaki Yasuda
安田 和明
Tsutomu Iokura
五百蔵 勉
Naokazu Kumagai
熊谷 直和
Takaaki Oku
屋 隆了
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Daiki Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Engineering Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Daiki Engineering Co Ltd
Priority to JP2002295294A priority Critical patent/JP4355828B2/en
Publication of JP2004134134A publication Critical patent/JP2004134134A/en
Application granted granted Critical
Publication of JP4355828B2 publication Critical patent/JP4355828B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-performance gas diffusion body capable of smoothly supplying/exhausting hydrogen gas and oxygen gas, and supplying/draining water, in a porous gas diffusion body of a constituent part of a solid polymer type reversible cell having two functions of a water electrolytic cell and a fuel cell. <P>SOLUTION: This porous gas diffusion body is formed as an aggregate of fibers of a conductive substance, the surfaces of the individual fibers are coated with a fluororesin (PTFE), and the coating amount thereof is set in the range of 0.06-1.20mg/cm<SP>2</SP>with respect to the total surface area of the fibers. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子電解質(以下「電解質」を略し、単に「固体高分子」という。)型の可逆セルを構成する部分である、多孔質のガス拡散体の改良に関する。本発明は、この改良されたガス拡散体をそなえた可逆セルをも包含する。
【0002】
【従来の技術】
近年、オンサイト型の直流電源として、固体高分子型の水素−空気(酸素)燃料電池(PEFC)を用い、水素および酸素の製造にも固体高分子型の水電解セル(PEWE)を用いた、再生式の燃料電池システム(RFC)を、集合住宅、業務用ビル、さらには自動車に適用することが検討されるようになった。PEFCとPEWEという二種類のモジュールは、基本的な構造が類似することから、これらを一体化した固体高分子型の燃料電池−水電解可逆セル(一体化再生燃料電池「URFC]ともいう。以下「可逆セル」と略称する。)として、ひとつのモジュールにすることが可能である。この可逆セルを利用して上記のようなエネルギー変換システムを構成する方法が、特開2002−142386、特開2002−135911、および小沢ほか「冷凍」76号1〜6頁(2001)に開示されている。
【0003】
可逆セルは、基本的には図1に示すように、1枚の電極−固体高分子接合体(以下「MEA」という。)と、2枚の多孔質ガス拡散体と、2枚の複極板またはエンドプレートとからなる構成部材を、
複極板/ガス拡散体/MEA/ガス拡散体/複極板
の順で積層してなり、1セルあたりに、酸素極室と水素極室とを各1室有するような、ゼロギャップ隔膜室式のセルを、1個または複数個、通常は多数個、有する構造をもつものである。
【0004】
このような可逆セルに使用するMEAは、実際に電気化学反応を進行させる反応の場であり、固体高分子膜の両面に、水素酸化および水素発生ならびに酸素発生および酸素還元に対して活性を有する触媒の層として、金属微粉末、固体高分子電解質およびフッ素樹脂(ポリテトラフルオロエチレンが代表的であるから、以下「PTFE」という。)の混合物の層を、熱圧着により積層して得られる。この技術に関しては、五百蔵ほか「固体高分子型燃料電池・水電解可逆セルにおける電極触媒層の低減」第67回電気化学大会予稿集第251頁(2000)が参考になる。
【0005】
可逆セルの金属触媒には、Pt、IrもしくはRuなどの貴金属、またはそれらの水酸化物もしくは酸化物が使用できるが、これらのうちでは、特開2000−342965に開示のように、Pt、Irおよびこれらの水酸化物または酸化物が、好適に用いられる。
【0006】
可逆セルを構成する複極板またはエンドプレートに対しては、外部から供給される電力または反応剤を、隔膜によって区画される各電極室内へ円滑かつ均一に供給する機能と、各室内における反応の結果生成した物質や電力を、円滑に外部に取り出す機能とが要求される。
【0007】
複極板およびエンドプレートは、通常Tiのような材料で製作され、基板表面に、水およびガスの流通する溝と、少なくとも2個のマニホールドとを機械加工により設けたものであって、その表面をPtなどで被覆して、十分な導電性を確保したものが用いられる。
【0008】
可逆セル内に配置するガス拡散体は、図2に示すように、水素極の電極面と酸素極の電極面との双方に1個ずつ、複極板またはエンドプレートと電極面との間に挟まれて存在し、外部から各セル室内に供給された反応剤または電力を、電気化学反応の場となる電極面に均一に供給し、かつ電極面で発生した生成物や電力を、速やかに外部へ取り出す機能を果たすものである。ガス拡散体はまた、外部から供給された電力を反応の場に供給する給電体として、またはそこで発生した電力を外部に取り出すための集電体としてもはたらく。
【0009】
通常、ガス拡散体としては、代表的にはTiの多孔質体、とりわけTi繊維の不織布を基体として使用し、これに熱分解や電気メッキによってPtを被覆し、さらに不織布の表面をPTFEで被覆して製作したものが用いられている。
【0010】
ガス拡散体の基体の材質としてTiを好んで使用するのは、酸素極室において耐アノード溶解性が求められるためである。したがって、バルブ作用を有し、アノード環境での使用に耐えるTaなどのバルブメタルであれば、Tiに代えて使用することができる。これに対し、水素極室で使用する基材の材質にはあまり制限がなく、カーボンやステンレスなどの使用が可能である。ガス拡散体の基体は、五百蔵ほか「固体高分子型燃料電池・水電解可逆セルの電極構造の検討」第68回電気化学大会予稿集第378頁(2001)」によれば、空隙率の高いものが好ましく、空隙率を75%程度とするのが適切とのことである。
【0011】
ガス拡散体の表面をPTFEで被覆するのは、撥水性を与えて、燃料電池運転時の水素ガスおよび酸素ガスの供給が、反応生成水や加湿蒸気の凝集によって阻害されないこと、水電解から燃料電池への運転切り替え時に、ガス拡散体内に凝集水が残留しにくくなることを意図したものである。実際、水電解専用のセルでは、PTFEの被覆をしないのが普通である。
【0012】
ところが、撥水性のPTFEをガス拡散体の内部に存在させると、内部の親水性が低くなるから、細孔内の通水性が低下する。発明者らはこのことを、水電解操作時に、電極面、とりわけ酸素極への反応水の供給が妨げられ、反応物の供給が律速となって水電解セルの性能が低下する、という事実にもとづいて確認している。
【0013】
燃料電池の運転時には、酸素極において、
4H+4e→2H
なる反応により、水が生じる。生成する水が電極面に残留し電極面が濡れてくると、電極触媒層でのガスの流通が悪くなり、反応の場となる気−液−固の三相界面も減少するので、燃料電池の性能が低下する。酸素極で生成した水は、速やかに外部へ排出しなければならないので、ガス拡散体は水とガスの両方の流通がよいことが望ましいが、ガス拡散体内部の撥水性が高いときは、生成水の排出がスムーズでなくなり、のちに示す図4にみるように、水の生成量が少ない低電流密度での運転は可能であっても、水の生成量が多くなる高電流密度においては、燃料電池の運転が実質上できない。
【0014】
このように、ガス拡散体内のガスの供給排出のみに着目してPTFEを被覆させたガス拡散体は、水電解運転時の電極面への水の供給や、燃料電池運転時の反応生成水の排出にとって不利なものであるため、可逆セルとしての性能が期待どおりに得られない。
【0015】
【発明が解決しようとする課題】
発明の目的は、水電解槽と燃料電池の二つの機能を有する固体高分子型の可逆セルの構成部分である多孔質ガス拡散体において、水素ガスおよび酸素ガスの供給排出に加えて、水の供給排出をも円滑に行なうことができる、高性能のガス拡散体を提供することにある。このようなガス拡散体をそなえた可逆セルを提供することもまた、本発明の目的に含まれる。
【0016】
【課題を解決するための手段】
本発明の多孔質ガス拡散体は、水電解槽と燃料電池の二つの機能を有する固体高分子型の可逆セルの構成部分である多孔質ガス拡散体において、多孔質ガス拡散体が導電性物質の繊維の集合体であって、個々の繊維の表面をフッ素樹脂(PTFE)で被覆してあり、その被覆量が、繊維の全表面積に関して0.06〜1.20mg/cmの範囲にあることを特徴とする。
【0017】
【発明の実施の形態】
本発明のガス拡散体の好適な態様は、Tiのようなバルブメタル、またはステンレス鋼やカーボンなどの導電性物質からなる繊維の不織布を基材とし、これにPtの電気メッキまたはPt化合物の熱分解によってPt被覆を施した上で、その個々の繊維の表面に、PTFEを上記の特定量被覆して製造したものである。このようにして得られるガス拡散体は、ガス拡散体の表面および内部の細孔内において、親水性部位と疎水性部位とがバランスよく配置され、気体である水素ガスおよび酸素ガスと、液体である水との両方に対して良好な、供給排出性を有する。
【0018】
本発明に従うガス拡散体の基材の材質は、酸素極室側に配置するものにおいてはバルブメタルが適切であり、中でも、安価なTiが好適に用いられる。水素極室側に配置するものにおいては、バルブメタルはもちろん好適であるが、それ以外にも、ステンレス鋼やカーボンが使用できる。
【0019】
ガス拡散体を構成する繊維の集合体は、ガスおよび水の流通性、圧力損失の大小、PtおよびPTFEを塗布するために使用する液の浸透性などの観点から、繊維の直径が30〜100μmの不織布であって、気孔率70〜90%、厚さ0.3〜1.0mm程度のものが好ましい。繊維は、円形か、円形でなくても規則的な断面を有し、長さも既知であって、繊維の表面積をなるべく正確に算出できるものが、表面へのPTFEの被覆量を正確にコンとロールする上で好ましい。不織布は、セル内に配置するとき、またはあらかじめ圧縮成型する場合に加わる、20〜150kgf/cmの応力の下においても、0.3〜0.7mmの厚さを維持できるような機械的強度と柔軟性を有するものが好ましい。
【0020】
酸素極室側に配置されるガス拡散体はバルブメタルであることを要し、そのため、導電性の確保を目的として、電気メッキ、無電解メッキまたは化合物の熱分解による、Ptの被覆を施すことが好ましい。水素極室内に配置するガス拡散体も、Tiを使用する場合は、水素脆化を防止するため、Pt被覆を施すとよい。Ptの被覆量は、0.4〜20mg/cmあれば、十分な効果が得られる。
【0021】
Ptの被覆に当って、未反応のPt錯塩や有機物等が残留して、被覆の密着性が良好でない状態のままで、ガス拡散体を可逆セル内に配置すると、触媒性能の低下、電解質膜の導電性の低下および流路の閉塞を生じて、セルの性能が低下する。これを避けるには、Pt被覆をした後に、エタノールのような揮発性溶媒中で超音波洗浄して、未反応物や被覆の不良な箇所を除いておくことが望ましい。
【0022】
上記のように用意した多孔質体の繊維の表面にPTFEの被覆を設けるには、PTFEの分散液を塗布し、空気中で25〜100℃に保って乾燥させた後、327〜400℃に1時間以上加熱して、PTFEを溶着させる処理を施す。PTFEの分散液は、市場で入手できるものでよいが、水や有機溶剤などの媒体中にPTFEが分散している液であって、PTFE含有量が0.6〜15重量%であり、1〜15重量%のアニオン系、カチオン系または非イオン系の界面活性剤が含まれているものが好適である。このようなPTFE分散液であれば、粒子の沈降が生じ難く、塗布が容易である。分散液の適用中に、攪拌効果が得られるようにすることが好ましい。PTFE分散液を基体の繊維表面に塗布するには、浸漬、スプレーなど任意の方法が採用できるが、簡易で均一な塗布ができる点で、浸漬法が最適である。
【0023】
「繊維の全表面積に関して、PTFEの被覆量が0.06〜1.20mg/cmとなるように」とは、基体を構成する繊維の表面積を合計したものの単位面積あたりの被覆量(mg/cm)が、この数値の範囲内にあることを意味する。すなわち、多孔質体に添加されたPTFEの固体重量(mg)を、基材の重量、基材の密度、および繊維の直径から算出される全繊維表面積(cm)で除して得られる被覆量を、0.06〜1.20mg/cmとすることである。
【0024】
このように、基材の全表面積を問題にするのは、流通する水、水素ガスおよび酸素ガスは、基材の表面および内部において、固−液、気−液または気−固−液の界面を形成しており、基材を構成する繊維の表面を被覆したPTFEがどのくらい存在するかが、水およびガスの流通性を実質的に決定するからである。PTFEの被覆量は、分散液の濃度と塗布量の選択によりコントロールする。浸漬の場合は、塗布量がほぼ決定されるから、濃度が決め手である。1回の被覆で必要な被覆量に達しなければ、2回以上繰り返して被覆すればよい。
【0025】
乾燥により分散媒を除去した後に行なう熱処理は、基体の繊維と、塗布−乾燥の後に繊維上に保持されたPTFEの粒子とを、溶着させることが主な目的である。従って、代表的なPTFEの融点である、約327℃を上回る温度に加熱すればよく、加熱時間は1時間またはそれ以上とする。このとき、PTFEの分散液中に残っていた界面活性剤などの有機物を、熱分解させ、揮発させて除去する効果も期待できるので、加熱は、不活性ガスの流通下または真空中で実施することが好ましい。同様の理由から、熱処理後にガス拡散体を溶剤中で超音波洗浄することも好ましい。
【0026】
【実施例】
形状および材質が均一なTi繊維の不織布からなる基体に、まずPt被覆処理を行ない、つぎに被覆するPTFEの量を0〜5.48mg/cmの間で変化させて、ガス拡散体を製造した。類似の製造方法によるMEAと、同じ形状構造のエンドプレートおよび複極板を使用し、上記のガス拡散体を酸素極室内に配置した可逆セルを組立て、その燃料電池および水電解槽としての性能を測定した。セル温度は80℃、供給する水素ガスおよび酸素ガスの圧力は常圧である。燃料電池のときと、水電解のときとの両方で、端子間の電圧と、セルの内部抵抗(カレントインターラプター法による)を測定した。
【0027】
セルの内部抵抗とは、主に導体等の電気抵抗によって生じる抵抗であり、内部抵抗に起因するIR損失分に相当する電圧を補正して得られる電圧は、本来、セル自身が有する性能を示す数値として扱うことができる。このようにして得られるセル電圧のデータから、以下の式により、電力変換効率、エネルギー変換効率および可逆運転効率を算出した。これらの効率は、エネルギー媒体として使用される可逆セルにおいては、実質的に重要な指標である。
【0028】
電力変換効率(燃料電池の運転効率の指標):
εfc=ΔG/ΔH=nFEfc/ΔH 353
エネルギー変換効率(水電解の運転効率の指標):
εwe=ΔH 353/ΔG=ΔH 353/nFEwe
可逆運転効率(可逆セルの運転効率の指標):
εtotal=εfc×εwe=Efc/Ewe
ここで、F:ファラデー定数(C)、ΔH 353:284.038kJ/mol、n=2、水素および酸素発生電流効率は、ほぼ100%とする。
【0029】
これらの可逆セルを燃料電池モードで運転した場合に、ガス拡散体へのPTFEの被覆量が燃料電池性能に与える影響を示すデータとして、電流密度500mA/cmおよび1000mA/cmにおける、セル電圧および電力変換効率を表1に示す。
【0030】
表1の「運転不可」は、運転中にセル電圧が断続的に下降し、安定な電力変換が不可能であったことを意味する。電流密度500mA/cmの場合、PTFE被覆量0.06〜2.80mg/cmにおいて燃料電池の運転が可能であるが、電流密度1000mA/cmの場合、PTFEの被覆量が0.06〜1.17mg/cmの範囲でしか、燃料電池の運転が行なえない。これは、ガス拡散体の細孔内の疎水性が高い場合には、生成水の排出がスムーズにできず、水の生成量が少ない低電流密度での運転は可能であっても、水の生成量が多くなる高電流密度においては酸素ガス供給が妨害され、酸素ガスの拡散が律速となって、燃料電池の性能が低下することによる。このようなガス拡散体は、可逆セルに使用するのに適したものとはいえない。
【0031】
これに対し、PTFE被覆量が0.06〜1.17mg/cmであるように製造した本発明のガス拡散体であれば、ガス拡散体の表面および細孔内において、親水性部位と疎水性部位とがバランスよく配置されているため、気体である水素および酸素と、液体である水の両方について、良好な供給および排出が同時にできるので、1000mA/cmの高電流密度においても、燃料電池による電力変換が可能となる。中でも、0.29mg/cm付近のPTFE被覆量の場合に、最も高い電力変換効率を与えるガス拡散体が実現している。
【0032】
可逆セルを水電解モードで運転した場合に、ガス拡散体へのPTFEの被覆量が水電解性能に与える影響を示すデータとして、電流密度500mA/cm、1000mA/cmにおけるセル電圧およびエネルギー変換効率を、表2に示した。
【0033】
表2のデータによれば、PTFEの被覆量が最大の5.48mg/cmの場合は、運転が不可能ではないが、電圧が高すぎるために、電極触媒や電解質膜の破損が懸念され、実質的な使用に耐えない。被覆量が0〜2.80mg/cmとなるように製造したガス拡散体においては、電流密度1000mA/cmの高電流密度においても、安定した運転が可能であり、エネルギー変換効率は、PTFE被覆量が減少するにつれて、向上する結果となっている。これは、PTFE被覆量が多いほど、ガス拡散体の表面および細孔内において、疎水性の部分が増加して親水性部分が減少し、電極面、とりわけ酸素極への水の供給が不十分となり、拡散過電圧の上昇が進むことを示している。
【0034】
セル電圧が上昇すると、前述したようにセルの破損につながることから、水電解の運転を続けて行なうには、PTFEの被覆量を2.80mg/cm以下としたガス拡散体を製造し、表面および細孔内において親水性部位と疎水性部位がバランスするようにしなければならない。PTFE被覆量2.80mg/cm以下の範囲において、被覆量を少なくするほど、水電解に対して高い効率を示すガス拡散体を得ることができる。
【0035】
電流密度500mA/cmおよび1000mA/cmにおいて、上記の可逆セルを、燃料電池モード−水電解モードで可逆的に運転して得られる可逆運転効率に、ガス拡散体へのPTFEの被覆量が与える影響についてしらべ、表3に示した。
【0036】
表3の結果から、PTFE被覆量が0.06〜1.17mg/cmとなるように製造したガス拡散体は、親水性部位と疎水性部位とがバランスよく配置されており、1000mA/cmという高電流密度においても、可逆セルとして安定な性能を維持し、水電解槽および燃料電池としての運転を行ない、高い可逆運転効率を得ることができることがわかる。
【0037】
とりわけ、PTFEの被覆量を0.06〜0.29mg/cmとすれば、親水性部位と疎水性部位が最もバランスよく配置されるため、可逆運転効率が、500mA/cmで50%以上、1000mA/cmでも44〜45%という高い値で運転することが可能な可逆セルが得られる。
【0038】
表 1

Figure 2004134134
【0039】
表 2
Figure 2004134134
【0040】
表 3
Figure 2004134134
【0041】
[実施例2]
0.06mg/cmまたは0.14mg/cmのPTFEを被覆したガス拡散体をセル内に配置した可逆セルを用いて、実施例1と同様な、燃料電池と水電解槽の性能測定を3〜4回繰り返して実施し、繰り返し運転に対する安定性と、ガス拡散体に対するPTFEの適切な被覆量について検討した。表4の結果を得た。
【0042】
表4において、数値の記載がない場合は、水電解の運転は可能であったものの、燃料電池の運転が、電圧の断続的低下によって不可能であり、結果として可逆運転効率の算出が不可能であったことを示す。
【0043】
PTFE被覆量が0.06mg/cmであるガス拡散体を配置したセルは、初期の可逆運転効率は良好であったが、1回目の繰り返し運転を実施した後には、電流密度500mA/cmにおいて効率が51%から37%にまで低下し、かつ、このセルにおいては、2回目以降の、電流密度1000mA/cmにおける燃料電池としての運転は不可能であった。
【0044】
一方、PTFE被覆量が0.14mg/cmであるガス拡散体を配置したセルは、1〜4回の繰り返し運転において、電流密度1000mA/cmにおいても、44%から46%と、安定した可逆運転効率が得られた。
【0045】
繰り返し運転によって可逆運転効率が低下することは、水電解−燃料電池の可逆運転を連続的に行なう必要がある可逆セルにおいて、致命的な欠点である。繰り返し運転によって燃料電池性能が低下したのは、ガス拡散体の疎水性部分の機能低下や、PTFE被覆量が元来少なく、水はけがよくないために、水が大量に存在する水電解操作後の凝集水の除去が進み難いためと理解される。繰り返し運転に対するセルの安定性を維持するためには、あらかじめガス拡散体の疎水性部分を多く設けておくことが効果的で、そのためには、ガス拡散体に対するPTFE被覆量を、すくなくとも0.14mg/cmにしておく必要があることがわかった。
【0046】
表 4
Figure 2004134134
【0047】
【発明の効果】
本発明のガス拡散体、すなわち多孔質ガス拡散体を構成する繊維の表面積に関して0.06〜1.20mg/cmのPTFEを被覆したガス拡散体を、水電解槽と燃料電池の二つの機能を有する固体高分子型の水電解−燃料電池可逆セルに使用すれば、水電解および燃料電池としての運転安定性、電力変換効率、エネルギー変換効率の向上が実現し、可逆運転効率が良好な可逆セルが得られる。たとえば電流密度500mA/cmにおいて、水電解−燃料電池の可逆運転効率として45%を超える可逆セルを構成することが可能である。
【0048】
とりわけ、PTFE被覆量が好ましい範囲である0.06〜0.85mg/cmに入るようにしたガス拡散体を用いることによって、可逆セルのいっそうの高性能化を実現することができる。この場合には、可逆運転効率が、500mA/cmで49%、1000mA/cmでも40%を超える可逆セルが実現する。
【0049】
さらに、PTFE被覆量が、繰り返し運転性にとって好ましい範囲である0.14〜1.20mg/cmに入るようにしたガス拡散体を用いた可逆セルでは、水電解−燃料電池の繰り返し運転において、安定した性能が達成できる。
【図面の簡単な説明】
【図1】固体高分子電解質型の水電解−燃料電池可逆セルについて、一般的な構造を説明する断面図。
【図2】固体高分子電解質型の水電解−燃料電池可逆セルにおける、電子、水、酸素および水素のやり取りを説明する図であって、水電解運転時の状況を示す。
【図3】固体高分子電解質型の水電解−燃料電池可逆セルにおける、電子、水、酸素および水素のやり取りを説明する図であって、燃料電池運転時の状況を示す。
【図4】種々の量のPTFE被覆を施したガス拡散体を備えるセルにおける、燃料電池としての性能を示す電流−電圧曲線。
【図5】種々の量のPTFE被覆を施したガス拡散体を備えるセルにおける、水電解槽としての性能を示す電流−電圧曲線。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a porous gas diffuser, which is a part of a solid polymer electrolyte (hereinafter abbreviated as “electrolyte” and simply referred to as “solid polymer”) type reversible cell. The present invention also includes a reversible cell with the improved gas diffuser.
[0002]
[Prior art]
In recent years, a polymer electrolyte hydrogen-air (oxygen) fuel cell (PEFC) has been used as an on-site DC power supply, and a polymer electrolyte water electrolysis cell (PEWE) has been used for the production of hydrogen and oxygen. The application of regenerative fuel cell systems (RFCs) to apartment buildings, commercial buildings, and even automobiles has been considered. Since the two types of modules, PEFC and PEWE, have similar basic structures, they are also referred to as a solid polymer type fuel cell-water electrolysis reversible cell (an integrated regenerated fuel cell “URFC”). It is possible to make one module as a “reversible cell”. A method of configuring the above-described energy conversion system using the reversible cell is disclosed in JP-A-2002-142386, JP-A-2002-135911, and Ozawa et al., "Refrigeration" No. 76, pp. 1-6 (2001). ing.
[0003]
As shown in FIG. 1, a reversible cell basically has one electrode-solid polymer junction (hereinafter, referred to as “MEA”), two porous gas diffusers, and two bipolar electrodes. Component consisting of a plate or an end plate,
A zero-gap diaphragm chamber which is laminated in the order of bipolar plate / gas diffuser / MEA / gas diffuser / bipolar plate and has one oxygen electrode chamber and one hydrogen electrode chamber per cell. It has a structure having one or more, usually many, cells of the formula.
[0004]
The MEA used in such a reversible cell is a reaction site where an electrochemical reaction actually proceeds, and has an activity on both sides of a solid polymer membrane for hydrogen oxidation and hydrogen generation and oxygen generation and oxygen reduction. The catalyst layer is obtained by laminating a layer of a mixture of a metal fine powder, a solid polymer electrolyte, and a fluororesin (hereinafter, referred to as “PTFE” because polytetrafluoroethylene is typical). Regarding this technology, reference can be made to Gohyakuzo et al., "Reduction of Electrode Catalyst Layer in Polymer Electrolyte Fuel Cell / Water Electrolytic Reversible Cell", Proceedings of the 67th Electrochemical Conference, page 251 (2000).
[0005]
As the metal catalyst of the reversible cell, a noble metal such as Pt, Ir or Ru, or a hydroxide or oxide thereof can be used. Among them, as disclosed in JP-A-2000-342965, Pt, Ir And these hydroxides or oxides are suitably used.
[0006]
For a bipolar plate or an end plate constituting a reversible cell, a function of smoothly and uniformly supplying power or a reactant supplied from the outside to each electrode chamber partitioned by a diaphragm, and a function of a reaction in each chamber. It is required to have a function to smoothly take out the resulting substances and electric power to the outside.
[0007]
The bipolar plate and the end plate are usually made of a material such as Ti, and are provided with grooves for water and gas flow and at least two manifolds on the surface of the substrate by machining. Coated with Pt or the like to ensure sufficient conductivity.
[0008]
As shown in FIG. 2, the gas diffusers arranged in the reversible cell are provided one each at both the electrode surface of the hydrogen electrode and the electrode surface of the oxygen electrode, and between the electrode plate or the end plate and the electrode surface. The reactant or electric power that is sandwiched between and supplied from outside to each cell chamber is uniformly supplied to the electrode surface that is the site of the electrochemical reaction, and the products and electric power generated on the electrode surface are quickly It fulfills the function of taking out to the outside. The gas diffuser also serves as a power supply for supplying externally supplied power to the reaction site, or as a current collector for extracting power generated therein to the outside.
[0009]
Normally, as a gas diffuser, typically, a porous body of Ti, particularly a non-woven fabric of Ti fiber is used as a substrate, which is coated with Pt by pyrolysis or electroplating, and the surface of the non-woven fabric is further coated with PTFE. What was manufactured by using it.
[0010]
The reason why Ti is preferably used as the material of the substrate of the gas diffuser is that anode dissolution resistance is required in the oxygen electrode chamber. Therefore, any valve metal such as Ta that has a valve action and can withstand use in an anode environment can be used instead of Ti. On the other hand, the material of the base material used in the hydrogen electrode chamber is not particularly limited, and carbon, stainless steel, or the like can be used. According to Sakura et al., "Study on Electrode Structure of Polymer Electrolyte Fuel Cell / Water Electrolysis Reversible Cell", Proceedings of the 68th Electrochemical Conference, p. 378 (2001), the gas diffusion body has a high porosity. It is preferable that the porosity be about 75%.
[0011]
The surface of the gas diffuser is coated with PTFE because it imparts water repellency so that the supply of hydrogen gas and oxygen gas during operation of the fuel cell is not hindered by the coagulation of reaction product water and humidified steam. It is intended that coagulated water hardly remains in the gas diffuser when the operation is switched to the battery. In fact, a cell dedicated to water electrolysis usually does not have PTFE coating.
[0012]
However, when water-repellent PTFE is present inside the gas diffuser, the hydrophilicity inside the gas diffuser is reduced, and the water permeability in the pores is reduced. The inventors consider this fact in the fact that, during the water electrolysis operation, the supply of reaction water to the electrode surface, particularly the oxygen electrode, is hindered, and the supply of reactants is rate-limiting, resulting in a decrease in the performance of the water electrolysis cell. Confirmed based on.
[0013]
During operation of the fuel cell, at the oxygen electrode,
4H + + 4e → 2H 2 O
The reaction produces water. If the generated water remains on the electrode surface and the electrode surface gets wet, the flow of gas in the electrode catalyst layer deteriorates, and the gas-liquid-solid three-phase interface where the reaction takes place is also reduced. Performance is reduced. Since the water generated at the oxygen electrode must be quickly discharged to the outside, it is desirable that the gas diffuser has a good flow of both water and gas. As shown in FIG. 4, the discharge of water is not smooth, and the operation at a low current density where the amount of generated water is small is possible, but at a high current density where the amount of generated water is large, Operation of the fuel cell is substantially impossible.
[0014]
As described above, the gas diffuser coated with PTFE by focusing only on the supply and discharge of the gas in the gas diffuser supplies the water to the electrode surface during the water electrolysis operation and the reaction product water during the fuel cell operation. Since it is disadvantageous for discharge, the performance as a reversible cell cannot be obtained as expected.
[0015]
[Problems to be solved by the invention]
An object of the present invention is to provide a porous gas diffuser that is a component of a polymer electrolyte reversible cell having two functions of a water electrolysis tank and a fuel cell, in addition to supplying and discharging hydrogen gas and oxygen gas, An object of the present invention is to provide a high-performance gas diffuser that can smoothly supply and discharge gas. It is also an object of the present invention to provide a reversible cell including such a gas diffuser.
[0016]
[Means for Solving the Problems]
The porous gas diffuser according to the present invention is a porous gas diffuser which is a constituent part of a polymer electrolyte type reversible cell having two functions of a water electrolysis tank and a fuel cell, wherein the porous gas diffuser is made of a conductive material. Wherein the surface of each fiber is coated with fluororesin (PTFE), and the coating amount is in the range of 0.06 to 1.20 mg / cm 2 with respect to the total surface area of the fiber. It is characterized by the following.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
A preferred embodiment of the gas diffuser of the present invention is based on a valve metal such as Ti, or a nonwoven fabric of a fiber made of a conductive material such as stainless steel or carbon, and electroplating Pt or heat-treating the Pt compound. It is produced by applying Pt coating by decomposition and then coating the surface of each individual fiber with PTFE in the above-mentioned specific amount. In the gas diffuser obtained in this way, the hydrophilic part and the hydrophobic part are arranged in a well-balanced manner on the surface and inside the pores of the gas diffuser, and the gaseous hydrogen gas and oxygen gas and the liquid It has good supply and discharge characteristics for both with certain water.
[0018]
As the material of the base material of the gas diffuser according to the present invention, a valve metal is suitable for the material disposed on the oxygen electrode chamber side, and among them, inexpensive Ti is suitably used. In the case of the arrangement on the hydrogen electrode chamber side, valve metal is of course suitable, but other than that, stainless steel or carbon can be used.
[0019]
The aggregate of the fibers constituting the gas diffuser has a fiber diameter of 30 to 100 μm from the viewpoints of gas and water flow, pressure loss, permeability of a liquid used for applying Pt and PTFE, and the like. And a non-woven fabric having a porosity of 70 to 90% and a thickness of about 0.3 to 1.0 mm is preferable. Fibers have a circular or non-circular shape, have a regular cross section, have a known length, and can calculate the surface area of the fiber as accurately as possible. Preferred for rolling. The non-woven fabric has a mechanical strength capable of maintaining a thickness of 0.3 to 0.7 mm even under a stress of 20 to 150 kgf / cm 2 applied when placed in a cell or pre-compressed. And those having flexibility.
[0020]
The gas diffuser disposed on the oxygen electrode chamber side needs to be a valve metal, and therefore, for the purpose of ensuring conductivity, Pt is coated by electroplating, electroless plating, or thermal decomposition of a compound. Is preferred. When Ti is also used for the gas diffuser disposed in the hydrogen electrode chamber, Pt coating may be applied to prevent hydrogen embrittlement. If the coating amount of Pt is 0.4 to 20 mg / cm 2 , a sufficient effect can be obtained.
[0021]
When a gas diffuser is placed in a reversible cell in a state where unreacted Pt complex salts and organic substances remain during the coating of Pt and the adhesion of the coating is not good, the catalyst performance is reduced, and the electrolyte membrane is deteriorated. , And the performance of the cell is degraded. In order to avoid this, it is desirable that after the Pt coating, ultrasonic cleaning is performed in a volatile solvent such as ethanol to remove unreacted substances and defective portions of the coating.
[0022]
In order to provide PTFE coating on the surface of the porous fiber prepared as described above, a dispersion of PTFE is applied, dried at 25 to 100 ° C in air, and then dried at 327 to 400 ° C. Heating is performed for 1 hour or more to perform a process of welding PTFE. The PTFE dispersion may be a commercially available one, but is a liquid in which PTFE is dispersed in a medium such as water or an organic solvent, and has a PTFE content of 0.6 to 15% by weight. Those containing up to 15% by weight of an anionic, cationic or nonionic surfactant are preferred. With such a PTFE dispersion, sedimentation of particles hardly occurs, and application is easy. Preferably, a stirring effect is obtained during the application of the dispersion. In order to apply the PTFE dispersion to the fiber surface of the substrate, any method such as immersion or spraying can be adopted, but the immersion method is most suitable because simple and uniform application is possible.
[0023]
The phrase "so that the coating amount of PTFE is 0.06 to 1.20 mg / cm 2 with respect to the total surface area of the fiber" means that the coating amount per unit area of the total surface area of the fibers constituting the substrate (mg / mg / cm 2). cm 2 ) is within the range of this numerical value. That is, the coating obtained by dividing the solid weight (mg) of PTFE added to the porous body by the total fiber surface area (cm 2 ) calculated from the weight of the substrate, the density of the substrate, and the diameter of the fiber. The amount is 0.06 to 1.20 mg / cm 2 .
[0024]
Thus, the problem of the total surface area of the substrate is that the flowing water, hydrogen gas, and oxygen gas form a solid-liquid, gas-liquid or gas-solid-liquid interface on the surface and inside of the substrate. This is because the amount of PTFE covering the surface of the fiber constituting the base material substantially determines the flow of water and gas. The coating amount of PTFE is controlled by selecting the concentration of the dispersion and the coating amount. In the case of immersion, the concentration is crucial since the amount of application is almost determined. If the required coating amount is not reached in one coating, the coating may be repeated two or more times.
[0025]
The main purpose of the heat treatment performed after the removal of the dispersion medium by drying is to fuse the fibers of the base with the particles of PTFE held on the fibers after coating and drying. Therefore, the heating may be performed at a temperature higher than about 327 ° C., which is a typical melting point of PTFE, and the heating time may be one hour or more. At this time, an effect of thermally decomposing and volatilizing and removing organic substances such as a surfactant remaining in the dispersion of PTFE can also be expected. Therefore, heating is performed under a flow of an inert gas or in a vacuum. Is preferred. For the same reason, it is also preferable to ultrasonically clean the gas diffuser in a solvent after the heat treatment.
[0026]
【Example】
A substrate made of a nonwoven fabric of Ti fiber having a uniform shape and material is first subjected to a Pt coating treatment, and then the amount of PTFE to be coated is changed between 0 and 5.48 mg / cm 2 to produce a gas diffuser. did. A reversible cell in which the above-mentioned gas diffuser is disposed in an oxygen electrode chamber is assembled by using an MEA manufactured by a similar manufacturing method, an end plate and a bipolar plate having the same shape and structure, and the performance as a fuel cell and a water electrolyzer is evaluated. It was measured. The cell temperature is 80 ° C., and the pressures of the supplied hydrogen gas and oxygen gas are normal pressure. The voltage between terminals and the internal resistance of the cell (by the current interrupter method) were measured both in the case of the fuel cell and the case of the water electrolysis.
[0027]
The internal resistance of a cell is a resistance mainly generated by electric resistance of a conductor or the like, and a voltage obtained by correcting a voltage corresponding to an IR loss due to the internal resistance originally indicates the performance of the cell itself. Can be treated as a number. From the cell voltage data thus obtained, the power conversion efficiency, the energy conversion efficiency, and the reversible operation efficiency were calculated by the following equations. These efficiencies are substantially important indicators in reversible cells used as energy media.
[0028]
Power conversion efficiency (index of fuel cell operating efficiency):
ε fc = ΔG / ΔH = nFE fc / ΔH 0 353
Energy conversion efficiency (indicator of operating efficiency of water electrolysis):
ε we = ΔH 0 353 / ΔG = ΔH 0 353 / nFE we
Reversible operation efficiency (index of operation efficiency of reversible cell):
ε total = ε fc × ε we = E fc / E we
Here, F: Faraday constant (C), ΔH 0 353 : 284.038 kJ / mol, n = 2, and the hydrogen and oxygen generation current efficiencies are assumed to be almost 100%.
[0029]
When these reversible cells were operated in the fuel cell mode, data showing the effect of the amount of PTFE coated on the gas diffuser on the fuel cell performance include cell voltage at current densities of 500 mA / cm 2 and 1000 mA / cm 2 . Table 1 shows the power conversion efficiency.
[0030]
“Operation disabled” in Table 1 means that the cell voltage intermittently dropped during operation, and stable power conversion was impossible. When the current density is 500 mA / cm 2 , the fuel cell can be operated at a PTFE coating amount of 0.06 to 2.80 mg / cm 2 , but when the current density is 1000 mA / cm 2 , the PTFE coating amount is 0.06 The operation of the fuel cell can be performed only in the range of 1.11.17 mg / cm 2 . This is because when the hydrophobicity in the pores of the gas diffuser is high, the generated water cannot be discharged smoothly, and the operation at a low current density where the amount of generated water is small is possible. At a high current density at which the amount of generation is large, the supply of oxygen gas is obstructed, and diffusion of oxygen gas is rate-determined, thereby deteriorating the performance of the fuel cell. Such gas diffusers are not suitable for use in reversible cells.
[0031]
On the other hand, in the case of the gas diffuser of the present invention manufactured so that the PTFE coating amount is 0.06 to 1.17 mg / cm 2 , the hydrophilic portion and the hydrophobic portion are formed on the surface and in the pores of the gas diffuser. Since the active sites are arranged in a well-balanced manner, good supply and discharge of both gaseous hydrogen and oxygen and liquid water can be performed simultaneously, so that even at a high current density of 1000 mA / cm 2 , Power conversion by a battery becomes possible. Above all, a gas diffuser providing the highest power conversion efficiency is realized when the PTFE coating amount is around 0.29 mg / cm 2 .
[0032]
When the reversible cell is operated in the water electrolysis mode, data showing the effect of the amount of PTFE coated on the gas diffuser on the water electrolysis performance include cell voltage and energy conversion at current densities of 500 mA / cm 2 and 1000 mA / cm 2 . The efficiency is shown in Table 2.
[0033]
According to the data in Table 2, when the coating amount of PTFE is 5.48 mg / cm 2 , the operation is not impossible, but since the voltage is too high, the electrode catalyst and the electrolyte membrane may be damaged. Not endure substantial use. In the gas diffuser manufactured so that the coating amount is 0 to 2.80 mg / cm 2 , stable operation is possible even at a high current density of 1000 mA / cm 2 , and the energy conversion efficiency is PTFE. As the coverage decreases, the result is improved. This is because, as the PTFE coating amount increases, the hydrophobic portion increases and the hydrophilic portion decreases on the surface and in the pores of the gas diffuser, and the water supply to the electrode surface, particularly the oxygen electrode, is insufficient. It shows that the rise of the diffusion overvoltage progresses.
[0034]
When the cell voltage rises, the cell is damaged as described above. Therefore, in order to continue the operation of water electrolysis, a gas diffuser having a PTFE coating amount of 2.80 mg / cm 2 or less is manufactured. The balance between hydrophilic and hydrophobic sites on the surface and in the pores must be achieved. In the range of the PTFE coating amount of 2.80 mg / cm 2 or less, the gas diffusion material having higher efficiency in water electrolysis can be obtained as the coating amount is reduced.
[0035]
At current densities of 500 mA / cm 2 and 1000 mA / cm 2 , the reversible operation efficiency obtained by reversibly operating the above-mentioned reversible cell in the fuel cell mode-water electrolysis mode is reduced by the amount of PTFE coated on the gas diffuser. The effects are shown in Table 3.
[0036]
From the results in Table 3, the gas diffuser manufactured so that the PTFE coating amount is 0.06 to 1.17 mg / cm 2 has a hydrophilic portion and a hydrophobic portion arranged in a well-balanced manner, and 1000 mA / cm 2. It can be seen that even at a high current density of 2 , stable performance is maintained as a reversible cell, and operation as a water electrolysis tank and a fuel cell is performed, and high reversible operation efficiency can be obtained.
[0037]
In particular, when the coating amount of PTFE is 0.06 to 0.29 mg / cm 2 , the hydrophilic portion and the hydrophobic portion are arranged in the best balance, so that the reversible operation efficiency is 50% or more at 500 mA / cm 2. , A reversible cell capable of operating at a high value of 44 to 45% even at 1000 mA / cm 2 .
[0038]
Table 1
Figure 2004134134
[0039]
Table 2
Figure 2004134134
[0040]
Table 3
Figure 2004134134
[0041]
[Example 2]
The 0.06 mg / cm 2 or 0.14 mg / cm 2 of PTFE was coated gas diffusion member with reversible cells arranged in the cell, similar to Example 1, the performance measurement of the fuel cell and water electrolyser The test was repeated three to four times, and the stability to the repetitive operation and the appropriate coating amount of PTFE on the gas diffuser were examined. The results in Table 4 were obtained.
[0042]
In Table 4, when no numerical value is described, although the operation of water electrolysis was possible, the operation of the fuel cell was impossible due to the intermittent decrease in voltage, and as a result, the calculation of the reversible operation efficiency was impossible. It was shown that it was.
[0043]
The cell in which the gas diffuser having the PTFE coating amount of 0.06 mg / cm 2 was arranged had good initial reversible operation efficiency, but after the first repetitive operation, the current density was 500 mA / cm 2. , The efficiency decreased from 51% to 37%, and in this cell, it was impossible to operate as a fuel cell at the current density of 1000 mA / cm 2 after the second time.
[0044]
On the other hand, the cell in which the gas diffuser having the PTFE coating amount of 0.14 mg / cm 2 was arranged stably from 44% to 46% even at a current density of 1000 mA / cm 2 in a repeated operation of 1 to 4 times. Reversible operation efficiency was obtained.
[0045]
The decrease in the reversible operation efficiency due to the repeated operation is a fatal drawback in a reversible cell in which it is necessary to continuously perform the reversible operation of the water electrolysis-fuel cell. The performance of the fuel cell decreased due to the repeated operation because the function of the hydrophobic portion of the gas diffuser deteriorated, and the PTFE coating amount was originally small and drainage was poor. It is understood that it is difficult to remove the coagulated water. In order to maintain the stability of the cell against repeated operation, it is effective to provide a large amount of the hydrophobic portion of the gas diffuser in advance. For this purpose, the PTFE coating amount on the gas diffuser must be at least 0.14 mg. / Cm 2 .
[0046]
Table 4
Figure 2004134134
[0047]
【The invention's effect】
The gas diffuser of the present invention, that is, the gas diffuser coated with PTFE having a surface area of 0.06 to 1.20 mg / cm 2 with respect to the surface area of the fiber constituting the porous gas diffuser, has two functions of a water electrolysis tank and a fuel cell. When used in a solid polymer type water electrolysis-fuel cell reversible cell having the following characteristics, the operation stability, power conversion efficiency, and energy conversion efficiency of water electrolysis and fuel cells are improved, and the reversible operation efficiency is good. A cell is obtained. For example, at a current density of 500 mA / cm 2 , it is possible to configure a reversible cell having a reversible operation efficiency of the water electrolysis-fuel cell exceeding 45%.
[0048]
In particular, by using a gas diffuser having a PTFE coating amount within a preferable range of 0.06 to 0.85 mg / cm 2 , it is possible to further improve the performance of the reversible cell. In this case, the reversible operation efficiency is 49% at 500mA / cm 2, a reversible cell more than 40% even 1000 mA / cm 2 realized.
[0049]
Further, in a reversible cell using a gas diffuser in which the PTFE coating amount is within a range of 0.14 to 1.20 mg / cm 2 which is a preferable range for the repetitive operation, in the repetitive operation of the water electrolysis-fuel cell, Stable performance can be achieved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a general structure of a solid polymer electrolyte type water electrolysis-fuel cell reversible cell.
FIG. 2 is a diagram for explaining exchange of electrons, water, oxygen and hydrogen in a reversible cell of a solid polymer electrolyte type water electrolysis-fuel cell, and shows a state during water electrolysis operation.
FIG. 3 is a view for explaining exchange of electrons, water, oxygen and hydrogen in a reversible cell of a solid polymer electrolyte type water electrolysis-fuel cell, and shows a situation during operation of the fuel cell.
FIG. 4 is a current-voltage curve showing the performance as a fuel cell of a cell having gas diffusers coated with various amounts of PTFE.
FIG. 5 is a current-voltage curve showing performance as a water electrolyzer in a cell including gas diffusers coated with various amounts of PTFE.

Claims (3)

水電解槽と燃料電池の二つの機能を有する固体高分子電解質型の可逆セルの構成部分である多孔質のガス拡散体において、多孔質のガス拡散体が導電性物質の繊維の集合体であって、個々の繊維の表面をフッ素樹脂で被覆してあり、その被覆量が、繊維の全表面積に関して0.06〜1.20mg/cmの範囲にあることを特徴とする多孔質ガス拡散体。In a porous gas diffuser that is a component of a solid polymer electrolyte type reversible cell having two functions of a water electrolysis tank and a fuel cell, the porous gas diffuser is an aggregate of fibers of a conductive substance. Wherein the surface of each fiber is coated with a fluororesin, and the coating amount is in the range of 0.06 to 1.20 mg / cm 2 with respect to the total surface area of the fiber. . 導電性物質の繊維が、チタン、ステンレス鋼またはカーボンの繊維である請求項1の多孔質ガス拡散体。The porous gas diffuser according to claim 1, wherein the fiber of the conductive substance is a fiber of titanium, stainless steel, or carbon. 少なくとも1組の、[複極板/ガス拡散体/電極−電解質膜接合体/ガス拡散体/複極板]からなる構成ユニットを有する可逆セルであって、請求項1または2に記載した多孔質ガス拡散体を有する可逆セル。A reversible cell having at least one set of constituent units consisting of [double electrode plate / gas diffuser / electrode-electrolyte membrane assembly / gas diffuser / double electrode plate], wherein the porous cell according to claim 1 or 2 is provided. Cell with a porous gas diffuser.
JP2002295294A 2002-10-08 2002-10-08 Porous gas diffuser and reversible cell using the same Expired - Lifetime JP4355828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002295294A JP4355828B2 (en) 2002-10-08 2002-10-08 Porous gas diffuser and reversible cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002295294A JP4355828B2 (en) 2002-10-08 2002-10-08 Porous gas diffuser and reversible cell using the same

Publications (2)

Publication Number Publication Date
JP2004134134A true JP2004134134A (en) 2004-04-30
JP4355828B2 JP4355828B2 (en) 2009-11-04

Family

ID=32285597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295294A Expired - Lifetime JP4355828B2 (en) 2002-10-08 2002-10-08 Porous gas diffuser and reversible cell using the same

Country Status (1)

Country Link
JP (1) JP4355828B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259457A (en) * 2003-02-24 2004-09-16 Hitachi Zosen Corp Reversible cell for hydro electrolysis and fuel cell
JP2006127807A (en) * 2004-10-26 2006-05-18 National Institute Of Advanced Industrial & Technology Operation control method of reversible cell and operation method of fuel cell
JP2006164764A (en) * 2004-12-08 2006-06-22 Toyota Motor Corp Fuel cell
JP2007194004A (en) * 2006-01-18 2007-08-02 Asahi Glass Co Ltd Method of manufacturing gas diffusion layer for solid polymer fuel cell, and membrane-electrode assembly
JP2016071960A (en) * 2014-09-26 2016-05-09 株式会社豊田中央研究所 Fuel battery electrode
JP2021093315A (en) * 2019-12-11 2021-06-17 トヨタ自動車株式会社 Manufacturing method of gas diffusion layer with microporous layer and manufacturing method of fuel battery
CN113135614A (en) * 2021-03-10 2021-07-20 中国工程物理研究院材料研究所 Organic pollutant anodic oxidation treatment device based on proton exchange membrane
US11699801B2 (en) 2016-11-01 2023-07-11 Japan Aerospace Exploration Agency Cell for water electrolysis/fuel cell power generation and cell stack body having a plurality of same cells stacked
KR20230126695A (en) * 2018-10-26 2023-08-30 한국과학기술연구원 Oxygen electrode comprising a dual plating catalyst, water electrolysis device, regenerative fuel cell including the same and method for preparing the oxygen electrode

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259457A (en) * 2003-02-24 2004-09-16 Hitachi Zosen Corp Reversible cell for hydro electrolysis and fuel cell
JP2006127807A (en) * 2004-10-26 2006-05-18 National Institute Of Advanced Industrial & Technology Operation control method of reversible cell and operation method of fuel cell
JP2006164764A (en) * 2004-12-08 2006-06-22 Toyota Motor Corp Fuel cell
JP2007194004A (en) * 2006-01-18 2007-08-02 Asahi Glass Co Ltd Method of manufacturing gas diffusion layer for solid polymer fuel cell, and membrane-electrode assembly
JP2016071960A (en) * 2014-09-26 2016-05-09 株式会社豊田中央研究所 Fuel battery electrode
US11699801B2 (en) 2016-11-01 2023-07-11 Japan Aerospace Exploration Agency Cell for water electrolysis/fuel cell power generation and cell stack body having a plurality of same cells stacked
KR20230126695A (en) * 2018-10-26 2023-08-30 한국과학기술연구원 Oxygen electrode comprising a dual plating catalyst, water electrolysis device, regenerative fuel cell including the same and method for preparing the oxygen electrode
KR102607597B1 (en) 2018-10-26 2023-12-01 한국과학기술연구원 Oxygen electrode comprising a dual plating catalyst, water electrolysis device, regenerative fuel cell including the same and method for preparing the oxygen electrode
JP2021093315A (en) * 2019-12-11 2021-06-17 トヨタ自動車株式会社 Manufacturing method of gas diffusion layer with microporous layer and manufacturing method of fuel battery
JP7125242B2 (en) 2019-12-11 2022-08-24 トヨタ自動車株式会社 Method for producing gas diffusion layer with microporous layer and method for producing fuel cell
CN113135614A (en) * 2021-03-10 2021-07-20 中国工程物理研究院材料研究所 Organic pollutant anodic oxidation treatment device based on proton exchange membrane

Also Published As

Publication number Publication date
JP4355828B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
CN1237636C (en) Bipolar plate for fuel cells
JP6811444B2 (en) Electrochemical hydrogen pump
JP6487418B2 (en) Organic hydride production equipment
KR20050083660A (en) Fuel cell electrode
JP5468136B2 (en) Fuel cell
JP6786426B2 (en) Electrochemical reduction device and method for producing a hydrogenated product of an aromatic hydrocarbon compound
JP2001283892A (en) Hydrogen ion exchange membrane solid polymer fuel cell and single electrode cell pack for direct methanol fuel cell
JP2000058073A (en) Fuel cell
JP2001345106A (en) Electrode for fuel cell and manufacturing method
EP1997175A1 (en) Fuel cell electrode catalyst with improved noble metal utilization efficiency, method for manufacturing the same, and solid polymer fuel cell comprising the same
JP6971534B2 (en) Membrane electrode complex and electrochemical cell
EP3040449B1 (en) Electrochemical reduction device
WO2018037774A1 (en) Cathode, electrolysis cell for producing organic hydride, and organic hydride production method
JP4355828B2 (en) Porous gas diffuser and reversible cell using the same
RU2733378C1 (en) Device for production of organic hydride
WO2007100124A1 (en) Proton conducting electrolyte and electrochemical cell using same
JP2004172107A (en) Electrocatalyst for fuel cells and manufacturing method thereof
CN102195048A (en) Selectively coated bipolar plates for water management and freeze start in PEM fuel cells
JP4945887B2 (en) Cell module and solid polymer electrolyte fuel cell
JP2016534226A (en) Active layer / membrane arrangement for hydrogen production apparatus, joined body including the arrangement suitable for porous current collector, and method for producing the arrangement
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
RU2392698C1 (en) Method of manufacturing of membrane-electrode unit with bifunctional electrocatalytic layers
JP4320482B2 (en) Fuel cell electrode and manufacturing method thereof
US20100196780A1 (en) Protecting a pem fuel cell catalyst against carbon monoxide poisoning
US20240136540A1 (en) Method for producing catalyst layers for fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081231

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4355828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150814

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term