JP2003134691A - Power supply system - Google Patents

Power supply system

Info

Publication number
JP2003134691A
JP2003134691A JP2001328826A JP2001328826A JP2003134691A JP 2003134691 A JP2003134691 A JP 2003134691A JP 2001328826 A JP2001328826 A JP 2001328826A JP 2001328826 A JP2001328826 A JP 2001328826A JP 2003134691 A JP2003134691 A JP 2003134691A
Authority
JP
Japan
Prior art keywords
voltage
output
secondary battery
output terminal
converting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001328826A
Other languages
Japanese (ja)
Inventor
Kiichi Koike
喜一 小池
Hiroyuki Jinbo
裕行 神保
Tetsuya Ueda
哲也 上田
Shinji Miyauchi
伸二 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001328826A priority Critical patent/JP2003134691A/en
Publication of JP2003134691A publication Critical patent/JP2003134691A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a highly economical and low-cost power supply system combining an independent power supply such as a fuel cell and a secondary battery which suppresses power loss and has a high efficiency. SOLUTION: In this system, a first voltage conversion means 2 (DC-DC converter) and a second voltage conversion means 5 (DC-DC converter) are connected to the output end T1 of a fuel cell 1 as an independent power supply. By connecting a load 4 directly to the output end T2 of the first voltage conversion means 2 or via a voltage conversion means 3, power is supplied to the load 4. A secondary battery 7 is connected to the output end T4 of the second voltage conversion means 5. Output of the secondary battery 7 is connected to the output end T2 of the first voltage conversion means 2 via a third voltage conversion means 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池、太陽電
池等の独立型電源を用いて負荷に電力を供給する電源シ
ステムにおいて特に出力平準化用の二次電池を備えた電
源システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply system for supplying power to a load by using an independent power supply such as a fuel cell and a solar cell, and more particularly to a power supply system including a secondary battery for output leveling. is there.

【0002】[0002]

【従来の技術】燃料電池等の独立型電源と出力平準化用
の二次電池を備えた電源システムは、例えば図3に示し
たように、燃料電池41の直流出力を電圧変換手段42
で昇圧した後、電力変換手段43によって交流出力に変
換し、負荷44に必要な電力を供給する構成のものが知
られている。
2. Description of the Related Art A power supply system equipped with a stand-alone power supply such as a fuel cell and a secondary battery for output leveling, for example, as shown in FIG.
It is known that the power is converted to an alternating current output by the power conversion means 43 after the voltage is boosted by and the necessary power is supplied to the load 44.

【0003】独立型電源としての燃料電池は一定電力を
定常的に供給する目的には適している。そして燃料電池
の出力は燃料と酸化剤の供給量で制御できるものの、制
御に対する出力応答に時間差が生じる。従って、負荷が
急激に増加した場合、燃料電池の出力が負荷に追従して
増加するまでの間の不足電力を二次電池から供給するシ
ステムが考えられている。このシステムは同じく図3に
示したように二次電池47を備え、燃料電池41の出力
が負荷44に対して不足する場合には二次電池47から
の出力を電圧変換手段46を介して昇圧した後に電力変
換手段43に入力することにより負荷44に電力を供給
するとともに、燃料電池41の出力が負荷44に対して
余剰を有している場合には、この余剰出力を電圧変換手
段45により降圧し二次電池47に蓄電する構成となっ
ている。このような構成によれば燃料電池41の出力制
御を簡素化できるとともに、燃料電池41の余剰電力を
有効利用できるために電源システムの効率を高めること
ができる。
A fuel cell as an independent power source is suitable for the purpose of constantly supplying a constant electric power. Although the output of the fuel cell can be controlled by the supply amounts of fuel and oxidant, there is a time difference in the output response to the control. Therefore, a system has been considered in which, when the load suddenly increases, the secondary battery supplies insufficient power until the output of the fuel cell increases following the load. This system also includes a secondary battery 47 as shown in FIG. 3, and when the output of the fuel cell 41 is insufficient with respect to the load 44, the output from the secondary battery 47 is boosted via the voltage conversion means 46. After that, the power is supplied to the load 44 by being input to the power conversion means 43, and when the output of the fuel cell 41 has a surplus with respect to the load 44, this surplus output is supplied by the voltage conversion means 45. The voltage is reduced and electricity is stored in the secondary battery 47. With such a configuration, the output control of the fuel cell 41 can be simplified, and the surplus power of the fuel cell 41 can be effectively used, so that the efficiency of the power supply system can be improved.

【0004】しかし、燃料電池41からの余剰電力が二
次電池47に蓄電され、その後二次電池47から負荷4
4に供給される場合を想定すると、余剰電力が二次電池
47を介して負荷44に供給する経路上に3つの電圧変
換手段、すなわち電圧変換手段42,45,46が存在
していることから、電圧変換時の電力損失が大きくな
り、電源システムとしての効率が低下するという課題が
ある。
However, surplus electric power from the fuel cell 41 is stored in the secondary battery 47, and then the secondary battery 47 loads the load 4.
Assuming that the excess power is supplied to the load 4, there are three voltage conversion means, that is, the voltage conversion means 42, 45, and 46 on the path through which the surplus power is supplied to the load 44 through the secondary battery 47. However, there is a problem that the power loss at the time of voltage conversion increases and the efficiency of the power supply system decreases.

【0005】また、商用負荷(通常AC100V〜20
0Vの負荷)に効率的に電力を供給するため、電力変換
装置43の入力を直流100V〜200Vの高電圧にす
る必要があるが、二次電池47の電圧は電池・機器の価
格や、感電を防止する等の安全性を考えて50V程度以
下に設定することが好ましい。そうすると、電圧変換手
段の昇圧比または降圧比を高くするかまたは低くする必
要がある。一般に電圧変換手段としてのDC−DCコン
バータの昇圧比または降圧比を高くするかまたは低くす
ることにより、DC−DCコンバータの変換効率は低下
する傾向にあるとともに、機器本体の価格も高くなると
いう課題があった。
Commercial load (normally AC100V-20
In order to efficiently supply electric power to a 0V load), the input of the power conversion device 43 needs to be a high voltage of DC 100V to 200V, but the voltage of the secondary battery 47 depends on the price of the battery / device and electric shock. It is preferable to set the voltage to about 50 V or less in consideration of safety such as prevention of Then, it is necessary to increase or decrease the step-up ratio or step-down ratio of the voltage conversion means. Generally, by increasing or decreasing the step-up ratio or step-down ratio of the DC-DC converter as the voltage converting means, the conversion efficiency of the DC-DC converter tends to decrease and the price of the device body also increases. was there.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記したよ
うな独立型電源と二次電池とを併用した電源システムの
運転効率をより一層高めるとともに、システムの価格を
より一層安価とすることを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention aims to further improve the operating efficiency of a power supply system using both an independent power supply and a secondary battery as described above and further reduce the system price. It is intended.

【0007】[0007]

【課題を解決するための手段】前記した課題を解決する
ために、本発明の請求項1記載に係る発明は、独立型電
源の出力端に接続された第1の電圧変換手段と第2の電
圧変換手段とを備え、前記第1の電圧変換手段の出力端
に負荷を直接接続するかもしくは電力変換手段を介して
接続することにより負荷に電力を供給するとともに前記
第2の電圧変換手段の出力端に接続された二次電池を具
備し、前記二次電池の出力を第3の電圧変換手段を介し
て前記第1の電圧変換手段の出力端に接続したことを特
徴とする電源システムを示すものである。
In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention comprises a first voltage converting means and a second voltage converting means connected to an output terminal of an independent power source. Voltage conversion means, and the load is directly connected to the output end of the first voltage conversion means or is connected via the power conversion means to supply electric power to the load and the second voltage conversion means. A power supply system comprising a secondary battery connected to an output terminal, wherein an output of the secondary battery is connected to an output terminal of the first voltage converting means via a third voltage converting means. It is shown.

【0008】さらに、本発明の請求項2記載に係る発明
は、請求項1記載の構成を備えた電源システムにおい
て、独立型電源の出力端での電圧よりも二次電池の充電
電圧を高く設定し、前記第1の電圧変換手段は昇圧型D
C−DCコンバータで構成することを特徴とするもので
ある。
Further, in the invention according to claim 2 of the present invention, in the power supply system having the structure according to claim 1, the charging voltage of the secondary battery is set higher than the voltage at the output end of the independent power supply. The first voltage conversion means is a boost type D
It is characterized by comprising a C-DC converter.

【0009】本発明の請求項3記載に係る発明は、独立
型電源の出力端に接続された第1の電圧変換手段と、こ
の第1の電圧変換手段の出力端に負荷を直接接続するか
もしくは電力変換手段を介して接続し、少なくとも2系
統であって第1の出力端と第2の出力端を備えた第2の
電圧変換手段ならびに二次電池を備えるとともに、前記
第2の電圧変換手段への入力端の接続先を前記二次電池
の放電出力もしくは独立型電源の出力端に切り替える第
1の切替手段、前記第2の電圧変換手段の第1の出力端
と前記第1の電圧変換手段の出力端間との接続の開閉と
前記第2の電圧変換手段の第2の出力端と前記二次電池
間の接続の開閉とを互いに排他的に切り替える第2の切
替手段を具備し、前記第2の電圧変換手段の入力端と前
記独立型電源の出力端とが接続している場合には前記第
2の電圧変換手段の第2の出力端の出力が前記二次電池
に充電入力され、前記第2の電圧変換手段の入力端と前
記二次電池の放電出力に接続する場合には前記第2の電
圧変換手段の第1の出力端が前記第1の電圧変換手段の
出力端に接続するように、前記第1の切替手段と前記第
2の切替手段とを同期して制御することを特徴とする電
源システムを示すものである。
In the invention according to claim 3 of the present invention, the first voltage converting means connected to the output terminal of the independent power source, and whether the load is directly connected to the output terminal of the first voltage converting means. Alternatively, the second voltage conversion unit includes a second voltage conversion unit and a secondary battery, which are connected through a power conversion unit and have at least two systems and having a first output end and a second output end. First switching means for switching the connection destination of the input terminal to the means to the discharge output of the secondary battery or the output terminal of the stand-alone power source, the first output terminal of the second voltage converting means, and the first voltage A second switching unit is provided for exclusively switching between opening and closing a connection between the output ends of the conversion unit and opening and closing a connection between the second output end of the second voltage conversion unit and the secondary battery. , The input terminal of the second voltage conversion means and the output of the independent power source. When the terminal is connected, the output of the second output terminal of the second voltage converting means is charged and input to the secondary battery, and the input terminal of the second voltage converting means and the secondary battery are connected. The first switching means and the second switching means so that the first output end of the second voltage converting means is connected to the output end of the first voltage converting means when connecting to the discharge output of the first voltage converting means. The power supply system is characterized by controlling the switching means in synchronization with each other.

【0010】本発明の請求項4記載に係る発明は、請求
項3記載の構成を備えた電源システムにおいて、前記独
立型電源の出力端の電圧よりも前記二次電池の充電電圧
を高く設定するとともに、前記第1の電圧変換手段の出
力端での電圧よりも前記二次電池の放電電圧を低く設定
し、前記第2の電圧変換手段を昇圧型DC−DCコンバ
ータで構成したことを示すものである。
According to a fourth aspect of the present invention, in the power supply system having the configuration according to the third aspect, the charging voltage of the secondary battery is set higher than the voltage of the output terminal of the independent power source. At the same time, the discharge voltage of the secondary battery is set lower than the voltage at the output end of the first voltage conversion means, and the second voltage conversion means is configured by a step-up DC-DC converter. Is.

【0011】そして、本発明の請求項5記載に係る発明
は、請求項1ないし4のいずれかに記載の構成を備えた
電源システムにおいて独立型電源として燃料電池を用い
ることを特徴とするものである。
The invention according to claim 5 of the present invention is characterized in that a fuel cell is used as an independent power source in a power supply system having the structure according to any one of claims 1 to 4. is there.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0013】(第1の実施形態)図1は本発明の第1の
実施形態による電源システムの構成を示すブロック図で
ある。独立型電源としての燃料電池1からの直流出力
(通常はDC50V以下の直流出力)はその出力端T1
に接続された第1の電圧変換手段2であるDC−DCコ
ンバータによって、100V〜200Vに昇圧され、第
1の電圧変換手段2の出力端T2に出力される。この昇
圧された燃料電池出力は電力変換手段3としてのDC−
ACインバータによって100V〜200Vの交流出力
が出力端T3に出力され、この出力端T3に接続された
負荷4に供給される。
(First Embodiment) FIG. 1 is a block diagram showing the configuration of a power supply system according to a first embodiment of the present invention. The direct current output from the fuel cell 1 as an independent power source (normally a direct current output of 50 V DC or less) is the output end T1.
The voltage is boosted to 100V to 200V by the DC-DC converter which is the first voltage conversion means 2 connected to the output terminal T2 and is output to the output terminal T2 of the first voltage conversion means 2. This boosted fuel cell output is DC- as the power conversion means 3.
An AC output of 100V to 200V is output to the output terminal T3 by the AC inverter and is supplied to the load 4 connected to the output terminal T3.

【0014】燃料電池1の出力端T1には第2の電圧変
換手段5としてのDC−DCコンバータが接続されてい
る。この第2の電圧変換手段5の出力端T4には二次電
池7が接続されている。この二次電池7は、第2の電圧
変換手段5によって、負荷4の低下によって生じた余剰
電力で充電される。なお、燃料電池1の出力電圧V1と
二次電池7の充電に必要な充電電圧(以下Vchgと云
う)とをなるべく近接した値とすれば第1の電圧変換手
段2では昇圧比を1に近い値とすることができるので変
換効率が向上する点で好ましいが、最終的に負荷4に供
給する電圧まで昇圧することを考慮すると、少なくとも
第2の電圧変換手段5で電圧を降圧することは好ましく
ない。従って、燃料電池1の出力電圧V1を二次電池7
のVchgとして第1の電圧変換手段2を昇圧型DC−
DCコンバータで構成することが好ましい。
A DC-DC converter as the second voltage converting means 5 is connected to the output terminal T1 of the fuel cell 1. The secondary battery 7 is connected to the output terminal T4 of the second voltage converting means 5. The secondary battery 7 is charged by the second voltage converting means 5 with the surplus power generated by the decrease in the load 4. If the output voltage V1 of the fuel cell 1 and the charging voltage (hereinafter referred to as Vchg) required for charging the secondary battery 7 are set as close to each other as possible, the step-up ratio of the first voltage converting means 2 is close to 1. Since it can be set to a value, it is preferable in that the conversion efficiency is improved. However, in consideration of finally increasing the voltage to be supplied to the load 4, it is preferable to reduce the voltage by at least the second voltage converting means 5. Absent. Therefore, the output voltage V1 of the fuel cell 1 is set to the secondary battery 7
Of the first voltage converting means 2 as Vchg of
It is preferably composed of a DC converter.

【0015】なお、二次電池7は、余剰電力を効率的に
受け入れるため、充電状態(以下SOCと云う)を10
0%未満の部分充電状態、例えばSOCを50%〜90
%に保持する。二次電池7のSOCを部分状態に保持す
る方法としては使用する二次電池の種別によって、適切
な方法を選択する。例えば二次電池として鉛蓄電池、リ
チウム二次電池を用いる場合には、Vchgを制御する
ことにより、SOCを所定範囲内に制御することが可能
である。
The secondary battery 7 has a state of charge (hereinafter referred to as SOC) of 10 in order to efficiently receive surplus power.
Partial state of charge of less than 0%, for example, SOC of 50% to 90
Hold in%. As a method of holding the SOC of the secondary battery 7 in a partial state, an appropriate method is selected depending on the type of the secondary battery used. For example, when a lead storage battery or a lithium secondary battery is used as the secondary battery, the SOC can be controlled within a predetermined range by controlling Vchg.

【0016】さらに本発明においては二次電池7の出力
は第3の電圧変換手段6によって昇圧された後、出力端
T2に出力し電力変換手段3に入力される。なお、二次
電池7の放電は燃料電池1の出力が負荷4に対して不足
する場合に行われ、二次電池7が不足電力を補償する。
Further, in the present invention, the output of the secondary battery 7 is boosted by the third voltage converting means 6, then output to the output terminal T2 and input to the power converting means 3. The secondary battery 7 is discharged when the output of the fuel cell 1 is insufficient with respect to the load 4, and the secondary battery 7 compensates for the insufficient power.

【0017】このような本発明の第1の実施形態におい
て、二次電池7に蓄電される電力は燃料電池1の出力端
T1から負荷4へ出力される間に通過する電圧変換手段
は2段となり、前記した従来例の3段に比較して減らす
ことができる。結果として電圧変換時の損失を低減する
ことができ、システムの効率を向上することができる。
In the first embodiment of the present invention as described above, the voltage conversion means through which the electric power stored in the secondary battery 7 passes while being output from the output terminal T1 of the fuel cell 1 to the load 4 has two stages. Therefore, the number can be reduced as compared with the above-described conventional three stages. As a result, the loss during voltage conversion can be reduced, and the efficiency of the system can be improved.

【0018】(第2の実施形態)図2は本発明の第2の
実施形態における電源システムの構成を示すブロック図
である。独立型電源としての燃料電池11の出力端T5
が第1の電圧変換手段12に接続され、第1の電圧変換
手段12の出力端T6に出力する。その後、電力変換手
段13により交流出力へと変換し、電力変換手段13に
接続された出力端T7に出力され、この出力端T7に接
続された負荷14に供給される。
(Second Embodiment) FIG. 2 is a block diagram showing the configuration of a power supply system according to a second embodiment of the present invention. Output terminal T5 of the fuel cell 11 as an independent power source
Are connected to the first voltage conversion means 12 and output to the output terminal T6 of the first voltage conversion means 12. After that, it is converted into an AC output by the power conversion means 13, is output to the output end T7 connected to the power conversion means 13, and is supplied to the load 14 connected to this output end T7.

【0019】本発明の第2の実施形態においては、2系
統の出力端すなわち第1の出力端T9と第2の出力端T
10とを備えた第2の電圧変換手段9(2系統出力を有
するDC−DCコンバータ)を備えている。この第2の
電圧変換手段9の入力は燃料電池11の出力もしくは二
次電池17の出力のいずれかを選択するための第1の切
替手段8を備えている。さらに第2の電圧変換手段9の
一方の出力(第1の系統出力の出力端T9に対応)がス
イッチaを介して第1の電圧変換手段12の出力端T6
に接続されるとともに、第2の電圧変換手段9の他方の
出力(第2の系統出力の出力端T10に対応)はスイッ
チbを介して二次電池17への充電入力となるように接
続されている。
In the second embodiment of the present invention, two systems of output terminals, that is, a first output terminal T9 and a second output terminal T9.
And a second voltage conversion means 9 (a DC-DC converter having two system outputs). The input of the second voltage converting means 9 is provided with the first switching means 8 for selecting either the output of the fuel cell 11 or the output of the secondary battery 17. Further, one output of the second voltage converting means 9 (corresponding to the output terminal T9 of the first system output) is output via the switch a to the output terminal T6 of the first voltage converting means 12.
And the other output of the second voltage conversion means 9 (corresponding to the output terminal T10 of the second system output) is connected via the switch b so as to be a charging input to the secondary battery 17. ing.

【0020】そしてこれらスイッチa、スイッチbの開
閉動作はスイッチaが開状態時にスイッチbは閉状態、
スイッチaが閉状態時にスイッチbは開状態となるよう
に連係動作をする第2の切替手段10を構成している。
The switch a and the switch b are opened and closed when the switch a is open and the switch b is closed.
The second switching means 10 is configured to perform a linking operation so that the switch b is opened when the switch a is closed.

【0021】燃料電池11の出力が負荷14に対して余
剰を有している場合、第1の切替手段8は燃料電池11
の出力端T5と第2の電圧変換手段9の入力端T8間が
閉状態(cの状態)となると同時に第2の切替手段10
が動作することにより第1の出力端T9と第1の電圧変
換手段12の出力端T6が開状態および第2の出力端T
10と二次電池17間が閉じる状態となり、二次電池1
7は第2の電圧変換手段9の第2の系統出力により充電
される。
When the output of the fuel cell 11 has a surplus with respect to the load 14, the first switching means 8 operates the fuel cell 11
The output terminal T5 of the second voltage converting means 9 and the input terminal T8 of the second voltage converting means 9 are closed (state c), and at the same time, the second switching means 10 is connected.
Is operated, the first output terminal T9 and the output terminal T6 of the first voltage conversion means 12 are in the open state and the second output terminal T6.
10 and the secondary battery 17 are closed, and the secondary battery 1
7 is charged by the second system output of the second voltage conversion means 9.

【0022】燃料電池11の出力が負荷14に対して不
足する場合には、第2の切替手段10が動作して二次電
池17と第2の電圧変換手段9の入力端T8間が閉状態
となると同時に第1の切替手段8が動作することにより
第1の出力端T9と第1の電圧変換手段12の出力端T
6間が閉状態および第2の出力端T10と二次電池17
間が開状態となって、二次電池17の放電出力が第2の
電圧変換手段9の第1の系統の第1の出力端T9から電
力変換手段13に供給される。
When the output of the fuel cell 11 is insufficient with respect to the load 14, the second switching means 10 operates and the secondary battery 17 and the input terminal T8 of the second voltage converting means 9 are closed. At the same time, the first switching means 8 operates so that the first output terminal T9 and the output terminal T of the first voltage converting means 12 are
6 is closed, the second output terminal T10 and the secondary battery 17 are closed.
The space is opened, and the discharge output of the secondary battery 17 is supplied to the power conversion unit 13 from the first output terminal T9 of the first system of the second voltage conversion unit 9.

【0023】また、第2の電圧変換手段9は第1の実施
形態と同様、昇圧手段で構成することが好ましい。
Further, it is preferable that the second voltage converting means 9 is composed of boosting means as in the first embodiment.

【0024】このような本発明の第2の実施形態によれ
ば第1の実施形態と同様、二次電池17に蓄電される電
力を通過する電圧変換手段を従来の3段から2段に削減
できるため、電圧変換時の出力損失を抑制することがで
きる。また、第1の実施形態に比較して第2の電圧変換
手段9は二次電池17の放電電圧制御および充電制御を
兼ねるために、電圧変換手段としてのDC−DCコンバ
ータの必要数を削減できるので、装置の価格をより安価
にできるとともに、装置を小型軽量化することができ
る。
According to the second embodiment of the present invention as described above, as in the first embodiment, the voltage converting means for passing the electric power stored in the secondary battery 17 is reduced from the conventional three stages to two stages. Therefore, the output loss at the time of voltage conversion can be suppressed. Further, as compared with the first embodiment, the second voltage conversion means 9 also serves to control the discharge voltage and the charge of the secondary battery 17, so that the required number of DC-DC converters as the voltage conversion means can be reduced. Therefore, the price of the device can be reduced, and the size and weight of the device can be reduced.

【0025】また、第1の実施形態および第2の実施形
態はともに負荷の消費電力を検出し、燃料電池の出力と
比較することにより、燃料電池が負荷に対しての余剰出
力の有無を検出することが必要であることは云うまでも
ない。
In both the first and second embodiments, the power consumption of the load is detected and compared with the output of the fuel cell to detect whether the fuel cell has an excess output with respect to the load. It goes without saying that it is necessary to do so.

【0026】さらに、本発明の実施形態においては独立
型電源として燃料電池を用いた例を示したが、本発明は
燃料電池の他、マイクロガスタービンによる発電システ
ムや風力・太陽光発電に対しても適用することができ
る。特に燃料電池では負荷が燃料電池の最大出力を越え
て大きくなった場合、燃料電池での発電が停止してしま
う可能性があるものの、本発明のような構成では適切に
二次電池の出力を負荷に供給することによって、このよ
うな問題を解決できるため、特に燃料電池を用いる電源
システムに適している。
Furthermore, in the embodiment of the present invention, an example in which a fuel cell is used as a stand-alone power source has been shown. Can also be applied. In particular, in the fuel cell, when the load exceeds the maximum output of the fuel cell and becomes large, the power generation in the fuel cell may be stopped, but in the configuration like the present invention, the output of the secondary cell is appropriately adjusted. Since such a problem can be solved by supplying the load, it is particularly suitable for a power supply system using a fuel cell.

【0027】[0027]

【発明の効果】本発明の構成によれば、独立型電源と二
次電池とを併用した電源システムの効率をより一層高め
るとともに、システムの価格をより安価で経済性に優れ
た電源システムを提供できるので、本発明は工業上、極
めて有用である。
According to the configuration of the present invention, the efficiency of a power supply system using a stand-alone power supply and a secondary battery together is further improved, and the system price is lower and the power supply system is excellent in economic efficiency. Therefore, the present invention is industrially extremely useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態による電源システムの
構成を示すブロック図
FIG. 1 is a block diagram showing a configuration of a power supply system according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態による電源システムの
構成を示すブロック図
FIG. 2 is a block diagram showing a configuration of a power supply system according to a second embodiment of the present invention.

【図3】従来例による電源システムの構成を示すブロッ
ク図
FIG. 3 is a block diagram showing the configuration of a conventional power supply system.

【符号の説明】[Explanation of symbols]

1,11,41 燃料電池 2,12 第1の電圧変換手段 3,13,43 電力変換手段 4,14,44 負荷 5,9 第2の電圧変換手段 6 第3の電圧変換手段 7,17,47 二次電池 8 第1の切替手段 10 第2の切替手段 1,11,41 Fuel cell 2, 12 First voltage conversion means 3,13,43 Power conversion means 4,14,44 load 5,9 Second voltage conversion means 6 Third voltage conversion means 7,17,47 Secondary battery 8 First switching means 10 Second switching means

フロントページの続き (72)発明者 上田 哲也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 宮内 伸二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5G003 AA05 AA06 BA01 CA11 CC02 GB03 GB06 5G015 FA14 GA11 HA02 HA04 HA15 JA05 JA53 JA55 5H030 AA10 AS01 BB07 BB08 BB10 BB22 BB26 Continued front page    (72) Inventor Tetsuya Ueda             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Shinji Miyauchi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5G003 AA05 AA06 BA01 CA11 CC02                       GB03 GB06                 5G015 FA14 GA11 HA02 HA04 HA15                       JA05 JA53 JA55                 5H030 AA10 AS01 BB07 BB08 BB10                       BB22 BB26

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 独立型電源の出力端に接続された第1の
電圧変換手段と第2の電圧変換手段とを備え、前記第1
の電圧変換手段の出力端に負荷を直接接続するかもしく
は電力変換手段を介して接続することにより負荷に電力
を供給するとともに前記第2の電圧変換手段の出力端に
接続された二次電池を具備し、前記二次電池の出力を第
3の電圧変換手段を介して前記第1の電圧変換手段の出
力端に接続したことを特徴とする電源システム。
1. A first voltage converting means and a second voltage converting means connected to an output terminal of an independent power source, the first voltage converting means comprising:
By directly connecting the load to the output terminal of the voltage converting means or by connecting the load via the power converting means, power is supplied to the load and the secondary battery connected to the output terminal of the second voltage converting means is connected. A power supply system, comprising: the output of the secondary battery connected to an output end of the first voltage conversion means via a third voltage conversion means.
【請求項2】 前記独立型電源の出力端での電圧よりも
前記二次電池の充電電圧を高く設定し、前記第1の電圧
変換手段は昇圧型DC−DCコンバータで構成すること
を特徴とする請求項1に記載の電源システム。
2. The charging voltage of the secondary battery is set to be higher than the voltage at the output end of the independent power source, and the first voltage converting means is a step-up DC-DC converter. The power supply system according to claim 1.
【請求項3】 独立型電源の出力端に接続された第1の
電圧変換手段と、この第1の電圧変換手段の出力端に負
荷を直接接続するかもしくは電力変換手段を介して接続
し、少なくとも2系統であって第1の出力端と第2の出
力端を備えた第2の電圧変換手段ならびに二次電池を備
えるとともに、前記第2の電圧変換手段への入力端の接
続先を前記二次電池の放電出力もしくは前記独立型電源
の出力端に切り替える第1の切替手段、前記第2の電圧
変換手段の第1の出力端と前記第1の電圧変換手段の出
力端間との接続の開閉と前記第2の電圧変換手段の第2
の出力端と前記二次電池間の接続の開閉とを互いに排他
的に切り替える第2の切替手段を具備し、前記第2の電
圧変換手段の入力端と前記独立型電源の出力端とが接続
している場合には前記第2の電圧変換手段の第2の出力
端の出力が前記二次電池に充電入力され、前記第2の電
圧変換手段の入力端と前記二次電池の放電出力に接続す
る場合には前記第2の電圧変換手段の第1の出力端が前
記第1の電圧変換手段の出力端に接続するように、前記
第1の切替手段と前記第2の切替手段とを同期して制御
することを特徴とする電源システム。
3. A first voltage converting means connected to the output terminal of the independent power source, and a load is directly connected to the output terminal of the first voltage converting means or is connected via the power converting means, At least two systems are provided with a second voltage conversion means having a first output end and a second output end and a secondary battery, and the connection destination of the input end to the second voltage conversion means is the above-mentioned. First switching means for switching to a discharge output of a secondary battery or an output terminal of the independent power source, and a connection between a first output terminal of the second voltage converting means and an output terminal of the first voltage converting means. Opening and closing and the second of the second voltage converting means.
Second switching means for exclusively switching between the output terminal of the second battery and the opening / closing of the connection between the secondary batteries, wherein the input terminal of the second voltage conversion means and the output terminal of the independent power source are connected. In the case where the output voltage of the second voltage conversion means is output, the output of the second output terminal of the second voltage conversion means is charged and input into the secondary battery, and the input terminal of the second voltage conversion means and the discharge output of the secondary battery When connecting, the first switching means and the second switching means are connected so that the first output terminal of the second voltage converting means is connected to the output terminal of the first voltage converting means. Power supply system characterized by synchronous control.
【請求項4】 前記独立型電源の出力端の電圧よりも前
記二次電池の充電電圧を高く設定するとともに、前記第
1の電圧変換手段の出力端での電圧よりも前記二次電池
の放電電圧を低く設定し、前記第2の電圧変換手段を昇
圧型DC−DCコンバータで構成したことを特徴とする
請求項3に記載の電源システム。
4. The charging voltage of the secondary battery is set higher than the voltage of the output terminal of the independent power source, and the secondary battery is discharged more than the voltage of the output terminal of the first voltage converting means. 4. The power supply system according to claim 3, wherein the voltage is set low, and the second voltage converting means is configured by a step-up DC-DC converter.
【請求項5】 前記独立型電源として燃料電池を用いる
ことを特徴とする請求項1ないし4のいずれかに記載の
電源システム。
5. The power supply system according to claim 1, wherein a fuel cell is used as the independent power supply.
JP2001328826A 2001-10-26 2001-10-26 Power supply system Pending JP2003134691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001328826A JP2003134691A (en) 2001-10-26 2001-10-26 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001328826A JP2003134691A (en) 2001-10-26 2001-10-26 Power supply system

Publications (1)

Publication Number Publication Date
JP2003134691A true JP2003134691A (en) 2003-05-09

Family

ID=19144826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001328826A Pending JP2003134691A (en) 2001-10-26 2001-10-26 Power supply system

Country Status (1)

Country Link
JP (1) JP2003134691A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124249A (en) * 2003-10-14 2005-05-12 Tokyo Electric Power Co Inc:The Uninterruptible power supply with power storage function and its controlling method and controller
WO2006129635A1 (en) * 2005-05-31 2006-12-07 Matsushita Electric Industrial Co., Ltd. Secondary battery, power supply system using same and usage of power supply system
JP2008206265A (en) * 2007-02-19 2008-09-04 Honda Motor Co Ltd Cogeneration apparatus
JP2008271775A (en) * 2007-03-23 2008-11-06 Honda Motor Co Ltd Fuel-cell power supply device
WO2008136977A1 (en) * 2007-05-07 2008-11-13 Bloom Energy Corporation Integral stack columns
US7538451B2 (en) 2004-06-15 2009-05-26 Sony Corporation Power supply system and electronic device
KR100902507B1 (en) * 2007-04-17 2009-06-15 삼성전자주식회사 Power conditioner and managing method thereof
JP2009142145A (en) * 2007-12-07 2009-06-25 Syspotek Corp Fuel cell apparatus with charge circuit
JP2009148152A (en) * 2007-12-17 2009-07-02 Syspotek Corp Fuel cell power blending device
US7767353B2 (en) * 2004-08-06 2010-08-03 Sanyo Electric Co., Ltd. Fuel cell system
US7974106B2 (en) 2007-05-07 2011-07-05 Bloom Energy Corporation Ripple cancellation
US8228690B2 (en) 2009-08-05 2012-07-24 Honda Motor Co., Ltd. DC-DC converter and power supplying system including same
JP2015226336A (en) * 2014-05-26 2015-12-14 京セラ株式会社 Power control system, method of controlling power control system and power control device
JP2018152939A (en) * 2017-03-10 2018-09-27 本田技研工業株式会社 Power supply system
JP2019196685A (en) * 2018-05-10 2019-11-14 哲男 前田 Granule spreading device and loading vehicle
US10916957B2 (en) 2017-08-14 2021-02-09 Nissan Motor Co., Ltd. Power control system
EP4002529A1 (en) * 2020-11-20 2022-05-25 Kabushiki Kaisha Toyota Jidoshokki Fuel cell system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124249A (en) * 2003-10-14 2005-05-12 Tokyo Electric Power Co Inc:The Uninterruptible power supply with power storage function and its controlling method and controller
US7538451B2 (en) 2004-06-15 2009-05-26 Sony Corporation Power supply system and electronic device
US7767353B2 (en) * 2004-08-06 2010-08-03 Sanyo Electric Co., Ltd. Fuel cell system
CN101795016B (en) * 2004-08-06 2012-09-05 三洋电机株式会社 Method for controlling fuel cell system
US8012638B2 (en) 2004-08-06 2011-09-06 Sanyo Electric Co. Ltd. Fuel cell system
WO2006129635A1 (en) * 2005-05-31 2006-12-07 Matsushita Electric Industrial Co., Ltd. Secondary battery, power supply system using same and usage of power supply system
JP2008206265A (en) * 2007-02-19 2008-09-04 Honda Motor Co Ltd Cogeneration apparatus
JP2008271775A (en) * 2007-03-23 2008-11-06 Honda Motor Co Ltd Fuel-cell power supply device
KR100902507B1 (en) * 2007-04-17 2009-06-15 삼성전자주식회사 Power conditioner and managing method thereof
US8289730B2 (en) 2007-05-07 2012-10-16 Bloom Energy Corporation Ripple cancellation
US7705490B2 (en) 2007-05-07 2010-04-27 Bloom Energy Corporation Integral stack columns
US7974106B2 (en) 2007-05-07 2011-07-05 Bloom Energy Corporation Ripple cancellation
WO2008136977A1 (en) * 2007-05-07 2008-11-13 Bloom Energy Corporation Integral stack columns
JP2009142145A (en) * 2007-12-07 2009-06-25 Syspotek Corp Fuel cell apparatus with charge circuit
JP2009148152A (en) * 2007-12-17 2009-07-02 Syspotek Corp Fuel cell power blending device
US8228690B2 (en) 2009-08-05 2012-07-24 Honda Motor Co., Ltd. DC-DC converter and power supplying system including same
JP2015226336A (en) * 2014-05-26 2015-12-14 京セラ株式会社 Power control system, method of controlling power control system and power control device
JP2018152939A (en) * 2017-03-10 2018-09-27 本田技研工業株式会社 Power supply system
US10916957B2 (en) 2017-08-14 2021-02-09 Nissan Motor Co., Ltd. Power control system
JP2019196685A (en) * 2018-05-10 2019-11-14 哲男 前田 Granule spreading device and loading vehicle
EP4002529A1 (en) * 2020-11-20 2022-05-25 Kabushiki Kaisha Toyota Jidoshokki Fuel cell system

Similar Documents

Publication Publication Date Title
JP2003134691A (en) Power supply system
JP2003235252A (en) Power circuit
JP2002354677A (en) Power conditioner for solar energy generation
JPH1031525A (en) Photovoltaic power generation system
JPS6154820A (en) Dc/ac converter of photogenerator system
JP2004508689A (en) High efficiency fuel cell power conditioner
US20060099463A1 (en) Direct current/direct current converter for a fuel cell system
JP2006073506A (en) Fuel cell vehicle and controlling method of the same
JP2007236064A (en) Energy storage device
JP5198219B2 (en) Hybrid DC power supply system and fuel cell vehicle
JPH11191424A (en) Operating method for fuel cell generating device
KR20200048036A (en) Power conversion apparatus
JPWO2003032466A1 (en) Uninterruptible power supply and startup method of uninterruptible power supply
JP2003088130A (en) Built-in battery type power converter
US6960901B2 (en) Bi-directional DC/DC power converter having a neutral terminal
JPH06284601A (en) Dc power supply
JP6646852B2 (en) Power conversion device and power conversion system
JP4560657B2 (en) Uninterruptible power system
JP2009277584A (en) Fuel cell system
JPH11136879A (en) Photovoltaic power generator
JP2568271B2 (en) DC uninterruptible power supply
KR102021995B1 (en) Independant-type microgrid system
JP3371718B2 (en) Charging device
JP2002315224A (en) Fuel battery power source system and method for charging secondary cell in the fuel battery power source system
JPH1118319A (en) Electric power storage power convertor