JP2003111291A - Control method for charging secondary battery used in fuel battery power generating system - Google Patents

Control method for charging secondary battery used in fuel battery power generating system

Info

Publication number
JP2003111291A
JP2003111291A JP2001307259A JP2001307259A JP2003111291A JP 2003111291 A JP2003111291 A JP 2003111291A JP 2001307259 A JP2001307259 A JP 2001307259A JP 2001307259 A JP2001307259 A JP 2001307259A JP 2003111291 A JP2003111291 A JP 2003111291A
Authority
JP
Japan
Prior art keywords
charging
charge
refresh
control method
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001307259A
Other languages
Japanese (ja)
Inventor
Shinichi Arisaka
伸一 有坂
Kiichi Koike
喜一 小池
Hiroyuki Jinbo
裕行 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001307259A priority Critical patent/JP2003111291A/en
Publication of JP2003111291A publication Critical patent/JP2003111291A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method for charging a secondary battery used in a fuel battery power generating system which can unite highly efficient utilization of charged and discharged power and a long lifetime. SOLUTION: In the control method for charging the secondary battery used in the fuel battery power generating system, the state of charge (SOC) of a secondary battery is controlled so as to be less than 100% when a fuel battery is normally operated, refresh charging is implemented at the predetermined intervals, a charged quantity of electricity is detected in the refresh charging, and the refresh charging is completed when a charged quantity of electricity attains the predetermined value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池発電シス
テムに用いる二次電池の充電制御方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging control method for a secondary battery used in a fuel cell power generation system.

【0002】[0002]

【従来の技術】近年、効率的なエネルギー利用の視点か
ら燃料電池によって発電を行うシステムが注目されてい
る。しかし、燃料電池のみで発電させようとした場合、
外部負荷の変動に対して燃料電池の出力応答性が悪いこ
とからシステム中に二次電池を併設して、外部負荷の消
費電力が燃料電池の特定出力未満のとき、燃料電池の余
剰電力を二次電池を充電しながら外部負荷に供給し、外
部負荷の消費電力が燃料電池の特定出力を上回ったと
き、不足した電力を二次電池から供給する燃料電池発電
システムが提案されている。
2. Description of the Related Art In recent years, a system for generating power by a fuel cell has been attracting attention from the viewpoint of efficient energy use. However, if you try to generate power only with a fuel cell,
Since the output response of the fuel cell is poor with respect to changes in the external load, a secondary battery is installed in the system, and when the power consumption of the external load is less than the specific output of the fuel cell, the surplus power of the fuel cell is A fuel cell power generation system has been proposed in which a secondary battery is supplied to an external load while being charged, and when the power consumption of the external load exceeds a specific output of the fuel cell, the insufficient power is supplied from the secondary battery.

【0003】このような発電システムに用いる二次電池
として、経済性に優れ、信頼性、安全性の実績があり、
またリサイクル体制が確立されている鉛蓄電池を用いる
ことが検討されている。
As a secondary battery used in such a power generation system, there is a track record of excellent economical efficiency, reliability and safety.
In addition, the use of lead-acid batteries for which a recycling system has been established is being considered.

【0004】例えば無停電電源装置に用いられる鉛蓄電
池は停電時に放電可能な容量を確保し、かつ充電不足に
よる寿命の短縮を抑制するために規定の充電電圧で充電
され、充電状態(SOC)が常時100%近くになるよ
うに制御されている(フロート充電)。
For example, a lead storage battery used for an uninterruptible power supply is charged at a prescribed charging voltage in order to secure a dischargeable capacity at the time of power failure and to suppress shortening of life due to insufficient charging, and the state of charge (SOC) is It is always controlled to be close to 100% (float charging).

【0005】ところが前記したような燃料電池発電シス
テムに用いる鉛蓄電池は、負荷が小さいときに燃料電池
からの余剰電力を蓄電する必要上、鉛蓄電池のSOCを
100%未満の状態に保持する必要がある。
However, the lead storage battery used in the fuel cell power generation system as described above needs to store the surplus electric power from the fuel cell when the load is small, and it is necessary to keep the SOC of the lead storage battery at less than 100%. is there.

【0006】また、鉛蓄電池のSOCが常に100%に
近い状態で充電制御する場合、完全充電時の電池電圧と
放電時の電池電圧との間に大きな差が発生し、結果とし
て電力損失が大きくなる。この時の放電電力/充電電力
の比率(発電効率)は70〜75%程度であり、充電電
力の25〜30%が電力損失として失われる。
Further, when the charge control is performed in a state where the SOC of the lead storage battery is always close to 100%, a large difference occurs between the battery voltage at the time of full charge and the battery voltage at the time of discharge, resulting in a large power loss. Become. The discharging power / charging power ratio (power generation efficiency) at this time is about 70 to 75%, and 25 to 30% of the charging power is lost as a power loss.

【0007】一方、前記したようにSOCを100%未
満の部分充電状態とすれば充電時の充電電圧を低くする
ことができ、放電時の電池電圧はSOCが極端に低下し
ないかぎりそれほど低下することはないので、充電時と
放電時の電圧差を小さくでき、結果として電力損失を従
来の25〜30%から10〜15%まで抑制できるとい
う利点がある。
On the other hand, as described above, if the SOC is set to a partially charged state of less than 100%, the charging voltage at the time of charging can be lowered, and the battery voltage at the time of discharging will be so low unless the SOC is extremely lowered. Therefore, there is an advantage that the voltage difference between charging and discharging can be reduced, and as a result, the power loss can be suppressed from 25 to 30% of the conventional case to 10 to 15%.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うに鉛蓄電池のSOCを100%未満の部分充電状態に
連続して保持しつづけた場合、放電が深くなる状態が続
き鉛蓄電池にとっては好ましくない充電不足状態に陥っ
てしまう恐れがある。
However, when the SOC of the lead storage battery is continuously maintained at a partial charge state of less than 100% in this way, the state of deep discharge continues, which is not preferable for the lead storage battery. There is a risk of falling into a shortage.

【0009】鉛蓄電池において充電不足状態が発生する
過程を次に示す。
The process in which an insufficient charge state occurs in a lead storage battery will be described below.

【0010】放電状態の電池内の電解液濃度は放電によ
り電解液中の硫酸イオンが消費され、深い放電がされた
鉛蓄電池の電解液濃度は比較的低い状態にある。ここで
充電を行うと、 負極の充電反応 PbSO4+2e- → Pb+SO4
2- 正極の充電反応 PbSO4+2H2O → PbO2
4H++2e- という反応に伴い、極板付近に高濃度の硫酸が生成す
る。この高濃度の硫酸が重力によって電槽の底方向に沈
降しセル内で濃度差が起こる。これを成層化と呼ぶ。成
層化が生じると、充電後の電池において一枚の極板の上
下で電解液濃度差による電位差ができ、外部からの充放
電とは関係なく極板上部では充電反応が、極板下部では
放電反応が生じる。また、充電中の電池においても鉛イ
オンの溶解度に差ができ、極板上部で充電がされやす
く、極板下部でされにくくなる。したがって、極板下部
の硫酸鉛が充電されずに取り残され、容量の減少、すな
わち硫酸鉛蓄積(サルフェーション)の原因ともなる。
このような現象は制御弁式(密閉式)鉛蓄電池よりも、
液式鉛蓄電池で生じやすい。またサルフェーションが起
こると、充電受け入れ性が低下するのみでなく、完全充
電状態まで回復しにくくなる。
Regarding the concentration of the electrolytic solution in the battery in the discharged state, the sulfuric acid ions in the electrolytic solution are consumed by the discharge, and the concentration of the electrolytic solution in the lead-acid battery subjected to deep discharge is relatively low. When charging is performed here, the negative electrode charging reaction PbSO 4 + 2e → Pb + SO 4
2- Charge reaction of positive electrode PbSO 4 + 2H 2 O → PbO 2 +
Along with the reaction of 4H + + 2e −, a high concentration of sulfuric acid is generated near the electrode plate. Due to gravity, this high-concentration sulfuric acid settles toward the bottom of the battery case, causing a difference in concentration within the cell. This is called stratification. When stratification occurs, there is a potential difference between the upper and lower sides of one electrode plate in the battery after charging due to the difference in the electrolyte concentration. A reaction occurs. Further, even in the battery during charging, there is a difference in solubility of lead ions, so that the upper part of the electrode plate is easily charged and the lower part of the electrode plate is difficult to be charged. Therefore, the lead sulfate under the electrode plate is left uncharged and left behind, leading to a decrease in capacity, that is, lead sulfate accumulation (sulfation).
This phenomenon is more important than the control valve type (sealed) lead acid battery.
It tends to occur in liquid lead acid batteries. Further, when sulfation occurs, not only the charge acceptability decreases, but also it becomes difficult to recover to a fully charged state.

【0011】このように、従来のように完全充電された
後も過充電される可能性がある運転制御方法や、SOC
を低く設定することによる充電不足状態に陥る可能性の
ある運転制御方法で鉛蓄電池を使用する場合、鉛蓄電池
の寿命低下が課題となっていた。
As described above, the conventional operation control method and SOC that may be overcharged even after being fully charged.
When a lead storage battery is used in an operation control method that may cause a charge shortage state by setting a low value, reduction of the life of the lead storage battery has been a problem.

【0012】本発明は、上記課題を解決するものであ
り、燃料電池と併設する二次電池の充放電電力の高効率
利用および、長寿命化の両立を可能とする充電方法を提
供することを目的とするものである。
The present invention is to solve the above-mentioned problems, and to provide a charging method capable of achieving both high efficiency utilization of charging / discharging power of a secondary battery provided with a fuel cell and a long life. It is intended.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1に係る発明は、燃料電池発電シス
テムに用いる二次電池の充電制御方法であって、燃料電
池の通常運転時に二次電池の充電状態(SOC)を10
0%未満に制御するとともに、所定の間隔でリフレッシ
ュ充電を行い、前記リフレッシュ充電における充電電気
量を検出し、この充電電気量が所定の値に到達した時点
でリフレッシュ充電を完了することを特徴とする燃料電
池発電システムに用いる二次電池の充電制御方法を示す
ものである。
In order to achieve the above object, the invention according to claim 1 of the present invention is a charging control method for a secondary battery used in a fuel cell power generation system, which is a normal operation of a fuel cell. Sometimes the state of charge (SOC) of the secondary battery is 10
While controlling to less than 0%, refresh charging is performed at a predetermined interval, the amount of charge electricity in the refresh charge is detected, and the refresh charge is completed when the amount of charge electricity reaches a predetermined value. 2 shows a charging control method for a secondary battery used in a fuel cell power generation system that operates.

【0014】なおリフレッシュ充電とは、鉛蓄電池のS
OCを100%とした上で、さらに充電を行うものであ
る。
Note that refresh charging means S for lead acid batteries.
The charging is further performed after setting the OC to 100%.

【0015】本発明の請求項2に係る発明は、請求項1
に記載の充電制御方法において、リフレッシュ充電を行
う間隔が30日以内であることを特徴とするものであ
る。
The invention according to claim 2 of the present invention is claim 1
In the charge control method described in (3), the refresh charging interval is within 30 days.

【0016】本発明の請求項3に係る発明は、請求項1
または2に記載の充電制御方法において、リフレッシュ
充電での充電電流値が、0.01CA以上0.2CA以
下であって、一回のリフレッシュ充電での充電電気量を
前記二次電池容量の2%より大きく50%未満に設定す
ることを特徴とするものである。
The invention according to claim 3 of the present invention is claim 1
Alternatively, in the charge control method according to 2, the charge current value in refresh charging is 0.01 CA or more and 0.2 CA or less, and the charge electricity amount in one refresh charging is 2% of the secondary battery capacity. It is characterized by being set to a larger value and less than 50%.

【0017】本発明の請求項4に係る発明は、請求項1
〜3のいずれかに記載の充電制御方法において、前記燃
料電池の出力電圧が所定の電圧に達している時間と二次
電池の充電電流とを積算することにより、充電電気量を
検出することを特徴とするものである。
The invention according to claim 4 of the present invention is claim 1
In the charging control method according to any one of 1 to 3, it is possible to detect the amount of charged electricity by integrating the time when the output voltage of the fuel cell reaches a predetermined voltage and the charging current of the secondary battery. It is a feature.

【0018】[0018]

【発明の実施の形態】図1は、本発明の実施形態の一例
を示すものであり、鉛蓄電池を併設した燃料電池発電シ
ステムを含み安定した電力を負荷へと供給する電力変換
装置を備えた燃料電池発電システム構成を示すものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of an embodiment of the present invention, which includes a fuel cell power generation system equipped with a lead storage battery and which is provided with a power converter for supplying stable power to a load. 1 shows a configuration of a fuel cell power generation system.

【0019】燃料電池1の直流出力は電力変換装置2に
入力されて交流出力に変換されて負荷3に必要な電力を
供給する構成になっている。鉛蓄電池4は充電器5を介
して燃料電池1と接続されており、燃料電池1の出力に
余剰があるときや、鉛蓄電池4のSOCを上昇させると
きに充電器5を介して燃料電池1から充電される。
The DC output of the fuel cell 1 is input to the power converter 2 and converted into an AC output to supply the required power to the load 3. The lead storage battery 4 is connected to the fuel cell 1 through the charger 5, and when the output of the fuel cell 1 has a surplus or when the SOC of the lead storage battery 4 is increased, the lead storage battery 4 is connected through the charger 5 to the fuel cell 1. Is charged from.

【0020】さらに鉛蓄電池4は逆流防止ダイオード
6、および、放電制御用スイッチ7を通して電力変換装
置2の入力に接続され、負荷3が増大し、燃料電池1の
みでは負荷に追従できないときに放電制御用スイッチ7
が閉じ、鉛蓄電池4より電力変換装置2を通して負荷3
に電力が供給される。
Further, the lead storage battery 4 is connected to the input of the power conversion device 2 through the backflow prevention diode 6 and the discharge control switch 7, and the load 3 increases, and the discharge control is performed when the fuel cell 1 alone cannot follow the load. Switch 7
Is closed, and the lead storage battery 4 causes the load 3 to pass through the power converter 2.
Is powered.

【0021】本発明においては鉛蓄電池のSOCは通常
50〜90%程度の部分充電状態で保持され、鉛蓄電池
のSOC制御は充電電圧を制御することにより行われ
る。また、所定期間毎に鉛蓄電池のSOCを100%と
した上でさらに充電を行うリフレッシュ充電が行われ
る。このリフレッシュ充電の頻度は後述するが少なくと
も30日以内が好ましい。
In the present invention, the SOC of the lead storage battery is normally maintained in a partially charged state of about 50 to 90%, and the SOC control of the lead storage battery is performed by controlling the charging voltage. In addition, refresh charging is performed in which the SOC of the lead storage battery is set to 100% and the charging is further performed every predetermined period. The frequency of this refresh charge will be described later, but is preferably at least 30 days.

【0022】充電器5には、リフレッシュ充電の際の鉛
蓄電池への充電電気量を検出する手段が備わっており、
この充電電気量が所定の値に到達した時点でリフレッシ
ュ充電が終了する。充電電気量を検出する手段としては
リフレッシュ充電時の充電電気量を充電時間で積算すれ
ば良い。
The charger 5 is equipped with means for detecting the amount of electricity charged to the lead storage battery during refresh charging.
The refresh charging ends when the amount of charge reaches a predetermined value. As a means for detecting the charge electricity amount, the charge electricity amount at the time of refresh charging may be integrated by the charging time.

【0023】本発明においてはこのリフレッシュ充電に
おける充電電流値を0.01CA以上0.2CA以下の
範囲に設定することが好ましい。この充電電流値を0.
01CA未満とした場合にはリフレッシュ充電に要する
時間が長くなる結果、燃料電池1からの余剰電力を受け
入れ可能な時間が短くなり、好ましくない。また充電電
流値を0.2CAより大きくするとリフレッシュ充電中
の電池からの発熱が大きく、電池内部の電解液中の水分
が減少して寿命低下する可能性が高くなる。
In the present invention, it is preferable to set the charging current value in this refresh charging in the range of 0.01 CA or more and 0.2 CA or less. This charging current value is set to 0.
When it is less than 01 CA, the time required for refresh charging becomes long, and as a result, the time during which the surplus power from the fuel cell 1 can be accepted becomes short, which is not preferable. Further, if the charging current value is larger than 0.2 CA, the heat generated from the battery during refresh charging is large, and the water content in the electrolytic solution inside the battery is reduced, which may increase the life.

【0024】また、本発明においてはリフレッシュ充電
における鉛蓄電池への充電電気量は電池容量の少なくと
も2%より大きく50%未満に設定することが鉛蓄電池
の寿命を確保する上で好ましい。
Further, in the present invention, it is preferable to set the amount of electricity charged to the lead storage battery in the refresh charging to be larger than at least 2% and less than 50% of the battery capacity in order to secure the life of the lead storage battery.

【0025】リフレッシュ充電を行う期間は、予めタイ
ムスケジュールによって設定することが可能であり、こ
の値は燃料電池の運転状況、および、蓄電池の残存容量
などによって変更することができる。また、リフレッシ
ュ充電を行う上での電流値、および、電池容量に対する
電気量も同様に変更可能である。
The period for refresh charging can be set in advance by a time schedule, and this value can be changed depending on the operating condition of the fuel cell, the remaining capacity of the storage battery, and the like. In addition, the current value for refresh charging and the amount of electricity with respect to the battery capacity can be changed in the same manner.

【0026】[0026]

【実施例】前記した発明の実施形態において、充電電気
量の設定値とリフレッシュ充電期間の間隔を変化させ
て、システムを所定期間運転したときの鉛蓄電池の容量
維持率を測定した。鉛蓄電池としては公称電圧12V、
定格容量40Ahの制御弁式鉛蓄電池を2個直列にした
24V電池を用いた。
EXAMPLE In the embodiment of the invention described above, the capacity maintenance rate of the lead storage battery when the system was operated for a predetermined period was measured by changing the set value of the charge electricity amount and the interval of the refresh charging period. As a lead-acid battery, the nominal voltage is 12V,
A 24V battery in which two control valve type lead storage batteries having a rated capacity of 40Ah were connected in series was used.

【0027】鉛蓄電池のSOCの制御パターンは図2に
示すようなパターンとした。このパターンは実際に二次
電池が置かれるであろう状況に基づいて充放電パターン
を設定することにより決定される。なお、1日を1サイ
クルとした。図2に示すように、通常運転における平均
SOCを100%未満(50〜95%)に制御し、所定
の期間が経過した時点(図2の例では12日毎)でSO
Cを100%とし、リフレッシュ充電により所定の充電
電気量分の充電を行った。リフレッシュ充電間隔は、1
日毎、3日毎、10日毎、20日毎、30日毎、40日
毎、50日毎、そして、リフレッシュ充電なしの条件で
実施した。
The SOC control pattern of the lead storage battery was set as shown in FIG. This pattern is determined by setting the charge / discharge pattern based on the situation in which the secondary battery will actually be placed. Incidentally, one day was defined as one cycle. As shown in FIG. 2, the average SOC in normal operation is controlled to be less than 100% (50 to 95%), and SO is measured at the time when a predetermined period has elapsed (every 12 days in the example of FIG. 2).
C was set to 100%, and a predetermined amount of charge electricity was charged by refresh charging. Refresh charge interval is 1
It was carried out every day, every 3 days, every 10 days, every 20 days, every 30 days, every 40 days, every 50 days, and under the condition without refresh charge.

【0028】鉛蓄電池は、SOC=50%の時点で完全
放電を行い、放電容量を測定した後、SOCを50%の
状態まで充電し、サイクルを続行した。そして、この放
電容量が初期の50%に低下した時点で鉛蓄電池の寿命
期間とした。なお、これらの寿命期間の結果を、リフレ
ッシュ充電間隔を10日、リフレッシュ充電電気量を電
池容量の15%とした時の寿命期間を100として図3
に示した。
The lead storage battery was completely discharged at the time of SOC = 50%, and after measuring the discharge capacity, the SOC was charged to the state of 50% and the cycle was continued. Then, when the discharge capacity decreased to 50% of the initial value, the life of the lead storage battery was set. The results of these life periods are shown in FIG. 3 when the refresh charge interval is 10 days and the refresh charge electricity amount is 15% of the battery capacity.
It was shown to.

【0029】図3に示されるように、リフレッシュ充電
間隔が40日を超えると、リフレッシュ充電電気量を多
くしても寿命は低下する。この電池を分解調査したとこ
ろ充電不足によって電極極板上に生成した硫酸鉛が固定
化している状態が観察された。したがって、本発明にお
いては少なくともリフレッシュ充電間隔を30日以内に
設定することが必要であり、リフレッシュ充電間隔がそ
れより長くなると、リフレッシュ充電を実施しても硫酸
鉛結晶の還元が難しくなり、電池容量は回復しない。一
方リフレッシュ充電間隔を短くすると、過充電によって
寿命が低下する場合があるので、リフレッシュ充電間隔
を10以上30日以内に設定することが好ましい。
As shown in FIG. 3, when the refresh charge interval exceeds 40 days, the life is shortened even if the refresh charge electricity quantity is increased. As a result of disassembling and investigating this battery, it was observed that lead sulfate formed on the electrode plate was immobilized due to insufficient charging. Therefore, in the present invention, it is necessary to set at least the refresh charge interval within 30 days, and if the refresh charge interval is longer than that, it becomes difficult to reduce the lead sulfate crystal even if the refresh charge is performed, and the battery capacity is reduced. Does not recover. On the other hand, if the refresh charging interval is shortened, the life may be shortened due to overcharging. Therefore, it is preferable to set the refresh charging interval within 10 to 30 days.

【0030】また、一回のリフレッシュ充電での電気量
が電池容量の2%以下の場合、充電不足状態による電池
極板のサルフェーションの発生によって電池寿命は極端
に低下する場合がある。一方、リフレッシュ充電での充
電電気量が電池の容量の50%以上になると、一回のリ
フレッシュ充電における電気量が大きいため、リフレッ
シュ充電間隔を変化させても、明らかに過充電が原因に
よる寿命低下が見られた。したがって、充電電気量を2
%より大きく50%未満、好ましくは5%以上30%以
下とすることが望ましい。なお、過充電状態によりガス
発生や電池温度の上昇など、様々な弊害を生じ、蓄電池
の寿命が低下することが考えられる。
When the amount of electricity in one refresh charge is 2% or less of the battery capacity, the battery life may be extremely reduced due to sulfation of the battery electrode plate due to insufficient charging. On the other hand, when the amount of electricity charged in refresh charging is 50% or more of the capacity of the battery, the amount of electricity in one refresh charging is large, so even if the refresh charging interval is changed, the life will obviously decrease due to overcharging. It was observed. Therefore, the charge amount is 2
% And less than 50%, preferably 5% or more and 30% or less. It is conceivable that various problems such as gas generation and battery temperature rise may occur due to the overcharged state, and the life of the storage battery may be shortened.

【0031】なお本実施例において、最も電池の寿命に
対して効果的なリフレッシュ充電を可能としたのは、電
池容量比に対してリフレッシュ充電電気量が15%、充
電間隔を10日とした条件であった。
In this embodiment, the most effective refresh charging for the battery life is achieved under the condition that the refresh charge electricity amount is 15% of the battery capacity ratio and the charging interval is 10 days. Met.

【0032】図4は、鉛蓄電池をリフレッシュ充電する
ときの電流値と、電池温度の最大上昇値との関係を示し
た図である。図4に示した結果からリフレッシュ充電に
おける電流値が0.2CA以上になると、充電されてい
る鉛蓄電池の温度が急激に上昇していることがわかる。
電池内の温度が一定温度以上に上昇する時間が長くなる
と、電解液が減少することにより内部抵抗が増大し、放
電できなくなるといった問題が生ずる。さらに、電池の
温度が10℃高いと電極格子の腐食が2倍に加速する、
といったデータが得られていることから、電池の寿命が
電極格子の腐食によるものであった場合、寿命が半分に
なることを意味する。
FIG. 4 is a diagram showing the relationship between the current value when the lead storage battery is refresh charged and the maximum rise value of the battery temperature. From the results shown in FIG. 4, it can be seen that when the current value in refresh charging becomes 0.2 CA or more, the temperature of the lead storage battery being charged rises sharply.
When the temperature in the battery rises above a certain temperature for a long time, the electrolyte decreases and the internal resistance increases, which causes a problem that discharge cannot be performed. Furthermore, when the temperature of the battery is higher by 10 ° C, the corrosion of the electrode grid is doubled,
From the data obtained, it means that if the battery life is due to the corrosion of the electrode grid, the life will be halved.

【0033】これらのことから、電池の温度上昇による
寿命低下を抑えながら、システムを効率的に作動させる
ためには、リフレッシュ充電を行うときの電流値を少な
くとも0.2CA以下、リフレッシュ充電を短時間で完
了することを考慮すれば0.01CA以上とすることが
好ましい。
From these facts, in order to operate the system efficiently while suppressing the life reduction due to the temperature rise of the battery, the current value at the time of refresh charging is at least 0.2 CA or less, and the refresh charging is performed for a short time. Considering that the process is completed, it is preferably 0.01 CA or more.

【0034】以上のことから、充放電電力効率を高める
ためにSOCを100%未満に制御する場合に本発明の
構成を用いれば電池の寿命を確保することができる。
From the above, when the SOC is controlled to less than 100% in order to improve the charge / discharge power efficiency, the battery life can be secured by using the configuration of the present invention.

【0035】[0035]

【発明の効果】本発明の燃料電池発電システムに用いる
二次電池の充電制御方法によると、二次電池として用い
る鉛蓄電池の高効率化と長寿命化との両立が可能とな
る。
According to the charge control method for the secondary battery used in the fuel cell power generation system of the present invention, it is possible to achieve both high efficiency and long life of the lead storage battery used as the secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における燃料電池発電システムを示す図FIG. 1 is a diagram showing a fuel cell power generation system according to the present invention.

【図2】本発明におけるSOC制御パターンの一例を示
す図
FIG. 2 is a diagram showing an example of an SOC control pattern in the present invention.

【図3】リフレッシュ充電の間隔、リフレッシュ充電電
気量および電池寿命の関係を示す図
FIG. 3 is a diagram showing a relationship between a refresh charge interval, a refresh charge amount and a battery life.

【図4】リフレッシュ充電電流値と電池温度最大上昇値
との関係を示す図
FIG. 4 is a diagram showing a relationship between a refresh charge current value and a maximum battery temperature rise value.

【符号の説明】[Explanation of symbols]

1 燃料電池 2 電力変換装置 3 負荷 4 鉛蓄電池 5 充電器 6 逆流防止ダイオード 7 放電制御用スイッチ 1 fuel cell 2 Power converter 3 load 4 Lead acid battery 5 charger 6 Backflow prevention diode 7 Discharge control switch

フロントページの続き (72)発明者 神保 裕行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5G003 AA05 CA15 CB06 DA06 DA12 EA05 5H030 AA01 AS20 BB01 BB08 FF41 FF42 FF52 Continued front page    (72) Inventor Hiroyuki Jimbo             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5G003 AA05 CA15 CB06 DA06 DA12                       EA05                 5H030 AA01 AS20 BB01 BB08 FF41                       FF42 FF52

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池発電システムに用いる二次電池
の充電制御方法であって、燃料電池の通常運転時に二次
電池の充電状態(SOC)を100%未満に制御すると
ともに、所定の間隔でリフレッシュ充電を行い、前記リ
フレッシュ充電における充電電気量を検出し、この充電
電気量が所定の値に到達した時点でリフレッシュ充電を
完了することを特徴とする燃料電池発電システムに用い
る二次電池の充電制御方法。
1. A method for controlling charging of a secondary battery used in a fuel cell power generation system, comprising controlling the state of charge (SOC) of the secondary battery to be less than 100% during normal operation of the fuel cell, and at a predetermined interval. Charging a secondary battery used in a fuel cell power generation system, characterized in that refresh charging is performed, the amount of charge electricity in the refresh charge is detected, and the refresh charge is completed when the amount of charge electricity reaches a predetermined value. Control method.
【請求項2】 前記リフレッシュ充電を行う間隔が30
日以内であることを特徴とする請求項1記載の充電制御
方法。
2. The interval at which the refresh charging is performed is 30.
The charging control method according to claim 1, wherein the charging control method is within a day.
【請求項3】 前記リフレッシュ充電での充電電流値
が、0.01CA以上0.2CA以下であって、一回の
リフレッシュ充電での充電電気量を前記二次電池容量の
2%より大きく50%未満に設定することを特徴とする
請求項1または2に記載の充電制御方法。
3. The charge current value in the refresh charge is 0.01 CA or more and 0.2 CA or less, and the charge electricity amount in one refresh charge is more than 2% and 50% of the secondary battery capacity. The charge control method according to claim 1 or 2, wherein the charge control method is set to less than.
【請求項4】 前記燃料電池の出力電圧が所定の電圧に
達している時間と前記二次電池の充電電流とを積算する
ことにより、前記充電電気量を検出することを特徴とす
る請求項1〜3のいずれかに記載の充電制御方法。
4. The charge electricity amount is detected by integrating the time during which the output voltage of the fuel cell reaches a predetermined voltage and the charging current of the secondary battery. The charge control method according to any one of 1 to 3.
JP2001307259A 2001-10-03 2001-10-03 Control method for charging secondary battery used in fuel battery power generating system Pending JP2003111291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001307259A JP2003111291A (en) 2001-10-03 2001-10-03 Control method for charging secondary battery used in fuel battery power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001307259A JP2003111291A (en) 2001-10-03 2001-10-03 Control method for charging secondary battery used in fuel battery power generating system

Publications (1)

Publication Number Publication Date
JP2003111291A true JP2003111291A (en) 2003-04-11

Family

ID=19126754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001307259A Pending JP2003111291A (en) 2001-10-03 2001-10-03 Control method for charging secondary battery used in fuel battery power generating system

Country Status (1)

Country Link
JP (1) JP2003111291A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086231A1 (en) * 2006-01-27 2007-08-02 Toyota Jidosha Kabushiki Kaisha Cooling fan control device and method
WO2010137334A1 (en) * 2009-05-28 2010-12-02 パナソニック株式会社 Lead storage battery charging control method, charging control circuit, power source device and lead storage battery
JP2011015590A (en) * 2009-07-06 2011-01-20 Kansai Electric Power Co Inc:The Secondary battery charging controller and secondary battery charging control program
CN103629135A (en) * 2012-08-23 2014-03-12 现代自动车株式会社 Cooling blower control device and method for high-voltage battery
JPWO2018199311A1 (en) * 2017-04-28 2020-03-12 株式会社Gsユアサ Management device, power storage device, and power storage system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200780A (en) * 2006-01-27 2007-08-09 Toyota Motor Corp Controller for cooling fan
WO2007086231A1 (en) * 2006-01-27 2007-08-02 Toyota Jidosha Kabushiki Kaisha Cooling fan control device and method
US8219248B2 (en) 2006-01-27 2012-07-10 Toyota Jidosha Kabushiki Kaisha Control device and control method for cooling fan
US8344698B2 (en) 2009-05-28 2013-01-01 Panasonic Corporation Lead storage battery charging control method, charging control circuit, power source device, and lead storage battery
WO2010137334A1 (en) * 2009-05-28 2010-12-02 パナソニック株式会社 Lead storage battery charging control method, charging control circuit, power source device and lead storage battery
JP4689768B2 (en) * 2009-05-28 2011-05-25 パナソニック株式会社 Lead storage battery charge control method, charge control circuit, and power supply device
JP2011134717A (en) * 2009-05-28 2011-07-07 Panasonic Corp Lead-acid battery
US8148938B2 (en) 2009-05-28 2012-04-03 Panasonic Corporation Lead storage battery charging control method, charging control circuit, power source device, and lead storage battery
JP2011015590A (en) * 2009-07-06 2011-01-20 Kansai Electric Power Co Inc:The Secondary battery charging controller and secondary battery charging control program
CN103629135A (en) * 2012-08-23 2014-03-12 现代自动车株式会社 Cooling blower control device and method for high-voltage battery
US9528719B2 (en) 2012-08-23 2016-12-27 Hyundai Motor Company Cooling blower control device and method for high-voltage battery
JPWO2018199311A1 (en) * 2017-04-28 2020-03-12 株式会社Gsユアサ Management device, power storage device, and power storage system
US11411409B2 (en) 2017-04-28 2022-08-09 Gs Yuasa International Ltd. Management apparatus, energy storage apparatus, and energy storage system

Similar Documents

Publication Publication Date Title
KR101297150B1 (en) Apparatus for interchanging the battery mode of power unit using secondary battery
US20060145658A1 (en) Method and device for battery charger and diagnosis with detectable battery energy barrier
US6577103B2 (en) Emergency power system, and system for automatically detecting whether or not failure of single cell occurs in battery for use in the system
JP6690414B2 (en) Trickle charging power system
US20150001943A1 (en) System with dual battery back-up and related methods of operation
CN101593994B (en) Method for stabilizing voltage of fuel cell without DC-DC converter and fuel cell system
WO2012043636A1 (en) Power supply system
KR101041430B1 (en) Battery Recharge / Charge Device
JP2003111291A (en) Control method for charging secondary battery used in fuel battery power generating system
JPH0629029A (en) Fuel cell operating method
CN107123835B (en) A kind of electrochemical method and system of lead-acid accumulator desulfurization
JP2002058175A (en) Independent power supply system
Alzieu et al. Multi-Battery-Management, An Innovative Concept of PV Storage System
JP4331473B2 (en) Charge / discharge control device and charge / discharge control method for lead-acid battery
JP2003189498A (en) Charging method and charger of secondary battery
Brost Performance of valve-regulated lead acid batteries in EV1 extended series strings
JP6265010B2 (en) Power storage system
JPH01278239A (en) Charge controller of auxiliary battery for fuel battery
JP2013074705A (en) Power storage system
JP2003331930A (en) Feeding system
Bonduelle et al. Telecom hybrid power battery management in full and partial state of charge
CN201041946Y (en) Self-excited negative impulse voltage stabilization balance battery
CN214625153U (en) Lead-acid battery activation device
CN101141074B (en) Self-excitation negative pulse voltage regulation equalization battery
Kadiran Charging and discharging methods of lead acid battery