JP2002367613A - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JP2002367613A
JP2002367613A JP2002067800A JP2002067800A JP2002367613A JP 2002367613 A JP2002367613 A JP 2002367613A JP 2002067800 A JP2002067800 A JP 2002067800A JP 2002067800 A JP2002067800 A JP 2002067800A JP 2002367613 A JP2002367613 A JP 2002367613A
Authority
JP
Japan
Prior art keywords
carbon
lead
acid battery
negative electrode
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002067800A
Other languages
Japanese (ja)
Inventor
Michiko Honbo
享子 本棒
Eiji Hoshi
星  栄二
Tadashi Muranaka
村中  廉
Seiji Takeuchi
瀞士 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Hitachi Ltd
Priority to JP2002067800A priority Critical patent/JP2002367613A/en
Publication of JP2002367613A publication Critical patent/JP2002367613A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain a lead storage battery with higher efficiency of charging property than before, and to obtain a carbon material with excellent charge acceptability used for the lead storage battery. SOLUTION: The efficiency of charging property of the lead storage battery is heightened and charge acceptability is improved by using carbon materials like activated carbon or carbon black to which, a simple substance or a compound, having desulfurization catalysis function or SOx oxidation catalysis function, is added or made to hold, as additives to the negative electrode activator. By applying the lead storage battery, having the negative electrode containing the carbon material to which, such an additives is added or made to hold, to an electric automobile with high input and output properties, various kinds of hybrid automobiles, electric power storage systems, elevators, electric power tools, power source systems like uninterrupted power source or scattered power sources, a stable control is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池に係り、
特に高率充電性能に優れた鉛蓄電池用カーボン材料に関
する。
The present invention relates to a lead-acid battery,
Particularly, the present invention relates to a carbon material for a lead storage battery having excellent high-rate charging performance.

【0002】[0002]

【従来の技術】鉛蓄電池は二次電池として比較的安価で
安定な性能を有しているため、自動車用をはじめとし
て、ポータブル機器用の電源やコンピュータのバックア
ップ用にも広く普及してきた。さらに、最近では電気自
動車用の主力電源としてだけでなく、ハイブリッド電気
自動車や簡易ハイブリッド自動車などの起動電源や回生
電流の回収用としても新たな機能が見直されている。こ
れらの用途では、とりわけ高出力性能,高入力性能の両
立が重要な課題となっている。
2. Description of the Related Art Lead-acid batteries are relatively inexpensive and have stable performance as secondary batteries, and thus have become widespread for use as power sources for automobiles as well as for power supplies for portable equipment and for backup of computers. Further, recently, new functions have been reviewed not only as a main power source for electric vehicles but also as a starting power source for hybrid electric vehicles and simple hybrid vehicles and for recovering regenerative current. In these applications, it is particularly important to achieve both high output performance and high input performance.

【0003】しかし、これまで、高出力性能に関しては
様々な検討がなされてきたが、高入力性能に関しては他
の電池系に勝る性能が得られるまでには至っていない。
However, various studies have been made on the high output performance, but the high input performance has not yet reached a level superior to other battery systems.

【0004】高入力性能、即ち高率充電特性は負極中に
存在する硫酸鉛の特性に支配されるところが大きい。鉛
蓄電池における負極活物質は、放電反応では金属鉛が電
子を放出して硫酸鉛に変化し、充電反応では硫酸鉛が電
子を得て金属鉛に変化する。放電時に生成する硫酸鉛は
イオン伝導性も電子伝導性もない絶縁性物質である。ま
た、硫酸鉛の鉛イオンへの溶解度は極めて小さい。この
ように、硫酸鉛では電子やイオンの伝導性が低いことに
加えて、鉛イオンへの溶解性にも乏しいことから、硫酸
鉛から金属鉛への反応速度が遅く、高率充電特性が低い
のである。
[0004] High input performance, that is, high rate charging characteristics is largely determined by the characteristics of lead sulfate present in the negative electrode. In a negative electrode active material in a lead-acid battery, in a discharge reaction, metal lead emits electrons and changes to lead sulfate, and in a charging reaction, lead sulfate obtains electrons and changes to metal lead. Lead sulfate generated at the time of discharge is an insulating substance having neither ionic conductivity nor electronic conductivity. Further, the solubility of lead sulfate in lead ions is extremely small. As described above, in addition to the low conductivity of electrons and ions, lead sulfate also has poor solubility in lead ions, so the reaction rate from lead sulfate to metallic lead is slow, and the high-rate charging characteristics are low. It is.

【0005】これらの対策として、例えば、負極活物質
中に添加するカーボンの量を最適化すること(特開平9
−213336号)や、負極活物質中に金属錫を含有さ
せること(特開平5−89873号)等により、充電性
能を改善する試みが行われている。
[0005] As a countermeasure against these problems, for example, the amount of carbon added to the negative electrode active material is optimized (Japanese Patent Laid-Open No.
Attempts have been made to improve the charging performance by using metallic tin in the negative electrode active material (JP-A-5-89873).

【0006】[0006]

【発明が解決しようとする課題】高率充電特性を改善す
るためには、硫酸鉛の特性を改善していく必要がある。
第一に硫酸鉛の導電性を向上させることであり、第二に
硫酸鉛の鉛への溶解性を上げることである。特開平9−
213336号に見られるように、カーボンを最適量添
加することにより、硫酸鉛の電子伝導性,イオン伝導性
を向上させることは可能である。しかし、カーボンでは
硫酸鉛の鉛への溶解度を改善する事はできない。金属錫
を含有させることについても同様に、硫酸鉛の導電性を
向上させることはできるが、硫酸鉛の鉛への溶解度を改
善する事はできない。
In order to improve the high rate charging characteristics, it is necessary to improve the characteristics of lead sulfate.
The first is to improve the conductivity of lead sulfate, and the second is to increase the solubility of lead sulfate in lead. JP-A-9-
As seen in JP-A-213336, it is possible to improve the electronic conductivity and ionic conductivity of lead sulfate by adding an optimum amount of carbon. However, carbon cannot improve the solubility of lead sulfate in lead. Similarly, when metal tin is contained, the conductivity of lead sulfate can be improved, but the solubility of lead sulfate in lead cannot be improved.

【0007】本発明の目的は、硫酸鉛の導電性を向上さ
せ、加えて、硫酸鉛の鉛への溶解度を改善させることに
より、負極活物質の充電反応を円滑に進行させて、高率
充電性能に優れた鉛蓄電池を提供することと、充電受入
性に優れた新規なカーボン材料を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the conductivity of lead sulfate and, in addition, to improve the solubility of lead sulfate in lead, so that the charging reaction of the negative electrode active material can proceed smoothly to achieve a high rate of charge. An object of the present invention is to provide a lead-acid battery having excellent performance and a novel carbon material having excellent charge acceptability.

【0008】[0008]

【課題を解決するための手段】第一に本発明の鉛蓄電池
は、負極に脱硫触媒作用、又はSOx 酸化触媒作用のあ
る単体及び又は化合物を含むカーボン粉末を添加したこ
とを特徴とする。又、本発明の鉛蓄電池用カーボン材料
としては、脱硫触媒作用、又はSOx 酸化触媒作用のあ
る単体及び又は化合物を含むカーボン粉末であることを
特徴とする。前記のカーボン粉末を用いることにより、
鉛蓄電池の高率充電性能が改善される。特に水素化脱硫
触媒作用のある単体及び又は化合物を含むカーボンを添
加した場合、鉛蓄電池の高率充電性能において顕著な効
果が得られる。
Lead-acid battery of the present invention the first SUMMARY OF THE INVENTION The desulfurization catalyze the anode, or, characterized in that the addition of carbon powder containing a simple substance and or compounds of SO x oxidation catalysis. As the carbon material for a lead storage battery of the present invention, wherein the desulfurization catalyst activity, or a carbon powder containing a simple substance and or compounds of SO x oxidation catalysis. By using the above carbon powder,
The high rate charging performance of the lead storage battery is improved. In particular, when carbon containing a simple substance and / or a compound having a hydrodesulfurization catalytic action is added, a remarkable effect is obtained in the high-rate charging performance of the lead storage battery.

【0009】該脱硫触媒作用のある単体、及び又は化合
物として、石油精製触媒、あるいは重油脱硫触媒、ある
いはガス製造触媒、あるいは公害防止用触媒のうちの脱
硫用触媒、もしくは脱臭用触媒を構成する主たる成分を
少なくとも一つ含むことによって、鉛蓄電池の高率充電
性能をより改善することができる。
As the simple substance and / or compound having the desulfurization catalytic action, a main component constituting a desulfurization catalyst or a deodorization catalyst among petroleum refining catalysts, heavy oil desulfurization catalysts, gas production catalysts, or pollution prevention catalysts. By including at least one component, the high rate charging performance of the lead storage battery can be further improved.

【0010】前記成分としては、Co,Mo,Ni,Z
n,Cu,Mnから選ばれた単体、もしくは酸化物、も
しくは硫酸塩、もしくは水酸化物のうち少なくとも一つ
を含むことが望ましい。
The above components include Co, Mo, Ni, Z
It is preferable to include at least one of a simple substance selected from n, Cu, and Mn, or an oxide, a sulfate, or a hydroxide.

【0011】該SOx 酸化触媒作用のある単体、及び又
は化合物として、硫酸製造触媒を構成する主たる成分を
少なくとも一つ含むことによっても、鉛蓄電池の高率充
電性能を改善することができる。特に硫酸塩化できるも
のが好ましい。
[0011] alone with the SO x oxidation catalysis, and or as a compound, also by including at least one main component constituting the sulfuric acid production catalyst, it can improve the high rate charge performance of lead-acid battery. Particularly, those capable of being sulfated are preferable.

【0012】前記成分としては、アルカリ金属,アルカ
リ土類金属,V,Mn,希土類元素から選ばれた単体、
又は酸化物、又は硫酸塩のうち少なくとも一つを含むこ
とが望ましい。
The above-mentioned components include a simple substance selected from alkali metals, alkaline earth metals, V, Mn, and rare earth elements;
Alternatively, it is desirable to include at least one of an oxide and a sulfate.

【0013】第二に本発明の鉛蓄電池として、負極に以
下の担持体を添加することを特徴とする。即ち、Hf,
Nb,Ta,W,Ag,Zn,Ni,Co,Mo,C
u,V,Mn,Ba,K,Cs,Rb,Sr,Na、望
ましくは、Ni,Co,Mo,Cu,V,Mn,Ba,
K,Cs,Rb,Sr,Naの単体、もしくは酸化物、
もしくは硫酸塩、もしくは水酸化物、もしくは炭化物の
うち少なくとも一つをカーボン粉末に担持した担持体を
添加する。これらの担持体を用いることにより、鉛蓄電
池の高率充電性能が改善される。
Second, the lead storage battery of the present invention is characterized in that the following carrier is added to the negative electrode. That is, Hf,
Nb, Ta, W, Ag, Zn, Ni, Co, Mo, C
u, V, Mn, Ba, K, Cs, Rb, Sr, Na, desirably Ni, Co, Mo, Cu, V, Mn, Ba,
Simple substance or oxide of K, Cs, Rb, Sr, Na,
Alternatively, a carrier in which at least one of a sulfate, a hydroxide, and a carbide is supported on carbon powder is added. By using these carriers, the high-rate charging performance of the lead storage battery is improved.

【0014】前記の原子種を1元素当り、重量比率で1
0ppm以上,5000ppm以下の範囲、望ましくは50pp
m以上,1000ppm下の範囲でカーボン中に添加するこ
とで、さらに、鉛蓄電池の高率充電性能を向上させるこ
とができる。
The above-mentioned atomic species are used in a weight ratio of 1 per element.
0 ppm or more, 5000 ppm or less, preferably 50 pp
By adding to the carbon in the range of not less than m and not more than 1000 ppm, the high-rate charging performance of the lead storage battery can be further improved.

【0015】本発明に用いるカーボンとして、カーボン
ブラック,アセチレンブラック,天然黒鉛,人造黒鉛,
熱分解炭素,コークス,等方性黒鉛,メソフェーズカー
ボン,ピッチ系炭素繊維,気相成長炭素繊維,フッ化カ
ーボン,ナノカーボン,活性炭,活性炭素繊維,PAN
系炭素繊維のうちの少なくとも一つを用いることによ
り、優れた高率充電性能を発揮することができる。これ
らのカーボンの中には、種々の一次粒子径,種々の比表
面積,種々のジブチルフタレートで求めた吸油量,種々
の見掛密度を持ったものがあるが、いかなるカーボンに
対しても適用可能である。
The carbon used in the present invention includes carbon black, acetylene black, natural graphite, artificial graphite,
Pyrolytic carbon, coke, isotropic graphite, mesophase carbon, pitch-based carbon fiber, vapor-grown carbon fiber, carbon fluoride, nanocarbon, activated carbon, activated carbon fiber, PAN
By using at least one of the carbon fibers, excellent high-rate charging performance can be exhibited. Some of these carbons have various primary particle diameters, various specific surface areas, oil absorptions obtained with various dibutyl phthalates, and various apparent densities, but they can be applied to any carbon. It is.

【0016】該担持体に担持された単体もしくは化合物
の平均一次粒径としては0.1nm以上,1000nm
以下の範囲であることが望ましい。なお、前記平均一次
粒径には、透過型電子顕微鏡を用いた観察によって得た
一次粒径の平均値を使用している。また、担持体の場
合、焼成温度や焼成雰囲気等の焼成条件によって得られ
る一次粒径の大きさが異なる。例えば、空気中では30
0℃付近、窒素中では350℃付近、水素中では370
℃付近で、おおよそ前記の範囲の平均一次粒径を持つ担
持体が得られている。
The average primary particle size of the simple substance or the compound supported on the support is 0.1 nm or more and 1000 nm or more.
It is desirable to be within the following range. The average primary particle size used herein is an average value of primary particle sizes obtained by observation using a transmission electron microscope. In the case of the carrier, the size of the primary particle size obtained varies depending on the firing conditions such as the firing temperature and the firing atmosphere. For example, 30 in air
Around 0 ° C, around 350 ° C in nitrogen, and 370 in hydrogen
In the vicinity of ° C., a carrier having an average primary particle size in the above range is obtained.

【0017】第三に本発明の鉛蓄電池として、負極に以
下の活性炭及び、又はカーボンブラックを添加すること
を特徴とする。即ち、Cu,Ni,Zn,Mn,Al,
Si,K,Mgのうち少なくとも一種類の単体もしくは
化合物を含む活性炭を添加する。又、本発明の鉛蓄電池
内に添加するカーボン粉末として、Cu,Ni,Zn,
Mn,Al,Si,K,Mgのうち少なくとも一種類の
単体もしくは化合物を含む活性炭及び、又はカーボンブ
ラックであることを特徴とする。活性炭やカーボンブラ
ックは複雑な細孔構造を持っている。これらの細孔に
は、種々の不純物元素が含まれている。その中でも特に
Cu,Ni,Zn,Mn,Al,Si,K,Mgのうち
少なくとも一種類の単体もしくは化合物が不純物元素と
して含まれている活性炭やカーボンブラックを用いるこ
とにより、鉛蓄電池の高率充電性能を改善することがで
きる。
Third, the lead storage battery of the present invention is characterized in that the following activated carbon and / or carbon black is added to the negative electrode. That is, Cu, Ni, Zn, Mn, Al,
Activated carbon containing at least one of Si, K, and Mg alone or a compound is added. The carbon powder added to the lead storage battery of the present invention includes Cu, Ni, Zn,
Activated carbon containing at least one kind or a compound of Mn, Al, Si, K, and Mg, and / or carbon black. Activated carbon and carbon black have a complicated pore structure. These pores contain various impurity elements. Among them, in particular, by using activated carbon or carbon black containing at least one kind or a compound of at least one of Cu, Ni, Zn, Mn, Al, Si, K, and Mg as an impurity element, a high-rate charge of a lead storage battery is achieved. Performance can be improved.

【0018】このような活性炭として、Cuの含有量が
重量比率で5ppm よりも多く、15000ppm よりも少
ないやしがら活性炭を用いることが望ましい。やしがら
活性炭は天然物であるやしがらを原料としていることか
ら、天然物由来のCu,Mn,Al,Si,Kが多く含
まれている。中でもCuの含有量が重量比率で5ppm よ
りも多く、15000ppm よりも少ない領域で、鉛電池
の負極における高率充電性能や充電受入性を大幅に改善
することができる。
As such activated carbon, it is preferable to use activated carbon having a Cu content of more than 5 ppm by weight and less than 15,000 ppm. Since activated carbon is a natural product, the raw material of which is used as a raw material, Cu, Mn, Al, Si, and K derived from natural products are included in a large amount. In particular, in a region where the content of Cu is more than 5 ppm by weight and less than 15000 ppm, high-rate charging performance and charge acceptability of the negative electrode of the lead battery can be significantly improved.

【0019】このようなカーボンブラックとしては、N
iとCuとZnとMnのトータルの含有量が、重量比率
で1ppm よりも多く、1000ppm よりも少ないファー
ネスブラックを用いることが望ましい。ファーネスブラ
ックは、不純物の多い重油を原料としているので、原料
から由来するNiやCu,Zn,Mnが多く含まれてい
る。特に、NiとCuのトータルの含有量が重量比率で
1ppm よりも多く、1000ppm よりも少ない領域で鉛
電池の負極における高率充電性能や充電受入性を大幅に
改善することができる。
Examples of such carbon black include N
It is desirable to use furnace black in which the total content of i, Cu, Zn, and Mn is greater than 1 ppm by weight and less than 1000 ppm. Furnace black is made from heavy oil, which contains many impurities, and thus contains a large amount of Ni, Cu, Zn, and Mn derived from the raw material. In particular, in the region where the total content of Ni and Cu is more than 1 ppm by weight and less than 1000 ppm, high-rate charging performance and charge acceptability of the negative electrode of the lead battery can be significantly improved.

【0020】最後に、本発明の鉛蓄電池用カーボン材料
は、Hf,Nb,Ta,W,Ag,Zn,Ni,Co,
Mo,Cu,V,Mn,Ba,K,Cs,Rb,Sr,
Naのうち少なくとも一つから選ばれた単体、もしくは
酸化物、もしくは硫酸塩、もしくは水酸化物、もしくは
炭化物を含有する又は担持するカーボン粉末であること
を特徴とする。前記カーボン粉末は、鉛蓄電池の電解液
に添加しても、電極表面に添加しても良く、いずれにお
いても、充電の開始を促進させる効果が得られる。前記
単体、もしくは酸化物、もしくは硫酸塩、もしくは水酸
化物、もしくは炭化物の含有方法としては、湿式による
担持方法が望ましい。
Finally, the carbon material for a lead storage battery according to the present invention comprises Hf, Nb, Ta, W, Ag, Zn, Ni, Co,
Mo, Cu, V, Mn, Ba, K, Cs, Rb, Sr,
It is a carbon powder containing or carrying a simple substance selected from at least one of Na, an oxide, a sulfate, a hydroxide, or a carbide. The carbon powder may be added to the electrolyte solution of the lead-acid battery or to the electrode surface. In either case, the effect of promoting the start of charging is obtained. As a method for containing the simple substance, oxide, sulfate, hydroxide, or carbide, a wet supporting method is preferable.

【0021】本発明によれば、2C以上の大電流充電に
おいてもガス発生によるエネルギー損失が少なく、鉛蓄
電池の高効率充電性能が改善できる。ここで、2Cは電
池の全放電容量を0.5 時間で放電させるために必要な
電流値であり、1Cは電池の全放電容量を1時間で放電
させるために必要な電流値である。
According to the present invention, energy loss due to gas generation is small even at a large current charge of 2 C or more, and the high-efficiency charge performance of a lead storage battery can be improved. Here, 2C is a current value required to discharge the entire discharge capacity of the battery in 0.5 hours, and 1C is a current value required to discharge the entire discharge capacity of the battery in 1 hour.

【0022】本発明の特徴は、これらの触媒が共通して
有している硫黄(S)との相互作用、つまり、1つには
触媒中の元素と硫黄(S)との吸着性が強いという特性
を用いていることにある。例えば、原油などの脱硫では
チオフエン類の脱硫が一般によく知られている。ベンゾ
チオフエンではベンゾチオフエン中のSが触媒の活性点
上に吸着し、同時に水素化してH2S として脱離するこ
とにより脱硫反応が進行する。これは、鉛蓄電池の負極
の充電素反応である硫酸鉛が硫酸イオンと鉛イオンに解
離する反応の際にも当てはまり、硫酸鉛中の硫酸基が触
媒の活性点上に吸着し、同時に水素化してHSO4 -とし
て電解液中に放出されるのである。鉛蓄電池の場合、電
解液中の硫酸濃度が30体積%と高いために、SO4 2-
では解離できず、そのほとんどが、HSO4 -として解離
する。このことからも、HSO4 -として放散することが
硫酸鉛の溶解性を向上させる上で重要な役割を果たして
いると言える。
A feature of the present invention is that these catalysts have an interaction with sulfur (S) which is common to them, that is, at least one of them has a strong adsorptivity between the element in the catalyst and sulfur (S). This is the characteristic that is used. For example, in desulfurization of crude oil and the like, desulfurization of thiophenes is generally well known. In the benzothiophene, S in the benzothiophene is adsorbed on the active site of the catalyst, and is simultaneously hydrogenated and eliminated as H 2 S, whereby the desulfurization reaction proceeds. This also applies to the reaction of dissociation of lead sulfate into lead ions, which is the elementary charge reaction of the negative electrode of a lead-acid battery, and the sulfate groups in the lead sulfate are adsorbed on the active sites of the catalyst and are simultaneously hydrogenated. than it is released into the electrolytic solution as - HSO 4 Te. For lead-acid battery, for sulfuric acid concentrations in the electrolyte and high 30 vol%, SO 4 2-
In can not be dissociated, mostly, HSO 4 - dissociates as. This also, HSO 4 - be dissipated can be said to play an important role in improving the solubility of lead sulfate as.

【0023】一方、硫酸製造触媒にはSOx を分子内に
取込んで高次に硫酸塩化できる元素が主として使われて
いる。V25やRb,K,Csなどの硫酸塩は、SOx
を分子内に取込んでVOSO4 やMe227 (Meは
Rb,K,Cs)に変化することが知られている。これ
は、鉛蓄電池の負極の充電素反応である硫酸鉛が硫酸イ
オンと鉛イオンに解離する反応の際にも当てはまり、上
記の酸化物、もしくは硫酸塩が分子内に解離された硫酸
イオンを取込むことによって、溶解を促進させることが
可能となるのである。
On the other hand, elements which can be sulfated in order in ipecac in the molecule are used primarily the SO x in the sulfuric acid production catalyst. Sulfates such as V 2 O 5 and Rb, K, Cs are SO x
It is known that VOSO 4 or Me 2 S 2 O 7 (Me is Rb, K, Cs) is taken into the molecule by incorporation into the molecule. This also applies to the reaction in which lead sulfate, which is the elementary charge reaction of the negative electrode of a lead-acid battery, dissociates into sulfate ions and lead ions, and the above-described oxide or sulfate dissociates sulfate ions in the molecule. Incorporation can promote dissolution.

【0024】本発明の負極は、例えば、脱硫触媒作用,
SOx 酸化触媒作用又は硫酸製造触媒作用のような特定
の触媒作用を持った単体もしくは種々の化合物を含むカ
ーボンを添加することを特徴とする。カーボンは硫酸鉛
の導電性を高めるためになくてはならない物質である
が、それ単独では十分な充電性能が得られない。そのた
め、特定の触媒作用を持った単体もしくは種々の化合物
の付与が必要となる。反対に、特定の触媒作用を持った
単体もしくは種々の化合物のみの添加ではカーボンのよ
うな導電性効果が得られないため、十分な高率充電性能
が得られない。
The negative electrode of the present invention has, for example, a desulfurization catalytic action,
It is characterized by adding carbon containing a simple substance or various compounds having a specific catalytic action such as an SO x oxidation catalytic action or a sulfuric acid production catalytic action. Carbon is a substance that is indispensable to enhance the conductivity of lead sulfate, but cannot provide sufficient charging performance by itself. Therefore, it is necessary to provide a simple substance having a specific catalytic action or various compounds. Conversely, if only a simple substance having a specific catalytic action or only various compounds is added, a conductive effect such as carbon cannot be obtained, so that a sufficiently high rate charging performance cannot be obtained.

【0025】触媒作用をより発揮させるためには、触媒
作用を持った単体もしくは種々の化合物をカーボン上に
微小粒径の粒子として高分散させることが望ましい。
In order to make the catalytic action more effective, it is desirable to disperse a simple substance or various compounds having a catalytic action on carbon as particles having a fine particle diameter.

【0026】複雑な細孔構造、つまり、多孔質構造,微
細構造,メソ孔構造,ミクロ孔構造,サブミクロ孔構
造,マクロ孔構造,内部表面を有する構造,高比表面積
な構造等を有する活性炭やカーボンブラックの中には、
その細孔部分に前述の触媒作用を持った単体もしくは種
々の化合物を微量含有しているものが存在する。これ
は、触媒作用をより発揮させるためには好都合である。
活性炭やカーボンブラックの中には種々の分子やイオン
をその複雑な細孔部分に吸着させる働きがある。即ち、
鉛蓄電池の負極の充電素反応である硫酸鉛が硫酸イオン
と鉛イオンに解離する反応の際に、活性炭の細孔部分に
硫酸イオンが吸着されやすい。この細孔部分には、前述
の触媒作用を持った単体もしくは種々の化合物が存在す
るために、容易に硫酸イオンがHSO4 -として解離、或
いは、酸化物や硫酸塩中に取込まれて、充電反応が円滑
に進行するのである。このように、活性炭やカーボンブ
ラックなどの天然物や重油などを原料とするカーボンで
は、触媒作用を持った単体もしくは種々の化合物をはじ
めから多量に含んでいる場合が多いので、酸処理や熱処
理などによって最適濃度範囲に調整させたカーボンを用
いれば、担持無しでも優れた高率充電性能が得られる。
Activated carbon having a complex pore structure, that is, a porous structure, a microstructure, a mesopore structure, a micropore structure, a submicropore structure, a macropore structure, a structure having an internal surface, a structure having a high specific surface area, etc. Some carbon blacks
Some of the pores contain the above-mentioned catalytic element or various compounds in trace amounts. This is advantageous for further exerting the catalytic action.
Activated carbon and carbon black have the function of adsorbing various molecules and ions to their complicated pores. That is,
During the reaction of dissociation of lead sulfate, which is a charge element reaction of a negative electrode of a lead storage battery, into sulfate ions and lead ions, sulfate ions are easily adsorbed to the pores of the activated carbon. The pore part, due to the presence of single or various compounds having a catalytic action of the above, readily sulfate ions HSO 4 - dissociation as, or is incorporated into the oxide or sulfate, The charging reaction proceeds smoothly. As described above, carbons made from natural products such as activated carbon and carbon black, and heavy oils, etc., often contain a large amount of catalytically simple substances or various compounds from the beginning. If the carbon is adjusted to an optimum concentration range, excellent high-rate charging performance can be obtained without carrying.

【0027】さらに、本発明のカーボン粉末は、前述の
触媒作用の高い特定の単体もしくは化合物を含むため、
鉛蓄電池の電解液や電極表面などに添加すれば、充電の
開始を促進させることもできる。該カーボンは、活物質
の反応界面に吸着することができるので、これによりサ
ルフェーションと呼ばれる硫酸鉛の不働態化を抑制させ
ることができ、完全放電を行っても、不働態化が進行せ
ず、充電受入性が格段に向上するのである。
Further, since the carbon powder of the present invention contains the above-mentioned specific element or compound having a high catalytic action,
If added to the electrolyte or electrode surface of a lead storage battery, the start of charging can be promoted. Since the carbon can be adsorbed at the reaction interface of the active material, passivation of lead sulfate called sulfation can be suppressed, and even when a complete discharge is performed, passivation does not progress. The charge acceptance is greatly improved.

【0028】以上により、本発明の負極を使用すれば、
電気自動車やパラレルハイブリッド電気自動車,簡易ハ
イブリッド自動車,電力貯蔵システム,エレベータ,電
動工具,無停電電源,分散型電源などの高い入力特性や
出力特性が必要となる産業用電池に適用可能な鉛蓄電池
が得られる。
As described above, when the negative electrode of the present invention is used,
Lead-acid batteries applicable to industrial batteries that require high input and output characteristics such as electric vehicles, parallel hybrid electric vehicles, simple hybrid vehicles, power storage systems, elevators, power tools, uninterruptible power supplies, and distributed power supplies can get.

【0029】[0029]

【発明の実施の形態】(実施例)以下具体例をあげ、本
発明を更に詳しく説明するが、発明の主旨を越えない限
り、本発明は実施例に限定されるものではない。また、
本発明を適用した実施例について、実施例の効果を確認
するために作製した鉛蓄電池(比較例)と比較しつつ詳
述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Examples) The present invention will be described in more detail with reference to specific examples, but the present invention is not limited to the examples unless it exceeds the gist of the invention. Also,
An example to which the present invention is applied will be described in detail while comparing with a lead storage battery (comparative example) manufactured to confirm the effect of the example.

【0030】まず、各実施例及び比較例の鉛蓄電池の作
製方法について説明する。なお、実施例2以下の実施例
及び比較例1以下の比較例において、実施例1と同様の
製造方法についてはその説明を省略し、異なる部分につ
いて説明する。
First, a method for manufacturing the lead storage batteries of the respective examples and comparative examples will be described. Note that, in the examples following Example 2 and Comparative Examples 1 and 2, the description of the same manufacturing method as in Example 1 is omitted, and different parts will be described.

【0031】(実施例1) (単体及び又は化合物担持カーボンの作製)単体及び又
は化合物担持カーボンの作製においては、まず、種々の
濃度の硝酸ニッケル水溶液を作製し、これにカーボン粉
末としてアセチレンブラックを10g、界面活性剤を
0.1g 加えて40℃の水槽中で攪拌した。ここに水酸
化ナトリウムをpHが7になるまで滴下し、この溶液を
ろ過して、得られた沈殿物を蒸留水で水洗、120℃で
2時間乾燥後、空気中,窒素中又は水素中で、300〜
500℃,30分焼成して、ニッケル担持カーボンを作
製した。XRD(X-raydiffraction:X線回折法)より、
空気中焼成ではNiOが、水素中焼成ではNiが、窒素
中焼成ではNiOとNiの混合物が生成していることが
分かった。ここで、X線回折法は、X線の回折角を変え
ながら回折線の強度を測定し、角度と強度を解析する方
法で、結晶構造解析に用いられるテスト法である。本発
明のX線回折の測定には通常の粉末回折法を適用し、X
線源にはCuKα線を用いた。
(Example 1) (Preparation of simple substance and / or compound-supporting carbon) In preparing simple substance and / or compound-supporting carbon, first, aqueous solutions of nickel nitrate having various concentrations were prepared, and acetylene black was added thereto as carbon powder. 10 g and 0.1 g of a surfactant were added, and the mixture was stirred in a water bath at 40 ° C. Sodium hydroxide was added dropwise until the pH reached 7, the solution was filtered, and the obtained precipitate was washed with distilled water, dried at 120 ° C for 2 hours, and then in air, nitrogen or hydrogen. , 300-
It was baked at 500 ° C. for 30 minutes to produce nickel-supported carbon. From XRD (X-raydiffraction),
It was found that NiO was generated by firing in air, Ni by firing in hydrogen, and a mixture of NiO and Ni by firing in nitrogen. Here, the X-ray diffraction method is a test method used for crystal structure analysis, in which the intensity of a diffraction line is measured while changing the diffraction angle of the X-ray, and the angle and the intensity are analyzed. For the measurement of X-ray diffraction of the present invention, a normal powder diffraction method is applied,
CuKα radiation was used as the radiation source.

【0032】表1にICP分析(Inductively coupled
plasma spectrometry:誘導結合高周波プラズマ分光分
析)で求めたカーボン中のNi含有量を示す。ここで、
ICP分析法は高感度で多元素の同時検出,定量ができ
るテスト法である。試料を100℃以上の沸騰した塩酸や
硝酸などの酸性溶液中に入れて、2〜3時間煮沸して金
属を溶解させ、この溶液を測定した。
Table 1 shows an ICP analysis (Inductively coupled).
This shows the Ni content in carbon determined by plasma spectrometry (inductively coupled high frequency plasma spectroscopy). here,
ICP analysis is a test method that can detect and quantify multiple elements simultaneously with high sensitivity. The sample was placed in an acidic solution such as hydrochloric acid or nitric acid boiled at 100 ° C. or higher, and boiled for 2 to 3 hours to dissolve the metal, and the solution was measured.

【0033】[0033]

【表1】 [Table 1]

【0034】(負極板の作製)負極板の作製において
は、まず、鉛粉に対して、0.3 重量%のリグニンと
0.2 重量%の硫酸バリウム、もしくは硫酸ストロンチ
ウム、及び前述した本発明の単体及び又は化合物担持カ
ーボン粉末を0.2〜1.0重量%加えて混練機で約10
分混練した混合物を準備した。次に、鉛粉と、鉛粉に対
して13重量%の希硫酸(比重1.26 ,20℃)と、
鉛粉に対して12重量%の水とを混練して負極活物質ペ
ーストを作り、この負極活物質ペースト73gを鉛−カ
ルシウム合金の格子体からなる集電体に充填してから、
温度50℃,湿度95%中に18時間放置して熟成した
後に、温度110℃で2時間放置して乾燥させ未化成負
極を作製した。
(Preparation of Negative Electrode Plate) In preparing a negative electrode plate, first, 0.3% by weight of lignin and 0.2% by weight of barium sulfate or strontium sulfate based on lead powder and the above-mentioned present invention are used. Of a simple substance and / or a compound-supporting carbon powder in an amount of 0.2 to 1.0% by weight,
A mixture obtained by kneading the mixture was prepared. Next, lead powder and 13% by weight of dilute sulfuric acid (specific gravity 1.26, 20 ° C.) with respect to the lead powder,
A negative electrode active material paste is prepared by kneading 12% by weight of water with respect to the lead powder, and 73 g of the negative electrode active material paste is filled in a current collector made of a lattice of a lead-calcium alloy.
After aging for 18 hours at a temperature of 50 ° C. and a humidity of 95%, the product was left at a temperature of 110 ° C. for 2 hours and dried to produce an unformed negative electrode.

【0035】(正極板の作製)正極板の作製において
は、まず、鉛粉と、鉛粉に対して13重量%の希硫酸
(比重1.26 ,20℃)と鉛粉に対して12重量%の
水とを混練して正極活物質ペーストを作製した。次に、
正極活物質ペースト85gをPb−カルシウム合金の格
子体からなる集電体に充填してから、温度50℃,湿度
95%中に18時間放置して熟成した後に、温度110
℃で2時間放置して乾燥させ未化成正極板を作製した。
(Preparation of Positive Electrode Plate) In preparing the positive electrode plate, first, lead powder, 13% by weight of dilute sulfuric acid (specific gravity 1.26, 20 ° C.) based on lead powder and 12% by weight based on lead powder % Of water was mixed to prepare a positive electrode active material paste. next,
After filling 85 g of the positive electrode active material paste into a current collector made of a lattice of a Pb-calcium alloy, the mixture was left to stand at a temperature of 50 ° C. and a humidity of 95% for 18 hours to be aged.
It was left to dry at 2 ° C. for 2 hours to produce an unformed positive electrode plate.

【0036】(電池の作製・化成)図1は本発明の一実
施形態を示す図である。未化成負極板1を6枚と未化成
正極板2を5枚とをガラス繊維からなるセパレータ3を
介して積層し、同極性の極板同士をストラップで連結さ
せて極板群4を作製した。5は正極ストラップ、6は負
極ストラップである。更に、極板群4を電槽7内に18
直列に接続,配置してから、比重1.05(20℃)の希
硫酸電解液を注液して未化成電池を作製した。この未化
成電池を9Aで42時間化成した後に電解液を排出し、
再び比重1.28(20℃)の希硫酸電解液を注液した。正
極端子8と負極端子9を溶接し、排気弁を有する蓋10
で密閉して鉛蓄電池を完成させた。得られた電池の容量
は18Ahであり、平均放電電圧は36Vである。
FIG. 1 is a view showing an embodiment of the present invention. Six unformed negative electrode plates 1 and five unformed positive electrode plates 2 were laminated with a glass fiber separator 3 interposed therebetween, and electrode plates having the same polarity were connected to each other with a strap to prepare an electrode plate group 4. . 5 is a positive electrode strap, and 6 is a negative electrode strap. Further, the electrode group 4 is placed in the battery case 7 for 18 minutes.
After being connected and arranged in series, a dilute sulfuric acid electrolyte having a specific gravity of 1.05 (20 ° C.) was injected to produce an unformed battery. After the unformed battery was formed at 9A for 42 hours, the electrolyte was discharged,
A diluted sulfuric acid electrolyte having a specific gravity of 1.28 (20 ° C.) was injected again. A lid 10 having a positive electrode terminal 8 and a negative electrode terminal 9 welded together and having an exhaust valve
To complete the lead-acid battery. The capacity of the obtained battery is 18 Ah, and the average discharge voltage is 36 V.

【0037】ここで、放電電圧が36V、充電電圧が4
2Vである電池を42V電池というが、本発明では、こ
の電圧域に限定されるものではない。単一電池を複数個
直列に接続することで、所定の電圧を得ることができ
る。本発明の実施例では、42V電池を作成したもの
で、本発明の種々の特性は、この電圧域で変るものでは
ない。
Here, the discharge voltage is 36 V and the charge voltage is 4
The battery of 2V is referred to as a 42V battery, but the present invention is not limited to this voltage range. A predetermined voltage can be obtained by connecting a plurality of single batteries in series. In the embodiment of the present invention, a 42V battery is manufactured, and various characteristics of the present invention do not change in this voltage range.

【0038】高率充電特性試験では、まず、得られた鉛
蓄電池を充電電流6A,上限電圧44.1Vで、16時
間の定電流定電圧充電をした後に、放電電流4Aで3
1.5Vに達するまで放電して放電容量を確認した。再
び、充電電流6A,上限電圧44.1 Vで、16時間の
定電流定電圧充電をした後に、放電電流4Aで先に求め
た放電容量の10%を放電し、充電深度(SOC)90
%に設定した。この状態から、充電電流40Aで30秒
間充電したときの充電電圧Vcを求めた。
In the high-rate charging characteristic test, first, the obtained lead-acid battery was charged at a constant current and a constant voltage for 16 hours at a charging current of 6 A and an upper limit voltage of 44.1 V, and then charged at a discharging current of 4 A.
Discharge was performed until the voltage reached 1.5 V, and the discharge capacity was confirmed. Again, after 16 hours of constant current and constant voltage charging at a charging current of 6 A and an upper limit voltage of 44.1 V, 10% of the previously obtained discharge capacity was discharged at a discharging current of 4 A, and a depth of charge (SOC) of 90% was obtained.
%. From this state, the charging voltage Vc when charging at a charging current of 40 A for 30 seconds was obtained.

【0039】充電反応が進行すると充電電圧Vcが上昇
するとともに負極から水の電気分解によって水素ガスが
発生する。水素ガス発生量は、充電電圧Vcの上昇とと
もに増加し、最終的には水涸れを起こして寿命となる。
従って、充電電圧Vcには自ずと充電時における上限値
が存在し、上限値よりも低い電圧に抑制する必要があ
る。この電池ではガス発生量の許容限界値に達する上限
電圧としては45Vであり、ガス発生が起らない電圧の
上限値としては43.2V であることから、これらを基
準として評価した。つまり、評価基準は、充電電圧が低
い方がよい。
As the charging reaction proceeds, the charging voltage Vc increases, and hydrogen gas is generated from the negative electrode by electrolysis of water. The amount of generated hydrogen gas increases with an increase in the charging voltage Vc, and eventually becomes depleted of water and reaches the end of its life.
Therefore, the charging voltage Vc naturally has an upper limit during charging, and it is necessary to suppress the voltage to a voltage lower than the upper limit. In this battery, the upper limit voltage at which the gas generation amount reaches the permissible limit is 45 V, and the upper limit voltage at which gas generation does not occur is 43.2 V. Therefore, these batteries were evaluated based on these values. In other words, the evaluation criterion is preferably such that the charging voltage is lower.

【0040】図2に空気中焼成ニッケル担持アセチレン
ブラックのNi含有量(ppm )と充電電圧Vcとの関係
を示した。何れのNi含有量においてもガス発生量の許
容限界値に達する上限電圧の45Vよりも低く、高率充
電性能において良好な特性を示した。特に、Ni含有量
が5000ppm 以下で10ppm 以上の範囲において充電
電圧Vcが43.2 Vよりも低くなり、高率充電性能に
おいて顕著に良い特性を示した。また、Ni含有量が1
000ppm 以下で50ppm 以上の範囲においては充電電
圧Vcが43V以下となり、さらに優れた高率充電特性
を示した。
FIG. 2 shows the relationship between the Ni content (ppm) of acetylene black supported on nickel fired in air and the charging voltage Vc. Regardless of the Ni content, it was lower than the upper limit voltage of 45 V which reached the allowable limit value of the gas generation amount, and showed good characteristics in high rate charging performance. In particular, when the Ni content was 5000 ppm or less and 10 ppm or more, the charging voltage Vc was lower than 43.2 V, showing remarkably good characteristics in high-rate charging performance. In addition, the Ni content is 1
In the range of 000 ppm or less and 50 ppm or more, the charging voltage Vc was 43 V or less, and further excellent high-rate charging characteristics were exhibited.

【0041】図3に窒素中焼成ニッケル担持アセチレン
ブラックの焼成温度と充電電圧Vcとの関係を示した。
いずれの温度においても、充電電圧Vcが45Vよりも
低くなり、高率充電性能において良好な特性を示した。
特に、焼成温度が350℃以上,400℃以下の範囲で
充電電圧Vcが43.2V よりも低くなり、さらに優れ
た高率充電性能を示した。350℃以上,400℃以下
で焼成した担持体のTEMより求めたNiO、もしくは
金属Niの平均一次粒径は0.1 〜1000nmの範囲
であった。
FIG. 3 shows the relationship between the firing temperature of nickel-supported acetylene black fired in nitrogen and the charging voltage Vc.
At any temperature, the charging voltage Vc was lower than 45 V, indicating good characteristics in high-rate charging performance.
In particular, the charging voltage Vc was lower than 43.2 V when the firing temperature was in the range of 350 ° C. or more and 400 ° C. or less, and further excellent high-rate charging performance was exhibited. The average primary particle size of NiO or metallic Ni obtained by TEM of the support fired at 350 ° C. or more and 400 ° C. or less was in the range of 0.1 to 1000 nm.

【0042】図4に水素中焼成ニッケル担持アセチレン
ブラックの焼成温度と充電電圧Vcとの関係を示した。
いずれの温度においても、充電電圧Vcが45Vよりも
低くなり、高率充電性能において良好な特性を示した。
特に、焼成温度が450℃付近で充電電圧Vcが43.
2V よりも低くなり、さらに優れた高率充電性能を示
した。450℃付近で焼成した担持体のTEMより求め
たNiの平均一次粒径は0.1 〜1000nmの範囲で
あった。
FIG. 4 shows the relationship between the calcination temperature of nickel-supported acetylene black fired in hydrogen and the charging voltage Vc.
At any temperature, the charging voltage Vc was lower than 45 V, indicating good characteristics in high-rate charging performance.
Particularly, when the firing temperature is around 450 ° C., the charging voltage Vc is 43.
It was lower than 2 V, and further excellent high rate charging performance was exhibited. The average primary particle size of Ni obtained by TEM of the support baked at around 450 ° C. was in the range of 0.1 to 1000 nm.

【0043】(比較例1)単体及び又は化合物を担持し
ていないアセチレンブラックを用いて実施例1と同様に
して鉛蓄電池を作製し、高率充電性能を評価した。単体
及び又は化合物を担持していないアセチレンブラックの
Ni含有量はICP分析より、1ppm 未満で検出限界以
下であった。充電電圧Vcが48Vまで上昇し、上限電
圧の45Vよりも高くなり、高率充電性能が劣ることが
分かった。
(Comparative Example 1) A lead-acid battery was prepared in the same manner as in Example 1 using acetylene black which does not support a single substance or a compound, and high-rate charging performance was evaluated. The Ni content of acetylene black alone and / or acetylene black not carrying a compound was less than 1 ppm by ICP analysis, which was below the detection limit. It was found that the charging voltage Vc increased to 48 V, which was higher than the upper limit voltage of 45 V, and the high-rate charging performance was inferior.

【0044】(実施例2)単体及び又は化合物担持カー
ボンの作製において、カーボン粉末として表2に示す種
々のカーボンを用い、実施例1と同様にしてニッケル担
持カーボンを作製した。
(Example 2) In the production of simple substance and / or compound-supporting carbon, nickel-supporting carbon was produced in the same manner as in Example 1 by using various carbons shown in Table 2 as carbon powder.

【0045】実施例1と同様にして鉛蓄電池を作製し、
高率充電性能を評価した。表2に充電電圧Vcを示す。
いずれのカーボンにおいても、充電電圧Vcが45Vよ
りも低くなり、高率充電性能において良好な特性を示し
た。また、これらのカーボンの混合系においても、同様
に充電電圧Vcが45Vよりも低くなり、高率充電性能
において良好な特性を示したことを確認した。
A lead-acid battery was fabricated in the same manner as in Example 1,
The high rate charging performance was evaluated. Table 2 shows the charging voltage Vc.
In any of the carbons, the charging voltage Vc was lower than 45 V, and good characteristics were exhibited in high-rate charging performance. Also in the mixed system of these carbons, similarly, the charging voltage Vc was lower than 45 V, and it was confirmed that good characteristics were exhibited in the high-rate charging performance.

【0046】[0046]

【表2】 [Table 2]

【0047】(比較例2)単体及び又は化合物を担持し
ていない表3に示す種々のカーボンについてICPにより
Ni含有量の測定を行った。Ni含有量は、いずれも1
ppm 未満で検出限界以下であった。これらを単体及び又
は化合物担持カーボンの代わりに用いて実施例1と同様
にして鉛蓄電池を作製し、高率充電性能を評価した。充
電電圧Vcが45Vよりも高くなり、高率充電性能に劣
ることが分かった。
(Comparative Example 2) Ni content was measured by ICP for various carbons shown in Table 3 which did not support a simple substance and / or a compound. Ni content was 1
It was below the detection limit at less than ppm. A lead-acid battery was produced in the same manner as in Example 1 except that these were used alone or in place of the compound-supporting carbon, and high-rate charging performance was evaluated. It was found that the charging voltage Vc was higher than 45 V, and the high rate charging performance was inferior.

【0048】[0048]

【表3】 [Table 3]

【0049】(実施例3)カーボンに種々の活性炭を使
用した。表4にICP分析の結果から、銅,ニッケル,
マンガン,アルミニウム,けい素,カリウム,マグネシ
ウムの含有量を示す。種々の不純物量の活性炭を単体及
び又は化合物担持カーボンの代わりに用いて、実施例1
と同様にして鉛蓄電池を作製し、高率充電性能を評価し
た。表4に充電電圧Vcを示す。いずれも充電電圧Vc
が45Vよりも低くなり、高率充電性能において良好な
特性を示した。
Example 3 Various activated carbons were used as carbon. Table 4 shows that the results of ICP analysis show that copper, nickel,
Indicates the content of manganese, aluminum, silicon, potassium, and magnesium. Example 1 using activated carbon of various impurities in place of simple substance and / or compound-supported carbon
A lead-acid battery was produced in the same manner as in Example 1 and the high-rate charging performance was evaluated. Table 4 shows the charging voltage Vc. Both are charging voltage Vc
Was lower than 45 V, showing good characteristics in high-rate charging performance.

【0050】[0050]

【表4】 [Table 4]

【0051】(実施例4)カーボンにやしがら活性炭を
使用した。活性炭の原料であるやしがらを、表5に示す
時間、1N(1規定:1モル/リットル)の塩酸で洗浄
を行い、pHが7になるまで水洗後、乾燥し、これを焼
成して活性炭を作製した。表5にICP分析の結果から
得られたCu含有量を示す。種々のCu含有量のやしが
ら活性炭を単体及び又は化合物担持カーボンの代わりに
用いて、実施例1と同様にして鉛蓄電池を作製し、高率
充電性能を評価した。表5に充電電圧Vcを示す。いず
れのCu含有量においても、充電電圧Vcが45Vより
も低くなり、高率充電性能において良好な特性を示し
た。さらに、Cu含有量が5ppmよりも多く、15000ppm
よりも少ない領域において充電電圧Vcが43.2V よ
りも低くなり、高率充電性能においてさらに優れた特性
を示した。
(Example 4) Activated carbon was used as carbon. The raw material of activated carbon is washed with 1N (1N: 1 mol / l) hydrochloric acid for the time shown in Table 5, washed with water until the pH becomes 7, dried, and calcined. Activated carbon was produced. Table 5 shows the Cu content obtained from the results of the ICP analysis. A lead-acid battery was produced in the same manner as in Example 1, except that various types of coconut activated carbon having a Cu content were used alone or in place of the compound-supporting carbon, and high-rate charging performance was evaluated. Table 5 shows the charging voltage Vc. At any Cu content, the charging voltage Vc was lower than 45 V, indicating good characteristics in high-rate charging performance. Further, when the Cu content is more than 5 ppm,
The charging voltage Vc was lower than 43.2 V in a smaller region, and further excellent characteristics in high-rate charging performance were exhibited.

【0052】[0052]

【表5】 [Table 5]

【0053】(実施例5)単体及び又は化合物担持カー
ボンの担持物として、実施例1のニッケルの代わりに、
表6に示す種々の単体及び又は化合物を表3に示す種々
のカーボンブラックに担持させた。担持した材料の形態
は表6に示すように、単体、あるいは酸化物、あるいは
硫酸塩、あるいは水酸化物、あるいは炭化物のうちのい
ずれか一つもしくはこれらの混合系であることを、X線
回折より確認した。実施例1と同様にして鉛蓄電池を作
製し、高率充電性能を評価した。図5に担持元素の含有
量と充電電圧Vcの関係を示す。何れも高率充電性能に
おいて良好な特性を示した。特に、担持した元素の含有
量が5000ppm 以下で10ppm 以上の範囲において充
電電圧Vcが43.2V よりも低くなり、高率充電性能
において顕著に良い特性を示した。また、その含有量が
1000ppm以下で50ppm以上の範囲においては、充電
電圧Vcが43V以下となり、さらに優れた高率充電特
性を示した。また、これら担持した単体及び又は化合物
を複数混合した系においても、同様に充電電圧Vcが4
5Vよりも低くなり、高率充電性能において良好な特性
を示したことを確認した。
(Example 5) As a simple substance and / or a compound-supported carbon-supported material, instead of nickel of Example 1,
Various simple substances and / or compounds shown in Table 6 were supported on various carbon blacks shown in Table 3. As shown in Table 6, the form of the carried material was a single substance, an oxide, a sulfate, a hydroxide, or a carbide, or a mixture of these, and was analyzed by X-ray diffraction. More confirmed. A lead-acid battery was produced in the same manner as in Example 1, and high-rate charging performance was evaluated. FIG. 5 shows the relationship between the content of the supported element and the charging voltage Vc. All showed good characteristics in high rate charging performance. In particular, the charging voltage Vc was lower than 43.2 V when the content of the supported element was 5000 ppm or less and 10 ppm or more, showing remarkably good characteristics in high-rate charging performance. When the content was 1,000 ppm or less and 50 ppm or more, the charging voltage Vc was 43 V or less, and further excellent high-rate charging characteristics were exhibited. Similarly, even in a system in which a plurality of these supported simple substances and / or compounds are mixed, the charging voltage Vc is also 4
It was lower than 5 V, and it was confirmed that good characteristics were exhibited in the high rate charging performance.

【0054】[0054]

【表6】 [Table 6]

【0055】(実施例6)単体及び又は化合物担持カー
ボンの担持物として、実施例5の単体及び又は化合物の
代わりに、表7に示す種々の単体及び又は化合物を表3
に示す種類のカーボンブラックに担持させた。担持した
材料の形態は表7に示すように、単体、あるいは酸化
物、あるいは硫酸塩、あるいは水酸化物、あるいは炭化
物のうちのいずれか一つもしくはこれらの混合系である
ことを、X線回折より確認した。実施例1と同様にして
鉛蓄電池を作製し、高率充電性能を評価した。表7に充
電電圧Vcを示す。何れも45Vよりも低く、高率充電
性能において良好な特性を示した。また、これら担持し
た単体及び又は化合物を複数混合した系においても、同
様に充電電圧Vcが45Vよりも低くなり、高率充電性
能において良好な特性を示したことを確認した。
(Example 6) Various substances and / or compounds shown in Table 7 were substituted for the substances and / or compounds of Example 5 as a carrier for carbon supported on the substance and / or compound.
On carbon black of the type shown in Table 1. As shown in Table 7, the form of the supported material was a single substance, an oxide, a sulfate, a hydroxide, or a carbide, or a mixture thereof. More confirmed. A lead-acid battery was produced in the same manner as in Example 1, and high-rate charging performance was evaluated. Table 7 shows the charging voltage Vc. All were lower than 45 V and showed good characteristics in high-rate charging performance. Also, in a system in which a plurality of these supported simple substances and / or compounds were mixed, similarly, the charging voltage Vc was lower than 45 V, and it was confirmed that good characteristics were exhibited in high-rate charging performance.

【0056】[0056]

【表7】 [Table 7]

【0057】(実施例7)脱硫触媒作用又はSOx 酸化
触媒作用を有する単体及び又は化合物を含むカーボンの
作製においては、まず、表8に示す触媒を1wt%採取
し、アセチレンブラックに加えて乳鉢で十分に混合し
た。実施例1と同様にして鉛蓄電池を作製し、高率充電
性能を評価した。いずれも45Vよりも低く、高率充電
性能において良好な特性を示した。特に、石油精製触
媒,重油脱硫触媒,ガス製造触媒,公害防止触媒の脱硫
触媒や防臭触媒、又は硫酸製造触媒を使用することによ
り、充電電圧Vcが43.2 Vよりも低くなり、高率充
電性能において顕著に良い特性を示した。また、石油精
製触媒,重油脱硫触媒,ガス製造触媒,公害防止触媒の
脱硫触媒や防臭触媒において、Co,Mo,Ni,Z
n,Cu,Mnの単体あるいは化合物、また、硫酸製造
触媒においてアルカリ金属,アルカリ土類金属,V,M
n,希土類元素の単体あるいは化合物において、充電電
圧Vcが43V以下となり、さらに優れた高率充電特性
を示した。また、これら担持した単体及び又は化合物を
複数混合した系においても、同様に高率充電性能におい
て良好な特性を示したことを確認した。また、カーボン
粉末として表3に示す種類のカーボンを使用した系にお
いても、同様に高率充電性能で良好な特性を示すことを
確認した。
Example 7 In the production of carbon containing a simple substance and / or a compound having a catalytic action for desulfurization or catalytic action for SO x oxidation, first, 1 wt% of a catalyst shown in Table 8 was sampled, added to acetylene black and mortared. And mixed well. A lead-acid battery was produced in the same manner as in Example 1, and high-rate charging performance was evaluated. All were lower than 45 V and showed good characteristics in high rate charging performance. Particularly, by using a desulfurization catalyst, a deodorization catalyst, or a sulfuric acid production catalyst of a petroleum refining catalyst, a heavy oil desulfurization catalyst, a gas production catalyst, a pollution control catalyst, the charging voltage Vc becomes lower than 43.2 V, and a high rate of charge is achieved. It showed remarkably good characteristics in performance. In addition, Co, Mo, Ni, Z are used in desulfurization catalysts and deodorization catalysts for petroleum refining catalysts, heavy oil desulfurization catalysts, gas production catalysts, pollution control catalysts, and the like.
n, Cu, Mn simple substance or compound, and alkali metal, alkaline earth metal, V, M
In the case of n or a rare earth element alone or a compound, the charging voltage Vc was 43 V or less, and further excellent high-rate charging characteristics were exhibited. In addition, it was also confirmed that, in a system in which a plurality of these supported simple substances and / or compounds were mixed, good characteristics were similarly exhibited in high-rate charging performance. In addition, it was confirmed that the system using carbon of the type shown in Table 3 as the carbon powder also exhibited good characteristics with high rate charging performance.

【0058】[0058]

【表8】 [Table 8]

【0059】Ni,Co,Mo,Cuなどの他にも、水
素過電圧が低い元素では、水素発生が充電反応と同時に
起っている。図6に反応機構のモデルを示す。電解液中
の水分子が前記の元素上で解離して水素イオンが一旦吸
着される。そこに、硫酸鉛から解離した硫酸イオンも吸
着され、水素イオンと結合することにより、HSO4 -
オンとなって電解液中に放出される。一方、鉛イオン
は、カーボンから電子を授受して金属鉛として析出す
る。このようにして、充電反応が進行しやすくなり、結
果として鉛蓄電池における高率充電性能が良くなる。従
って、ここに示したもの以外にも、脱硫触媒作用を有す
る単体もしくは化合物では同様の機構で反応が進行する
ため、同じように鉛蓄電池における高率充電性能が良く
なる。
In addition to elements such as Ni, Co, Mo, and Cu, which have a low hydrogen overvoltage, hydrogen generation occurs simultaneously with the charging reaction. FIG. 6 shows a model of the reaction mechanism. Water molecules in the electrolytic solution dissociate on the above elements, and hydrogen ions are once adsorbed. Sulfate ions dissociated from lead sulfate are also adsorbed there and combined with hydrogen ions to be released as HSO 4 - ions into the electrolyte. On the other hand, lead ions transfer electrons from carbon and precipitate as metallic lead. In this way, the charging reaction easily proceeds, and as a result, the high-rate charging performance of the lead storage battery is improved. Accordingly, in addition to those shown here, a simple substance or a compound having a catalytic action for desulfurization causes the reaction to proceed by the same mechanism, and thus the lead storage battery similarly has a high rate of charge performance.

【0060】V,Mn,アルカリ金属,アルカリ土類金
属,希土類元素等の他にも、硫酸塩化しやすい単体、あ
るいは化合物では、電池内でも硫酸塩化が進行する。図
7に反応機構のモデルを示す。硫酸鉛から解離した硫酸
イオンが前記元素の表面に吸着し、この元素の単体、あ
るいは化合物中に容易に取込まれる。一方、鉛イオン
は、カーボンから電子を授受して金属鉛として析出す
る。このようにして、充電反応が進行しやすくなり、結
果として鉛蓄電池における高率充電性能が良くなる。従
って、ここに示したもの以外にも、SOx 酸化触媒作用
のある単体もしくは化合物では同様の機構で反応が進行
することから、同じように鉛蓄電池における高率充電性
能が良くなる。
In addition to V, Mn, an alkali metal, an alkaline earth metal, a rare earth element, and the like, in the case of a simple substance or a compound which is easily sulphated, the sulphation proceeds even in the battery. FIG. 7 shows a model of the reaction mechanism. Sulfate ions dissociated from lead sulfate are adsorbed on the surface of the element and easily incorporated into the element alone or into a compound. On the other hand, lead ions transfer electrons from carbon and precipitate as metallic lead. In this way, the charging reaction easily proceeds, and as a result, the high-rate charging performance of the lead storage battery is improved. Thus, where in addition to those shown in, since the reaction proceeds in a similar mechanism by itself or a compound of SO x oxidation catalysis, high rate charging performance is improved in the lead-acid battery in the same way.

【0061】(実施例8) (単極評価)表9に示す各種単体、もしくは酸化物、も
しくは硫酸塩、もしくは水酸化物、もしくは炭化物を用
いて、アセチレンブラックに対し4000から5000
ppmの範囲の添加量となるように添加または担持した種
々のカーボン粉末を作製した。これを鉛粉に0.5 重量
%の添加量で添加後、加圧成形したものを作用極とし
た。対極には白金網、参照極には銀/塩化銀電極を用
い、電解液として比重1.26(20℃)の希硫酸を使用し
て、サイクリックボルタモグラムを測定した。走査速度
は50mV/分であり、走査電位は−800mV(銀/
塩化銀電極基準)から−200mV(銀/塩化銀電極基
準)の範囲である。また、試験前には−1400mV(銀/
塩化銀電極基準)で5分間の還元処理を施した。ここで
検討した電流−電位特性に関しては、縦軸の電流密度に
関しては、logスケールの絶対値(log|I|)で評価し
た。また、log|I| の極小値が充電開始電位,放電開
始電位を現し、それぞれ、充電開始電位をEc、放電開
始電位をEdで示した。
(Example 8) (Evaluation of monopolarity) Using various simple substances shown in Table 9, or oxides, sulfates, hydroxides, or carbides, acetylene black of 4000 to 5000 was used.
Various carbon powders added or supported so as to have an addition amount in the range of ppm were produced. This was added to lead powder in an amount of 0.5% by weight, and then pressed and used as a working electrode. A cyclic voltammogram was measured using a platinum net as a counter electrode, a silver / silver chloride electrode as a reference electrode, and dilute sulfuric acid having a specific gravity of 1.26 (20 ° C.) as an electrolyte. The scanning speed was 50 mV / min and the scanning potential was -800 mV (silver /
The range is from -200 mV (based on silver / silver chloride electrode) to silver chloride electrode (based on silver chloride electrode). Before the test, -1400 mV (silver /
A reduction treatment was performed for 5 minutes using a silver chloride electrode (based on a silver chloride electrode). Regarding the current-potential characteristics studied here, the current density on the vertical axis was evaluated by the absolute value (log | I |) of the log scale. The minimum value of log | I | represents the charge start potential and the discharge start potential. The charge start potential is indicated by Ec, and the discharge start potential is indicated by Ed.

【0062】図8にNi添加カーボンを添加した電極、
及び無添加カーボンを添加した電極の電流−電位特性を
示す。充電開始電位をEc、放電開始電位をEdとして
表すと、Ni添加カーボンではEcとEdの間で大小関
係を比較するとEc>Edとして表される。これは充電
の開始が早まり、完全放電を行っても、硫酸鉛の不働態
化が進行せず、充電受入性が格段に向上したことを示し
ている。一方、無添加カーボンではEcとEdの間の大
小関係はEc<Edとして表され、Ni添加カーボンの
場合と逆の傾向になる。即ち、充電の開始が遅く、完全
放電を行うと、不働態化が進行して、充電受入性が著し
く低下していることを示している。
FIG. 8 shows an electrode added with Ni-added carbon,
4 shows the current-potential characteristics of an electrode to which carbon is added and undoped carbon. When the charge start potential is expressed as Ec and the discharge start potential is expressed as Ed, when the magnitude relation between Ec and Ed is compared for Ni-added carbon, it is expressed as Ec> Ed. This indicates that the start of charging was accelerated, and even when the battery was completely discharged, passivation of lead sulfate did not progress, and charge acceptability was significantly improved. On the other hand, for non-added carbon, the magnitude relationship between Ec and Ed is expressed as Ec <Ed, which is opposite to the case for Ni-added carbon. In other words, it indicates that when the start of charging is slow and complete discharge is performed, passivation progresses and the charge acceptability is significantly reduced.

【0063】表9に、各種単体または化合物を添加ある
いは担持したカーボンのEcとEdの大小関係の評価結
果を示す。Ec>Edの傾向にあるものは充電受入性が
向上しているため、評価を○とし、Ec<Edの傾向に
あるものは充電受入性に劣っているため、評価を×とし
て表記した。充電受入性に優れるものとしては、Hf,
Nb,Ta,W,Ag,Zn,Ni,Co,Mo,C
u,V,Mn,Ba,K,Cs,Rb,Sr,Naの単
体または化合物であった。
Table 9 shows the evaluation results of the magnitude relation between Ec and Ed of carbon to which various simple substances or compounds are added or supported. Those having a tendency of Ec> Ed have an improved charge acceptability, and thus the evaluation is indicated by ○, and those having a tendency of Ec <Ed are inferior in the charge acceptability, and the evaluation is indicated by x. Hf,
Nb, Ta, W, Ag, Zn, Ni, Co, Mo, C
u, V, Mn, Ba, K, Cs, Rb, Sr, and Na alone or a compound.

【0064】[0064]

【表9】 [Table 9]

【0065】カーボンに種々のカーボンブラックを使用
し、そのカーボンブラックに含まれるCuなどの不純物
の含有量と高率充電性能を示す充電電圧との関係を表1
0に示す。この表10にICP分析の結果から、銅,ニ
ッケル,マンガン,アルミニウム,珪素,カリウム,亜
鉛の含有量を示している。種々の不純物量のカーボンブ
ラックを単体及び、又は化合物担持カーボンの代わりに
用いて、実施例1と同様に鉛蓄電池を作成し、高率充電
性能を評価した。表10の充電電圧Vcが高率充電性能
を示している。いずれも充電電圧Vcが45Vよりも低
くなり、高率充電性能において良好な特性を示してい
た。特に、NiとCuとZnとMnのトータルの含有量
が1ppm よりも多く、1000ppm よりも少ないファー
ネスブラックにおいて充電電圧Vcが43.2V よりも
低くなり、高率充電性能においてさらに優れた特性を示
している。
Table 1 shows the relationship between the content of impurities such as Cu contained in the carbon black and the charging voltage showing high rate charging performance when various carbon blacks were used for carbon.
0 is shown. Table 10 shows the contents of copper, nickel, manganese, aluminum, silicon, potassium, and zinc from the results of the ICP analysis. A lead-acid battery was prepared in the same manner as in Example 1, except that carbon black having various amounts of impurities was used alone or in place of the compound-supporting carbon, and high-rate charging performance was evaluated. The charging voltage Vc in Table 10 indicates high rate charging performance. In each case, the charging voltage Vc was lower than 45 V, indicating good characteristics in high-rate charging performance. In particular, in furnace black where the total content of Ni, Cu, Zn, and Mn is more than 1 ppm and less than 1000 ppm, the charging voltage Vc is lower than 43.2 V, and further excellent characteristics in high-rate charging performance are exhibited. ing.

【0066】[0066]

【表10】 [Table 10]

【0067】[0067]

【発明の効果】以上のように、本発明によれば、触媒作
用を有する単体もしくは化合物を添加もしくは担持した
カーボンを用いることにより、高率充電性能に優れた鉛
蓄電池が得られる。又、充電受入性の改善が顕著な鉛蓄
電池用カーボン材料が得られる。
As described above, according to the present invention, a lead-acid battery excellent in high-rate charging performance can be obtained by using a simple substance having a catalytic action or carbon to which a compound is added or supported. In addition, a carbon material for a lead storage battery having remarkable improvement in charge acceptability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明の実施例1における空気中焼成ニッケル
担持アセチレンブラックのNi含有量(ppm )と充電電
圧Vcとの関係を示した特性図。
FIG. 2 is a characteristic diagram showing the relationship between the Ni content (ppm) of acetylene black fired in air in air and the charging voltage Vc in Example 1 of the present invention.

【図3】本発明の実施例1における窒素中焼成ニッケル
担持アセチレンブラックの焼成温度と充電電圧Vcとの
関係を示した特性図。
FIG. 3 is a characteristic diagram showing a relationship between a sintering temperature of nickel-supported acetylene black fired in nitrogen and a charging voltage Vc in Example 1 of the present invention.

【図4】本発明の実施例1における水素中焼成ニッケル
担持アセチレンブラックの焼成温度と充電電圧Vcとの
関係を示した特性図。
FIG. 4 is a characteristic diagram showing a relationship between a firing temperature of nickel-supported acetylene black fired in hydrogen and a charging voltage Vc in Example 1 of the present invention.

【図5】本発明の実施例5における担持元素の担持量と
充電電圧Vcの関係を示す特性図。
FIG. 5 is a characteristic diagram showing a relationship between a supported amount of a supported element and a charging voltage Vc in Example 5 of the present invention.

【図6】本発明の実施例7における脱硫触媒作用を示す
モデル図。
FIG. 6 is a model diagram showing a desulfurization catalytic action in Example 7 of the present invention.

【図7】本発明の実施例7におけるSOx 酸化触媒作用
を示すモデル図。
FIG. 7 is a model diagram showing an SO x oxidation catalytic action in Example 7 of the present invention.

【図8】本発明の実施例8における電流−電位特性を示
す図。
FIG. 8 is a diagram showing current-potential characteristics in Example 8 of the present invention.

【符号の説明】[Explanation of symbols]

1…負極板、2…正極板、3…セパレータ、4…極板
群、5…正極ストラップ、6…負極ストラップ、7…電
槽、8…正極端子、9…負極端子、10…蓋。
DESCRIPTION OF SYMBOLS 1 ... negative electrode plate, 2 ... positive electrode plate, 3 ... separator, 4 ... electrode plate group, 5 ... positive electrode strap, 6 ... negative electrode strap, 7 ... battery case, 8 ... positive electrode terminal, 9 ... negative electrode terminal, 10 ... lid.

フロントページの続き (72)発明者 星 栄二 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 村中 廉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 武内 瀞士 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H050 AA02 BA09 CA06 CB15 DA09 EA01 EA02 EA03 EA04 EA06 EA07 EA08 EA09 EA10 EA12 FA16 FA17 HA01 HA05 Continued on the front page (72) Inventor Eiji Hoshi 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Ren Muranaka 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture No. Hitachi, Ltd. Hitachi Research Laboratories (72) Inventor Toroshi Takeuchi 1-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi Research Laboratories Hitachi Research Laboratories 5H050 AA02 BA09 CA06 CB15 DA09 EA01 EA02 EA03 EA04 EA06 EA07 EA08 EA09 EA10 EA12 FA16 FA17 HA01 HA05

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】負極と正極と電解液を有してなる鉛蓄電池
であって、上記負極は脱硫触媒作用又はSOx 酸化触媒
作用のある単体及び/又は化合物を含むカーボンが添加
されたことを特徴とする鉛蓄電池。
1. A lead-acid battery comprising a negative electrode and the positive electrode and the electrolyte solution, that the negative electrode of carbon containing elemental and / or compound of desulfurization catalytic or SO x oxidation catalysis has been added Characteristic lead storage battery.
【請求項2】請求項1に記載の上記単体及び/又は化合
物は、石油精製触媒,重油脱硫触媒,ガス製造触媒、又
は公害防止用触媒のうちの脱硫用触媒又は脱臭用触媒を
構成する成分を少なくとも一つ含むことを特徴とする鉛
蓄電池。
2. The above-mentioned simple substance and / or compound according to claim 1 is a component constituting a desulfurization catalyst or a deodorization catalyst among petroleum refining catalysts, heavy oil desulfurization catalysts, gas production catalysts, or pollution prevention catalysts. A lead-acid battery comprising at least one of the following.
【請求項3】請求項2に記載の上記成分は、Co,M
o,Ni,Zn,Cu,Mnから選ばれた単体,酸化
物,硫酸塩又は水酸化物のうち少なくとも一つを含むこ
とを特徴とする鉛蓄電池。
3. The composition according to claim 2, wherein the component is Co, M
A lead-acid battery comprising at least one of a simple substance selected from the group consisting of o, Ni, Zn, Cu, and Mn, an oxide, a sulfate, and a hydroxide.
【請求項4】請求項1記載の上記単体及び/又は化合物
は、硫酸製造触媒を構成する主たる成分を少なくとも一
つ含むことを特徴とする鉛蓄電池。
4. The lead-acid battery according to claim 1, wherein said simple substance and / or compound contains at least one main component constituting a sulfuric acid production catalyst.
【請求項5】請求項4に記載の上記成分は、アルカリ金
属,アルカリ土類金属,V,Mn,希土類元素から選ば
れた単体,酸化物又は硫酸塩のうち少なくとも一つを含
むことを特徴とする鉛蓄電池。
5. The composition according to claim 4, wherein the component contains at least one of a simple substance selected from alkali metals, alkaline earth metals, V, Mn, and rare earth elements, oxides and sulfates. Lead-acid battery.
【請求項6】負極と正極と電解液を有してなる鉛蓄電池
であって、上記負極にHf,Nb,Ta,W,Ag,Z
n,Ni,Co,Mo,Cu,V,Mn,Ba,K,C
s,Rb,Sr,Naのうち少なくとも一つの単体,酸
化物,硫酸塩,水酸化物又は炭化物をカーボンに担持し
た担持体を添加することを特徴とする鉛蓄電池。
6. A lead storage battery comprising a negative electrode, a positive electrode and an electrolyte, wherein the negative electrode comprises Hf, Nb, Ta, W, Ag, Z
n, Ni, Co, Mo, Cu, V, Mn, Ba, K, C
A lead-acid battery characterized by adding a carrier in which at least one of s, Rb, Sr, and Na, an oxide, a sulfate, a hydroxide, or a carbide is carried on carbon.
【請求項7】負極と正極と電解液を有してなる鉛蓄電池
であって、上記負極にNi,Co,Mo,Cu,V,M
n,Ba,K,Cs,Rb,Srのうち少なくとも一つ
の単体,酸化物,硫酸塩,水酸化物又は炭化物をカーボ
ンに担持した担持体を添加することを特徴とする鉛蓄電
池。
7. A lead storage battery comprising a negative electrode, a positive electrode and an electrolyte, wherein the negative electrode comprises Ni, Co, Mo, Cu, V, M
A lead-acid battery characterized by adding a carrier in which at least one of n, Ba, K, Cs, Rb and Sr, an oxide, a sulfate, a hydroxide or a carbide is carried on carbon.
【請求項8】請求項6又は7において、上記単体の原子
種を1元素当り、重量比率で10ppm以上,5000ppm
以下の範囲の量を上記カーボン中に含むことを特徴とす
る鉛蓄電池。
8. The method according to claim 6, wherein the atomic species of the simple substance is not less than 10 ppm and not more than 5000 ppm by weight per one element.
A lead-acid battery comprising the following amount in the carbon.
【請求項9】請求項6又は7において、上記単体の原子
種を1元素当り、重量比率で50ppm以上,1000ppm
以下の範囲の量を上記カーボン中に含むことを特徴とす
る鉛蓄電池。
9. The method according to claim 6, wherein the atomic species of said simple substance is 50 ppm or more and 1000 ppm by weight per one element.
A lead-acid battery comprising the following amount in the carbon.
【請求項10】請求項1,6又は7のいずれか1項にお
いて、上記カーボンは、カーボンブラック,アセチレン
ブラック,天然黒鉛,人造黒鉛,熱分解炭素,コーク
ス,等方性黒鉛,メソフェーズカーボン,ピッチ系炭素
繊維,気相成長炭素繊維,フッ化カーボン,ナノカーボ
ン,活性炭,活性炭素繊維,PAN系炭素繊維のうちの
少なくとも一つを含むことを特徴とする鉛蓄電池。
10. The method according to claim 1, wherein said carbon is carbon black, acetylene black, natural graphite, artificial graphite, pyrolytic carbon, coke, isotropic graphite, mesophase carbon, pitch. A lead-acid battery including at least one of carbon fibers, vapor grown carbon fibers, carbon fluoride, nanocarbon, activated carbon, activated carbon fibers, and PAN-based carbon fibers.
【請求項11】請求項6又は7のいずれか1項におい
て、上記単体もしくは化合物の平均一次粒径が0.1n
m以上 ,1000nm以下の範囲であることを特徴と
する鉛蓄電池。
11. The method according to claim 6, wherein the simple substance or the compound has an average primary particle size of 0.1 n.
A lead-acid battery having a range of not less than m and not more than 1000 nm.
【請求項12】正極,負極及び電解質を有してなる鉛蓄
電池において、上記負極はCu,Ni,Zn,Mn,A
l,Si,K,Mgのうち少なくとも一種類の単体もし
くは化合物を含む活性炭又はカーボンブラック又は活性
炭とカーボンブラックの両方が添加されることを特徴と
する鉛蓄電池。
12. A lead-acid battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the negative electrode comprises Cu, Ni, Zn, Mn, A
A lead-acid battery, wherein activated carbon or carbon black or both activated carbon and carbon black containing at least one kind or compound of at least one of l, Si, K and Mg are added.
【請求項13】請求項12において、 上記活性炭は、Cuの含有量が重量比率で5ppm よりも
多く、15000ppmよりも少ないやしがら活性炭を含
むことを特徴とする鉛蓄電池。
13. A lead-acid battery according to claim 12, wherein said activated carbon contains activated carbon having a Cu content of more than 5 ppm by weight and less than 15,000 ppm.
【請求項14】請求項12において、上記カーボンブラ
ックは、NiとCuとZnとMnの含有量が重量比で1
ppmよりも多く、かつ、1000ppm よりも少ないファ
ーネスブラックを含むことを特徴とする鉛蓄電池。
14. The carbon black according to claim 12, wherein the content of Ni, Cu, Zn and Mn is 1 by weight.
A lead-acid battery containing more than 1000 ppm and less than 1000 ppm of furnace black.
【請求項15】鉛蓄電池内に添加するカーボン粉末にお
いて、Hf,Nb,Ta,W,Ag,Zn,Ni,C
o,Mo,Cu,V,Mn,Ba,K,Cs,Rb,S
r,Naのうち少なくとも一つから選ばれた単体,酸化
物,硫酸塩,水酸化物又は炭化物を含有又は担持するこ
とを特徴とする鉛蓄電池用カーボン材料。
15. A carbon powder added to a lead storage battery, wherein Hf, Nb, Ta, W, Ag, Zn, Ni, C
o, Mo, Cu, V, Mn, Ba, K, Cs, Rb, S
A carbon material for a lead-acid battery, containing or carrying a simple substance, oxide, sulfate, hydroxide or carbide selected from at least one of r and Na.
【請求項16】鉛蓄電池内に添加するカーボン粉末にお
いて、脱硫触媒作用又はSOx 酸化触媒作用のある単体
及び/又は化合物を含むことを特徴とする鉛蓄電池用カ
ーボン材料。
16. A carbon powder added to the lead-acid battery, a carbon material for a lead storage battery, which comprises elemental and / or compound of desulfurization catalytic or SO x oxidation catalysis.
【請求項17】鉛蓄電池内に添加するカーボン粉末にお
いて、Cu,Ni,Zn,Mn,Al,Si,K,Mg
のうち少なくとも一種類の単体もしくは化合物を含む活
性炭及び/又はカーボンブラックであることを特徴とす
る鉛蓄電池用カーボン材料。
17. The carbon powder added to a lead storage battery, wherein Cu, Ni, Zn, Mn, Al, Si, K, Mg
Activated carbon and / or carbon black containing at least one kind or compound thereof among the above.
JP2002067800A 2001-04-03 2002-03-13 Lead storage battery Pending JP2002367613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002067800A JP2002367613A (en) 2001-04-03 2002-03-13 Lead storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001104080 2001-04-03
JP2001-104080 2001-04-03
JP2002067800A JP2002367613A (en) 2001-04-03 2002-03-13 Lead storage battery

Publications (1)

Publication Number Publication Date
JP2002367613A true JP2002367613A (en) 2002-12-20

Family

ID=26612992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002067800A Pending JP2002367613A (en) 2001-04-03 2002-03-13 Lead storage battery

Country Status (1)

Country Link
JP (1) JP2002367613A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362688C (en) * 2005-03-03 2008-01-16 河南环宇集团有限公司 Method for reducing power type columnar sealed zinc-nickel alkaline accumulator internal pressure
WO2008075514A1 (en) * 2006-12-19 2008-06-26 Ntt Data Ex Techno Corporation Negative-electrode active material for secondary battery
EP1962356A1 (en) 2007-02-26 2008-08-27 Shin-Kobe Electric Machinery Co., Ltd. Energy conversion device
US7463958B2 (en) * 2002-07-08 2008-12-09 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus and vehicle control method
WO2010122874A1 (en) * 2009-04-23 2010-10-28 古河電池株式会社 Lead storage battery
WO2010122873A1 (en) * 2009-04-23 2010-10-28 古河電池株式会社 Process for producing negative plate for lead storage battery, and lead storage battery
JP2012501519A (en) * 2008-09-02 2012-01-19 ハモンド グループ,インク. Improved anti-shrink agent for lead-acid batteries
WO2012061715A1 (en) * 2010-11-05 2012-05-10 Cabot Corporation Lead-acid batteries and pastes therefor
JP2012123964A (en) * 2010-12-07 2012-06-28 Gs Yuasa Corp Liquid type lead acid storage battery
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
WO2017006980A1 (en) * 2015-07-07 2017-01-12 日立化成株式会社 Negative electrode for lead acid storage batteries, and lead acid storage battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
JP2017162602A (en) * 2016-03-08 2017-09-14 日立化成株式会社 Lead-acid battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
KR101877122B1 (en) * 2016-08-02 2018-07-10 안상용 Electrode Based on Activated Carbon as Active Material and Energy Storage Device Using Thereof
JP2018198151A (en) * 2017-05-24 2018-12-13 古河電池株式会社 Lead storage battery
TWI701861B (en) * 2019-08-23 2020-08-11 百樂電池股份有限公司 Carbon lead battery
CN113161519A (en) * 2021-03-26 2021-07-23 扬州阿波罗蓄电池有限公司 Preparation process of storage battery for starting and stopping automobile

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7463958B2 (en) * 2002-07-08 2008-12-09 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus and vehicle control method
CN100362688C (en) * 2005-03-03 2008-01-16 河南环宇集团有限公司 Method for reducing power type columnar sealed zinc-nickel alkaline accumulator internal pressure
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
WO2008075514A1 (en) * 2006-12-19 2008-06-26 Ntt Data Ex Techno Corporation Negative-electrode active material for secondary battery
JP4523580B2 (en) * 2006-12-19 2010-08-11 エヌ・ティ・ティ・データ先端技術株式会社 Negative electrode active material for secondary battery and intermediate kneaded material for producing them
JP2008153128A (en) * 2006-12-19 2008-07-03 Ntt Data Ex Techno Corp Negative electrode active material for secondary battery
EP1962356A1 (en) 2007-02-26 2008-08-27 Shin-Kobe Electric Machinery Co., Ltd. Energy conversion device
US7742279B2 (en) 2007-02-26 2010-06-22 Shin-Kobe Electric Machinery Co., Ltd. Energy conversion device
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
JP2012501519A (en) * 2008-09-02 2012-01-19 ハモンド グループ,インク. Improved anti-shrink agent for lead-acid batteries
WO2010122874A1 (en) * 2009-04-23 2010-10-28 古河電池株式会社 Lead storage battery
WO2010122873A1 (en) * 2009-04-23 2010-10-28 古河電池株式会社 Process for producing negative plate for lead storage battery, and lead storage battery
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9112231B2 (en) 2010-11-05 2015-08-18 Cabot Corporation Lead-acid batteries and pastes therefor
WO2012061715A1 (en) * 2010-11-05 2012-05-10 Cabot Corporation Lead-acid batteries and pastes therefor
JP2012123964A (en) * 2010-12-07 2012-06-28 Gs Yuasa Corp Liquid type lead acid storage battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
WO2017006980A1 (en) * 2015-07-07 2017-01-12 日立化成株式会社 Negative electrode for lead acid storage batteries, and lead acid storage battery
JPWO2017006980A1 (en) * 2015-07-07 2018-01-11 日立化成株式会社 Negative electrode for lead-acid battery and lead-acid battery
JP2017162602A (en) * 2016-03-08 2017-09-14 日立化成株式会社 Lead-acid battery
KR101877122B1 (en) * 2016-08-02 2018-07-10 안상용 Electrode Based on Activated Carbon as Active Material and Energy Storage Device Using Thereof
JP2018198151A (en) * 2017-05-24 2018-12-13 古河電池株式会社 Lead storage battery
TWI701861B (en) * 2019-08-23 2020-08-11 百樂電池股份有限公司 Carbon lead battery
CN113161519A (en) * 2021-03-26 2021-07-23 扬州阿波罗蓄电池有限公司 Preparation process of storage battery for starting and stopping automobile

Similar Documents

Publication Publication Date Title
US7083876B2 (en) Lead-acid battery
JP2002367613A (en) Lead storage battery
US20200399771A1 (en) Method for hf-free facile and rapid synthesis of mxenes related compounds
US11476467B1 (en) Porous conductive scaffolds containing battery materials
JP5468416B2 (en) Lithium-air secondary battery and method for producing air electrode thereof
JP5761761B2 (en) Porous electrode active material, method for producing the same, and secondary battery
WO2017000219A1 (en) Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
CN109071264B (en) Method for producing transition metal-containing hydroxide and lithium-containing composite oxide
JP2005100947A (en) Nonaqueous secondary battery anode material, method for manufacturing same and nonaqueous secondary battery
JPWO2014061654A1 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
KR20100137486A (en) Mesoporous materials for electrodes
Ghiyasiyan-Arani et al. Comparative study on electrochemical hydrogen storage of nanocomposites based on S or N doped graphene quantum dots and nanostructured titanium niobate
JPH08102332A (en) Secondary battery
Zhang et al. An efficient, bifunctional catalyst for lithium–oxygen batteries obtained through tuning the exterior Co 2+/Co 3+ ratio of CoO x on N-doped carbon nanofibers
WO2013018638A1 (en) Negative electrode material for lithium ion batteries containing surface-fluorinated b-type titanium oxide powder, method for producing same, and lithium ion battery using same
JP7466677B2 (en) Anode active material, its manufacturing method, and lithium secondary battery including said anode active material
JPH1021900A (en) Positive electrode plate for sealed lead-acid battery
CN110534746B (en) Tungsten carbide/carbon nanotube composite material and preparation method and application thereof
JP2000228193A (en) Carbonaceous negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery
JP2004127636A (en) Lead storage battery
KR101514501B1 (en) Electrode active material having pores and secondary battery comprising the same
Zhang et al. Kinetically controlled catalytic synthesis of highly dispersed metal-in-carbon composite and its electrochemical behavior
JP4196597B2 (en) Lead-acid battery and carbon material used therefor
Chen et al. Hierarchical porous nickel cobaltate nanotube as electrocatalyst for lithium-oxygen batteries
CN116706075B (en) Sodium supplementing composition, positive electrode plate, preparation method of positive electrode plate and sodium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040816

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925