JP2002324545A - Electrode for electrochemical element and electrochemical element - Google Patents

Electrode for electrochemical element and electrochemical element

Info

Publication number
JP2002324545A
JP2002324545A JP2002039395A JP2002039395A JP2002324545A JP 2002324545 A JP2002324545 A JP 2002324545A JP 2002039395 A JP2002039395 A JP 2002039395A JP 2002039395 A JP2002039395 A JP 2002039395A JP 2002324545 A JP2002324545 A JP 2002324545A
Authority
JP
Japan
Prior art keywords
electrode
metal oxide
metal
composite layer
electrochemical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002039395A
Other languages
Japanese (ja)
Other versions
JP3578272B2 (en
Inventor
Hiroshi Abe
浩史 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2002039395A priority Critical patent/JP3578272B2/en
Publication of JP2002324545A publication Critical patent/JP2002324545A/en
Application granted granted Critical
Publication of JP3578272B2 publication Critical patent/JP3578272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for an electrochemical element, which has an excellent adhesion property to an active material layer and to a collector body such as a metal foil even without adding a binder and shows a high capacity even under a high current density and to provide the electrochemical element which shows the high capacity even under the high current density using the electrode. SOLUTION: The electrode for the electrochemical element is constituted by forming a metal oxide dispersing a conductive substance in a continuous film of the metal oxide and a composite layer with the conductive substance at an average thickness of 5 to 50 μm along at least one direction face of the collector body and the electrochemical element is constituted by using the electrode, the counter electrode and the electrolyte. Oxides of metal elements belonging within the range of the 3rd group to the 12th group in the 4th period to the 6th period of periodic table are preferable as the metal oxide, carbon materials are preferable as the conductive substance and metal foils with 5 to 50 μm thickness are preferable as the collector body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池や電気化学キ
ャパシタなどの電気化学素子に用いられる電極と、その
電極を用いた電気化学素子に関する。
The present invention relates to an electrode used for an electrochemical device such as a battery or an electrochemical capacitor, and an electrochemical device using the electrode.

【0002】[0002]

【従来の技術】近年、地球の環境問題などから、エンジ
ン駆動であるガソリン車やディーゼル車に代わってモー
ター駆動である電気自動車、あるいはモーターとエンジ
ンの両方を搭載したハイブリッド車への期待が高まって
いる。これらの電気自動車やハイブリッド車ではモータ
ーを駆動させるための電源として電池が使われる。
2. Description of the Related Art In recent years, due to environmental problems on the earth, expectations for an electric vehicle driven by a motor instead of an engine driven gasoline vehicle or a diesel vehicle, or a hybrid vehicle equipped with both a motor and an engine have been increased. I have. In these electric vehicles and hybrid vehicles, a battery is used as a power source for driving a motor.

【0003】電気自動車に使われる電池は重量や体積が
非常に大きく、コスト的な面も踏まえれば、繰り返し使
用できる充電型の電池、すなわち、二次電池が好まし
い。このような二次電池としては、例えば、鉛電池、ニ
ッケル・カドミウム(ニカド)電池、ニッケル水素電池
などが挙げられ、これらの二次電池は伝導性の高い酸性
またはアルカリ性の水系電解液を用いているため、高い
電流を取り出すことができる。
[0003] A battery used in an electric vehicle has a very large weight and volume, and in view of cost, a rechargeable battery that can be used repeatedly, that is, a secondary battery is preferable. Examples of such a secondary battery include a lead battery, a nickel-cadmium (NiCad) battery, a nickel-metal hydride battery, and the like. These secondary batteries use an acidic or alkaline aqueous electrolyte having high conductivity. Therefore, a high current can be obtained.

【0004】しかしながら、水系電解液を用いた二次電
池は、前記の特長を有するものの水の電気分解電圧が
1.23Vであるため、単セルからはそれ以上の高い電
圧を得ることができない。しかるに、電気自動車の電源
としては200V前後の高電圧が必要であることから、
そのような高電圧を得るためには多くの電池を直列に接
続しなければならず、したがって、小型・軽量化に際し
て極めて不利である。
[0004] However, a secondary battery using an aqueous electrolyte solution has the above-mentioned features, but the electrolysis voltage of water is 1.23 V, so that a higher voltage cannot be obtained from a single cell. However, since a high voltage of about 200 V is required as a power supply for an electric vehicle,
In order to obtain such a high voltage, many batteries must be connected in series, which is extremely disadvantageous in reducing the size and weight.

【0005】高電圧型の二次電池としては、有機電解液
を用いたリチウムイオン二次電池が知られている。この
リチウムイオン二次電池では、分解電圧の高い有機溶媒
を電解液溶媒としているため、最も卑な電位を示すリチ
ウム(イオン)を反応媒体とすれば3V以上の電位を示
す電池を提供することが可能である。現在市販されてい
るリチウムイオン二次電池は、リチウムイオンの吸蔵お
よび脱離が可能な炭素を負極活物質とし、コバルトとリ
チウムの酸化物であるコバルト酸リチウム(LiCoO
2 )を正極活物質として用いるものが主流であり、電解
液としては、六フッ化リン酸リチウム(LiPF6 )な
どのリチウム塩を、エチレンカーボネート、プロピレン
カーボネートなどの環状炭酸エステルやジメチルカーボ
ネート、ジエチルカーボネートなどの鎖状炭酸エステル
との混合溶媒に溶解したものが用いられている。そし
て、これらの正負極と電解液から構成されたリチウムイ
オン二次電池は平均作動電圧として3.6Vを示す。
As a high voltage type secondary battery, a lithium ion secondary battery using an organic electrolyte is known. In this lithium ion secondary battery, since an organic solvent having a high decomposition voltage is used as an electrolyte solvent, a battery having a potential of 3 V or more can be provided if lithium (ion) having the lowest potential is used as a reaction medium. It is possible. Currently available lithium ion secondary batteries use carbon capable of inserting and extracting lithium ions as a negative electrode active material, and lithium cobalt oxide (LiCoO 2) which is an oxide of cobalt and lithium.
2 ) is mainly used as a positive electrode active material, and a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is used as an electrolytic solution, such as a cyclic carbonate such as ethylene carbonate and propylene carbonate, dimethyl carbonate, and diethyl carbonate. What is dissolved in a mixed solvent with a chain carbonate such as carbonate is used. The lithium ion secondary battery composed of the positive and negative electrodes and the electrolytic solution exhibits an average operating voltage of 3.6 V.

【0006】しかしながら、前記リチウムイオン二次電
池は、電圧が高いのでニカド電池やニッケル水素電池な
ど水系電解液を用いた二次電池よりもエネルギー密度は
高いものの、イオン伝導性の低い有機溶媒を電解液溶媒
としているため出力特性に劣るという問題があった。そ
のため、電極の薄膜化や電解液の改良などにより高出力
化が進められているが、電気自動車用の電源としては3
00Aクラスの瞬間電流が必要とされるため、電極の薄
膜化などだけでは充分に対応することができないという
問題があった。
However, since the lithium ion secondary battery has a higher voltage, it has a higher energy density than a secondary battery using an aqueous electrolyte such as a nickel-cadmium battery or a nickel-metal hydride battery. There is a problem that the output characteristics are inferior because the liquid solvent is used. For this reason, high output has been promoted by thinning the electrodes and improving the electrolytic solution.
Since an instantaneous current of the 00A class is required, there is a problem that it is not possible to sufficiently cope with the problem only by thinning the electrodes.

【0007】そこで、電池に代わる電源として、電気二
重層を利用したキャパシタが注目されはじめてきた。こ
の電気二重層キャパシタは、活性炭などの分極性電極を
正負極とし、プロピレンカーボネートなどの有機溶媒に
四フッ化ホウ素の四級アンモニウム塩を溶解したものを
電解液とした構成であり、電極表面と電解液との界面に
生じる電気二重層を静電容量として蓄電する電源である
ため、電池のような酸化還元反応を起こさず、それ故、
高い電流を取り出すことが可能であるとともに、サイク
ル劣化がないという長所を有している。
[0007] Therefore, a capacitor using an electric double layer has been attracting attention as a power source instead of a battery. This electric double layer capacitor has a configuration in which a polarizable electrode such as activated carbon is used as a positive electrode and a negative electrode, and a solution in which a quaternary ammonium salt of boron tetrafluoride is dissolved in an organic solvent such as propylene carbonate is used as an electrolytic solution. Because it is a power supply that stores the electric double layer generated at the interface with the electrolytic solution as capacitance, it does not cause an oxidation-reduction reaction like a battery, and therefore,
It has the advantage that a high current can be taken out and there is no cycle deterioration.

【0008】しかしながら、電気二重層キャパシタは、
上記のような静電容量をエネルギーとしているため、電
池に比べてエネルギー密度が非常に低く(<2Wh/k
g)、したがって、自動車の電源とするには、電池以上
に多くのキャパシタが必要となり、電気二重層キャパシ
タだけでの使用では実現が困難であった。
However, the electric double layer capacitor is
Since the above-described capacitance is used as energy, the energy density is very low (<2 Wh / k) as compared with the battery.
g) Therefore, a larger number of capacitors than batteries are required for use as a power source of an automobile, and it has been difficult to realize the use of only electric double layer capacitors.

【0009】そこで、大電流を取り出すことが可能な静
電容量と、高いエネルギー密度を持つ電気化学的な酸化
還元反応によるレドックス容量とを併せ持った電気化学
素子として、いわゆる電気化学キャパシタが提案されて
いる。この電気化学キャパシタでは、電解液として有機
電解液を用い、リチウムイオンを反応媒体とした場合
は、高出力で高エネルギー密度を有した電気化学素子と
することができる。ただし、この場合は、電気二重層キ
ャパシタとは異なり、電極は正負極同一のものではな
く、前記リチウムイオン二次電池の場合とほぼ同様の電
極構成となる。
Therefore, a so-called electrochemical capacitor has been proposed as an electrochemical element having both a capacitance capable of extracting a large current and a redox capacity by an electrochemical redox reaction having a high energy density. I have. In this electrochemical capacitor, when an organic electrolytic solution is used as an electrolytic solution and lithium ions are used as a reaction medium, an electrochemical device having a high output and a high energy density can be obtained. However, in this case, unlike the electric double layer capacitor, the electrodes are not the same as the positive and negative electrodes, and have substantially the same electrode configuration as that of the lithium ion secondary battery.

【0010】そして、その電極の作製にあたっては、基
本的にリチウムイオン二次電池の場合と同様の方法が採
用されている。すなわち、高分子化合物からなるバイン
ダー、例えばポリフッ化ビニリデンなどからなるバイン
ダーを有機溶剤に溶解したバインダー液に、炭素やコバ
ルト酸リチウムなどの活物質を加えて混合し、得られた
活物質含有ペーストを金属箔の少なくとも一方の面に塗
布し、加熱乾燥して活物質層を形成することによりシー
ト形の電極としている。
In producing the electrode, a method basically similar to that of the lithium ion secondary battery is employed. That is, a binder composed of a polymer compound, for example, a binder liquid in which a binder composed of polyvinylidene fluoride or the like is dissolved in an organic solvent, an active material such as carbon or lithium cobaltate is added and mixed, and the obtained active material-containing paste is mixed. A sheet-shaped electrode is formed by applying the composition to at least one surface of a metal foil and drying by heating to form an active material layer.

【0011】この電極において、出力特性を向上させる
ためには、金属箔の表面に形成される活物質層の厚さを
できるだけ薄くすることが好ましい。しかしながら、現
在採用されているロールコーターやドクターブレードあ
るいはロールアプリケーターなどによる塗布方法では、
現状以上の薄膜化は困難である。これは、前記活物質含
有ペーストが比較的粘度の高いスラリー状であるため、
薄膜化するためにロール間のクリアランスを狭めると、
金属箔の表面に活物質含有ペーストが充分に塗布でき
ず、形成される活物質層を均一な厚さに管理することが
できないからである。
In this electrode, in order to improve the output characteristics, it is preferable to make the thickness of the active material layer formed on the surface of the metal foil as small as possible. However, the coating method using a roll coater, a doctor blade, or a roll applicator that is currently employed,
It is difficult to make the film thinner than it is now. This is because the active material-containing paste is a slurry having a relatively high viscosity,
When narrowing the clearance between rolls to make it thinner,
This is because the active material-containing paste cannot be sufficiently applied to the surface of the metal foil, and the formed active material layer cannot be controlled to have a uniform thickness.

【0012】そこで、薄膜化を可能にするため、バイン
ダーを添加しないで粘度の低い塗液を調製し、それを金
属箔に塗布することも考え得るが、バインダーが添加さ
れていないために、金属箔と活物質層との間の結着性や
活物質間の結着性が充分に得られず、その結果、活物質
層が金属箔から容易に剥離してしまうため、これらの電
極の巻取工程や積層工程などを経て電池を製造すること
は極めて困難である。
Therefore, it is conceivable to prepare a low-viscosity coating solution without adding a binder and apply it to a metal foil in order to make the film thinner. Since the binding between the foil and the active material layer and the binding between the active materials are not sufficiently obtained, as a result, the active material layer is easily separated from the metal foil. It is extremely difficult to manufacture a battery through a removing step, a laminating step, and the like.

【0013】[0013]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の問題点を解決し、バインダーを添加しなく
ても活物質層と金属箔との結着性が優れ、かつ大電流密
度下でも高い容量を示す電気化学素子用電極を提供し、
また、その電極を用いて大電流密度下でも高い容量を示
す電気化学素子を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and has excellent binding properties between an active material layer and a metal foil without adding a binder, and has a large current. Providing electrodes for electrochemical devices that show high capacity even under density,
It is another object of the present invention to provide an electrochemical device using the electrode and having a high capacity even under a large current density.

【0014】[0014]

【課題を解決するための手段】本発明は、金属酸化物の
連続膜の内部に導電性物質が分散されてなる金属酸化物
と導電性物質との複合体層を、集電体の少なくとも一方
の面に5〜50μmの平均厚さで形成することによっ
て、電気化学素子用電極を構成し、また、その電極と対
極と電解質とを用いて電気化学素子を構成することによ
り、前記課題を解決したものである。
According to the present invention, a composite layer of a metal oxide and a conductive material in which a conductive material is dispersed in a continuous film of a metal oxide is formed on at least one of the current collectors. The above problem is solved by forming an electrode for an electrochemical element by forming an average thickness of 5 to 50 μm on the surface of the electrode, and forming an electrochemical element using the electrode, the counter electrode, and the electrolyte. It was done.

【0015】上記電気化学素子用電極において、集電体
の少なくとも一方の面に形成した金属酸化物と導電性物
質との複合体層は、該電気化学素子用電極の活物質層と
しての作用をするものであるが、この活物質層としての
複合体層は、例えば、金属酸化物のコロイド液に導電性
物質が分散された混合物ぺーストを集電体に塗布し、加
熱処理することによって形成される。すなわち、金属酸
化物のコロイド液と導電性物質との混合によって導電性
物質の表面を金属酸化物が被覆し、さらにこの混合物ぺ
ーストを集電体に塗布した後に加熱処理することによっ
て、導電性物質の表面に金属酸化物が強固に固着すると
ともに、金属酸化物同士が結合して連続膜となり、金属
酸化物の内部に導電性物質が分散された状態で存在する
金属酸化物と導電性物質との複合体層が形成される。こ
の複合体層は、電極における活物質層として作用するだ
けでなく、集電体との界面に存在する金属酸化物が集電
体にも強固に粘着することにより、バインダーを含有さ
せなくても活物質層としての複合体層と集電体との間の
結着性が確保され、集電体と活物質層としての金属酸化
物と導電性物質との複合体層とが一体化された電極を構
成することができる。
In the above-mentioned electrode for an electrochemical element, the composite layer of a metal oxide and a conductive substance formed on at least one surface of the current collector acts as an active material layer of the electrode for an electrochemical element. The composite layer as the active material layer is formed, for example, by applying a paste of a mixture in which a conductive material is dispersed in a colloidal solution of a metal oxide to a current collector and performing heat treatment. Is done. That is, the surface of the conductive material is coated with the metal oxide by mixing the metal oxide colloid solution and the conductive material, and the mixture paste is applied to the current collector and then heat-treated. The metal oxide is firmly fixed to the surface of the substance, and the metal oxides are bonded to each other to form a continuous film, and the metal oxide and the conductive substance exist in a state where the conductive substance is dispersed inside the metal oxide. And a composite layer is formed. This composite layer not only functions as an active material layer in the electrode, but also because the metal oxide present at the interface with the current collector adheres firmly to the current collector, so that the binder does not need to be contained. The binding property between the composite layer as the active material layer and the current collector was secured, and the current collector and the composite layer of the metal oxide and the conductive material as the active material layer were integrated. Electrodes can be configured.

【0016】このように金属酸化物が粘結作用を発揮す
るので、集電体に複合体層を形成するにあたっては、金
属酸化物のコロイド液に導電性物質が分散された混合物
ぺーストを用いるが、通常は、別途バインダー成分を含
有させないので、粘度の低い混合物ぺーストが得られ
る。そのため、混合物ぺーストを薄くかつ均一に塗布す
ることが可能になり、高出力化が可能な電気化学素子を
構成するのに適した電極を得ることができる。
As described above, since the metal oxide exerts a binding action, a mixture paste in which a conductive substance is dispersed in a colloidal liquid of the metal oxide is used in forming the composite layer on the current collector. However, usually, a binder paste having a low viscosity can be obtained because a binder component is not separately contained. Therefore, it becomes possible to apply the mixture paste thinly and uniformly, and it is possible to obtain an electrode suitable for constituting an electrochemical device capable of increasing the output.

【0017】[0017]

【発明の実施の形態】本発明において、金属酸化物とし
ては、周期表(ただし長周期型の周期表)の第4周期か
ら第6周期で第3族から第12族の範囲に属する金属元
素の酸化物または複合酸化物が好適に用いられる。その
具体例としては、例えば、Sc、Ti、V、Cr、M
n、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、
Mo、Tc、Ru、Pd、Ag、Cd、ランタノイド、
Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg
などの酸化物が挙げられ、特にV、Cr、Mn、Fe、
Co、Niなどの周期表の第4周期の第5族から第10
族の範囲に属する金属元素の酸化物やそれらの金属と他
の金属の少なくとも1種とを含む複合酸化物などが好ま
しい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the metal oxide is a metal element belonging to the range from Group 3 to Group 12 in the fourth to sixth periods of the periodic table (however, a long-period type periodic table). Is preferably used. Specific examples thereof include, for example, Sc, Ti, V, Cr, M
n, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb,
Mo, Tc, Ru, Pd, Ag, Cd, lanthanoid,
Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg
Oxides such as V, Cr, Mn, Fe,
5th to 10th groups of the 4th period of the periodic table such as Co and Ni
Oxides of metal elements belonging to the group III group, composite oxides containing these metals and at least one other metal, and the like are preferable.

【0018】導電性物質としては、金属材料や炭素材料
など導電性を有するものであれば特に限定されることは
ないが、特に炭素材料が好ましく、その炭素材料として
は、例えば、アセチレンブラック、ファーネスブラッ
ク、チャンネルブラックなどのカーボンブラックや天然
黒鉛、人造黒鉛、活性炭、炭素繊維、カーボンナノチュ
ーブなどの炭素粉末が好適に用いられる。
The conductive substance is not particularly limited as long as it is a conductive substance such as a metal material or a carbon material. Particularly, a carbon material is preferable. Examples of the carbon material include acetylene black and furnace. Carbon black such as black and channel black, natural graphite, artificial graphite, activated carbon, carbon fiber, and carbon powder such as carbon nanotube are preferably used.

【0019】本発明において用いる集電体は、金属箔、
金属網、エキスパンドメタル、パンチングメタル、金属
発泡体などの多孔性金属板、カーボンシートなどを例示
することができるが、それらの中でも金属箔が好まし
く、その平均表面粗さが0.1〜2μmであるものが好
ましい。これは、金属箔を用いることにより、活物質層
としての金属酸化物と導電性物質との複合体層と集電体
との結着性をより強固にできるからであり、また、その
平均表面粗さを0.1μm以上にすることにより、金属
酸化物の金属箔への結着作用を有効に発揮させ、平均表
面粗さを2μm以下にすることにより、活物質層として
の前記複合体層の厚さむらを生じにくくさせることがで
きる。なお、本発明において、この金属箔の平均表面粗
さは、平均面から高さ方向(Z方向)に測定した高低差
の平均を意味し、本発明ではレーザー顕微鏡で表面粗さ
を測定する。
The current collector used in the present invention is a metal foil,
Metal nets, expanded metals, punched metals, porous metal plates such as metal foams, carbon sheets, etc. can be exemplified. Among them, metal foils are preferable, and the average surface roughness is 0.1 to 2 μm. Some are preferred. This is because by using a metal foil, the binding property between the current collector and the composite layer of the metal oxide and the conductive material as the active material layer can be strengthened, and the average surface By setting the roughness to 0.1 μm or more, the binding action of the metal oxide to the metal foil is effectively exhibited, and by setting the average surface roughness to 2 μm or less, the composite layer as an active material layer Thickness unevenness can be hardly generated. In the present invention, the average surface roughness of the metal foil means an average of height differences measured from the average surface in a height direction (Z direction). In the present invention, the surface roughness is measured by a laser microscope.

【0020】上記金属箔の材質としては、例えば、銅、
チタン、アルミニウム、ニッケル、鉄などの金属元素や
ステンレス鋼などに代表される前記元素の合金などを例
示することができる。
The material of the metal foil is, for example, copper,
Examples thereof include metal elements such as titanium, aluminum, nickel, and iron, and alloys of the above elements typified by stainless steel.

【0021】本発明において、前記金属箔の厚さや大き
さは、作製する電極の大きさに応じて適宜選択されるの
で、特に限定されることはないが、電極の強度や導電性
を考慮すると、通常は厚さが5〜50μmの金属箔が好
適に用いられる。
In the present invention, the thickness and size of the metal foil are appropriately selected according to the size of the electrode to be produced, and are not particularly limited. However, in consideration of the strength and conductivity of the electrode. Usually, a metal foil having a thickness of 5 to 50 μm is suitably used.

【0022】前記金属酸化物のコロイド液に導電性物質
が分散された混合物ぺーストは、例えば、金属酸化物の
コロイド液に導電性物質を混合し、分散することにより
得られるが、その金属酸化物と導電性物質との混合比率
としては、質量比で70:30〜10:90が好まし
く、特に50:50〜25:75が好ましい。
The above-mentioned mixture paste in which a conductive substance is dispersed in a colloidal solution of a metal oxide is obtained, for example, by mixing and dispersing a conductive substance in a colloidal solution of a metal oxide. The mixing ratio between the substance and the conductive substance is preferably 70:30 to 10:90 by mass, and particularly preferably 50:50 to 25:75.

【0023】金属酸化物のコロイド液の調製は、通常、
金属酸化物そのものを直接コロイド液にすることが困難
なので、金属粉末と例えば過酸化水素などの酸化剤を含
む液とを混合するか、あるいは金属の酢酸塩、硝酸塩、
炭酸塩などを酸化性物質を含む液と混合して調製するこ
とが好ましい。
The preparation of the metal oxide colloid solution is usually carried out by
Since it is difficult to make the metal oxide itself into a colloidal solution directly, mix the metal powder with a solution containing an oxidizing agent such as hydrogen peroxide, or use a metal acetate, nitrate,
It is preferable to prepare by mixing a carbonate or the like with a liquid containing an oxidizing substance.

【0024】前記金属酸化物のコロイド液と導電性物質
との混合分散にあたっては、スターラー、ボールミル、
超音波分散などのいずれの混合手段も採用することがで
きる。また、混合時の温度や時間に関しては、特に限定
されることはないが、例えば、0〜40℃で1〜12時
間程度混合分散することが好ましい。混合分散後の加熱
処理は、濾過、遠心分離などにより金属酸化物と導電性
物質との混合物を分散液からある程度分離してから行っ
てもよいし、また、混合分散液をそのまま用いてもよ
い。
In mixing and dispersing the metal oxide colloid solution and the conductive material, a stirrer, a ball mill,
Any mixing means such as ultrasonic dispersion can be employed. The temperature and time during mixing are not particularly limited. For example, it is preferable to mix and disperse at 0 to 40 ° C. for about 1 to 12 hours. The heat treatment after the mixing and dispersion may be performed after a mixture of the metal oxide and the conductive substance is separated from the dispersion to some extent by filtration, centrifugation, or the like, or the mixed dispersion may be used as it is. .

【0025】金属酸化物のコロイド液と導電性物質との
混合物ぺーストを前記集電体に塗布する手段としては、
特に限定されることはないが、例えば、ロールコータ
ー、アプリケーター、ドクターブレード法などを採用す
ることができる。
The means for applying a paste of a mixture of a colloidal solution of a metal oxide and a conductive material to the current collector includes:
Although not particularly limited, for example, a roll coater, an applicator, a doctor blade method, or the like can be employed.

【0026】金属酸化物のコロイド液と導電性物質との
混合物ぺーストを金属箔へ塗布した後、混合物ぺースト
中の液体分の除去などのために、加熱処理が行われる。
この加熱処理の条件としては、特に制限されることはな
いが、温度は50℃以上が好ましく、80℃以上が好ま
しく、また、450℃以下が好ましく、300℃以下が
より好ましく、時間は1時間以上が好ましく、3時間以
上がより好ましく、また、24時間以下が好ましく、1
0時間以下がより好ましい。特に導電性物質として炭素
材料を用いる場合には、450℃を超えると炭素の酸化
分解反応が生じるので、300℃以下で加熱処理を行う
ことがより好ましい。
After a paste of a mixture of a colloidal liquid of a metal oxide and a conductive material is applied to a metal foil, a heat treatment is performed to remove liquid components in the paste of the mixture.
The conditions for this heat treatment are not particularly limited, but the temperature is preferably 50 ° C. or higher, preferably 80 ° C. or higher, and is preferably 450 ° C. or lower, more preferably 300 ° C. or lower, and the time is 1 hour. Or more, preferably 3 hours or more, and more preferably 24 hours or less.
0 hours or less is more preferable. In particular, in the case where a carbon material is used as the conductive substance, an oxidative decomposition reaction of carbon occurs when the temperature exceeds 450 ° C. Therefore, it is more preferable to perform the heat treatment at 300 ° C. or lower.

【0027】前記のように、金属酸化物のコロイド液に
導電性物質を分散させた混合物ぺーストを集電体に塗布
し加熱処理を施すことによって、集電体の少なくとも一
方の面に金属酸化物の連続膜の内部に導電性物質が分散
されてなる金属酸化物と導電性物質との複合体層を形成
することができる。このようにして形成された複合体層
は、活物質層としての作用を有するものであるが、導電
性に優れ、大電流での充放電に適する形態になってい
る。
As described above, a paste of a mixture in which a conductive substance is dispersed in a colloidal liquid of a metal oxide is applied to a current collector and subjected to heat treatment, so that at least one surface of the current collector is coated with a metal oxide. A composite layer of a metal oxide and a conductive substance in which a conductive substance is dispersed in a continuous film of a substance can be formed. The composite layer thus formed has an action as an active material layer, but has excellent conductivity and is suitable for charging and discharging with a large current.

【0028】上記金属酸化物と導電性物質との複合体層
において、導電性物質の表面には、金属酸化物の層
(膜)が1nm以上の厚さで存在していることが好まし
い。金属酸化物の厚さが1nmより薄いと、金属酸化物
の結着作用が低下し、活物質層としての複合体層が集電
体から剥離しやすくなったり、電極を曲げる際に活物質
層としての複合体層に亀裂が生じやすくなるからであ
る。また、導電性物質の表面を覆う金属酸化物の厚さが
厚くなりすぎると、導電性物質の機能が発揮されにくく
なり、出力特性が低下するおそれがあるため、10nm
以下であることが好ましい。
In the composite layer of the metal oxide and the conductive material, a metal oxide layer (film) having a thickness of 1 nm or more is preferably present on the surface of the conductive material. When the thickness of the metal oxide is smaller than 1 nm, the binding action of the metal oxide is reduced, and the composite layer as the active material layer is easily separated from the current collector, or the active material layer is bent when the electrode is bent. This is because cracks are likely to occur in the composite layer. Further, if the thickness of the metal oxide covering the surface of the conductive substance is too large, the function of the conductive substance becomes difficult to be exhibited, and the output characteristics may be reduced.
The following is preferred.

【0029】加熱処理後の電極は、活物質層としての複
合体層の充填性や金属箔などからなる集電体との物理的
な結着性を向上させるために加圧処理を施してもよい。
加圧処理をするための装置としては、特に制限されるこ
とがなく、例えばハンドプレス機、ロールプレス機など
が好適に用いられる。また、本発明においては、活物質
層としての複合体層の平均厚さを5〜50μmとする
が、これは、活物質層としての複合体層の平均厚さが5
μmより薄い場合は、電気化学素子を構成した場合にエ
ネルギー密度が著しく低下して実用性を失い、活物質層
としての複合体層の平均厚さが50μmより厚い場合
は、電気抵抗が増大して充分な出力特性が得られなくな
るからである。そして、本発明においては、この活物質
層としての複合体層を集電体の両面に形成してもよく、
その場合は、それぞれの面の複合体層の平均厚さを5〜
50μmにすればよい。
The electrode after the heat treatment may be subjected to a pressure treatment in order to improve the filling property of the composite layer as the active material layer and the physical binding property with the current collector made of a metal foil or the like. Good.
The apparatus for performing the pressure treatment is not particularly limited, and for example, a hand press machine, a roll press machine, or the like is suitably used. In the present invention, the average thickness of the composite layer as the active material layer is set to 5 to 50 μm.
When the thickness is smaller than μm, the energy density is remarkably reduced when the electrochemical device is formed, and the practicality is lost. This is because sufficient output characteristics cannot be obtained. Then, in the present invention, the composite layer as the active material layer may be formed on both surfaces of the current collector,
In that case, the average thickness of the composite layer on each surface is 5 to
The thickness may be set to 50 μm.

【0030】ここで、本発明の電気化学素子用電極の一
例を図面を参照しつつ説明する。図1は本発明の電気化
学素子用電極の要部の一例を模式的に示す断面図であ
り、1は金属酸化物1aと導電性物質1bとの複合体層
であり、この複合体層1は金属酸化物1aの連続膜の内
部に導電性物質1bが分散された状態で構成され、集電
体2上に5〜50μmの平均厚さで形成され、それによ
って電気化学素子用電極が構成されている。そして、こ
の電気化学素子用電極において、上記複合体層1が活物
質層として作用するが、この複合体層1は図示のように
集電体2の一方の面に形成される場合だけでなく、集電
体2の両面に形成されていてもよい。なお、この図1は
電気化学素子用電極の構成を模式的に示すものにすぎ
ず、実際の電気化学素子用電極においては、複合体層1
を構成する導電性物質1bは必ずしも図示のように整然
と並んでおらず、また、図1では導電性物質1b同士が
接触した状態に図示されていたり、導電性物質1bが複
合体層1の上面および下面の一部を構成しているかのご
とく図示されているが、基本的には導電性物質1bの粒
子の周囲に金属酸化物1aが膜状に被覆していて、必ず
しも図示のような状態になっていない。さらに、図1で
は複合体層1の上面が平滑面であるかのように図示され
ているが、複合体層1の加圧成形後はそれに近い状態に
なるものの、複合体層1の上面は必ずしも図示のような
平滑面にはなっていない。そして、電気化学素子用電極
の側面も平滑面であるように図示されているが、これは
電気化学素子用電極の要部を図示するにあたって、その
ように切断した状態に図示したためにすぎない。また、
本発明において、金属酸化物の連続膜は、必ずしも緻密
で空隙のない膜である必要はなく、充分な結着性が得ら
れる範囲であれば、細孔や空隙を有していても良い。そ
して、活物質層としての複合体層は、高出力に対応でき
るようにするために、複合体層内にはバインダーが含有
されていないことが望ましいが、出力特性を大きく低下
させない範囲であれば、少量のバインダーが含有されて
いても差し支えない。
Here, an example of the electrode for an electrochemical device of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing an example of a main part of an electrode for an electrochemical device of the present invention. Reference numeral 1 denotes a composite layer of a metal oxide 1a and a conductive substance 1b. Is formed in a state in which the conductive substance 1b is dispersed inside the continuous film of the metal oxide 1a and is formed on the current collector 2 with an average thickness of 5 to 50 μm, whereby the electrode for the electrochemical element is formed. Have been. In the electrochemical element electrode, the composite layer 1 acts as an active material layer. The composite layer 1 is not only formed on one surface of the current collector 2 as shown in FIG. , May be formed on both surfaces of the current collector 2. Note that FIG. 1 is only a schematic view of the configuration of the electrode for an electrochemical element, and in an actual electrode for an electrochemical element, the composite layer 1
Are not necessarily arranged in an orderly manner as shown in the figure, and in FIG. 1, the conductive substances 1b are shown in contact with each other, or the conductive substance 1b is Although it is illustrated as if it constitutes a part of the lower surface, the metal oxide 1a basically covers the particles of the conductive material 1b in the form of a film. Has not become Further, in FIG. 1, the upper surface of the composite layer 1 is illustrated as if it were a smooth surface. It is not necessarily a smooth surface as shown. Although the side surface of the electrode for an electrochemical element is also illustrated as being a smooth surface, this is only because the main part of the electrode for an electrochemical element is illustrated in such a cut state when illustrated. Also,
In the present invention, the continuous film of the metal oxide does not necessarily need to be a dense and void-free film, and may have pores or voids as long as sufficient binding properties can be obtained. The composite layer as the active material layer preferably contains no binder in the composite layer in order to be able to cope with high output, but as long as the output characteristics are not significantly reduced. A small amount of binder may be contained.

【0031】本発明の電極を用いて、二次電池や電気化
学キャパシタなどの電気化学素子を構成する場合、対極
となる電極や使用する電解質、電気化学素子の構成など
によって、上記電極は正極として用いられる場合もある
し負極として用いられる場合もある。本発明の電極を用
いた電気化学素子の形状は、円筒形、角形、コイン形な
どのいずれであってもよく、形状に関して特に制約を受
けることはない。そして、電解質としては、電気化学素
子の構成に応じて、液状電解質、ゲル状電解質、固体電
解質のいずれも用いることができるが、通常、電解液と
呼ばれる液状電解質が多用され、上記電極を正極として
用い、その対極となる負極にリチウムやリチウムイオン
の吸蔵・放出が可能な炭素材料を活物質として用い、電
気化学素子としてリチウム系の電池を構成する場合に
は、電解質としては有機溶媒にリチウム塩などの電解質
塩を溶解させた有機電解液が用いられる。
When an electrochemical device such as a secondary battery or an electrochemical capacitor is formed using the electrode of the present invention, the above electrode is used as a positive electrode depending on the electrode used as a counter electrode, the electrolyte used, and the structure of the electrochemical device. It may be used or it may be used as a negative electrode. The shape of the electrochemical device using the electrode of the present invention may be any of a cylindrical shape, a square shape, a coin shape, and the like, and there is no particular limitation on the shape. As the electrolyte, any of a liquid electrolyte, a gel electrolyte, and a solid electrolyte can be used depending on the configuration of the electrochemical element.However, a liquid electrolyte called an electrolyte is often used, and the electrode is used as a positive electrode. When a lithium-based battery is used as an electrochemical element when a carbon material capable of occluding and releasing lithium and lithium ions is used as an active material for the negative electrode serving as a counter electrode thereof, a lithium salt is used as an electrolyte in an organic solvent as an electrolyte. An organic electrolyte in which an electrolyte salt such as the above is dissolved is used.

【0032】[0032]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。なお、以下の実施例などにおい
て液などの濃度を示す%は、特にその基準を付記しない
限り質量%である。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples. In the following examples,% indicating the concentration of a liquid or the like is% by mass unless otherwise specified.

【0033】実施例1 金属バナジウム1gと30%過酸化水素水100mlを
混合し、氷浴中で3時間攪拌混合した。これを24時間
放置して、五酸化バナジウム(V2 5 )がゾル化した
コロイド液を得た。この五酸化バナジウムのコロイド液
3.8gにアセチレンブラック0.1g、水2gおよび
アセトン1gを加え、スターラーで3時間攪拌して混合
物ぺーストを得た。さらに出力150Wの超音波ホモジ
ナイザーで5分間分散処理をした。この混合物ぺースト
を平均表面粗さが0.32μm(Lasertec社製
レーザー顕微鏡VL2000で測定)で厚さが15μm
のアルミニウム箔の片面にアプリケーターを用いて塗布
し、120℃で3時間加熱処理して活物質層となる五酸
化バナジウムとアセチレンブラックとの複合体層を形成
することにより電極を作製した。この活物質層となる複
合体層における最終組成は五酸化バナジウム:アセチレ
ンブラック=1:2(質量比)であった。TEM(透過
型電子顕微鏡)観察よりアセチレンブラック表面に被覆
された五酸化バナジウムの被覆厚さはおよそ2nmであ
った。マイクロメーターで活物質層としての複合体層の
厚さを10箇所測定し、その平均値を求めたところ、活
物質層としての複合体層の厚さは平均で15μmであっ
た。この電極の活物質層としての複合体層の集電体への
結着性を調べるため、電極を巻回してみたところ、活物
質層としての複合体層の剥離は見られず、活物質層とし
ての複合体層の集電体への結着性が優れていることが確
認された。
Example 1 1 g of metal vanadium and 100 ml of 30% hydrogen peroxide solution were mixed and stirred and mixed in an ice bath for 3 hours. This was allowed to stand for 24 hours to obtain a colloid solution in which vanadium pentoxide (V 2 O 5 ) was turned into a sol. 0.1 g of acetylene black, 2 g of water and 1 g of acetone were added to 3.8 g of the colloidal solution of vanadium pentoxide, and the mixture was stirred with a stirrer for 3 hours to obtain a mixture paste. Further, dispersion treatment was performed for 5 minutes with an ultrasonic homogenizer having an output of 150 W. This mixture paste has an average surface roughness of 0.32 μm (measured with a laser microscope VL2000 manufactured by Lasertec) and a thickness of 15 μm.
An electrode was produced by applying an aluminum foil to one side of the aluminum foil using an applicator and performing heat treatment at 120 ° C. for 3 hours to form a composite layer of vanadium pentoxide and acetylene black serving as an active material layer. The final composition of the composite layer to be the active material layer was vanadium pentoxide: acetylene black = 1: 2 (mass ratio). According to TEM (transmission electron microscope) observation, the coating thickness of vanadium pentoxide coated on the acetylene black surface was about 2 nm. The thickness of the composite layer as the active material layer was measured at 10 points using a micrometer, and the average value was determined. The average thickness of the composite layer as the active material layer was 15 μm. In order to examine the binding property of the composite layer as the active material layer of the electrode to the current collector, when the electrode was wound, no peeling of the composite layer as the active material layer was observed. It was confirmed that the composite layer as described above had excellent binding property to the current collector.

【0034】上記のようにして作製した電極を直径15
mmの円形に打ち抜き、1トン/cm2 で加圧処理した
ものを正極として用い、負極として直径17mmに打ち
抜いた金属リチウムを用い、セパレータとして微孔性ポ
リエチレンフィルムを用い、電解液としてプロピレンカ
ーボネートにLiPF6 を1mol/lの濃度となるよ
うに溶解させたものを用いて、直径20mm、高さ1.
6mmのコイン形のリチウム二次電池を作製した。
The electrode fabricated as described above was
mm was punched out into a circular shape, 1 ton / cm 2 was used as the positive electrode, metallic lithium punched out to a diameter of 17 mm was used as the negative electrode, a microporous polyethylene film was used as the separator, and propylene carbonate was used as the electrolytic solution. LiPF 6 was dissolved at a concentration of 1 mol / l using a solution having a diameter of 20 mm and a height of 1.
A coin-shaped lithium secondary battery of 6 mm was produced.

【0035】比較例1 実施例1と同様にして得られた五酸化バナジウムのコロ
イド液を120℃で3時間加熱処理し、五酸化バナジウ
ムの微粉末を得た。この五酸化バナジウムの微粉末とア
セチレンブラックとポリテトラフルオロエチレンとを混
合し、五酸化バナジウム:アセチレンブラック:ポリテ
トラフルオロエチレン=38:58:4(質量比)の構
成比で電極合剤を調製し、その電極合剤を用いた以外は
実施例1と同様に電極の作製を試みたところ、粒子間の
結着性が悪く、電極が作製できなかった。そこで、ポリ
テトラフルオロエチレンの割合を増やし、組成を五酸化
バナジウム:アセチレンブラック:ポリテトラフルオロ
エチレン=33:50:17(質量比)に変えて電極を
作製した。そして、その電極を用いた以外は実施例1と
同様にコイン形のリチウム二次電池を作製した。
Comparative Example 1 A colloidal solution of vanadium pentoxide obtained in the same manner as in Example 1 was heated at 120 ° C. for 3 hours to obtain a fine powder of vanadium pentoxide. This fine powder of vanadium pentoxide, acetylene black and polytetrafluoroethylene are mixed to prepare an electrode mixture with a composition ratio of vanadium pentoxide: acetylene black: polytetrafluoroethylene = 38: 58: 4 (mass ratio). However, when an attempt was made to produce an electrode in the same manner as in Example 1 except that the electrode mixture was used, the adhesion between particles was poor, and the electrode could not be produced. Therefore, an electrode was produced by increasing the ratio of polytetrafluoroethylene and changing the composition to vanadium pentoxide: acetylene black: polytetrafluoroethylene = 33: 50: 17 (mass ratio). Then, a coin-shaped lithium secondary battery was produced in the same manner as in Example 1 except that the electrode was used.

【0036】比較例2 電極の活物質層としての複合体層の厚さを平均で60μ
mとした以外は、実施例1と同様にコイン形のリチウム
二次電池を作製した。
Comparative Example 2 The average thickness of the composite layer as the active material layer of the electrode was 60 μm.
A coin-shaped lithium secondary battery was produced in the same manner as in Example 1 except that the value was changed to m.

【0037】上記実施例1および比較例1〜2の電池を
それぞれ充電カット電圧4.2V、放電カット電圧2.
0Vとして、1mA/cm2 および50mA/cm2
電流密度(正極の単位面積当たりの電流値で表現)で定
電流充放電試験を行い、その2サイクル目の放電容量を
測定した。その結果を表1に示す。なお、ここでいう放
電とは、正極にリチウムが挿入される反応を意味し、ま
た表1に示す放電容量は五酸化バナジウムの質量当たり
の容量を意味する。
The batteries of Example 1 and Comparative Examples 1 and 2 were charged with a charge cut voltage of 4.2 V and a discharge cut voltage of 2, respectively.
A constant current charge / discharge test was performed at a current density of 1 mA / cm 2 and 50 mA / cm 2 (expressed as a current value per unit area of the positive electrode) at 0 V, and the discharge capacity in the second cycle was measured. Table 1 shows the results. The term “discharge” used herein means a reaction in which lithium is inserted into the positive electrode, and the discharge capacity shown in Table 1 means a capacity per mass of vanadium pentoxide.

【0038】[0038]

【表1】 [Table 1]

【0039】表1に示すように、実施例1の電池は50
mA/cm2 という大きい電流密度で放電した場合でも
300mAh/gという高容量が得られた。そして、こ
の実施例1の電池の50mA/cm2 放電で得られた放
電容量は1mA/cm2 放電で得られた放電容量の83
%に相当した。この実施例1の電池において、このよう
な大きな電流密度で放電した場合でも高容量が得られた
のは、電極の活物質層としての複合体層の薄膜化を達成
できたこと、また、その複合体層中に絶縁体であるバイ
ンダーを添加しなかったこと、さらに、活物質層として
の複合体層の厚さを最適化したことなどによるものと考
えられる。
As shown in Table 1, the battery of Example 1 has a capacity of 50
Even when discharging at a large current density of mA / cm 2, a high capacity of 300 mAh / g was obtained. The discharge capacity of the battery of Example 1 obtained by discharging 50 mA / cm 2 was 83 times the discharging capacity obtained by discharging 1 mA / cm 2.
%. In the battery of Example 1, the high capacity was obtained even when discharging at such a large current density because the thinning of the composite layer as the active material layer of the electrode was achieved. It is considered that this is because the binder which is an insulator was not added to the composite layer, and the thickness of the composite layer as the active material layer was optimized.

【0040】これに対して、バインダーを添加して五酸
化バナジウムとアセチレンブラックを混合した電極を正
極とする比較例1の電池は、放電時の電流密度が1mA
/cm2 と小さい場合には、実施例1の電池とそれほど
変わらない放電容量を示したが、電流密度が50mA/
cm2 と大きくなると、まったく放電することができな
かった。また、活物質層としての複合体層の厚さが60
μmと本発明で規定する範囲より厚かった比較例2の電
池では、放電時の電流密度が1mA/cm2 と小さい場
合は、実施例1の電池と同等の放電容量を示したが、電
流密度が50mA/cm2 と大きくなると、実施例1の
電池に比べて、放電容量が大きく低下した。
On the other hand, the battery of Comparative Example 1 having a positive electrode made of a mixture of vanadium pentoxide and acetylene black with the addition of a binder had a current density of 1 mA during discharge.
/ Cm 2 , the discharge capacity was not so different from that of the battery of Example 1, but the current density was 50 mA /
When it was as large as cm 2 , no discharge was possible. The thickness of the composite layer as the active material layer is 60
The battery of Comparative Example 2, which was thicker than the range specified in the present invention, had a discharge capacity equivalent to that of the battery of Example 1 when the current density during discharge was as small as 1 mA / cm 2. Increased to 50 mA / cm 2 , the discharge capacity was significantly reduced as compared with the battery of Example 1.

【0041】[0041]

【発明の効果】以上説明したように、本発明では、バイ
ンダーの添加を要することなく、活物質層としての複合
体層と金属箔などの集電体との結着性が優れ、かつ大電
流密度下でも高い容量を示す高出力対応の電気化学素子
用電極を提供することができ、また、その電極を用いる
ことにより、大電流密度下でも高い容量を示す電気化学
素子を提供することができた。
As described above, according to the present invention, the binder between the composite layer as an active material layer and a current collector such as a metal foil is excellent and a large current is applied without adding a binder. It is possible to provide an electrode for a high-output electrochemical element exhibiting a high capacity even under a high density, and to provide an electrochemical element exhibiting a high capacity even under a high current density by using the electrode. Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気化学素子用電極の要部の一例を模
式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing an example of a main part of an electrode for an electrochemical device of the present invention.

【符号の説明】[Explanation of symbols]

1 金属酸化物と導電性物質との複合体層 1a 金属酸化物 1b 導電性物質 2 集電体 DESCRIPTION OF SYMBOLS 1 Composite layer of metal oxide and conductive material 1a Metal oxide 1b Conductive material 2 Current collector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/64 H01G 9/00 301A 10/40 301D Fターム(参考) 5H017 AA03 AS01 CC01 EE01 HH03 5H029 AJ03 AJ05 AK02 AL12 AM03 AM07 BJ03 CJ02 CJ08 CJ22 DJ07 DJ08 DJ16 EJ01 EJ04 HJ04 5H050 AA07 AA08 BA16 CA02 CB12 DA04 DA10 EA02 EA08 FA17 GA02 GA10 GA22 HA04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) H01M 4/64 H01G 9/00 301A 10/40 301D F-term (reference) 5H017 AA03 AS01 CC01 EE01 HH03 5H029 AJ03 AJ05 AK02 AL12 AM03 AM07 BJ03 CJ02 CJ08 CJ22 DJ07 DJ08 DJ16 EJ01 EJ04 HJ04 5H050 AA07 AA08 BA16 CA02 CB12 DA04 DA10 EA02 EA08 FA17 GA02 GA10 GA22 HA04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物の連続膜の内部に導電性物質
が分散されてなる金属酸化物と導電性物質との複合体層
を、集電体の少なくとも一方の面に5〜50μmの平均
厚さで形成したことを特徴とする電気化学素子用電極。
1. A composite layer of a metal oxide and a conductive material, in which a conductive material is dispersed in a continuous film of a metal oxide, is provided on at least one surface of the current collector with an average thickness of 5 to 50 μm. An electrode for an electrochemical device, wherein the electrode is formed in a thickness.
【請求項2】 金属酸化物のコロイド液に導電性物質が
分散された混合物ぺーストを集電体に塗布し、加熱処理
することにより得られた金属酸化物の連続膜の内部に導
電性物質が分散されてなる金属酸化物と導電性物質との
複合体層を、集電体の少なくとも一方の面に5〜50μ
mの平均厚さで形成したことを特徴とする電気化学素子
用電極。
2. A mixture of a conductive material dispersed in a colloidal liquid of a metal oxide and a paste applied to a current collector, and heat-treated to form a conductive material inside a continuous film of the metal oxide. A composite layer of a metal oxide and a conductive material, in which 5 .mu.m is dispersed on at least one surface of the current collector.
An electrode for an electrochemical device, wherein the electrode has an average thickness of m.
【請求項3】 前記金属酸化物が周期表の第4周期から
第6周期で第3族から第12族の範囲内に属する金属元
素の酸化物または複合酸化物である請求項1または2記
載の電気化学素子用電極。
3. The metal oxide according to claim 1, wherein the metal oxide is an oxide or a composite oxide of a metal element belonging to the group 3 to group 12 in the fourth to sixth periods of the periodic table. Electrodes for electrochemical devices.
【請求項4】 前記導電性物質が炭素材料である請求項
1〜3のいずれかに記載の電気化学素子用電極。
4. The electrode for an electrochemical device according to claim 1, wherein said conductive substance is a carbon material.
【請求項5】 前記集電体として厚さ5〜50μmの金
属箔を用いた請求項1〜4のいずれかに記載の電気化学
素子用電極。
5. The electrode for an electrochemical device according to claim 1, wherein a metal foil having a thickness of 5 to 50 μm is used as the current collector.
【請求項6】 請求項1〜5のいずれかに記載の電気化
学素子用電極とその対極と電解質とを有することを特徴
とする電気化学素子。
6. An electrochemical device comprising the electrode for an electrochemical device according to claim 1, a counter electrode thereof, and an electrolyte.
【請求項7】 請求項1〜5のいずれかに記載の電気化
学素子用電極からなる正極と、その対極である負極と、
有機電解液とを有することを特徴とする電気化学素子。
7. A positive electrode comprising the electrode for an electrochemical device according to claim 1, a negative electrode as a counter electrode thereof,
An electrochemical device comprising an organic electrolyte.
JP2002039395A 2001-02-22 2002-02-18 Electrode for electrochemical device and electrochemical device Expired - Fee Related JP3578272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002039395A JP3578272B2 (en) 2001-02-22 2002-02-18 Electrode for electrochemical device and electrochemical device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-45991 2001-02-22
JP2001045991 2001-02-22
JP2002039395A JP3578272B2 (en) 2001-02-22 2002-02-18 Electrode for electrochemical device and electrochemical device

Publications (2)

Publication Number Publication Date
JP2002324545A true JP2002324545A (en) 2002-11-08
JP3578272B2 JP3578272B2 (en) 2004-10-20

Family

ID=26609864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002039395A Expired - Fee Related JP3578272B2 (en) 2001-02-22 2002-02-18 Electrode for electrochemical device and electrochemical device

Country Status (1)

Country Link
JP (1) JP3578272B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015587A1 (en) * 2003-08-06 2005-02-17 Enerland Co., Ltd. Supercapacitor with reduced internal resistance
JP2005260006A (en) * 2004-03-11 2005-09-22 Kri Inc Capacitor and its manufacturing method
KR100894481B1 (en) 2007-04-16 2009-04-22 한국과학기술연구원 Electrode for supercapacitor having metal oxide deposited onto ultrafine carbon fiber and the fabrication method thereof
JP2010272510A (en) * 2009-04-24 2010-12-02 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte solution secondary battery, method for manufacturing electrode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery
WO2011030846A1 (en) * 2009-09-11 2011-03-17 大日本印刷株式会社 Electrode plate for nonaqueous electrolyte secondary battery, method for producing electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
WO2011122671A1 (en) * 2010-03-30 2011-10-06 大日本印刷株式会社 Negative electrode plate for lithium ion secondary battery, lithium ion secondary battery, battery pack, and method for manufacturing lithium ion secondary battery
US8243420B2 (en) * 2008-03-20 2012-08-14 Korea Institute Of Science And Technology Conductive electrode using conducting metal oxide film with network structure of nanograins and nanoparticles, preparation method thereof and supercapacitor using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015587A1 (en) * 2003-08-06 2005-02-17 Enerland Co., Ltd. Supercapacitor with reduced internal resistance
US7558050B2 (en) 2003-08-06 2009-07-07 Enerland Co., Ltd. Supercapacitor with reduced internal resistance
JP2005260006A (en) * 2004-03-11 2005-09-22 Kri Inc Capacitor and its manufacturing method
KR100894481B1 (en) 2007-04-16 2009-04-22 한국과학기술연구원 Electrode for supercapacitor having metal oxide deposited onto ultrafine carbon fiber and the fabrication method thereof
US8243420B2 (en) * 2008-03-20 2012-08-14 Korea Institute Of Science And Technology Conductive electrode using conducting metal oxide film with network structure of nanograins and nanoparticles, preparation method thereof and supercapacitor using the same
JP2010272510A (en) * 2009-04-24 2010-12-02 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte solution secondary battery, method for manufacturing electrode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery
WO2011030846A1 (en) * 2009-09-11 2011-03-17 大日本印刷株式会社 Electrode plate for nonaqueous electrolyte secondary battery, method for producing electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP2011082147A (en) * 2009-09-11 2011-04-21 Dainippon Printing Co Ltd Nonaqueous electrolyte secondary battery
WO2011122671A1 (en) * 2010-03-30 2011-10-06 大日本印刷株式会社 Negative electrode plate for lithium ion secondary battery, lithium ion secondary battery, battery pack, and method for manufacturing lithium ion secondary battery
JP2011228291A (en) * 2010-03-30 2011-11-10 Dainippon Printing Co Ltd Negative electrode plate for lithium ion secondary battery, lithium ion secondary battery, battery pack, and method of manufacturing lithium ion secondary battery

Also Published As

Publication number Publication date
JP3578272B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
US20200119343A1 (en) Negative electrode material for power storage device, electrode structure, power storage device, and production method for each
JP3568052B2 (en) Porous metal body, method for producing the same, and battery electrode plate using the same
JP5839221B2 (en) Lithium secondary battery
JP4002829B2 (en) Electrode element electrode material, method for producing the same, and electrochemical element
KR102182496B1 (en) Electrochemical device electrode including cobalt oxyhydroxide
JP2010282873A (en) Lithium secondary battery, and method of manufacturing the same
CN110891900A (en) Conductive carbon mixture and method for producing same, electrode using same and method for producing same, and electricity storage device provided with same
JP2013004355A (en) Method for manufacturing battery
CN115152049A (en) Negative electrode for secondary battery, method for producing same, and secondary battery
WO2014068777A1 (en) All-solid lithium ion secondary battery
JP4697912B2 (en) Secondary power supply electrode material and secondary power supply using the same
EP2755263A1 (en) Anode active material comprising porous silicon oxide-carbon material complex and method for preparing same
JP2003217583A (en) Composite electrode and electrochemical element using the same
JP3578272B2 (en) Electrode for electrochemical device and electrochemical device
JP2015181089A (en) Conductive carbon, electrode material including conductive carbon, and electrode using the electrode material
JP6931185B2 (en) A conductive carbon mixture, an electrode using this mixture, and a power storage device equipped with this electrode.
JP2023538082A (en) Negative electrode and secondary battery containing the same
JP2019021421A (en) Conductive carbon mixture, electrode arranged by use of the mixture, and power storage device having the electrode
JP2002093416A (en) Negative electrode material for lithium secondary battery, negative electrode and secondary battery using the same
JP2019021427A (en) Carbon slurry and active material slurry arranged by use thereof
JP2003123737A (en) Composite electrode material, method of manufacturing the same, and composite electrode using the composite electrode material
JP2003151533A (en) Electrode, its manufacturing method and battery
JP2002217071A (en) Electric double-layer capacitor
JPH11283612A (en) Lithium secondary battery
JP2003331823A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees